ENGINE CONTROL SYSTEM

SECTION EC

CONTENTS

QG	
TROUBLE DIAGNOSIS - INDEX	10
Alphabetical & P No. Index for DTC	10
PRECAUTIONS	
Supplemental Restraint System (SRS) "AIR	
BAG" and "SEAT BELT PRE-TENSIONER"	16
Precautions for On Board Diagnostic (OBD)	
System of Engine and A/T	16
Engine Fuel & Emission Control System	17
Wiring Diagrams and Trouble Diagnosis	19
PREPARATION	20
Special Service Tools	20
Commercial Service Tools	20
ENGINE AND EMISSION CONTROL OVERALL	
SYSTEM	
Engine Control Component Parts Location	
Circuit Diagram	25
System Diagram	
Vacuum Hose Drawing	
System Chart	28
ENGINE AND EMISSION BASIC CONTROL	
SYSTEM DESCRIPTION	
Multiport Fuel Injection (MFI) System	
Electronic Ignition (EI) System	
Air Conditioning Cut Control	32
Fuel Cut Control (at no load & high engine	0.0
speed)	
Evaporative Emission System	
Positive Crankcase Ventilation BASIC SERVICE PROCEDURE	
Fuel Pressure Release	
Fuel Pressure Check	
Fuel Pressure Regulator Check	
Injector	
How to Check Idle Speed and Ignition Timing	
Preparation	
Inspection Procedure	
Idle Air Volume Learning	

57
57
57
58
72
72
76
81
92
94
94
96
98
98
.122
.122
.123
.124
.128
400
.130
.132
.140
.140
.140
.140
.141
.144
144 144
144 144
. 144 . 145
.145
.152
.152

CONSULT-II Reference Value in Data Monitor	
Mode	
ECM Terminals and Reference Value	152
On Board Diagnosis Logic	152
Fail-safe Mode	153
DTC Confirmation Procedure	153
Wiring Diagram	154
Diagnostic Procedure	155
Component Inspection	
DTC P0110 INTAKE AIR TEMPERATURE	
SENSOR	158
Component Description	158
On Board Diagnosis Logic	
DTC Confirmation Procedure	
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	
DTC P0115 ENGINE COOLANT TEMPERATURE	
SENSOR (ECTS)	
Component Description	
CONSULT-II Reference Value in Data Monitor	
Mode	163
On Board Diagnosis Logic	
Fail-safe Mode	
DTC Confirmation Procedure	
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	
DTC P0120 THROTTLE POSITION SENSOR	
Component Description	
CONSULT-II Reference Value in Data Monitor	100
Mode	160
ECM Terminals and Reference Value	
On Board Diagnosis LogicFail-safe Mode	
DTC Confirmation Procedure	
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	174
DTC P0130 HEATED OXYGEN SENSOR 1	470
(FRONT) (CIRCUIT)	
Component Description	170
CONSULT-II Reference Value in Data Monitor	
CONSULT-II Reference Value in Data Monitor Mode	176
CONSULT-II Reference Value in Data Monitor Mode ECM Terminals and Reference Value	176 176
CONSULT-II Reference Value in Data Monitor Mode ECM Terminals and Reference Value On Board Diagnosis Logic	176 176 177
CONSULT-II Reference Value in Data Monitor Mode ECM Terminals and Reference Value On Board Diagnosis Logic DTC Confirmation Procedure	176 176 177
CONSULT-II Reference Value in Data Monitor Mode ECM Terminals and Reference Value On Board Diagnosis Logic DTC Confirmation Procedure Overall Function Check	176 176 177 177
CONSULT-II Reference Value in Data Monitor Mode ECM Terminals and Reference Value On Board Diagnosis Logic DTC Confirmation Procedure Overall Function Check Wiring Diagram	176 176 177 177 178
CONSULT-II Reference Value in Data Monitor Mode ECM Terminals and Reference Value On Board Diagnosis Logic DTC Confirmation Procedure Overall Function Check	176 176 177 177 178 179

	TC P0131 HEATED OXYGEN SENSOR 1	
(F	RONT) (LEAN SHIFT MONITORING)	
	Component Description	183
	CONSULT-II Reference Value in Data Monitor	
	Mode	183
	ECM Terminals and Reference Value	183
	On Board Diagnosis Logic	184
	DTC Confirmation Procedure	184
	Overall Function Check	185
	Diagnostic Procedure	185
	Component Inspection	187
D.	TC P0132 HEATED OXYGEN SENSOR 1	
(F	RONT) (RICH SHIFT MONITORING)	189
	Component Description	189
	CONSULT-II Reference Value in Data Monitor	
	Mode	189
	ECM Terminals and Reference Value	189
	On Board Diagnosis Logic	190
	DTC Confirmation Procedure	
	Overall Function Check	
	Diagnostic Procedure	
	Component Inspection	
D.	TC P0133 HEATED OXYGEN SENSOR 1	
	RONT)	195
•	Component Description	
	CONSULT-II Reference Value in Data Monitor	
	Mode	195
	ECM Terminals and Reference Value	
	On Board Diagnosis Logic	
	DTC Confirmation Procedure	
	Overall Function Check	
	Wiring Diagram	
	Diagnostic Procedure	
	Component Inspection	
D.	TC P0134 HEATED OXYGEN SENSOR 1	
	RONT) (HIGH VOLTAGE)	203
	Component Description	
	CONSULT-II Reference Value in Data Monitor	
	Mode	203
	ECM Terminals and Reference Value	
	On Board Diagnosis Logic	
	DTC Confirmation Procedure	
	Wiring Diagram	
	Diagnostic Procedure	
	Component Inspection	
D.	TC P0135 HEATED OXYGEN SENSOR 1	01
	RONT) HEATER	209
٠-	Description	
	CONSULT-II Reference Value in Data Monitor	
	Mode	209
	ECM Terminals and Reference Value	
	On Board Diagnosis Logic	

DTC Confirmation Procedure	210	DIC P0141 HEATED OXYGEN SENSOR 2	
Wiring Diagram		HEATER (REAR)	
Diagnostic Procedure	212	Description	243
Component Inspection	213	CONSULT-II Reference Value in Data Monitor	
DTC P0137 HEATED OXYGEN SENSOR 2		Mode	
(REAR) (MIN. VOLTAGE MONITORING)	214	ECM Terminals and Reference Value	243
Component Description	214	On Board Diagnosis Logic	244
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	244
Mode	214	Wiring Diagram	245
ECM Terminals and Reference Value	214	Diagnostic Procedure	246
On Board Diagnosis Logic	214	Component Inspection	247
DTC Confirmation Procedure	215	DTC P0171 FUEL INJECTION SYSTEM	
Overall Function Check	216	FUNCTION (LEAN SIDE)	248
Wiring Diagram	217	On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Wiring Diagram	
DTC P0138 HEATED OXYGEN SENSOR 2		Diagnostic Procedure	
(REAR) (MAX. VOLTAGE MONITORING)	222	DTC P0172 FUEL INJECTION SYSTEM	
Component Description		FUNCTION (RICH SIDE)	255
CONSULT-II Reference Value in Data Monitor		On Board Diagnosis Logic	
Mode	222	DTC Confirmation Procedure	
ECM Terminals and Reference Value		Wiring Diagram	
On Board Diagnosis Logic		Diagnostic Procedure	
DTC Confirmation Procedure		DTC P0300 - P0304 NO. 4 - 1 CYLINDER	200
Overall Function Check		MISFIRE, MULTIPLE CYLINDER MISFIRE	262
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Diagnostic Procedure	
DTC P0139 HEATED OXYGEN SENSOR 2	221	DTC P0325 KNOCK SENSOR (KS)	
(REAR)	220	Component Description	
Component Description		ECM Terminals and Reference Value	
CONSULT-II Reference Value in Data Monitor	223	On Board Diagnosis Logic	
Mode	220	DTC Confirmation Procedure	
ECM Terminals and Reference Value	_	Wiring Diagram	
On Board Diagnosis Logic		Diagnostic Procedure	
DTC Confirmation Procedure		Component Inspection	
Overall Function Check		DTC P0335 CRANKSHAFT POSITION SENSOR	21
Wiring Diagram		(POS)	
Diagnostic Procedure		Component Description	
Component Inspection	235	ECM Terminals and Reference Value	
DTC P0140 HEATED OXYGEN SENSOR 2	007	On Board Diagnosis Logic	
(REAR) (HIGH VOLTAGE)		DTC Confirmation Procedure	
Component Description	237	Wiring Diagram	
CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure	
Mode		Component Inspection	27
ECM Terminals and Reference Value		DTC P0340 CAMSHAFT POSITION SENSOR	
On Board Diagnosis Logic		(CMPS) (PHASE)	
DTC Confirmation Procedure		Component Description	
Overall Function Check		ECM Terminals and Reference Value	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection	241	Wiring Diagram	280

Diagnostic Procedure	281	ECM Terminals and Reference Value	
Component Inspection	284	On Board Diagnosis Logic	314
DTC P0400 EGR FUNCTION (CLOSED) (WHERE		DTC Confirmation Procedure	314
FITTED)	285	Wiring Diagram	315
Description	285	Diagnostic Procedure	316
CONSULT-II Reference Value in Data Monitor		Component Inspection	320
Mode	286	DTC P0510 CLOSED THROTTLE POSITION	
ECM Terminals and Reference Value	286	SWITCH (WHERE FITTED)	321
On Board Diagnosis Logic	286	Component Description	321
DTC Confirmation Procedure	287	CONSULT-II Reference Value in Data Monitor	
Wiring Diagram	289	Mode	321
Diagnostic Procedure		ECM Terminals and Reference Value	321
Component Inspection		On Board Diagnosis Logic	321
DTC P0403 EGR VOLUME CONTROL VALVE		DTC Confirmation Procedure	
(CIRCUIT)	293	Overall Function Check	
Description		Wiring Diagram	323
CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure	
Mode	294	Component Inspection	
ECM Terminals and Reference Value		DTC P0605 ECM	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Diagnostic Procedure	
Component Inspection		DTC P1111 INTAKE VALVE TIMING CONTROL	0_0
DTC P0420 THREE WAY CATALYST FUNCTION		SOLENOID VALVE	320
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		Operation	
Overall Function Check		CONSULT-II Reference Value in Data Monitor	020
Diagnostic Procedure		Mode	320
DTC P0443 EVAP CANISTER PURGE VOLUME	000	ECM Terminals and Reference Value	
CONTROL SOLENOID VALVE (CIRCUIT)	304	On Board Diagnosis Logic	
Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor	504	Wiring Diagram	
Mode	304	Diagnostic Procedure	
ECM Terminals and Reference Value		Component Inspection	
On Board Diagnosis Logic		DTC P1217 OVERHEAT (COOLING SYSTEM)	
DTC Confirmation Procedure		System Description	
Wiring Diagram		CONSULT-II Reference Value in Data Monitor	554
		Mode	22/
Diagnostic Procedure Component Inspection		ECM Terminals and Reference Value	
DTC P0500 VEHICLE SPEED SENSOR (VSS)			
· · · · · · · · · · · · · · · · · · ·		On Board Diagnosis Logic Overall Function Check	
Component Description ECM Terminals and Reference Value			
		Wiring Diagram	
On Board Diagnosis Logic		Diagnostic Procedure	
DTC Confirmation Procedure		Main 12 Causes of Overheating	
Wiring Diagram		Component Inspection	345
Diagnostic Procedure	312	DTC P1401 EGR TEMPERATURE SENSOR	0.4=
DTC P0505 IDLE AIR CONTROL VALVE (IACV) -	0.40	(WHERE FITTED)	
AUXILIARY AIR CONTROL (AAC) VALVE		Component Description	
Description	313	On Board Diagnosis Logic	
CONSULT-II Reference Value in Data Monitor	044	DTC Confirmation Procedure	
Mode	314	Wiring Diagram	350

Diagnostic Procedure	351	Component Inspection	382
Component Inspection	352	HEATED OXYGEN SENSOR 2 (REAR)	383
DTC P1402 EGR FUNCTION (OPEN) (WHERE		Component Description	383
FITTED)	353	CONSULT-II Reference Value in Data Monitor	
Description	353	Mode	383
CONSULT-II Reference Value in Data Monitor		ECM Terminals and Reference Value	383
Mode	354	Wiring Diagram	384
ECM Terminals and Reference Value	354	Diagnostic Procedure	385
On Board Diagnosis Logic	354	Component Inspection	387
DTC Confirmation Procedure	355	HEATED OXYGEN SENSOR 2 HEATER (REAR)	
Wiring Diagram	357	Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor	
Component Inspection	359	Mode	389
DTC P1605 A/T DIAGNOSIS COMMUNICATION		ECM Terminals and Reference Value	389
LINE	361	Wiring Diagram	390
System Description		Diagnostic Procedure	
ECM Terminals and Reference Value		Component Inspection	
On Board Diagnosis Logic		CRANKSHAFT POSITION SENSOR (POS)	
DTC Confirmation Procedure		Component Description	
Wiring Diagram		ECM Terminals and Reference Value	
Diagnostic Procedure		Wiring Diagram	
DTC P1706 PARK/NEUTRAL POSITION (PNP)		Diagnostic Procedure	
SWITCH	364	Component Inspection	
Component Description		EGR VOLUME CONTROL SYSTEM (WHERE	
CONSULT-II Reference Value in Data Monitor		FITTED)	400
Mode	364	Description	
ECM Terminals and Reference Value		CONSULT-II Reference Value in Data Monitor	
On Board Diagnosis Logic		Mode	401
DTC Confirmation Procedure		ECM Terminals and Reference Value	
Overall Function Check		Wiring Diagram	
Wiring Diagram		Diagnostic Procedure	
Diagnostic Procedure		Component Inspection	
INTAKE AIR TEMPERATURE SENSOR		EVAP CANISTER PURGE VOLUME CONTROL	
Component Description		SOLENOID VALVE	411
Wiring Diagram		Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor	
Component Inspection		Mode	411
HEATED OXYGEN SENSOR 1 (FRONT)		ECM Terminals and Reference Value	
Component Description		Wiring Diagram	
CONSULT-II Reference Value in Data Monitor	070	Diagnostic Procedure	
Mode	373	Component Inspection	
ECM Terminals and Reference Value		IDLE AIR CONTROL VALVE (IACV) - AUXILIARY	717
Wiring Diagram		AIR CONTROL	418
Diagnostic Procedure		Description	
Component Inspection		CONSULT-II Reference Value in Data Monitor	+ 10
HEATED OXYGEN SENSOR 1 HEATER (FRONT		Mode	/110
Description		ECM Terminals and Reference Value	
CONSULT-II Reference Value in Data Monitor	313		
Mode	270	Wiring Diagram Diagnostic Procedure	
ECM Terminals and Reference Value		Component Inspection	
		Component inspection	423
Wiring Diagram			
Diagnostic Procedure	301		

CLOSED THROTTLE POSITION SWITCH	
(WHERE FITTED)	
Component Description	
ECM Terminals and Reference Value	
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	431
INTAKE VALVE TIMING CONTROL SOLENOID	
VALVE	
Component Description	
Operation	432
CONSULT-II Reference Value in Data Monitor	
Mode	
ECM Terminals and Reference Value	
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	436
A/T COMMUNICATION LINE	
System Description	
Wiring Diagram	
Diagnostic Procedure	
PARK/NEUTRAL POSITION (PNP) SWITCH	
Component Description	441
CONSULT-II Reference Value in Data Monitor	
Mode	
ECM Terminals and Reference Value	
Wiring Diagram	
Diagnostic Procedure	
INJECTOR	
Component Description	446
CONSULT-II Reference Value in Data Monitor	4.40
Mode ECM Terminals and Reference Value	_
Wiring Diagram Diagnostic Procedure	
Component Inspection	
IGNITION SIGNAL	
Component Description	
CONSULT-II Reference Value in Data Monitor	431
Mode	451
ECM Terminals and Reference Value	
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	
START SIGNAL	
CONSULT-II Reference Value in Data Monitor	
Mode	460
ECM Terminals and Reference Value	
Wiring Diagram	
Diagnostic Procedure	
FUEL PUMP.	
System Description	

Component Description	
CONSULT-II Reference Value in Data Monito	or
Mode	464
ECM Terminals and Reference Value	465
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	
POWER STEERING OIL PRESSURE SWITCH	
Component Description	
CONSULT-II Reference Value in Data Monito	
Mode	
ECM Terminals and Reference Value	
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	
REFRIGERANT PRESSURE SENSOR	
Description	
ECM Terminals and Reference Value	
Wiring Diagram	
Diagnostic Procedure	
ELECTRICAL LOAD SIGNAL	
CONSULT-II Reference Value in Data Monito	or
Mode	480
ECM Terminals and Reference Value	480
Wiring Diagram	481
Diagnostic Procedure - Load Signal	
Diagnostic Procedure - Heater Control Panel	
(Fan Switch)	
MI & DATA LINK CONNECTORS	
Wiring Diagram	
SERVICE DATA AND SPECIFICATIONS (SDS	
Fuel Pressure Regulator	•
Idle Speed and Ignition Timing	
Mass Air Flow Sensor	
Intake Air Temperature Sensor	
Engine Coolant Temperature Sensor	
Throttle Position Sensor	
Heated Oxygen Sensor 1 Heater (Front)	
Heated Oxygen Sensor 2 Heater (Rear)	
EGR Volume Control Valve (Where Fitted)	
EGR Temperature Sensor (Where Fitted)	
EVAP Canister Purge Volume Control Valve	490
IACV-AAC Valve	490
Injector	490
Ignition Coil with Power Transistor	490
Condenser	
Fuel Pump	
Crankshaft Position Sensor (POS)	
Camshaft Position Sensor (PHASE)	

