
EM11Q-01

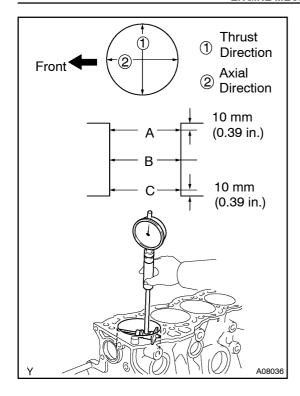
INSPECTION

1. CLEAN CYLINDER BLOCK

- (a) Remove the gasket material. Using a gasket scraper, remove all the gasket material from the top surface of the cylinder block.
- (b) Clean the cylinder block.Using a soft brush and solvent, thoroughly clean the cylinder block.


2. INSPECT CYLINDER BLOCK

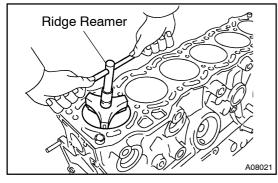
(a) Inspect for flatness.


Using a precision straight edge and feeler gauge, measure the surface contacting the cylinder head gasket for warpage.

Maximum warpage: 0.05 mm (0.0020 in.)

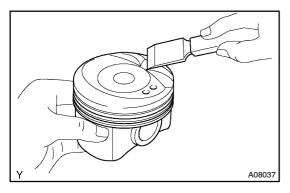
If warpage is greater than maximum, replace the cylinder block.

(b) Visually check the cylinder for vertical scratches. If deep scratches are found, rebore all the 6 cylinders and replace all the 6 pistons. (See page EM-94) If necessary, replace the cylinder block.

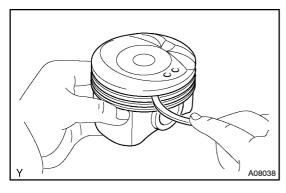

(c) Inspect the cylinder bore diameter.

Using a cylinder gauge, measure the cylinder bore diameter at the positions A, B and C in the thrust and axial directions.

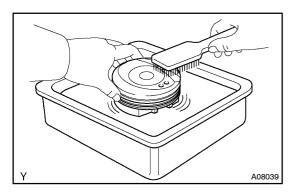
Standard diameter:


75.010 - 75.023 mm (2.9531 - 2.9537 in.) Maximum diameter: 75.223 mm (2.9615 in.)

If the diameter is greater than maximum, rebore all the 6 cylinders and replace all the 6 pistons. (See page EM-94) If necessary, replace the cylinder block.

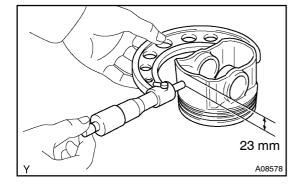

(d) Remove the cylinder ridge.

If the wear is less than 0.2 mm (0.008 in.), using a ridge reamer, grind the top of the cylinder.


3. CLEAN PISTON

(a) Using a gasket scraper, remove the carbon from the piston top.

(b) Using a groove cleaning tool or broken ring, clean the piston ring grooves.


LEXUS IS200 (RM684E)

(c) Using solvent and a brush, thoroughly clean the piston.

NOTICE:

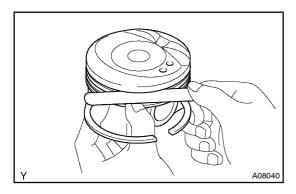
Do not use a wire brush.

4. INSPECT PISTON AND CONNECTING ROD

- (a) Inspect the piston oil clearance.
 - Using a micrometer, measure the piston diameter at a right angles to the piston pin center line, 23 mm (0.91 in.) below the skirt bottom edge.

Piston diameter:

STD	74.93 – 74.94 mm (2.9500 – 2.9504 in.)
O/S 0.50	75.43 – 75.44 mm (2.9697 – 2.9701 in.)

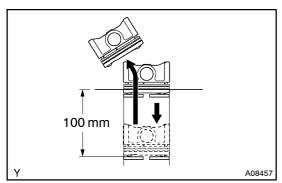

- (2) Measure the cylinder bore diameter in the thrust directions. (See step 2)
- (3) Subtract the piston diameter measurement from the cylinder bore diameter measurement.

Standard oil clearance:

0.070 - 0.093 mm (0.0028 - 0.0037 in.)

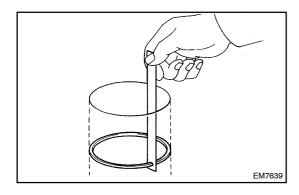
Maximum oil clearance: 0.11 mm (0.0043 in.)