YD	
TROUBLE DIAGNOSIS - INDEX	492
Alphabetical & P No. Index for DTC	
PRECAUTIONS	
Supplemental Restraint System (SRS) "AIR	
BAG" and "SEAT BELT PRE-TENSIONER"	494
Engine Fuel & Emission Control System	495
Precautions	496
Wiring Diagrams and Trouble Diagnosis	497
PREPARATION	498
Special Service Tools	498
ENGINE AND EMISSION CONTROL OVERALL	
SYSTEM	499
Engine Control Component Parts Location	
Circuit Diagram	
System Diagram	
System Chart	504
ENGINE AND EMISSION BASIC CONTROL	
SYSTEM DESCRIPTION	
Fuel Injection Control System	
Fuel Injection Timing Control System	
Air Conditioning Cut Control	507
Fuel Cut Control (at no load & high engine	
speed)	
Crankcase Ventilation System	
BASIC SERVICE PROCEDURE	
Injection Tube and Injection Nozzle	
Electronic Control Fuel Injection Pump	
Fuel Filter	520
ON BOARD DIAGNOSTIC SYSTEM	500
DESCRIPTION	
DTC and MI Detection Logic	
Diagnostic Trouble Code (DTC)	
CONSULT-II	
TROUBLE DIAGNOSIS - INTRODUCTION	
Introduction	
Work Flow	
TROUBLE DIAGNOSIS - BASIC INSPECTION	
Basic Inspection	
TROUBLE DIAGNOSIS - GENERAL	
DESCRIPTION	541
Symptom Matrix Chart	
CONSULT-II Reference Value in Data Monitor	
Mode	551
Major Sensor Reference Graph in Data Monitor	
Mode	553
ECM Terminals and Reference Value	
TROUBLE DIAGNOSIS FOR INTERMITTENT	
INCIDENT	559
Description	559
Diagnostic Procedure	

TROUBLE DIAGNOSIS FOR POWER SUPPLY	
Main Power Supply and Ground Circuit	
DTC P0100 MASS AIR FLOW SEN	566
Component Description	566
CONSULT-II Reference Value in Data Monitor	
Mode	
ECM Terminals and Reference Value	566
On Board Diagnosis Logic	566
DTC Confirmation Procedure	566
Wiring Diagram	568
Diagnostic Procedure	569
DTC P0115 COOLANT TEMP SEN	572
Description	572
On Board Diagnosis Logic	572
DTC Confirmation Procedure	572
Wiring Diagram	574
Diagnostic Procedure	575
DTC P0120 ACCEL POS SENSOR	577
Description	577
CONSULT-II Reference Value in Data Monitor	
Mode	577
ECM Terminals and Reference Value	577
On Board Diagnosis Logic	578
DTC Confirmation Procedure	
Wiring Diagram	579
Diagnostic Procedure	580
DTC P0335 CRANK POS SEN (TDC)	587
Description	
CONSULT-II Reference Value in Data Monitor	
Mode	587
ECM Terminals and Reference Value	587
On Board Diagnosis Logic	587
DTC Confirmation Procedure	588
Wiring Diagram	589
Diagnostic Procedure	
DTC P0500 VEHICLE SPEED SEN	593
Description	593
ECM Terminals and Reference Value	593
On Board Diagnosis Logic	593
Overall Function Check	593
Wiring Diagram	595
Diagnostic Procedure	
DTC P0571 BRAKE SW	597
Description	597
ECM Terminals and Reference Value	597
On Board Diagnosis Logic	597
DTC Confirmation Procedure	597
Wiring Diagram	599
Diagnostic Procedure	
DTC P1107 ECM 10	
Description	604
On Board Diagnosis Logic	604

	DTC Confirmation Procedure	604
	Diagnostic Procedure	
D٦	FC P1180 P9.FUEL TEMP SEN	606
	Description	606
	CONSULT-II Reference Value in Data Monitor	
	Mode	606
	ECM Terminals and Reference Value	607
	On Board Diagnosis Logic	607
	DTC Confirmation Procedure	
	Wiring Diagram	
	Diagnostic Procedure	
D٦	TC P1202 FUEL CUT SYSTEM2	
	Description	
	CONSULT-II Reference Value in Data Monitor	
	Mode	612
	ECM Terminals and Reference Value	
	On Board Diagnosis Logic	
	DTC Confirmation Procedure	
	Wiring Diagram	
	Diagnostic Procedure	
D٦	CC P1217 OVER HEAT	
	Description	618
	CONSULT-II Reference Value in Data Monitor	
	Mode	
	ECM Terminals and Reference Value	
	On Board Diagnosis Logic	619
	Overall Function Check	620
	Wiring Diagram	621
	Diagnostic Procedure	622
	Main 12 Causes of Overheating	633
D٦	FC P1241 P7.F/INJ TIMG FB	
	Description	
	CONSULT-II Reference Value in Data Monitor	
	Mode	634
	ECM Terminals and Reference Value	
	On Board Diagnosis Logic	
	DTC Confirmation Procedure	
	Wiring Diagram	037
_	Diagnostic Procedure	
וט	TC P1251 P4.SPILL/V CIRC	
	Description	640
	CONSULT-II Reference Value in Data Monitor	
	Mode	
	ECM Terminals and Reference Value	
	On Board Diagnosis Logic	
	DTC Confirmation Procedure	641
	Wiring Diagram	643
	Diagnostic Procedure	
D٦	FC P1337 P2.DTC PULSE SIG	
	Description	
	CONSULT-II Reference Value in Data Monitor	
	Mode	646

ECM Terminals and Reference Value	647
On Board Diagnosis Logic	647
DTC Confirmation Procedure	647
Wiring Diagram	649
Diagnostic Procedure	
DTC P1341 P1.CAM POS SEN	
Description	
CONSULT-II Reference Value in Data Monitor	
Mode	652
ECM Terminals and Reference Value	
On Board Diagnosis Logic	
DTC Confirmation Procedure	
Wiring Diagram	
Diagnostic Procedure	
DTC P1600 P3.PUMP COMM LINE	
Description	
CONSULT-II Reference Value in Data Monitor	030
Mode	650
ECM Terminals and Reference Value	
On Board Diagnosis Logic	
DTC Confirmation Procedure	
Wiring Diagram	
Diagnostic Procedure	
DTC P1603 ECM 12, DTC P1607 ECM 2	
Description	
On Board Diagnosis Logic	
DTC Confirmation Procedure	
Diagnostic Procedure	
DTC P1620 ECM RLY	
ECM Terminals and Reference Value	
On Board Diagnosis Logic	
DTC Confirmation Procedure	
Wiring Diagram	667
Diagnostic Procedure	
DTC P1621 ECM 15	670
Description	670
On Board Diagnosis Logic	670
DTC Confirmation Procedure	670
Diagnostic Procedure	
DTC P1660 BATTERY VOLTAGE	672
On Board Diagnosis Logic	672
DTC Confirmation Procedure	672
Diagnostic Procedure	672
DTC P1690 P5.PUMP C/MODULE	674
Description	674
CONSULT-II Reference Value in Data Monitor	
Mode	674
ECM Terminals and Reference Value	
On Board Diagnosis Logic	
DTC Confirmation Procedure	
Diagnostic Procedure	
<u> </u>	

GLOW CONTROL SYSTEM	677
Description	677
ECM Terminals and Reference Value	678
Wiring Diagram	679
Diagnostic Procedure	680
EGR VOLUME CONTROL SYSTEM	686
Description	686
CONSULT-II Reference Value in Data Monitor	
Mode	687
ECM Terminals and Reference Value	687
Wiring Diagram	688
Diagnostic Procedure	689
START SIGNAL	693
Wiring Diagram	693
Diagnostic Procedure	694
PARK/NEUTRAL POSITION (PNP) SWITCH	
(WHERE FITTED)	696
Description	696

CONSULT-II Reference value in Data Monitor	
Mode	696
ECM Terminals and Reference Value	696
Wiring Diagram	697
Diagnostic Procedure	698
AIR CONDITIONER CONTROL	700
Wiring Diagram	700
MI & DATA LINK CONNECTORS	701
Wiring Diagram	701
SERVICE DATA AND SPECIFICATIONS (SDS)	702
General Specifications	702
Injection Nozzle	702
Engine Coolant Temperature Sensor	702
Crankshaft Position Sensor (TDC)	702
Glow Plug	702
Accelerator Position Sensor	702
ECP Volume Control Volvo	700

Alphabetical & P No. Index for DTC

Check if the vehicle is a model with the Euro-OBD (E-OBD) system or not by referring to the "Type approval number" on the identification plate. number" on the identification plate.

Refer to GI-40, "IDENTIFICATION PLATE".

Type approval number	Model
Available	With Euro-OBD system
Not available	Without Euro-OBD system

MODELS WITH EURO-OBD SYSTEM **Alphabetical Index for DTC**

NJEC0001S03

lteres e	DTC*6		
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1*7	Reference page
Unable to access ECM	_	_	EC-123
AIR TEMP SEN/CIRC	P0110	0110	EC-158
A/T 1ST GR FNCTN	P0731	0731	AT-202
A/T 2ND GR FNCTN	P0732	0732	AT-209
A/T 3RD GR FNCTN	P0733	0733	AT-215
A/T 4TH GR FNCTN	P0734	0734	AT-221
A/T DIAG COMM LINE	P1605	1605	EC-361
ATF TEMP SEN/CIRC	P0710	0710	AT-187
CMP SEN/CIRCUIT	P0340	0340	EC-278
CLOSED TP SW/CIRC*7	P0510	0510	EC-321
COOLANT T SEN/CIRC*3	P0115	0115	EC-163
CKP SEN/CIRCUIT	P0335	0335	EC-272
CYL 1 MISFIRE	P0301	0301	EC-262
CYL 2 MISFIRE	P0302	0302	EC-262
CYL 3 MISFIRE	P0303	0303	EC-262
CYL 4 MISFIRE	P0304	0304	EC-262
ECM	P0605	0605	EC-327
EGR SYSTEM*7	P0400	0400	EC-285
EGR SYSTEM*7	P1402	1402	EC-353
EGR TEMP SEN/CIRC*7	P1401	1401	EC-347
EGR VOL CON/V CIR*7	P0403	0403	EC-293
ENGINE SPEED SIG	P0725	0725	AT-198
ENG OVER TEMP	P1217	1217	EC-334
FUEL SYS-LEAN/BK1	P0171	0171	EC-248
FUEL SYS-RICH/BK1	P0172	0172	EC-255
HO2S1 HTR (B1)	P0135	0135	EC-209
HO2S1 (B1)	P0130	0130	EC-176
HO2S1 (B1)	P0131	0131	EC-183

Alphabetical & P No. Index for DTC (Cont'd)

	DT	C*6	
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1*7	Reference page
HO2S1 (B1)	P0132	0132	EC-189
HO2S1 (B1)	P0133	0133	EC-195
HO2S1 (B1)	P0134	0134	EC-203
HO2S2 (B1)	P0137	0137	EC-214
HO2S2 (B1)	P0138	0138	EC-222
HO2S2 (B1)	P0139	0139	EC-229
HO2S2 (B1)	P0140	0140	EC-237
HO2S2 HTR (B1)	P0141	0141	EC-243
IACV/AAC VLV/CIRC	P0505	0505	EC-313
INT/V TIM V/CIR-B1	P1111	1111	EC-329
KNOCK SEN/CIRC-B1	P0325	0325	EC-268
L/PRESS SOL/CIRC	P0745	0745	AT-237
MAF SEN/CIRCUIT*3	P0100	0100	EC-152
MULTI CYL MISFIRE	P0300	0300	EC-262
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	EL-239
NO DTC IS DETECTED. FURTHER TESTING MAYBE REQUIRED	_	0000	_
NO DTC IS DETECTED. FURTHER TESTING MAYBE REQUIRED	_	Flashing*5	EC-73
O/R CLTCH SOL/CIRC	P1760	1760	AT-265
PNP SW/CIRC	P0705	0705	AT-181
P-N POS SW/CIRCUIT	P1706	1706	EC-364
PURG VOLUME CONT/V	P0443	0443	EC-304
SFT SOL A/CIRC	P0750	0750	AT-244
SFT SOL B/CIRC	P0755	0755	AT-250
TCC SOLENOID/CIRC	P0740	0740	AT-231
THRTL POS SEN/CIRC*3	P0120	0120	EC-168
TP SEN/CIRC A/T	P1705	1705	AT-256
TW CATALYST SYS-B1	P0420	0420	EC-299
VEH SPD SEN/CIR AT	P0720	0720	AT-193
VEH SPEED SEN/CIRC*4	P0500	0500	EC-309

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

^{*2:} These numbers are prescribed by ISO 15031-6.

^{*3:} When the fail-safe operation occurs, the MI illuminates.

^{*4:} The MI illuminates when the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*5:} While engine is running.

^{*6: 1}st trip DTC No. is the same as DTC No.

^{*7:} If so equipped

P No. Index for DTC

DTC*6		ltama.	
CONSULT-II GST*2	ECM*1*7	(CONSULT-II screen terms)	Reference page
_	_	Unable to access ECM	EC-123
_	Flashing*5	NO DTC IS DETECTED. FURTHER TESTING MAYBE REQUIRED.	EC-73
_	0000	NO DTC IS DETECTED. FURTHER TESTING MAYBE REQUIRED.	_
P0100	0100	MAF SEN/CIRCUIT*3	EC-152
P0110	0110	AIR TEMP SEN/CIRC	EC-158
P0115	0115	COOLANT T SEN/CIRC*3	EC-163
P0120	0120	THRTL POS SEN/CIRC*3	EC-168
P0130	0130	HO2S1 (B1)	EC-176
P0131	0131	HO2S1 (B1)	EC-183
P0132	0132	HO2S1 (B1)	EC-189
P0133	0133	HO2S1 (B1)	EC-195
P0134	0134	HO2S1 (B1)	EC-203
P0135	0135	HO2S1 HTR (B1)	EC-209
P0137	0137	HO2S2 (B1)	EC-214
P0138	0138	HO2S2 (B1)	EC-222
P0139	0139	HO2S2 (B1)	EC-229
P0140	0140	HO2S2 (B1)	EC-237
P0141	0141	HO2S2 HTR (B1)	EC-243
P0171	0171	FUEL SYS-LEAN/BK1	EC-248
P0172	0172	FUEL SYS-RICH/BK1	EC-255
P0300	0300	MULTI CYL MISFIRE	EC-262
P0301	0301	CYL 1 MISFIRE	EC-262
P0302	0302	CYL 2 MISFIRE	EC-262
P0303	0303	CYL 3 MISFIRE	EC-262
P0304	0304	CYL 4 MISFIRE	EC-262
P0325	0325	KNOCK SEN/CIRC-B1	EC-268
P0335	0335	CKP SEN/CIRCUIT	EC-272
P0340	0340	CMP SEN/CIRCUIT	EC-278
P0400	0400	EGR SYSTEM*7	EC-285
P0403	0403	EGR VOL CON/V CIR*7	EC-293
P0420	0420	TW CATALYST SYS-B1	EC-299
P0443	0443	PURG VOLUME CONT/V	EC-304
P0500	0500	VEH SPEED SEN/CIRC*4	EC-309
P0505	0505	IACV/AAC VLV/CIRC	EC-313

DT	C*6	Items		
CONSULT-II GST*2	ECM*1*7	(CONSULT-II screen terms)		
P0510	0510	CLOSED TP SW/CIRC*7	EC-321	
P0605	0605	ECM	EC-327	
P0705	0705	PNP SW/CIRC	AT-181	
P0710	0710	ATF TEMP SEN/CIRC	AT-187	
P0720	0720	VEH SPD SEN/CIR AT	AT-193	
P0725	0725	ENGINE SPEED SIG	AT-198	
P0731	0731	A/T 1ST GR FNCTN	AT-202	
P0732	0732	A/T 2ND GR FNCTN	AT-209	
P0733	0733	A/T 3RD GR FNCTN	AT-215	
P0734	0734	A/T 4TH GR FNCTN	AT-221	
P0740	0740	TCC SOLENOID/CIRC	AT-231	
P0745	0745	L/PRESS SOL/CIRC	AT-237	
P0750	0750	SFT SOL A/CIRC	AT-244	
P0755	0755	SFT SOL B/CIRC	AT-250	
P1111	1111	INT/V TIM V/CIR-B1	EC-329	
P1217	1217	ENG OVER TEMP	EC-334	
P1401	1401	EGR TEMP SEN/CIRC*7	EC-347	
P1402	1402	EGR SYSTEM*7	EC-353	
P1605	1605	A/T DIAG COMM LINE	EC-361	
P1610 - 1615	1610 - 1615	NATS MALFUNCTION	EL-239	
P1705	1705	TP SEN/CIRC A/T	AT-256	
P1706	1706	P-N POS SW/CIRCUIT	EC-364	
P1760	1760	O/R CLTCH SOL/CIRC	AT-265	

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

MODELS WITHOUT EURO-OBD SYSTEM Alphabetical Index for DTC

NJEC0001S04

NJEC0001S0401

Itama	DT	C*6	
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	Reference page
Unable to access ECM	_	_	EC-123
CKP SEN/CIRCUIT	P0335	0335	EC-272
CMP SEN/CIRCUIT	P0340	0340	EC-278

^{*2:} These numbers are prescribed by ISO 15031-6

^{*3:} When the fail-safe operation occurs, the MI illuminates.

^{*4:} The MI illuminates when the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*5:} While engine is running.

^{*6: 1}st trip DTC No. is the same as DTC No.

^{*7:} If so equipped

14	DTC*6		
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	Reference page
COOLANT T SEN/CIRC*3	P0115	0115	EC-163
ENG OVER TEMP	P1217	1217	EC-334
HO2S1 (B1)	P0130	0130	EC-176
KNOCK SEN/CIRC-B1	P0325	0325	EC-268
MAF SEN/CIRCUIT*3	P0100	0100	EC-152
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	EL-239
NO DTC IS DETECTED. FURTHER TESTING MAYBE REQUIRED	_	0000	_
NO DTC IS DETECTED. FURTHER TESTING MAYBE REQUIRED	_	Flashing*5	EC-73
THRTL POS SEN/CIRC*3	P0120	0120	EC-168
VEH SPEED SEN/CIRC*4	P0500	0500	EC-309

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results) (If so equipped). These numbers are controlled by NISSAN.

P No. Index for DTC

NJEC0001S0402

DT	C*6	- Items	
CONSULT-II GST*2	ECM*1	(CONSULT-II screen terms)	
_	_	Unable to access ECM	EC-123
_	Flashing*5	NO DTC IS DETECTED. FURTHER TESTING MAYBE REQUIRED.	EC-73
_	0000	NO DTC IS DETECTED. FURTHER TESTING MAYBE REQUIRED.	_
P0100	0100	MAF SEN/CIRCUIT*3	EC-152
P0115	0115	COOLANT T SEN/CIRC*3	EC-163
P0120	0120	THRTL POS SEN/CIRC*3	EC-168
P0130	0130	HO2S1 (B1)	EC-176
P0325	0325	KNOCK SEN/CIRC-B1	EC-268
P0335	0335	CKP SEN/CIRCUIT	EC-272
P0340	0340	CMP SEN/CIRCUIT	EC-278
P0500	0500	VEH SPEED SEN/CIRC*4	EC-309
P1217	1217	ENG OVER TEMP	EC-334
P1610 - 1615	1610 - 1615	NATS MALFUNCTION	EL-239

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results) (If so equipped). These numbers are controlled by NISSAN.

^{*2:} These numbers are prescribed by ISO 15031-6.

^{*3:} When the fail-safe operation occurs, the MI illuminates.

^{*4:} The MI illuminates when the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*5:} While engine is running.

^{*6: 1}st trip DTC No. is the same as DTC No.

^{*2:} These numbers are prescribed by ISO 15031-6

^{*3:} When the fail-safe operation occurs, the MI illuminates.

TROUBLE DIAGNOSIS — INDEX

QG

Alphabetical & P No. Index for DTC (Cont'd)

^{*4:} The MI illuminates when the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*5:} While engine is running.

^{*6: 1}st trip DTC No. is the same as DTC No.

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

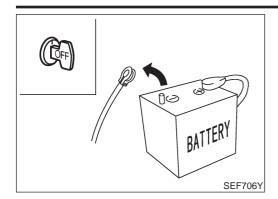
The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The SRS system composition which is available to NISSAN MODEL N16 is as follows (The composition varies according to the destination and optional equipment.):

- For a frontal collision
 The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), front seat
 - belt pre-tensioners, a diagnoses sensor unit, warning lamp, wiring harness and spiral cable.
 For a side collision
 The Supplemental Restraint System consists of front side air bag module (located in the outer side of front seat), side air bag (satellite) sensor, diagnoses sensor unit (one of components of air bags for a frontal

collision), wiring harness, warning lamp (one of components of air bags for a frontal collision). Information necessary to service the system safely is included in the **RS section** of this Service Manual.

WARNING:

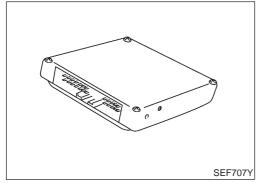
- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance should be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the RS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harness can be identified by yellow harness connector.


Precautions for On Board Diagnostic (OBD) System of Engine and A/T

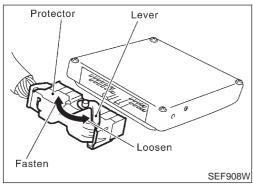
The ECM has an on board diagnostic system. It will light up the malfunction indicator (MI) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

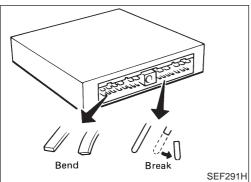
TOR".


- Be sure to turn the ignition switch "OFF" and disconnect the negative battery terminal before any
 repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc.
 will cause the MI to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
 cause the MI to light up due to the open circuit. (Be sure the connector is free from water, grease,
 dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector.
 For description and how to disconnect, refer to EL section, "Description", "HARNESS CONNEC-
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MI to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MI to light up due to the malfunction of fuel injection system, etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission Control Module) before returning the vehicle to the customer.

Engine Fuel & Emission Control System

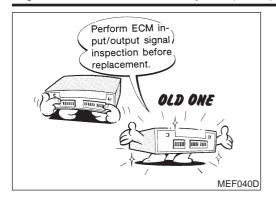

=NJEC0004

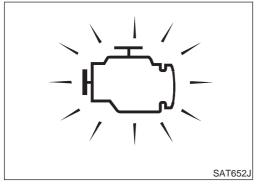
- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.
- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.


- Do not disassemble ECM.
- If a battery terminal is disconnected, the memory will return to the ECM value.

The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.

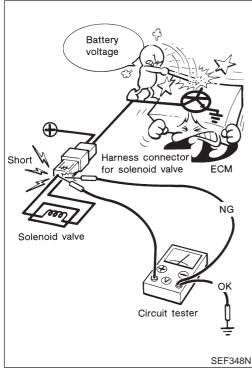
• When connecting or disconnecting ECM harness connector, use lever as shown.


When connecting, fasten connector securely with lever moved until it stops.

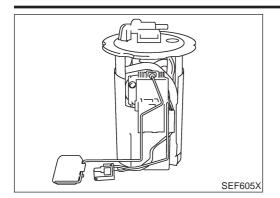

 When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminals when connecting pin connectors.

- Securely connect ECM harness connectors.
 A Poor connection can cause an extremely high (surge)
 voltage to develop in coil and condenser thus resulting in
 - voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep ECM harness at least 10 cm (4 in) away from adjacent harness, to prevent an ECM system malfunctions due to receiving external noise, degraded operation of ICs, etc.
- Keep ECM parts and harness dry.

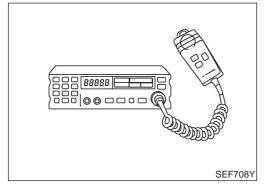


- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble IAC valve-AAC valve.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor and crankshaft position sensor.
- Before replacing ECM, perform refer to "ECM Terminals and Reference Value" inspection and make sure ECM functions properly, EC-132.


 After performing each TROUBLE DIAGNOSIS, perform "DTC Confirmation Procedure" or "Overall Function Check".

The DTC should not be displayed in the "DTC Confirmation Procedure" if the repair is completed. The "Overall Function Check" should be a good result if the repair is completed.

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.


 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque.

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- 1) Keep the antenna as far as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls.
 Do not let them run parallel for a long distance.
- 3) Adjust the antenna and feeder line so that the standingwave ratio can be kept smaller.
- 4) Be sure to ground the radio to vehicle body.

Wiring Diagrams and Trouble Diagnosis

NJEC0006

When you read Wiring diagrams, refer to the following:

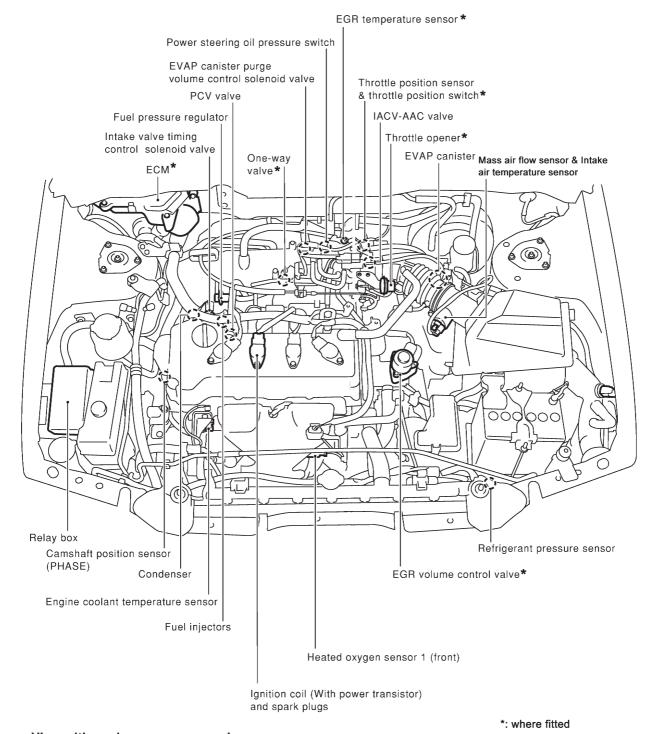
- GI-12, "HOW TO READ WIRING DIAGRAMS"
- EL-10, "POWER SUPPLY ROUTING" for power distribution circuit

When you perform trouble diagnosis, refer to the following:

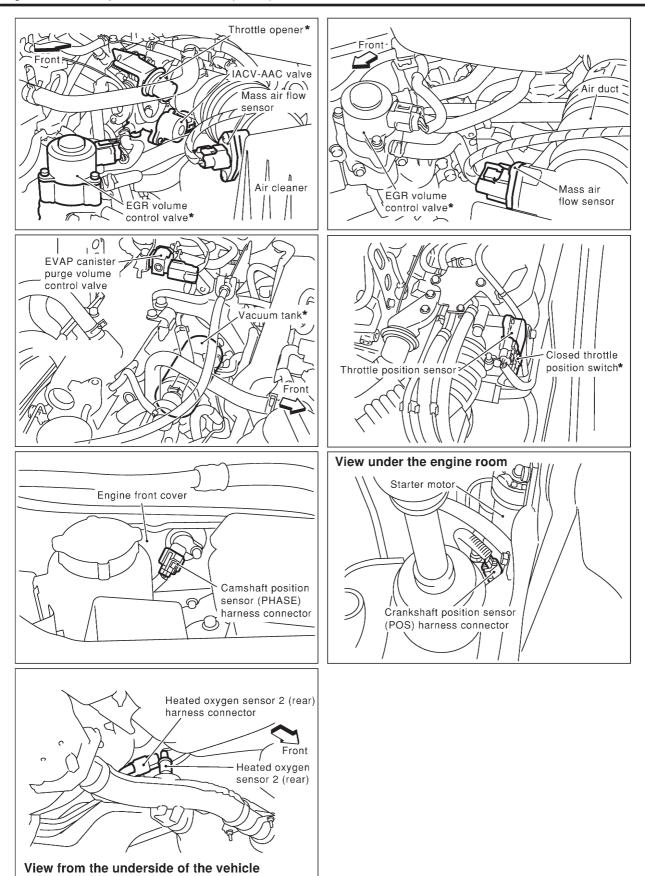
- GI-31, "HOW TO FOLLOW TEST GROUP IN TROUBLE DIAGNOSIS"
- GI-21, "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT"

	Special Service Tools		
Tool number Tool name	Description		
KV10117100 Heated oxygen sensor wrench		Loosening or tightening heated oxygen sensor 1 (front) with 22 mm hexagon nut	
KV10114400 Heated oxygen sensor wrench	NT379	Loosening or tightening heated oxygen sensor 2 (rear) a: 22 mm	

Commercial Service Tools

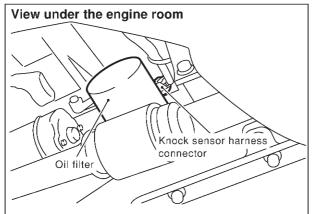

NJEC0008

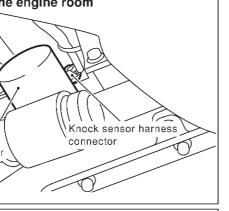
Tool name	Description	
Fuel filler cap adapter		Checking fuel tank vacuum relief valve opening pressure
	NT653	
Oxygen sensor thread cleaner	a Mating surface shave cylinder	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with antiseize lubricant shown below. a: 18 mm dia. with pitch 1.5 mm, for Zirconia Oxygen Sensor b: 12 mm dia. with pitch 1.25 mm, for Titania Oxygen Sensor
Anti-seize lubricant (Permatex TM 133AR or equivalent meeting MIL	NT778	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.
specification MIL-A-907)		
	NT779	

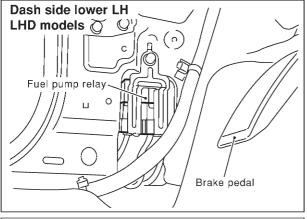

Engine Control Component Parts Location

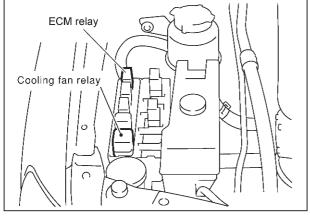
For more details of ECM location, refer to "ELECTRICAL UNIT LOCATION" in EL section (EL-319).

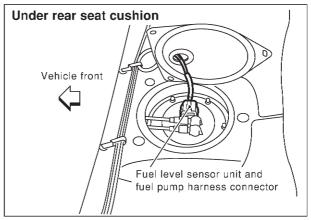
NJEC0009

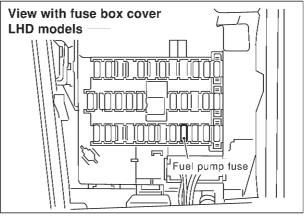

View with engine cover removed

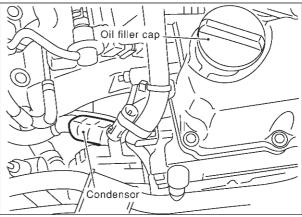


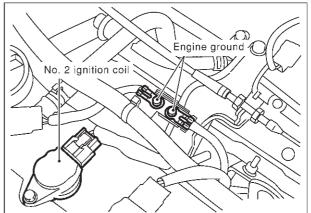

*: where fitted NEF372A

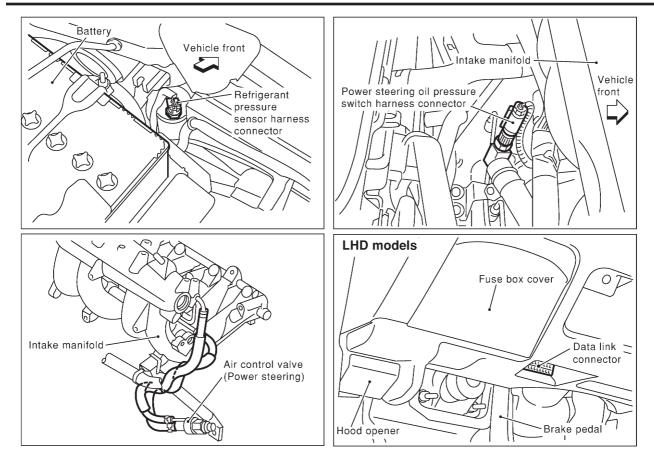

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

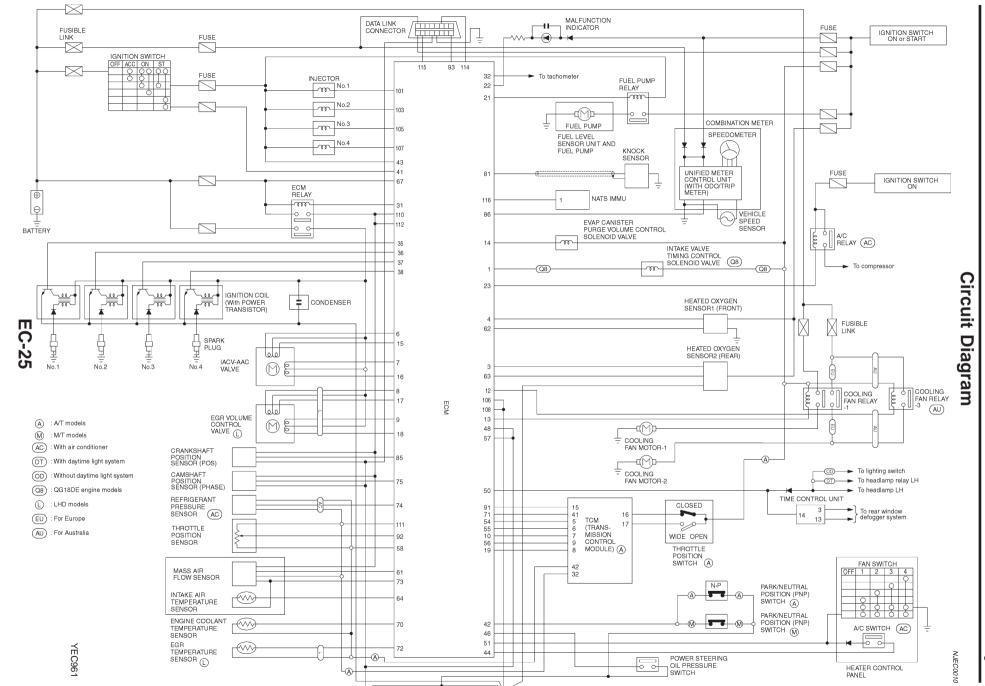

Engine Control Component Parts Location (Cont'd)



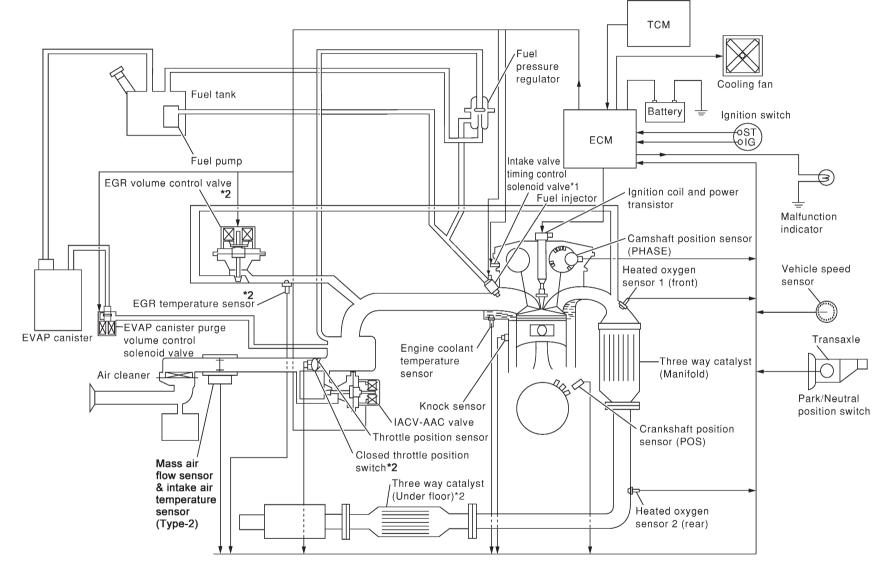






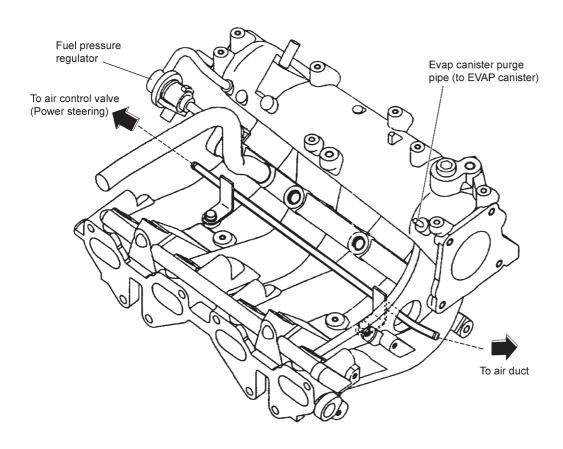


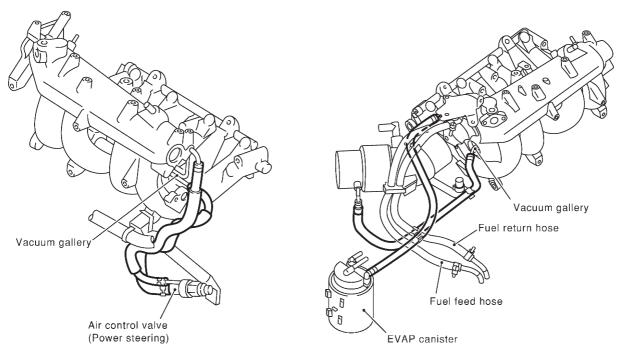
NEF373A



System Diagram

NJEC0011


*1: Models with QG18DE engine *2: If so equipped


EC-26

Vacuum Hose Drawing

Refer to "System Diagram" on EC-26 for vacuum control system.