If the oil clearance is greater than maximum, replace all the 6 pistons and rebore all the 6 cylinders. (See page EM-94) If necessary, replace the cylinder block.



(b) Inspect the piston ring groove clearance.Using a feeler gauge, measure the clearance between new piston ring and the wall of the ring groove.

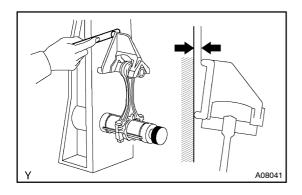
Ring groove clearance:


No.1	0.030 – 0.080 mm (0.0012 – 0.0031 in.)
No.2	0.030 – 0.070 mm (0.0012 – 0.0028 in.)

If the clearance is not as specified, replace the piston.

- (c) Inspect the piston ring end gap.
 - (1) Insert the piston ring into the cylinder bore.
 - (2) Using a piston, push the piston ring a little beyond the bottom of the ring travel, 100 mm (3.94 in.) from the top of the cylinder block.

LEXUS IS200 (RM684E)

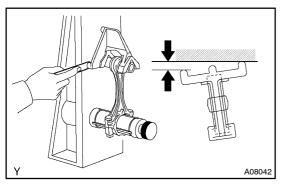

(3) Using a feeler gauge, measure the end gap. **Standard end gap:**

No.1	0.20- 0.30 mm (0.0078 - 0.0118 in.)	
No.2	0.35 – 0.50 mm (0.0138 – 0.0196 in.)	
Oil (Side rail)	0.15 – 0.40 mm (0.0059 – 0.0157 in.)	

Maximum end gap:

No.1	0.90 mm (0.0354 in.)
No.2	1.10 mm (0.0433 in.)
Oil (Side rail)	1.00 mm (0.0394 in.)

If the end gap is greater than maximum, replace the piston ring. If the end gap is greater than maximum, even with a new piston ring, rebore all the 6 cylinders (see page EM-94) or replace the cylinder block.

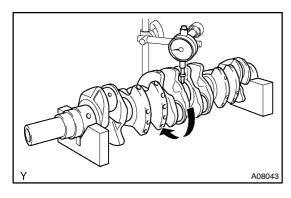


- (d) Using a rod aligner and feeler gauge, check the connecting rod alignment.
 - (1) Check for out-of-alignment.

Maximum out-of-alignment:

0.05 mm (0.0020 in.) per 100 mm (3.94 in.)

If out-of-alignment is greater than maximum, replace the connecting rod assembly.

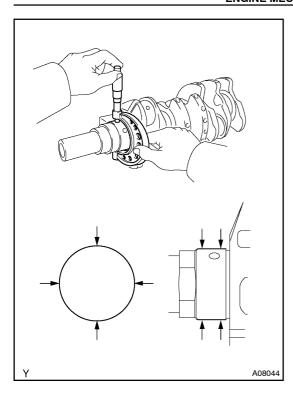


(2) Check for twist

Maximum twist:

0.15 mm (0.0059 in.) per 100 mm (3.94 in.)

If twist is greater than maximum, replace the connecting rod assembly.



5. INSPECT CRANKSHAFT

- (a) Inspect for circle runout.
 - (1) Place the crankshaft on V-blocks.
 - (2) Using a dial indicator, measure the circle runout at the center journal.

Maximum circle runout: 0.06 mm (0.0024 in.)

If the circle runout is greater than maximum, replace the crankshaft.

- (b) Inspect the main journals and crank pins.
 - (1) Using a micrometer, measure the diameter of each main journal and crank pin.

Main journal diameter:

No.4		54.970 – 54.988 mm (2.1641 – 2.1649 in.)
Others	STD size	54.982 – 55.000 mm
		(2.1646 – 2.1654 in.)

Crank pin diameter:

STD size	43.985 – 44.000 mm (1.7317 – 1.7322 in.)

If the diameter is not as specified, check the oil clearance. (See page EM-82) If necessary, grind or replace the crankshaft.

(2) Check each main journal and crank pin for taper and out-of-round as shown.

Maximum taper and out-of-round: 0.02 mm (0.0008 in.)

If the taper and out–of–round is greater than maximum, replace the crankshaft.

6. IF NECESSARY, GRIND AND HONE MAIN JOURNALS AND/OR CRANK PINS

Grind and hone the main journals and/or crank pins to the finished undersized diameter. (See procedure in step 5) Install new main journal and/or crankshaft pin undersized bearings.