NJEC0012

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

System Chart

System Chart NJEC0013 Input (Sensor) **ECM Function** Output (Actuator) Camshaft position sensor (PHASE) Fuel injection & mixture ratio control Injectors Crankshaft position sensor (POS) Electronic ignition system Power transistor Mass air flow sensor • Engine coolant temperature sensor Idle air control system IACV-AAC valve Heated oxygen sensor 1 (front) · Ignition switch Intake valve timing control sole-Intake valve timing control Throttle position sensor noid valve PNP switch Fuel pump control Fuel pump relay • Air conditioner switch Knock sensor Malfunction indicator On board diagnostic system • EGR temperature sensor*1, *4 (On the instrument panel) Battery voltage · Power steering oil pressure switch EGR control*4 EGR volume control valve*4 Vehicle speed sensor Heated oxygen sensor 1/2 heater (front/ Heated oxygen sensor 1/2 heater • Intake air temperature sensor • Heated oxygen sensor 2 (rear)*2 rear) control (front/rear) • TCM (Transmission Control Module)*3 EVAP canister purge volume con- Closed throttle position switch EVAP canister purge flow control trol solenoid valve Electrical load · Refrigerant pressure sensor Cooling fan control Cooling fan relay Air conditioning cut control Air conditioner relay

^{*1:} These sensors are not used to control the engine system. They are used only for the on board diagnosis.

^{*2:} Under normal conditions, this sensor is not for engine control operation.

^{*3:} The DTC related to A/T will be sent to ECM.

^{*4:} If so equipped

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Multiport Fuel Injection (MFI) System

Multiport Fuel Injection (MFI) System

DESCRIPTION Input/Output Signal Chart

NJEC0014 NJEC0014S01

ECM f

Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Crankshaft position sensor (POS)	Engine speed			
Camshaft position sensor (PHASE)	Engine speed and cylinder number			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas			
Throttle position sensor	Throttle position Throttle valve idle position			
PNP switch	Gear position	Fuel injection & mix-		
Vehicle speed sensor	Vehicle speed	ture ratio Injector	Injector	
Ignition switch	Start signal	control		
Air conditioner switch	Air conditioner operation			
Knock sensor	Engine knocking condition			
Electrical load	Electrical load signal			
Battery	Battery voltage			
Power steering oil pressure switch	Power steering operation			
Heated oxygen sensor 2 (rear)*	Density of oxygen in exhaust gas			

^{*} Under normal conditions, this sensor is not for engine control operation.

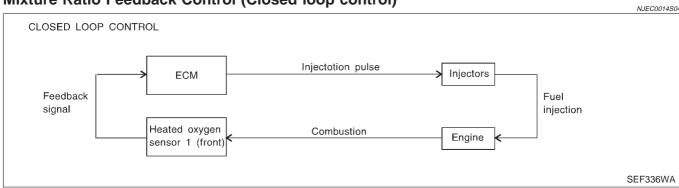
Basic Multiport Fuel Injection System

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.

Various Fuel Injection Increase/Decrease Compensation

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>


- During warm-up
- When starting the engine
- **During acceleration**
- Hot-engine operation
- When selector lever is changed from "N" to "D" (A/T models)
- High-load, high-speed operation

<Fuel decrease>

- **During deceleration**
- During high engine speed operation
- During high vehicle speed operation (M/T models)
- Extremely high engine coolant temperature

Multiport Fuel Injection (MFI) System (Cont'd)

Mixture Ratio Feedback Control (Closed loop control)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a heated oxygen sensor 1 (front) in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about the heated oxygen sensor 1 (front), refer to EC-176. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 (rear) is located downstream of the three way catalyst. Even if the switching characteristics of the heated oxygen sensor 1 (front) shift, the air-fuel ratio is controlled to stoichiometric by the signal from the heated oxygen sensor 2 (rear).

Open Loop Control

N.IEC001450

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 (front) or its circuit
- Insufficient activation of heated oxygen sensor 1 (front) at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- When starting the engine

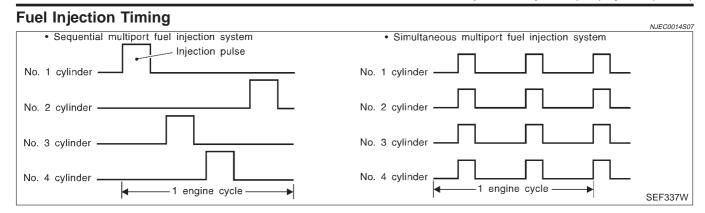
Mixture Ratio Self-learning Control

N.IEC0014S0

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the heated oxygen sensor 1 (front). This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot film) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.


"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the heated oxygen sensor 1 (front) indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

QG

Multiport Fuel Injection (MFI) System (Cont'd)

Two types of systems are used.

Sequential Multiport Fuel Injection System

1150004400704

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

IJEC0014S0702

Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The four injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

Fuel Shut-off

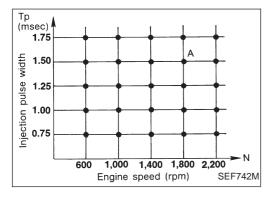
NJEC0014S08

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Electronic Ignition (EI) System

DESCRIPTION Input/Output Signal Chart

NJEC0015


NJEC0015S01

			NJEC0015S01
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number	Ignition tim-	
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Throttle position sensor	Throttle position Throttle valve idle position		Power transistor
Vehicle speed sensor	Vehicle speed	ing control	
Ignition switch	Start signal		
Knock sensor	Engine knocking		
PNP switch	Gear position		
Battery	Battery voltage		

Electronic Ignition (EI) System (Cont'd)

System Description

NJEC0015S02

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown above.

The ECM receives information such as the injection pulse width, crankshaft position sensor signal and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

e.g., N: 1,800 rpm, Tp: 1.50 msec A°BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions.

If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control

DESCRIPTION Input/Output Signal Chart

NJEC0016

NJEC0016S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Air conditioner switch	Air conditioner "ON" signal		
PNP switch	Neutral position		
Throttle position sensor	Throttle valve opening angle		
Crankshaft position sensor (POS)	Engine speed	Air condi-	
Engine coolant temperature sensor	Engine coolant temperature	tioner cut	Air conditioner relay
Ignition switch	Start signal	control	
Refrigerant pressure sensor	Refrigerant pressure		
Vehicle speed sensor	Vehicle speed		
Power steering oil pressure switch	Power steering operation		

System Description

NJEC0016S02

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.

- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.
- When the refrigerant pressure is excessively high or low.

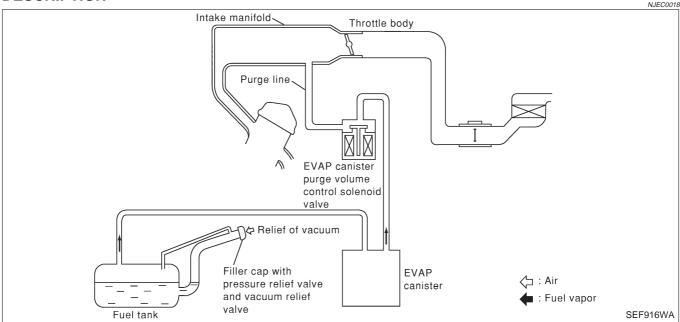
Fuel Cut Control (at no load & high engine speed)

DESCRIPTION Input/Output Signal Chart

NJEC0017

NJEC0017S01

			110200011001
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Vehicle speed sensor	Vehicle speed		
PNP switch	Neutral position		
Throttle position sensor	Throttle position	Fuel cut	Injectors
Engine coolant temperature sensor	Engine coolant temperature	control	Injectors
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number		


If the engine speed is above 3,950 rpm with no load, (for example, in Neutral and engine speed over 4,000 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 1,150 rpm, then fuel cut is cancelled.

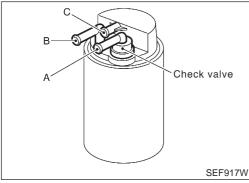
NOTE:

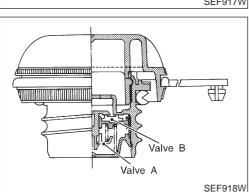
This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", EC-29.

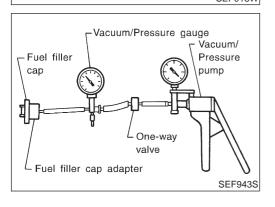
Evaporative Emission System

DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.


The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.


The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating.


Evaporative Emission System (Cont'd)

EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

INSPECTION EVAP Canister

NJFC0019

NJEC0019S01

Check EVAP canister as follows:

- 1. Block port B. Orally blow air through port A. Check that air flows freely through port C with check valve resistance.
- 2. Block port A. Orally blow air through port B. Check that air flows freely through port C.

Fuel Tank Vacuum Relief Valve (Built into fuel filler cap)

- Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

Pressure:

16.0 - 20.0 kPa (0.16 - 0.20 bar, 0.163 - 0.204 kg/cm², 2.32 - 2.90 psi)

Vacuum:

-6.0 to -3.5 kPa (-0.060 to -0.035 bar, -0.061 to -0.036 kg/cm², -0.87 to -0.51 psi)

3. If out of specification, replace fuel filler cap as an assembly.

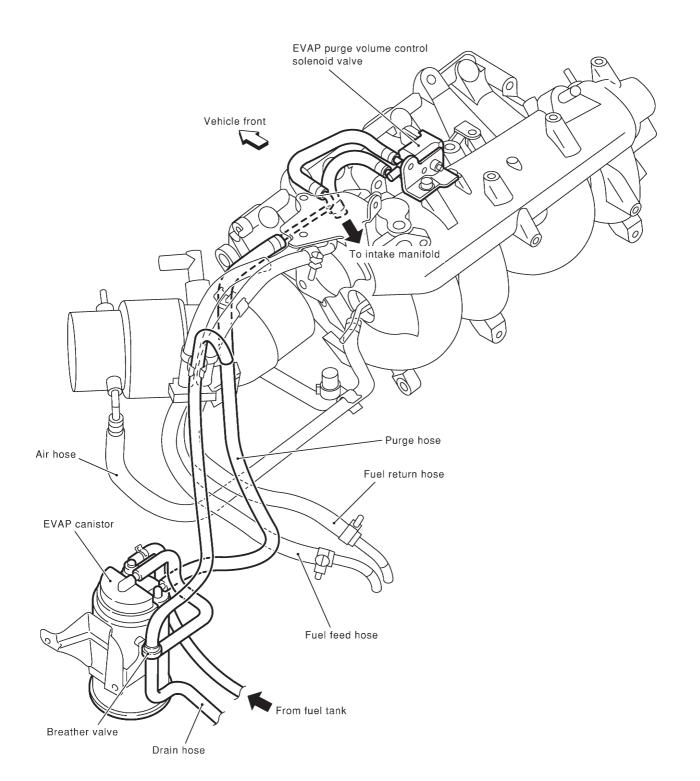
Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve

NJEC0019S07

Refer to EC-308.

Checking EVAP Vapour Lines

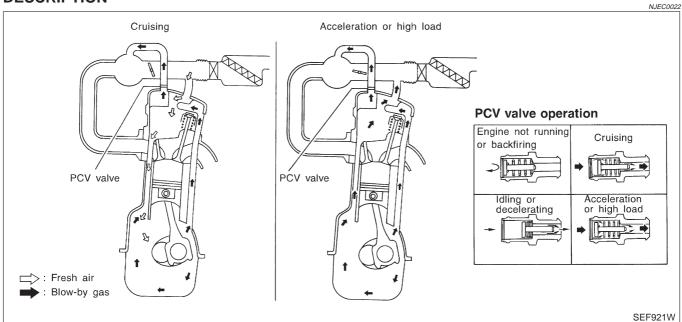
NJEC0019S13


- 1. Visually inspect vapor lines for leaks, cracks, damage, loose connections, chafing and deterioration.
- 2. Inspect vacuum relief valve of fuel tank filler cap for clogging, sticking, etc. Refer to next page.

=NJEC0020

EVAPORATIVE EMISSION LINE DRAWING

NOTE:

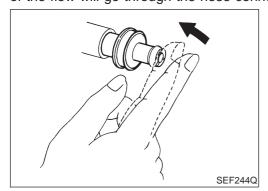

Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

Positive Crankcase Ventilation

DESCRIPTION

....

This system returns blow-by gas to the intake collector.

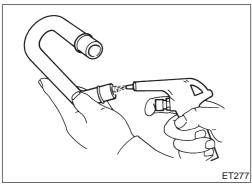

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air duct into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the intake collector under all conditions.

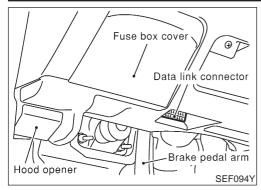


INSPECTION

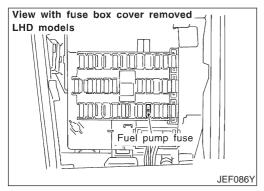
PCV (Positive Crankcase Ventilation) Valve

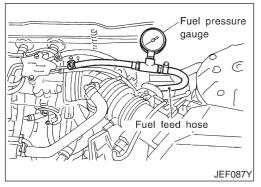
NJECUUZS

With engine running at idle, remove PCV valve from breather separator. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over the valve inlet.



Ventilation Hose


NJEC0023S02


- Check hoses and hose connections for leaks.
- Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

NJFC0024S01

FUEL PRESSURE RELEASE FUEL PUMP WILL STOP BY TOUCHING START IN IDLING. CRANK A FEW TIMES AFTER ENGINE STALL. SEF214Y

Fuel Pressure Release

Before disconnecting fuel line, release fuel pressure from fuel

line to eliminate danger.

WITH CONSULT-II

- 1. Start engine.
- 2. Perform "FUEL PRESSURE RELEASE" in "WORK SUP-PORT" mode with CONSULT-II.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF.

WITHOUT CONSULT-II

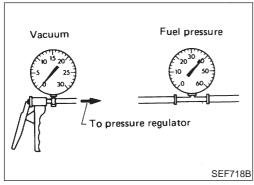
- N IECON24SO2
- Remove fuse for fuel pump. Refer to fuse block cover for fuse location.
- 2. Start engine.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF and reconnect fuel pump fuse.

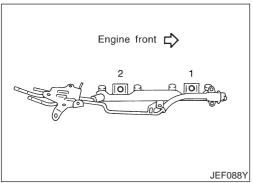
Fuel Pressure Check

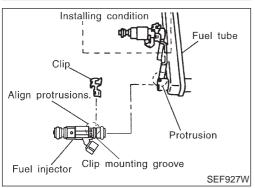
NJEC0025

- When reconnecting fuel line, always use new clamps.
- Make sure that clamp screw does not contact adjacent parts.
- Use a torque driver to tighten clamps.
- Use Pressure Gauge to check fuel pressure.
- Do not perform fuel pressure check with system operating. Fuel pressure gauge may indicate false readings.
- 1. Release fuel pressure to zero.
- 2. Disconnect fuel hose between fuel filter and fuel tube (engine side).
- 3. Install pressure gauge between fuel filter and fuel tube.
- 4. Start engine and check for fuel leakage.
- 5. Read the indication of fuel pressure gauge.

At idle speed:


With vacuum hose connected


Approximately 235 kPa (2.35 bar, 2.4 kg/cm², 34 psi)


With vacuum hose disconnected

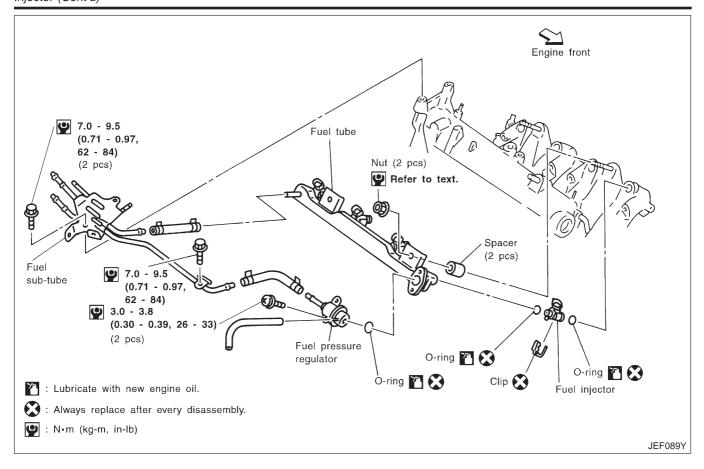
Approximately 294 kPa (2.94 bar, 3.0 kg/cm², 43 psi)

If results are unsatisfactory, perform Fuel Pressure Regulator Check, EC-39.

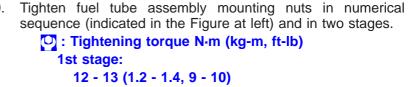
Fuel Pressure Regulator Check

IJEC0026

- 1. Stop engine and disconnect fuel pressure regulator vacuum hose from intake manifold.
- 2. Plug intake manifold with a rubber cap.
- 3. Connect variable vacuum source to fuel pressure regulator.
- 4. Start engine and read indication of fuel pressure gauge as vacuum is changed.

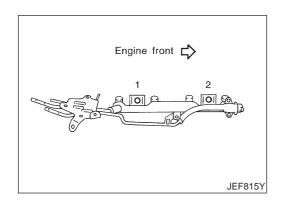

Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

Injector


REMOVAL AND INSTALLATION

NJEC0027

- Release fuel pressure to zero.
- 2. Remove fuel tube assemblies in numerical sequence as shown in the Figure at left.
- 3. Expand and remove clips securing fuel injectors.
- 4. Extract fuel injectors straight from fuel tubes.
- Be careful not to damage injector nozzles during removal.
- Do not bump or drop fuel injectors.
- Install fuel injectors.
 Carefully install O-rings, including the one used with the pressure regulator.
- Lubricate O-rings with a smear of engine oil.
- Be careful not to damage O-rings with service tools or finger nails or clips. Do not expand or twist O-rings.
- Discard old clips; replace with new ones.
- 6. Position clips in grooves on fuel injectors.
- Make sure that protrusions of fuel injectors are aligned with cutouts of clips after installation.


- 7. Align protrusions of fuel tubes with those of fuel injectors. Insert fuel injectors straight into fuel tubes.
- 8. After properly inserting fuel injectors, check to make sure that fuel tube protrusions are engaged with those of fuel injectors, and that flanges of fuel tubes are engaged with clips.

17 - 23 (1.7 - 2.4, 13 - 17)
10. Insert fuel hoses into fuel tubes so that ends of fuel hoses butt up against fuel tubes; fasten with clamps, avoiding bulges.

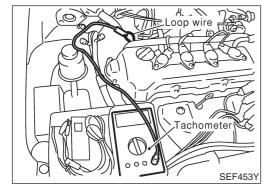
After properly connecting fuel tube assembly to injector and fuel hose, check connection for fuel leakage.

BASIC SERVICE PROCEDURE

How to Check Idle Speed and Ignition Timing

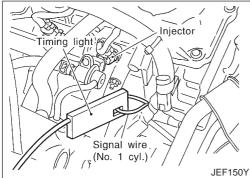
DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

How to Check Idle Speed and Ignition Timing IDLE SPEED


Method A

Using CONSULT-II

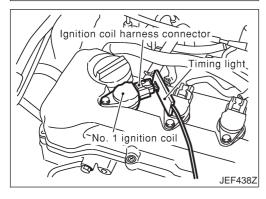
Check idle speed in "DATA MONITOR" mode with CONSULT-II.


With GST

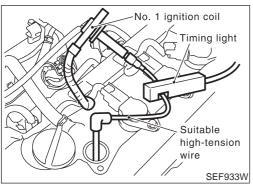
Check idle speed in "MODE 1" with GST.

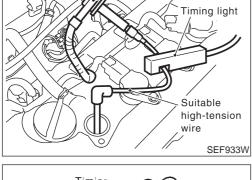
Method B (Using Loop wire)

Check the idle speed using loop-wire as shown in the figure.

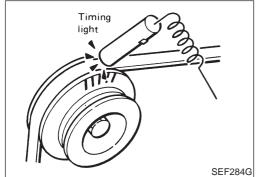


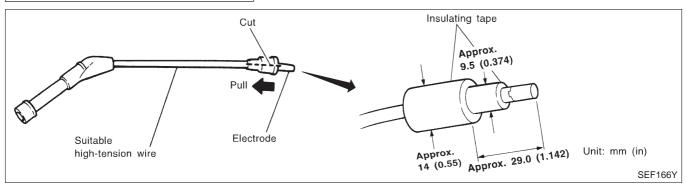
IGNITION TIMING


NJEC0028S06


Any of following two methods may be used.

- Method A
- Attach timing light to loop wire or, combine the three No. 1 ignition coil harnesses and attach the timing light sensor (attach from above the harness protector) as shown.
- b) Check ignition timing.

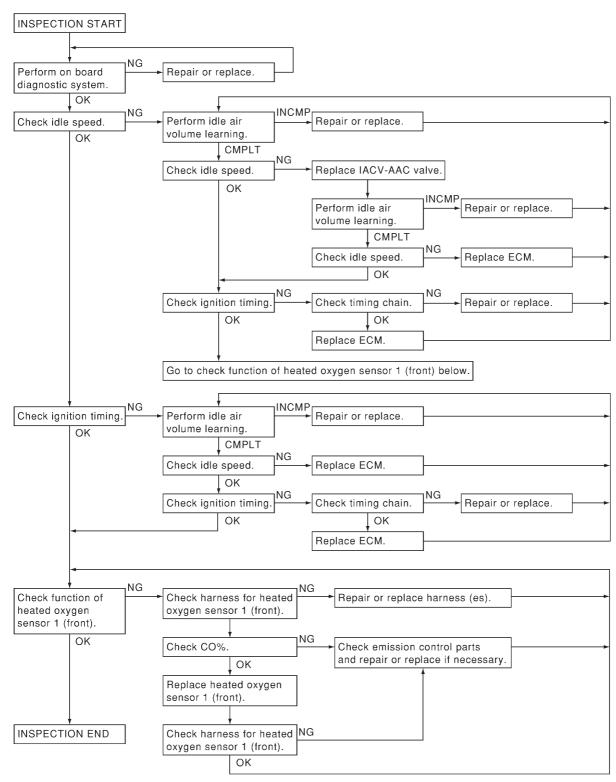

How to Check Idle Speed and Ignition Timing (Cont'd)



Method B

- Remove No. 1 ignition coil. a)
- b) Connect No. 1 ignition coil and No. 1 spark plug with suitable high-tension wire as shown, and attach timing light clamp to this wire.
- c) Check ignition timing.

Preparation


- Make sure that the following parts are in good order.
- a) Battery
- b) **Ignition system**
- c) Engine oil and coolant levels
- d) Fuses
- e) ECM harness connector
- f) Vacuum hoses
- g) Air intake system (Oil filler cap, oil level gauge, etc.)

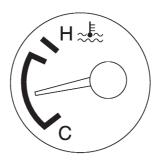
- h) Fuel pressure
- i) Engine compression
- j) EGR valve operation
- k) Throttle valve
- l) **EVAP system**
- On models equipped with air conditioner, checks should be carried out while the air conditioner is "OFF".
- When checking idle speed on models equipped with A/T, ignition timing and mixture ratio, checks should be carried out while shift lever is in "P" or "N" position.
- When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- Turn off headlamps, heater blower, rear window defogger.
- On vehicles equipped with daytime light systems, set lighting switch to the 1st position to light only small lamps.
- Keep front wheels pointed straight ahead.
- If engine stops immediately after starting or idle condition is unstable, perform the following to initialize IACV-AAC valve:
- a) Stop engine and wait 9 seconds.
- b) Turn ignition "ON" and wait 1 second.
- c) Turn ignition "OFF" and wait 9 seconds.
- Make sure the cooling fan has stopped.

OVERALL INSPECTION SEQUENCE

LIEC0592S01

NOTE:

If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.


SEC141C

Inspection Procedure

NJEC0593

1 INSPECTION START

- 1. Visually check the following:
- Air cleaner clogging
- Hoses and ducts for leaks
- EGR valve operation
- Electrical connectors
- Gasket
- Throttle valve and throttle position sensor operation
- 2. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge. Ensure engine stays below 1,000 rpm.

SEF090Y

3. Open engine hood and run engine at about 2,000 rpm for about 2 minutes under no-load.

SEF977U

4. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NO	OK	or	· N	G
----------	----	----	-----	---

OK		GO TO 3.
NG	>	GO TO 2.

2	REPAIR OR REPLACE	
Repair or replace components as necessary according to corresponding "Diagnostic Procedure".		
	•	GO TO 3.

NG

B With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Select "ENG SPEED" in "DATA MONITOR" mode with CONSULT-II. 3. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) OK or NG

4	PERFORM IDLE AIR VOLUME LEARNING		
	Refer to "Idle Air Volume Learning", EC-55. Which is the result CMPLT or INCMP?		
CMPLT or INCMP			
CMPL	Τ ▶	GO TO 5.	
INCM	>	 Follow the construction of "Idle Air Volume Leaning". GO TO 4. 	

GO TO 4.

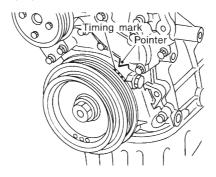
5	CHECK TARGET IDLE	SPEED AGAIN	
(P) W	(A) With CONSULT-II		
_	art engine and warm it up to	o normal operating temperature.	
2. S	elect "ENG SPEED" in "DAT	A MONITOR" mode with CONSULT-II.	
3. C	heck idle speed.		
	M/T: 700±50 rpm		
	A/T: 800±50 rpm (in "P" or "N" position)		
₩ithout CONSULT-II			
Start engine and warm it up to normal operating temperature.			
2. Check idle speed.			
	M/T: 700±50 rpm		
	A/T: 800±50 rpm (in "P" or "N" position)		
OK or NG			
OK	OK GO TO 10.		
		GO TO 6.	

6	REPLACE IACV-AAC VALVE		
Replac	Replace IACV-AAC valve.		
	>	GO TO 7.	

7	PERFORM IDLE AIR VOLUME LEARNING		
	Refer to "Idle Air Volume Learning", EC-55. Which is the result CMPLT or INCMP?		
CMPLT or INCMP			
CMPL	T ▶	GO TO 8.	
INCMI	>	 Follow the construction of "Idle Air Volume Learning". GO TO 4. 	

CHECK TARGET IDLE SPEED AGAIN			
(With CONSULT-II			
ormal operating temperature.			
Select "ENG SPEED" in "DATA MONITOR" mode with CONSULT-II.			
3. Check idle speed. M/T: 700±50 rpm			
A/T: 800±50 rpm (in "P" or "N" position)			
₩ithout CONSULT-II			
1. Start engine and warm it up to normal operating temperature.			
2. Check idle speed.			
M/T: 700±50 rpm			
A/T: 800±50 rpm (in "P" or "N" position)			
OK or NG			
OK ▶ GO TO 10.			

9	CHECK ECM FUNCTION		
the 2. Per	 Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is rarely the case.) Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to "NATS (Nissan Anti-Theft System)", EC-72. 		
	•	GO TO 4.	


10 CHECK IGNITION TIMING

NG

1. Start engine and warm it up to normal operating temperature.

GO TO 9.

2. Check ignition timing at idle using a timing light.

SEM872F

M/T: 8°±5° BTDC

A/T: 10°±5° BTDC (in "P" or "N" position)

OK	or	NG
----	----	----

OK ▶	GO TO 18.
NG ►	GO TO 11.

NG

11	CHECK TIMING CHAIN INSTALLATION		
Check timing chain installation. Refer to EM-27, "Installation".			
	OK or NG		
OK	>	GO TO 9.	
NG	>	 Repair the timing chain installation. GO TO 4. 	

1. Start engine and let it idle. 2. Check ignition timing at idle using a timing light. M/T: 8°±5° BTDC A/T: 10°±5° BTDC (in "P" or "N" position) OK or NG OK GO TO 18.

13	PERFORM IDLE AIR	OLUME LEARNING	
	Refer to "Idle Air Volume Learning", EC-55. Which is the result CMPLT or INCMP?		
	CMPLT or INCMP		
CMPL	T ▶	GO TO 14.	
INCMF	INCMP 1. Follow the construction of "Idle Air volume Learning". 2. GO TO 13.		

GO TO 13.

14 **CHECK TARGET IDLE SPEED AGAIN** With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Select "ENG SPEED" in "DATA MONITOR" mode with CONSULT-II. 3. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) OK or NG OK GO TO 16. NG GO TO 15.

BASIC SERVICE PROCEDURE

QG

Inspection Procedure (Cont'd)

15	CHECK ECM FUNCTIO	N
(EC 2. Per	 Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is rarely the case.) Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to "NATS (Nissan Anti-Theft System)", EC-72. 	
	•	GO TO 13.

16	CHECK IGNITION TIMII	NG AGAIN		
Check ignition timing again. Refer to Test No. 12.				
	OK or NG			
OK	OK ▶ GO TO 18.			
NG	>	GO TO 17.		

17	CHECK TIMING CHAIN INSTALLATION			
Check timing chain installation. Refer to EM-27, "Installation".				
OK or NG				
OK	OK ▶ GO TO 15.			
NG	NG 1. Repair the timing chain installation. 2. GO TO 13.			

After this inspection, unnecessary DTC No. might be displayed. Erase the stored memory in ECM and TCM (Transmission control module). Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-68 or EC-71 and AT-50, "HOW TO ERASE DTC". With CONSULT-II GO TO 19. Without CONSULT-II GO TO 20.

19 CHECK HEATED OXYGEN SENSOR 1 (FRONT) SIGNAL

(P) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 3. Running engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED X HO2S1 MNTR (B1)	XXX rpm RICH	

SEF820Y

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

OK or NG

OK	>	INSPECTION END
NG (Monitor does not fluctuate.)	•	GO TO 23.
NG (Monitor fluctuates less than 5 times.)	•	GO TO 21.

20 CHECK HEATED OXYGEN SENSOR 1 (FRONT) SIGNAL

Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Set voltmeter probe between ECM terminal 62 and ground.
- 3. Make sure that the voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times during 10 seconds at 2,000 rpm.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

OK or NG

ОК		INSPECTION END
NG (Voltage does not fluctuate.)		GO TO 23.
NG (Voltage fluctuates less than 5 times.)	•	GO TO 21.

BASIC SERVICE PROCEDURE

21 CHECK HEATED OXYGEN SENSOR 1 (FRONT) SIGNAL

(P) With CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 6. Running engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

Without CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. Set voltmeter probe between ECM terminal 62 and ground.
- 6. Make sure that the voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times during 10 seconds at 2,000 rpm.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

OK or NG

OK •	INSPECTION END
NG •	GO TO 22.

22 DETECT MALFUNCTIONING PART

Check the following.

- 1. Check fuel pressure regulator. Refer to EC-39.
- 2. Check mass air flow sensor and its circuit. Refer to EC-152.
- 3. Check injector and its circuit. Refer to EC-446.
 - Clean or replace if necessary.
- 4. Check engine coolant temperature sensor and its circuit. Refer to EC-163.
- 5. Check ECM function by substituting another known-good ECM.

(ECM may be the cause of a problem, but this is rarely the case.)

► GO TO 3.

23 CHECK HEATED OXYGEN SENSOR 1 (FRONT) HARNESS

- 1. Turn off engine and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- 3. Disconnect heated oxygen sensor 1 (front) harness connector.
- 4. Check harness continuity between ECM terminal 62 and heated oxygen sensor 1 (front) harness connector terminal 1. Refer to Wiring Diagram, EC-176.

Continuity should exist.

OK or NG

OK •	GO TO 25.
NG ►	GO TO 24.

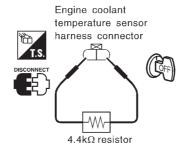
24 REPAIR OR RE	EPLACE
-----------------	---------------

Repair or replace harness between ECM and heated oxygen sensor 1 (front).

▶ GO TO 3.

25 PREPARATION FOR "CO" % CHECK

(P) With CONSULT-II

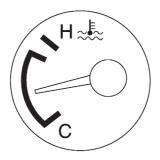

- 1. Reconnect ECM harness connector.
- 2. Turn ignition switch "ON".
- 3. Select "COOLANT TEMP" in "ACTIVE TEST" mode.
- 4. Set "COOLANT TEMP" to 5°C (41°F) by touching "DWN" and "Qd".

ACTIVE TEST				
ENG COOLANT TEMP	XXX °C			
MONITOR				
ENG SPEED	XXX rpm			
INJ PULSE-B1	XXX msec			
IGN TIMING	XXX BTDC			

SEF172Y

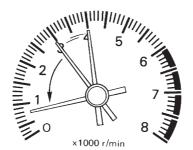
Without CONSULT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect engine coolant temperature sensor harness connector.
- 3. Connect a resistor (4.4 $k\Omega$) between terminals of engine coolant temperature sensor harness connector.



SEF982UA

GO TO 26.


26 CHECK "CO" %

1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.

SEF090Y

2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.

SEF978U

3. Check "CO" %.

Idle CO: 3 - 11%

4. Without CONSULT-II

After checking CO%,

- a. Disconnect the resistor from terminals of engine coolant temperature sensor.
- b. Connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

OK or NG

OK ▶	GO TO 27.
NG ►	GO TO 28.

27 CHECK HEATED OXYGEN SENSOR 1 (FRONT) SIGNAL

(P) With CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 6. Maintaining engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

Without CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. Set voltmeter probe between ECM terminal 62 and ground.
- 6. Make sure that voltage fluctuates between 0 0.3V and 0.6 1.0V more than 5 times during 10 seconds at 2,000 rpm.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

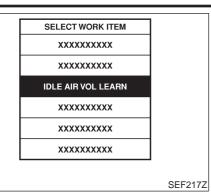
2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

OK or NG

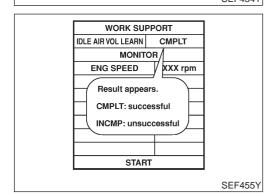
OK •	GO TO 3.
NG ▶	GO TO 28.

28 DETECT MALFUNCTIONING PART

Check the following.


- Connect heated oxygen sensor 1 (front) harness connectors to heated oxygen sensors 1 (front).
- Check fuel pressure regulator. Refer to EC-39.
- Check mass air flow sensor and its circuit. Refer to EC-152.
- Check injector and its circuit. Refer to EC-446.

Clean or replace if necessary.


- Check engine coolant temperature sensor and its circuit. Refer to EC-163.
- Check ECM function by substituting another known-good ECM.

(ECM may be the cause of a problem, but this is rarely the case.)

▶ GO TO 3.

WORK SUPPORT IDLE AIR VOL LEARN MONITOR XXX rpm **ENG SPEED** START SEF454Y

Idle Air Volume Learning **DESCRIPTION**

NJEC0562

NJEC0562S01 "Idle Air Volume Learning" is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

- Each time IACV-AAC valve, throttle body or ECM is replaced.
- Idle speed or ignition timing is out of specification.

PRE-CONDITIONING

Before performing "Idle Air Volume Learning", make sure that all of the following conditions are satisfied.

Learning will be cancelled if any of the following conditions are missed for even a moment.

- Battery voltage: More than 12.9V (At idle)
- Engine coolant temperature: 70 99°C (158 210°F)
- PNP switch: ON
- Electric load switch: OFF (Air conditioner, headlamp, rear window defogger)

On vehicles equipped with daytime light systems, set lighting switch to the 1st position to light only small lamps.

- Cooling fan motor: Not operating
- Steering wheel: Neutral (Straight-ahead position)
- Vehicle speed: Stopped
- Transmission: Warmed-up

For A/T models with CONSULT-II, drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of "A/T" system indicates less than 0.9V.

For A/T models without CONSULT-II and M/T models, drive vehicle for 10 minutes.

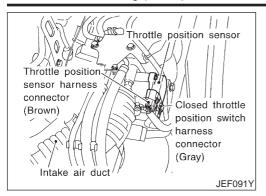
OPERATION PROCEDURE

NJEC0562S03

(P) With CONSULT-II

Turn ignition switch "ON" and wait at least 1 second.

- 2.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Start engine and warm it up to normal operating temperature.
- Check that all items listed under the topic "PRE-CONDITION-ING" (previously mentioned) are in good order.
- Turn ignition switch "OFF" and wait at least 9 seconds. 5.
- 6. Start the engine and let it idle for at least 28 seconds.
- Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode. 7.
- Touch "START" and wait 20 seconds.
- Make sure that "CMPLT" is displayed on CONSULT-II screen. If "INCMP" is displayed, "Idle Air Volume Learning" will not be carried out successfully. In this case, find the cause of the problem by referring to the NOTE below.
- 10. Rev up the engine two or three times. Make sure that idle speed and ignition timing are within specifications.


ITEM	SPECIFICATION
Idle speed	M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position)
Ignition timing	M/T: 8±5° BTDC A/T: 10±5° BTDC (in "P" or "N" position)

₩ Without CONSULT-II

NJEC0562S0302

1. Turn ignition switch "ON" and wait at least 1 second.

Idle Air Volume Learning (Cont'd)

- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic "PRE-CONDITION-ING" (previously mentioned) are in good order.
- 5. Turn ignition switch "OFF" and wait at least 9 seconds.
- 6. Start the engine and let it idle for at least 28 seconds.
- 7. Disconnect throttle position sensor harness connector (brown), then reconnect it within 5 seconds.
- Wait 20 seconds.
- Make sure that idle speed is within specifications. If not, the result will be incomplete. In this case, find the cause of the problem by referring to the NOTE below.
- 10. Rev up the engine two or three times. Make sure that idle speed and ignition timing are within specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position)
Ignition timing	M/T: 8±5° BTDC A/T: 10±5° BTDC (in "P" or "N" position)

NOTE:

If idle air volume learning cannot be performed successfully, proceed as follows:

- 1) Check that throttle valve is fully closed.
- 2) Check PCV valve operation.
- 3) Check that downstream of throttle valve is free from air leakage.
- 4) Adjust closed throttle position switch and reset memory. (Refer to Basic Inspection, EC-98.)
- 5) When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the problem. It is useful to perform "TROUBLE DIAGNOSIS SPECIFICATION VALVE", EC-140.
- 6) If any of the following conditions occur after the engine has started, eliminate the cause of the problem and perform "Idle air volume learning" all over again:
- Engine stalls.
- Erroneous idle.
- Blown fuses related to the IACV-AAC valve system.

Introduction

MODELS WITH EURO-OBD SYSTEM

N.IEC0029

N.IEC0029S01

The ECM has an on board diagnostic system which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Diagnostic Trouble Code (DTC)	Mode 3 of ISO 15031-5	
Freeze Frame data	Mode 2 of ISO 15031-5	
System Readiness Test (SRT) code	Mode 1 of ISO 15031-5	
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of ISO 15031-5	
1st Trip Freeze Frame data		
Test values and Test limits	Mode 6 of ISO 15031-5	
Calibration ID	Mode 9 of ISO 15031-5	

The above information can be checked using procedures listed in the table below.

X: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
ECM*3	×	X*1	_	_	_	_
CONSULT-II	Х	Х	Х	Х	Х	_
GST	X	X*2	X	_	X	X

^{*1:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

The malfunction indicator (MI) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-123.)

MODELS WITHOUT EURO-OBD SYSTEM

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Diagnostic Trouble Code (DTC)

Freeze Frame data

1st Trip Diagnostic Trouble Code (1st Trip DTC)

1st Trip Freeze Frame data

The above information can be checked using procedures listed in the table below.

X: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data
CONSULT-II	X	X	X	X
ECM*1	X	X*2	_	_

^{*1:} In diagnostic test mode II (Self-diagnostic results), (1st trip) DTC is displayed on the MI by a set of four digit numbers.

Two Trip Detection Logic

NJEC0030

MODELS WITH EURO-OBD SYSTEM

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MI will not light up at this stage <1st trip>.

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MI lights up. The MI lights up at the same time when the DTC is stored <2nd trip>.

^{*2: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

^{*3:} In diagnostic test mode II (Self-diagnostic results), DTC is displayed on MI. DTC uses a set of four digit numbers. (If so equipped)

^{*2:} When the DTC and the 1st trip DTC appear on the display simultaneously, it is difficult to clearly distinguish one from the other.

Two Trip Detection Logic (Cont'd)

The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MI, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

X: Applicable —: Not applicable

					1		1	
	MI				D.	ГС	1st trip DTC	
Items	1st trip		2nd trip		1ct trip	2nd trip	4 04 4 4 1 1 10	0 1 4 1
	Blinking	Lighting up	Blinking	Lighting up	1st trip displaying	displaying	1st trip displaying	2nd trip displaying
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	Х	_	_	_	_	_	Х	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	_	_	Х	_	_	Х	_	_
Fail-safe items (Refer to EC-123.)	_	Х	_	_	X*1	_	X*1	_
Except above	_	_	_	Х	_	Х	Х	_

^{*1:} Except "ECM".

MODELS WITHOUT EURO-OBD SYSTEM

N.IEC0030S02

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. When the ECM enters the fail-safe mode (Refer to EC-123), the DTC is stored in the ECM memory even in the 1st trip.

Emission-related Diagnostic Information

NJEC0031

MODELS WITH EURO-OBD SYSTEM DTC and 1st Trip DTC

NJEC0031S01

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed. If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MI will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MI lights up. In other words, the DTC is stored in the ECM memory and the MI lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MI during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "How to Erase Emission-related Diagnostic Information". Refer to EC-68.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-66. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of ISO 15031-5. 1st trip DTC detection occurs without lighting up the MI and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to page EC-96. Then perform "DTC Confirmation Procedure" or "Overall Function Check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

(P) With CONSULT-II/(@) With GST

QG

Emission-related Diagnostic Information (Cont'd)

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1320, P0705, P0750, etc. These DTCs are prescribed by ISO 15031-6.

(CONSULT-II also displays the malfunctioning component or system.)

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, Mode II and GST do not indicate whether the
 malfunction is still occurring or has occurred in the past and has returned to normal.
 CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0". If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RES	IIITE		SELF DIAG RES	IIITE	
	SELF DIAG RES	ULIS		SELF DIAG NES	ULIS	
	DTC RESULTS	TIME		DTC RESULTS	TIME	
DTC	IACV-AAC VALVE [P0505]	0	1st trip	IACV-AAC VALVE [P0505]	1t	
display			DTC display			
						SEF698

Freeze Frame Data and 1st Trip Freeze Frame Data

NJEC0031S0102

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, absolute throttle position, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-84.

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MI on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Priority	Items				
1	Freeze frame data	Misfire — DTC: P0300 - P0304 (0300 - 0304) Fuel Injection System Function — DTC: P0171 (0171), P0172 (0172)			
2	Except the above items (Includes A/T related items)				
3	1st trip freeze frame da	ata			

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "How to Erase Emission-related Diagnostic Information". Refer to EC-68.

QG

Emission-related Diagnostic Information (Cont'd)

System Readiness Test (SRT) Code

System Readiness Test (SRT) code is specified in Mode 1 of ISO 15031-5.

NJEC0031S0103

As part of an emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If MI is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

NJEC0031S0107

SRT item (CONSULT-II indica- tion)	Perfor- mance Pri- ority*1	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	3	Three way catalyst function	P0420
O2 SENSOR	3	Heated oxygen sensor 1 (front) (circuit)	P0130
		Heated oxygen sensor 1 (front) (lean shift monitoring)	P0131
		Heated oxygen sensor 1 (front) (rich shift monitoring)	P0132
		Heated oxygen sensor 1 (front) (response monitoring)	P0133
		Heated oxygen sensor 1 (front) (high voltage)	P0134
		Heated oxygen sensor 2 (rear) (min. voltage monitoring)	P0137
		Heated oxygen sensor 2 (rear) (max. voltage monitoring)	P0138
		Heated oxygen sensor 2 (rear) (response monitoring)	P0139
		Heated oxygen sensor 2 (rear) (high voltage)	P0140
O2 SEN HEATER	3	Front heated oxygen sensor 1 heater (front)	P0135
		Rear heated oxygen sensor 1 heater (rear)	P0141
EGR SYSTEM	3	EGR function (close)	P0400
(If so equipped)	1	EGR function (open)	P1402

^{*1:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

SRT Set Timing

JEC0031S0108

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

Emission-related Diagnostic Information (Cont'd)

				Example		
Self-diagn	Self-diagnosis result		← ON → OF		ion cycle OFF \leftarrow ON \rightarrow	$OFF \leftarrow ON \rightarrow$
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)
		P0402	OK (1)	— (1)	— (1)	OK (2)
		P1402	OK (1)	OK (2)	— (2)	— (2)
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"
	Case 2	P0400	OK (1)	— (1)	— (1)	— (1)
		P0402	— (0)	— (0)	OK (1)	— (1)
		P1402	OK (1)	OK (2)	— (2)	— (2)
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"
NG exists	Case 3	P0400	OK	OK	_	_
		P0402	_	_	_	_
		P1402	NG	_	NG	NG (Consecutive NG)
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON")
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"

OK: Self-diagnosis is carried out and the result is OK.

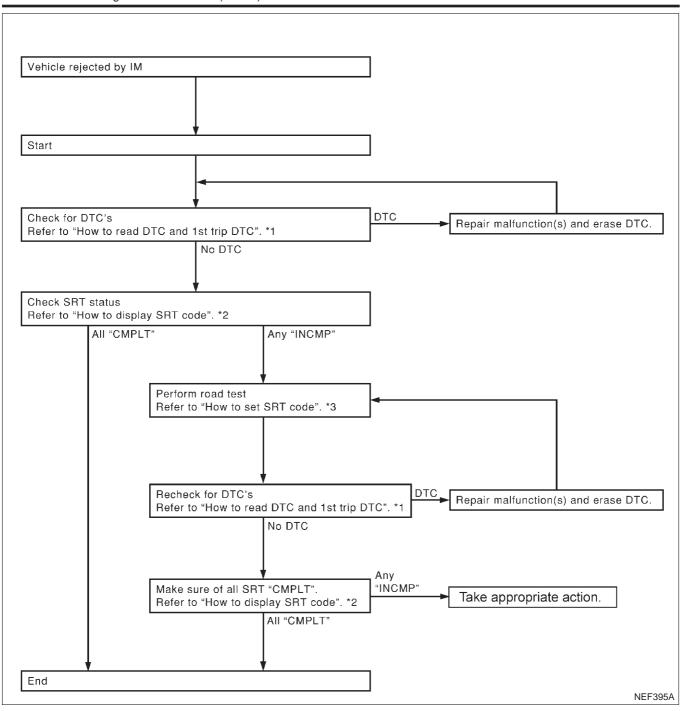
NG: Self-diagnosis is carried out and the result is NG.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". → Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. → Case 2 above If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". → Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) for the following reasons:

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

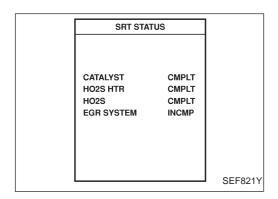

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

^{-:} Self-diagnosis is not carried out.


*1 EC-58 *2 EC-62 *3 EC-63

How to Display SRT Code

NJEC0031S0110

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed as shown below.

Emission-related Diagnostic Information (Cont'd)

2. With GST

Selecting Mode 1 with GST (Generic Scan Tool)

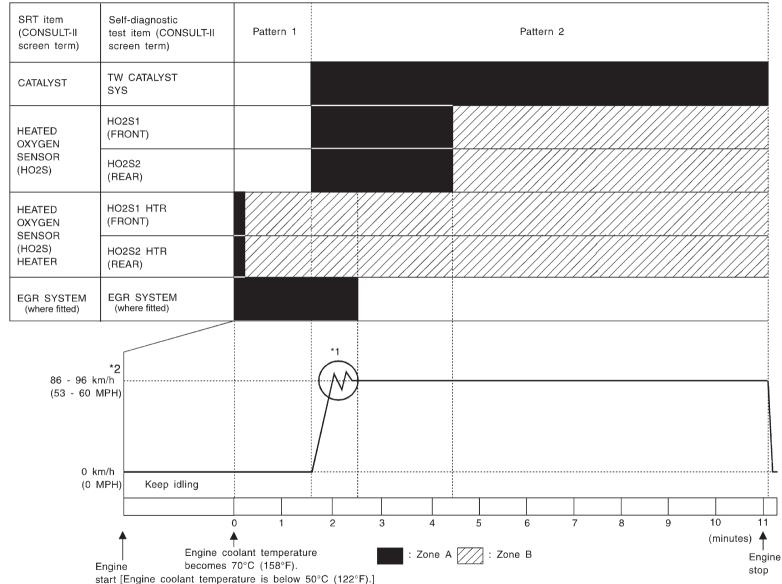
How to Set SRT Code

NJEC0031S0111

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(II) With CONSULT-II

Perform corresponding DTC Confirmation Procedure one by one based on "Performance Priority" in the table on EC-122.


⋈ Without CONSULT-II

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

Driving pattern

Note: Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws.

Refer to next page for more information and explanation of chart.

QG

Emission-related Diagnostic Information (Cont'd)

The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.

Zone A refers to the range where the time required, for the diagnosis under normal conditions*, is the shortest. Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.

- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of −10 to 35°C (14 to 95°F) (where the voltage between the ECM terminals 70 and 58 is 3.0 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminals 70 and 58 is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 82 and ground is less than 4.1V).

Pattern 2:

- When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Checking the vehicle speed with CONSULT-II or GST is advised.

Suggested transmission gear position for A/T models

Set the selector lever in the "D" position with "OD" ON.

Suggested upshift speeds for M/T models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

Gear change	ACCEL shift point km/h (MPH)
1st to 2nd	15 (9)
2nd to 3rd	35 (22)
3rd to 4th	50 (31)
4th to 5th	70 (43)

Test Value and Test Limit (GST only — not applicable to CONSULT-II)

The following is the information specified in Mode 6 of ISO 15031-5.

NJEC0031S0104

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (14 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

X: Applicable —: Not applicable

SRT item S	Self-diagnostic test item	Test value (GST display)		Toot limit	A 1: 4:
		TID	CID	- Test limit	Application
CATALYST	Three way catalyst function	01H	01H	Max.	Х
	Tillee way calalyst function	02H	81H	Min.	Х

Emission-related Diagnostic Information (Cont'd)

CDT Home	Calf diagnostic test item	Test value (0	Test value (GST display)		Application
SRT item	Self-diagnostic test item	TID	CID	Test limit	Application
		09H	04H	Max.	Х
		0AH	84H	Min.	Х
	Heated oxygen sensor 1 (front)	0BH	04H	Max.	Х
	(1.31.4)	0CH	04H	Max.	Х
HO2S		0DH	04H	Max.	Х
		19H	86H	Min.	Х
	Heated oxygen sensor 2 (rear)	1AH	86H	Min.	Х
		1BH	06H	Max.	Х
		1CH	06H	Max.	Х
	Heated oxygen sensor 1	29H	08H	Max.	Х
LICOS LITE	heater (front)	2AH	88H	Min.	Х
HO2S HTR	Heated oxygen sensor 2	2DH	0AH	Max.	Х
	heater (rear)	2EH	8AH	Min.	Х
		31H	8CH	Min.	Х
	EGR function	32H	8CH	Min.	Х
EGR SYSTEM (where fitted)		33H	8CH	Min.	Х
()		34H	8CH	Min.	Х
		35H	0CH	Max.	Х

Emission-related Diagnostic Information Items

X: Applicable —: Not applicable

				, , .ppoao	
Items (CONSULT-II screen terms)	DTC*1	SRT code	Test value/Test limit (GST only)	1st trip DTC*1	Reference page
NO SELF DIAGNOSTIC FAIL- URE INDICATED	P0000	_	_	_	_
MAF SEN/CIRCUIT	P0100	_	_	X	EC-152
AIR TEMP SEN/CIRC	P0110	_	_	Х	EC-158
COOLANT T SEN/CIRC	P0115	_	_	X	EC-163
THRTL POS SEN/CIRC	P0120	_	_	Х	EC-168
HO2S1 (B1)	P0130	X	X	X*2	EC-176
HO2S1 (B1)	P0131	X	X	X*2	EC-183
HO2S1 (B1)	P0132	Х	X	X*2	EC-189
HO2S1 (B1)	P0133	Х	X	X*2	EC-195
HO2S1 (B1)	P0134	X	X	X*2	EC-203
HO2S1 HTR (B1)	P0135	Х	X	X*2	EC-209
HO2S2 (B1)	P0137	X	×	X*2	EC-214
HO2S2 (B1)	P0138	X	X	X*2	EC-222
HO2S2 (B1)	P0139	Х	X	X*2	EC-229

Emission-related Diagnostic Information (Cont'd)

Items (CONSULT-II screen terms)	DTC*1	SRT code	Test value/Test limit (GST only)	1st trip DTC*1	Reference page
HO2S2 (B1)	P0140	Х	Х	X*2	EC-237
HO2S2 HTR (B1)	P0141	Х	Х	X*2	EC-243
FUEL SYS-LEAN/BK1	P0171	_	_	Х	EC-248
FUEL SYS-RICH/BK1	P0172	_	_	Х	EC-255
MULTI CYL MISFIRE	P0300	_	_	Х	EC-262
CYL 1 MISFIRE	P0301	_	_	Х	EC-262
CYL 2 MISFIRE	P0302	_	_	X	EC-262
CYL 3 MISFIRE	P0303	_	_	Х	EC-262
CYL 4 MISFIRE	P0304	_	_	Х	EC-262
KNOCK SEN/CIRC-B1	P0325	_	_	_	EC-268
CKP SEN/CIRCUIT (POS)	P0335	_	_	Х	EC-272
CMP SEN/CIRCUIT (PHS)	P0340	_	_	Х	EC-278
EGR SYSTEM*3	P0400	Х	Х	X*2	EC-285
EGR VOL CONT/V CIRC*3	P0403	_	_	Х	EC-293
TW CATALYST SYS-B1	P0420	Х	Х	X*2	EC-299
PURG VOLUME CONT/V	P0443	_	_	Х	EC-304
VEH SPEED SEN/CIRC	P0500	_	_	Х	EC-309
IACV/AAC VLV/CIRC	P0505	_	_	Х	EC-313
CLOSED TP SW/CIRC*3	P0510	_	_	Х	EC-321
ECM	P0605	_	_	Х	EC-327
PNP SW/CIRC	P0705	_	_	Х	Refer to AT section.
ATF TEMP SEN/CIRC	P0710	_	_	Х	Refer to AT section.
VEH SPD SEN/CIR AT	P0720	_	_	X	Refer to AT section.
ENGINE SPEED SIG	P0725	_	_	Х	Refer to AT section.
A/T 1ST GR FNCTN	P0731	_	_	Х	Refer to AT section.
A/T 2ND GR FNCTN	P0732	_	_	Х	Refer to AT section.
A/T 3RD GR FNCTN	P0733	_	_	Х	Refer to AT section.
A/T 4TH GR FNCTN	P0734	_	_	Х	Refer to AT section.
TCC SOLENOID/CIRC	P0740	_	_	Х	Refer to AT section.
L/PRESS SOL/CIRC	P0745	_	_	×	Refer to AT section.

NJEC0031S0106

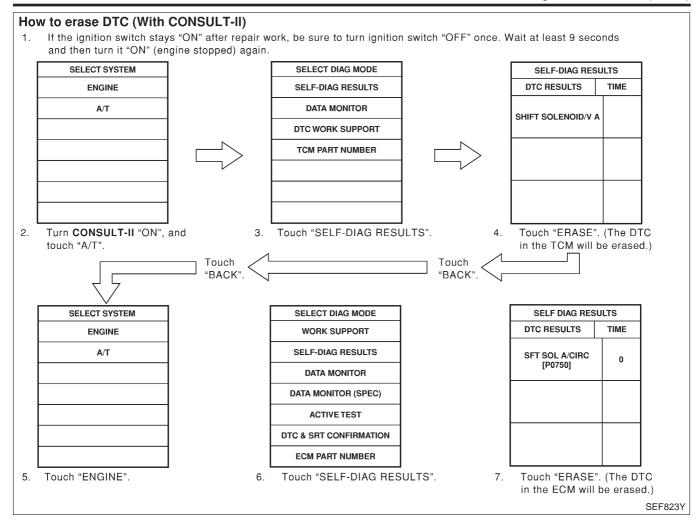
Emission-related Diagnostic Information (Cont'd)

Items (CONSULT-II screen terms)	DTC*1	SRT code	Test value/Test limit (GST only)	1st trip DTC*1	Reference page
SFT SOL A/CIRC	P0750	_	_	X	Refer to AT section.
SFT SOL B/CIRC	P0755	_	_	Х	Refer to AT section.
INT/V TIM V/CIR-B1	P1111	_	_	X	EC-329
ENG OVER TEMP	P1217	_	_	X	EC-334
EGR TEMP SEN/CIRC*3	P1401	_	_	X	EC-347
EGR SYSTEM*3	P1402	X	X	X*2	EC-353
A/T DIAG COMM LINE	P1605	_	_	X	EC-361
TP SEN/CIRC A/T	P1705	_	_	Х	Refer to AT section.
P-N POS SW/CIRCUIT	P1706	_	_	X	EC-364
O/R CLTCH SOL/CIRC	P1760	_	_	Х	Refer to AT section.

^{*1: 1}st trip DTC No. is the same as DTC No.

How to Erase Emission-related Diagnostic Information

(P) How to Erase DTC (With CONSULT-II)


NOTE:

If the DTC is not for A/T related items (see EC-10), skip steps 2 through 4.

- 1) If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 9 seconds and then turn it "ON" (engine stopped) again.
- 2) Turn CONSULT-II "ON" and touch "A/T".
- 3) Touch "SELF-DIAG RESULTS".
- 4) Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5) Touch "ENGINE".
- 6) Touch "SELF-DIAG RESULTS".
- 7) Touch "ERASE". (The DTC in the ECM will be erased.)
- If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).

^{*2:} These are not displayed with GST.

^{*3:} If so equipped

The emission-related diagnostic information can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

How to Erase DTC (With GST)

NOTE:

If the DTC is not for A/T related items (see EC-10), skip step 2.

- 1) If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 9 seconds and then turn it "ON" (engine stopped) again.
- 2) Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3) Select Mode 4 with GST (Generic Scan Tool).

The emission-related diagnostic information can be erased by selecting Mode 4 with GST (Generic Scan Tool).

NOTE:

- If the battery is disconnected, the emission-related diagnostic information will be lost after approx. 24 hours.
- The following data are cleared when the ECM memory is erased.
- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Distance traveled while MI is activated
- 8) Others

QG

Emission-related Diagnostic Information (Cont'd)

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

MODELS WITHOUT EURO-OBD SYSTEM DTC and 1st Trip DTC

NJEC0031S07

V.JEC0031S0701

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory. In other words, the DTC is stored in the ECM memory when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For fail-safe items, the DTC is stored in the ECM memory even in the 1st trip.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "How to Erase Emission-related Diagnostic Information", EC-71.

When a (1st trip) DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to EC-96. Then perform "DTC Confirmation Procedure" or "Overall Function Check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

⋈ Without CONSULT-II

ECM displays the DTC by a set of four digit numbers with MI illumination in the diagnostic test mode II (Self-diagnostic results). Example: 0100, 0115, 0340, 1335, etc.

(P) With CONSULT-II

CONSULT-II displays the DTC in "SELF-DIAG RESULTS" mode. Examples: P0100, P0115, P0340, P1335, etc.

(CONSULT-II also displays the malfunctioning component or system.)

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, ECM in the diagnostic test mode II (Self-diagnostic results) (If so equipped) does not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, the use of CONSULT-II (if available) is recommended.

A sample CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in the SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

DTC RESULTS	TIME		SELF DIAG RESU	TIME	
MAF SEN/CIRCUIT [P0100]	0	1st trip	MAF SEN/CIRCUIT [P0100]	1t	
		DTC display			
					SEF99
			[P0100] 1st trip DTC	[P0100] 1st trip DTC	[P0100] 1st trip DTC [P0100]

Freeze Frame Data and 1st Trip Freeze Frame Data

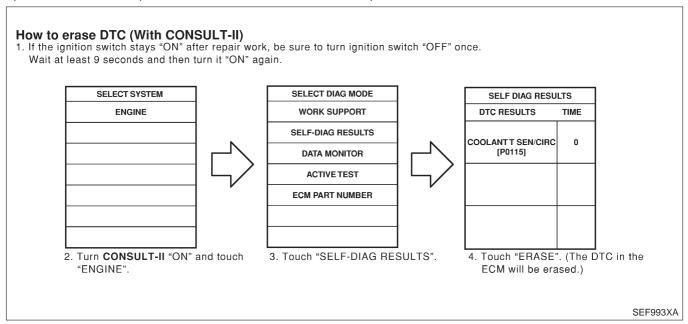
NJEC0031S0702

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, throttle valve opening, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II. For details, see EC-84.

Emission-related Diagnostic Information (Cont'd)

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM.


If freeze frame data is stored in the ECM memory and another freeze frame data occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "How to Erase Emission-related Diagnostic Information", EC-71.

How to Erase Emission-related Diagnostic Information How to Erase DTC (With CONSULT-II)

NJEC0031S0706

- 1) If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- 2) Touch "ENGINE".
- 3) Touch "SELF-DIAG RESULTS".
- 4) Touch "ERASE". (The DTC in the ECM will be erased.)

The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

How to Erase DTC (Without CONSULT-II)

- 1) If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- 2) Change the diagnostic test mode from Mode II to Mode I by using the data link connector. (See EC-74.)

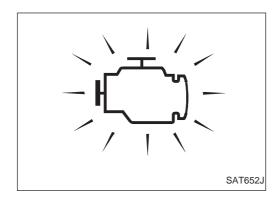
The emission related diagnostic information in the ECM can be erased by changing the diagnostic test mode.

- If the battery is disconnected, the emission-related diagnostic information will be lost after approx. 24 hours.
- The following data are cleared when the ECM memory is erased.
- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

NATS (Nissan Anti-theft System)

SELF DIAG RESU	JLTS	
DTC RESULTS	TIME	
NATS MALFUNCTION [P1610]	0	
		SE


NATS (Nissan Anti-theft System)

- If the security indicator lights up with the ignition switch in the "ON" position or "NATS MALFUNCTION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT-II using NATS program card. Refer to NATS (Nissan Anti-Theft System) in EL section.
- Confirm no self-diagnostic results of NATS is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of NATS system and registration of all NATS ignition key IDs must be carried out with CONSULT-II using NATS program card. Therefore, be sure to receive all keys from vehicle owner. Regarding the procedure of NATS initialization and NATS ignition key ID registration, refer to CONSULT-II operation manual, NATS.

Malfunction Indicator (MI)

DESCRIPTION

The MI is located on the instrument panel.

- 1. The MI will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the MI does not light up, refer to EL-107, "WARNING LAMPS" or see EC-488.
- When the engine is started, the MI should go off.If the MI remains on, the on board diagnostic system has detected an engine system malfunction.

On Board Diagnostic System Function

NJEC0032S01

The on board diagnostic system has the following four functions.

Diagnostic Test Mode I

1. BULB CHECK:

This function checks the MI bulb for damage (blown, open circuit, etc.).

If the MI does not come on, check MI circuit and ECM test mode selector. (See the following page.)

2. MALFUNCTION WARNING:

MI	Condition			
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.			
OFF	No malfunction.			

Diagnostic Test Mode II (If so equipped)

QG

Malfunction Indicator (MI) (Cont'd)

- 3. SELF-DIAGNOSTIC RESULTS:
 - This function allows DTCs and 1st trip DTCs to be read.
- 4. HEATED OXYGEN SENSOR 1 MONITOR (FRONT): This function allows the fuel mixture condition (lean or rich), monitored by heated oxygen sensor 1 (front), to be read.

MI Flashing without DTC

If the ECM is in Diagnostic Test Mode II, MI may flash when engine is running. In this case, check ECM test mode following "How to Switch Diagnostic Test Modes".

How to switch the diagnostic test (function) modes, and details of the above functions are described later. (Refer to EC-74.)

Cond	dition	Diagnostic Test Mode I	Diagnostic Test Mode II
Ignition switch in "ON" position	Engine stopped	BULB CHECK	SELF-DIAGNOSTIC RESULTS
(CON)	Engine running	MALFUNCTION WARNING	HEATED OXYGEN SENSOR 1 MONITOR (FRONT)

The following emission-related diagnostic information is cleared when the ECM memory is erased.

- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Distance traveled while MI is activated
- 8) Others

How to Switch Diagnostic Test Modes (If diagnostic test mode II is equipped) NJEC0032S02 Check MI circuit. *1 Repair harness or connector. Turn ignition switch "ON" (Do not start OK engine.) NG Mode I — MALFUNCTION Diagnostic Test Mode I INDICATOR LAMP CHECK. *2 - MALFUNCTION WARNING MI should come on. OK NG Repair harness or connectors. Check MI and DDI Data link circuits. *3 connector OK Connect CHK and IGN terminals Check ECM fail-safe. *4 with a suitable harness. MI should come off. OK Wait at least 2 seconds. Data link connector Disconnect the suitable harness between CHK and IGN terminals. DIAGNOSTIC TEST MODE II Diagnostic Test Mode II - SELF-DIAGNOSTIC RESULTS - HEATED OXYGEN SENSOR 1 MONITOR (FRONT) (ERASING ECM MEMORY) Data link connector · Switching the modes is not possible when the engine is running. · When ignition switch is turned off during diagnosis, power to ECM will drop after approx. The diagnosis will automatically return to Diag-Wait at least 2 seconds. nostic Test Mode I. Data link If the suitable harness is disconnected connector at this time, the diagnostic trouble code will be erased from the backup memory

SEF951WA

*1: EC-488

*2: EC-72

*3: EC-488

in the ECM.

*4: EC-123

Malfunction Indicator (MI) (Cont'd)

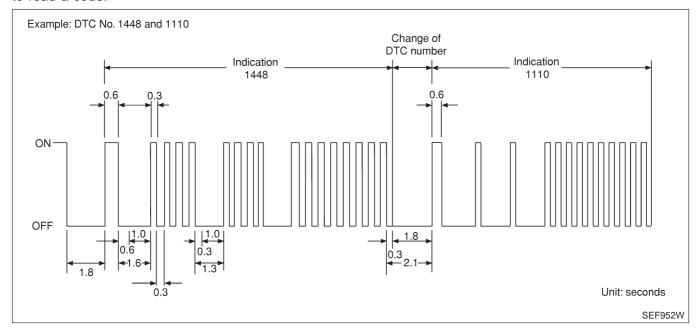
Diagnostic Test Mode I — Bulb Check

IEC0032S03

In this mode, the MI on the instrument panel should stay ON. If it remains OFF, check the MI bulb. Refer to EL-107, "WARNING LAMPS" or see EC-488.

Diagnostic Test Mode I — Malfunction Warning

NJEC0032S04


MI	Condition
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.
OFF	No malfunction.

These DTC numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS).

Diagnostic Test Mode II — Self-diagnostic Results (If so equipped)

N.IEC0032S05

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MI as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MI does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MI illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The length of time the 1000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second)-OFF (0.6-second) cycle.

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle. A change from one digit numeral to another occurs at an interval of 1.0 second OFF. In other words, the latter numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8 second off.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC "0000" refers to no malfunction. (See TROUBLE DIAGNOSIS — INDEX, EC-10.)

How to Erase Diagnostic Test Mode II (Self-diagnostic results)

JEC0032S05

The DTC can be erased from the backup memory in the ECM when the diagnostic test mode is changed from Diagnostic Test Mode II to Diagnostic Test Mode I. (Refer to "How To Switch Diagnostic Test Modes", EC-74.)

- If the battery is disconnected, the DTC will be lost from the backup memory after approx. 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

Diagnostic Test Mode II — Heated Oxygen Sensor 1 Monitor (Front) (If so equipped)

In this mode, the MI displays the condition of the fuel mixture (lean or rich) which is monitored by the heated oxygen sensor 1 (front).

QG

Malfunction Indicator (MI) (Cont'd)

MI	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition
ON	Lean	Closed leep system
OFF	Rich	Closed loop system
*Remains ON or OFF	Any condition	Open loop system

^{*:} Maintains conditions just before switching to open loop.

To check the heated oxygen sensor 1 (front) function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MI comes ON more than 5 times within 10 seconds with engine running at 2,000 rpm under no-load.

OBD System Operation Chart (With Euro-OBD Models Only)

RELATIONSHIP BETWEEN MI, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

N.IEC0033S01

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MI will come on. For details, refer to "Two Trip Detection Logic" on EC-57.
- The MI will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting, the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

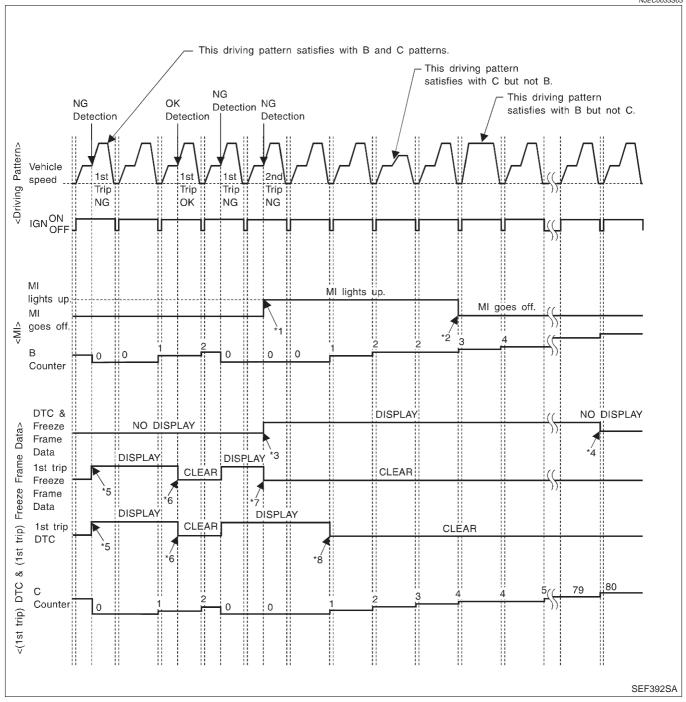
SUMMARY CHART

NJEC0033S02

Items	Fuel Injection System	Misfire	Other
MI (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see EC-78.

For details about patterns "A" and "B" under "Other", see EC-80.


^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

OBD System Operation Chart (With Euro-OBD Models Only) (Cont'd)

RELATIONSHIP BETWEEN MI, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

NJEC0033S03

- *1: When the same malfunction is detected in two consecutive trips, MI will light up.
- *2: MI will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame

- data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction.
- (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip

- freeze frame data will be cleared at the moment OK is detected.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.

QG

OBD System Operation Chart (With Euro-OBD Models Only) (Cont'd)

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

Driving Pattern B

NJEC0033S04 NJEC0033S0401

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MI will go off when the B counter reaches 3. (*2 in EC-77)

Driving Pattern C

NJEC0033S0402

Driving pattern C means the vehicle operation as follows:

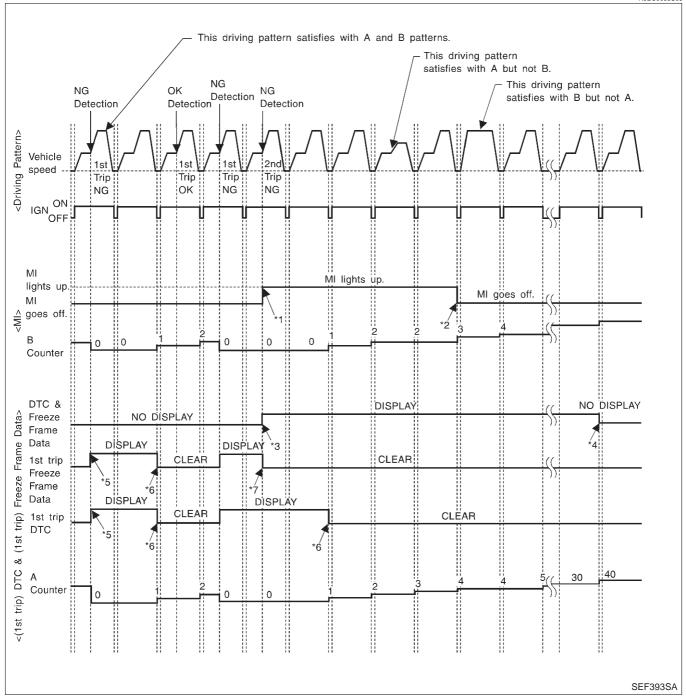
- The following conditions should be satisfied at the same time: Engine speed: (Engine speed in the freeze frame data) ±375 rpm Calculated load value: (Calculated load value in the freeze frame data) × (1±0.1) [%] Engine coolant temperature (T) condition:
- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

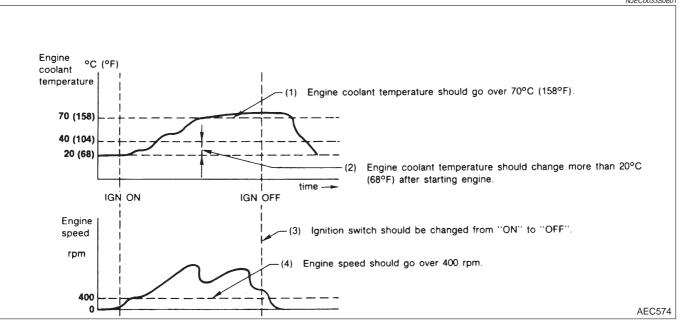

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of driving pattern C.
- The C counter will be counted up when driving pattern C is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

OBD System Operation Chart (With Euro-OBD Models Only) (Cont'd)

RELATIONSHIP BETWEEN MI, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

NJEC0033S05



- *1: When the same malfunction is detected in two consecutive trips, MI will light up.
- *2: MI will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction.
 - (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC
- and the 1st trip freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

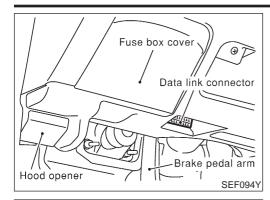
OBD System Operation Chart (With Euro-OBD Models Only) (Cont'd)

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

Driving Pattern A

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

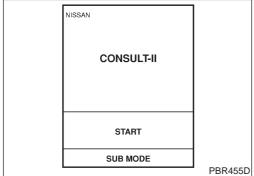
Driving Pattern B


NJEC0033S0602

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MI will go off when the B counter reaches 3 (*2 in EC-79).



CONSULT-II CONSULT-II INSPECTION PROCEDURE

=NJEC0034

NJEC0034S01

- 1. Turn ignition switch OFF.
- Connect "CONSULT-II" to data link connector. (Data link connector is located under lower dash panel near the fuse box cover.)

- 3. Turn ignition switch ON.
- 4. Touch "START".

SELECT SYSTEM		
ENGINE		
	SEF995X	

5. Touch "ENGINE".

SELECT DIAG MODE

WORK SUPPORT

SELF-DIAG RESULTS

DATA MONITOR

DATA MONITOR (SPEC)

ACTIVE TEST

DTC & SRT CONFIRMATION

ECM PART NUMBER

SEF824Y

6. Perform each diagnostic test mode according to each service procedure.

For further information, see the GI-35 regarding CONSULT-II.

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

NJEC0034S02

			DIAGNOSTIC TEST MODE							
ltem				GNOSTIC ULTS		DATA MONI- TOR (SPEC)		DTC & SRT CONFIRMATION		
		WORK - SUP- PORT	DTC*1	FREEZE FRAME DATA*2	DATA MONI- TOR		ACTIVE TEST	SRT STA- TUS	DTC WORK SUP- PORT	
		Camshaft position sensor (PHASE)		х	Engine speed X	Engine speed X	Engine speed X			
		Crankshaft position sensor (POS)		X*3						
		Mass air flow sensor		Х		Х	Х			
		Engine coolant temperature sensor		х	х	Х	Х	Х		
		Heated oxygen sensor 1 (front)		Х		Х	Х		X*3	X*3
တ		Heated oxygen sensor 2 (rear)		X*3		Х	Х		X*3	X*3
ART		Vehicle speed sensor		Х	Х	Х	Х			
Ä		Throttle position sensor		Х		Х	Х			
ONE		EGR temperature sensor*4		X*3		Х	Х			
OMP		Intake air temperature sensor		X*3	Х	Х	Х			
۲ NI Ö	NPUT	Knock sensor		Х						
ITRO		Ignition switch (start signal)				Х	Х			
ENGINE CONTROL COMPONENT PARTS Z		Closed throttle position switch*4		X*3		Х	Х			
ENGIN		Closed throttle position switch (throttle position sensor signal)				Х	Х			
		Air conditioner switch				Х	Х			
		Refrigerant pressure sensor				Х	Х			
		Park/Neutral position (PNP) switch		X*3		Х	Х			
		Power steering oil pressure switch				Х	Х			
		Electrical load				Х	Х			
		Heater fan switch				Х	Х			
		Battery voltage				Х	Х			

			DIAGNOSTIC TEST MODE							
ltem		SELF-DIAGNOSTIC RESULTS		D.4.T.4	DATA		DTC & SRT CONFIRMATION			
		WORK SUP- PORT	DTC*1	FREEZE FRAME DATA*2	DATA MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STA- TUS	DTC WORK SUP- PORT	
		Injectors				Х	Х	Х		
		Power transistor (Ignition timing)		X*3 (misfire)		Х	Х	Х		
TS		IACV-AAC valve	Х	X*3		Х	Х	Х		
NT PAF		Intake valve timing control solenoid valve				Х	Х	Х		
IPONE		EVAP canister purge volume control solenoid valve		X*3		Х	Х	Х		
CO	OUT- PUT	Air conditioner relay				Х	Х			
SOL	PUI	Fuel pump relay	Х			Х	Х	Х		
LNC		EGR volume control valve*4		X*3		Х	Х	Х		X*3
SINE CO	ENGINE CONTROL COMPONENT PARTS G G G G	Heated oxygen sensor 1 heater (front)		X*3		Х	Х		X*3	
ENG		Heated oxygen sensor 2 heater (rear)		X*3		Х	Х		X*3	
		Cooling fan				Х	Х	Х		
		Calculated load value			Х	Х	Х			

X: Applicable

FUNCTION

NJEC0034S03

Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1
Data monitor	Input/Output data in the ECM can be read.
Data monitor (spec)	Input/Output specifications of the basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC and SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECM part number	ECM part numbers can be read.

^{*1} The following emission-related diagnostic information is cleared when the ECM memory is erased.

- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-59, EC-70.

^{*3:} Not applicable for models without Euro-OBD system

^{*4:} If so equipped

CONSULT-II (Cont'd)

- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Distance traveled while MI is activated.
- Others

WORK SUPPORT MODE

NJEC0034S04

WORK ITEM	CONDITION	USAGE
TP SW/TP SEN IDLE POSI ADJ	FOLLOW THE BASIC INSPECTION INSTRUCTION IN THE SERVICE MANUAL.	When adjusting the idle throttle position
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEFFICIENT.	When clear the coefficient of self-learnign control value
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed
TARGET IGNITION TIMING ADJ*	• IDLE CONDITION	When adjusting target ignition timing After adjustment, confirm target ignition timing with a timing light. If once the "TARGET IDLE RPM ADJ" has been done, the Idle Air Volume Learning procedure will not be completed.

^{*:} This function is not necessary in the usual service procedure.

SELF DIAGNOSTIC MODE DTC and 1st Trip DTC

NJEC0034S05

Regarding items of "DTC and 1st trip DTC", refer to "TROUBLE DIAGNOSIS — INDEX", EC-10.

Freeze Frame Data and 1st Trip Freeze Frame Data

	• NJEC0034S0502
Freeze frame data item*	Description
DIAG TROUBLE CODE [PXXXX]	Engine Control component part/control system has a trouble code, it is displayed as "PXXXX". (Refer to "Alphabetical & P No. Index for DTC", EC-10.)
FUEL SYS-B1	"Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction "MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment) "MODE 4": Closed loop - using oxygen sensor(s) as feedback for fuel control "MODE 5": Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
L-FUEL TRIM-B1 [%]	 "Long-term fuel trim" at the moment a malfunction is detected is displayed. The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
S-FUEL TRIM-B1 [%]	 "Short-term fuel trim" at the moment a malfunction is detected is displayed. The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.

CONSULT-II (Cont'd)

Freeze frame data item*	Description
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VEHICL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.
ABSOL TH-P/S [%]	The throttle valve opening angle at the moment a malfunction is detected is displayed.
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.

^{*:} The items are the same as those of 1st trip freeze frame data.

DATA MONITOR MODE

NJFC0034S06

				NJEC0034S06
Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
ENG SPEED [rpm]	0	0	Indicates the engine speed computed from the POS signal of the crankshaft position sensor.	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS A/F SE-B1 [V]	0	0	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
B/FUEL SCHDL [msec]			"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
A/F ALPHA-B1 [%]		0	Indicates the mean value of the air-fuel ratio feedback correction factor per cycle.	 When the engine is stopped, a certain value is indicated. This data also includes the data for the air-fuel ratio learning control.
COOLAN TEMP/S [°C] or [°F]	0	0	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
HO2S1 (B1) [V]	0	0	The signal voltage of the heated oxygen sensor 1 (front) is displayed.	
HO2S2 (B1) [V]	0		The signal voltage of the heated oxygen sensor 2 (rear) is displayed.	
HO2S1 MNTR (B1) [RICH/LEAN]	0		Display of heated oxygen sensor 1 (front) signal during air-fuel ratio feedback control: RICH means the mixture became "rich", and control is being affected toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture.	 After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback control begins. When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.

CONSULT-II (Cont'd)

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
HO2S2 MNTR (B1) [RICH/LEAN]	0		Display of heated oxygen sensor 2 (rear) signal: RICH means the amount of oxygen after three way catalyst is relatively small. LEAN means the amount of oxygen after three way catalyst is relatively large.	When the engine is stopped, a certain value is indicated.
VHCL SPEED SE [km/h] or [mph]	0	0	The vehicle speed computed from the vehicle speed sensor signal is displayed.	
BATTERY VOLT [V]	0		 The power supply voltage of ECM is dis- played. 	
THRTL POS SEN [V]	0	0	The throttle position sensor signal voltage is displayed.	
FUEL T/TMP SE [°C] or [°F]*			 The fuel temperature judged from the fuel tank temperature sensor signal voltage is displayed. 	
INT/A TEMP SE [°C] or [°F]	0		• The intake air temperature determined by the signal voltage of the intake air temperature sensor is indicated.	
EGR TEMP SEN [V]*	0	0	The signal voltage of the EGR temperature sensor is displayed.	
START SIGNAL [ON/OFF]	0	0	Indicates [ON/OFF] condition from the starter signal.	 After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL POS [ON/OFF]	0	0	 Indicates idle position [ON/OFF] computed by ECM according to the throttle position sensor signal. 	
CLSD THL/P SW [ON/OFF]*	0		 Indicates mechanical contact [ON/OFF] condition of the closed throttle position switch. 	
AIR COND SIG [ON/OFF]	0	0	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioning signal. 	
P/N POSI SW [ON/OFF]	0	0	 Indicates [ON/OFF] condition from the PNP switch signal. 	
PW/ST SIGNAL [ON/OFF]	0	0	 Indicates [ON/OFF] condition of the power steering oil pressure switch determined by the power steering oil pressure switch sig- nal. 	
LOAD SIGNAL [ON/OFF]	0	0	 Indicates [ON/OFF] condition from the electrical load signal and/or lighting switch. ON rear defogger is operating and/or lighting switch is on. OFF rear defogger is not operating and lighting switch is not on. 	
IGNITION SW [ON/OFF]	0		 Indicates [ON/OFF] condition from ignition switch. 	
HEATER FAN SW [ON/OFF]	0		Indicates [ON/OFF] condition from the heater fan switch.	
INJ PULSE-B1 [msec]		0	 Indicates the actual fuel injection pulse width compensated by ECM according to the input signals. 	When the engine is stopped, a certain computed value is indicated.

QG

CONSULT-II (Cont'd)

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
IGN TIMING [BTDC]		0	Indicates the ignition timing computed by ECM according to the input signals.	
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	
ABSOL TH.P/S [%]			"Absolute throttle position sensor" indicates the throttle opening computed by ECM according to the signal voltage of the throttle position sensor.	
MASS AIRFLOW [gm/s]			Indicates the mass airflow computed by ECM according to the signal voltage of the mass air flow sensor.	
IACV-AAC/V [step]		0	Indicates the IACV-AAC valve control value computed by ECM according to the input signals.	
PURG VOL C/V [%]			 Indicates the EVAP canister purge volume control solenoid valve computed by the ECM according to the inpuct signals. The opening becomes larger as the value increases. 	
EGR VOL CON/V [step]*		0	 Indicates the EGR volume control valve computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
INT/V SOL-B1 [ON/OFF]			The control condition of the valve timing solenoid valve (determined by ECM accord- ing to the input signal) is indicated. ON Intake valve timing control operating OFF Intake valve timing control not oper- ating	
AIR COND RLY [ON/OFF]		0	Indicates the air conditioner relay control condition determined by ECM according to the input signals.	
FUEL PUMP RLY [ON/OFF]		0	Indicates the fuel pump relay control condition determined by ECM according to the input signals.	
COOLING FAN [ON/OFF]		0	Indicates [ON/OFF] control condition of the cooling fan determined by ECM according to the input signals.	
HO2S1 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of heated oxygen sensor 1 heater (front) determined by ECM according to the input signals.	
HO2S2 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of heated oxygen sensor 2 heater (rear) determined by ECM according to the input signals.	

CONSULT-II (Cont'd)

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
IDL A/V LEARN			Display the condition of idle air volume learning YET Idle air volume learning has not been performed yet. CMPLT Idle air volume learning has already been performed successfully. INCMP Idle air volume learning has not been performed successfully.	
TRVL AFTER MIL [km] or [Mile]			Distance traveled while MI is activated	
VOLTAGE [V]			Voltage measured by the voltage probe.	
PULSE [msec] or [Hz] or [%]			Pulse width, frequency or duty cycle measured by the pulse probe.	 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary ones. They are the same figures as an actual piece of data which was just previously measured.

^{*:} If so equipped

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

DATA MONITOR (SPEC) MODE

NJEC0034S11

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
MAS A/F SE-B1 [V]	0	0	The signal voltage of the mass air flow sensor specification is displayed.	When the engine is running, specification range is indicated.
B/FUEL SCHDL [msec]			 "Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correc- tion. 	When the engine is running, specification range is indicated.
A/F ALPHA-B1 [%]		0	Indicates the mean value of the air-fuel ratio feedback correction factor per cycle.	 When the engine is running, specification range is indicated. This data also includes the data for the air-fuel ratio learning control.

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

NJEC0034S07

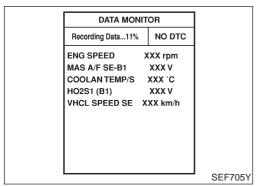
TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJECTION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Fuel injectors Heated oxygen sensor 1 (front)
IGNITION TIMING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 "Idle Air Volume Leaning" (Refer to EC-55.) Camshaft position sensor (PHASE) Crankshaft position sensor (POS) Engine component parts and installing conditions

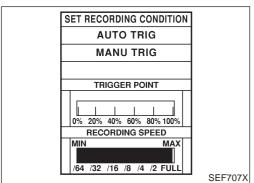
CONSULT-II (Cont'd)

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
IACV-AAC/V OPENING	Engine: After warming up, idle the engine. Change the IACV-AAC valve opening steps using CONSULT-II.	Engine speed changes according to the opening steps.	Harness and connector IACV-AAC valve
POWER BAL- ANCE	 Engine: After warming up, idle the engine. Air conditioner switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connector Compression Injectors Power transistor Spark plugs Ignition coils
COOLING FAN	 Ignition switch: ON Turn the cooling fan "ON" and "OFF" using CONSULT-II. 	Cooling fan moves and stops.	Harness and connector Cooling fan motor
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature indication using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Engine coolant temperature sensor Fuel injectors
FUEL PUMP RELAY	Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound.	Fuel pump relay makes the operating sound.	Harness and connectorFuel pump relay
EGR VOL CONT/V (If so equipped)	 Engine: After warming up, idle the engine. Change the EGR volume control valve opening step using CON- SULT-II. 	Engine speed changes according to the opening step.	Harness and connectorEGR volume control valve
VALVE TIMING SOL	Ignition switch: ON Turn intake valve timing control solenoid valve "ON" and "OFF" using CONSULT-II and listen for operating sound.	Intake valve timing control solenoid valve makes an operating sound.	Harness and connector Intake valve timing control solenoid valve
PURG VOL CONT/V	 Engine: After warming up, idle the engine. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connector EVAP canister purge volume control solenoid valve

DTC AND SRT CONFIRMATION MODE

This mode is not available for models without Euro-OBD system.


SRT STATUS Mode


For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-60.

SRT Work Support Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC Work Support Mode				
TEST MODE	TEST ITEM	CONDITION	REFERENCE PAGE	
	HO2S1 (B1) P0130		EC-176	
HEATED OXYGEN SEN-	HO2S1 (B1) P0131		EC-183	
SOR 1 (FRONT)	HO2S1 (B1) P0132		EC-189	
	HO2S1 (B1) P0133	Refer to corresponding	EC-195	
	HO2S2 (B1) P0137	trouble diagnosis for	EC-214	
HEATED OXYGEN SEN- SOR 2 (REAR)	HO2S2 (B1) P0138	DTC.	EC-222	
(HO2S2 (B1) P0139		EC-229	
EGR SYSTEM (If so equipped)	EGR SYSTEM P0400		EC-285	
	EGR SYSTEM P1402		EC-353	

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA)

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- 1) "AUTO TRIG" (Automatic trigger):
- The malfunction will be identified on the CONSULT-II screen in real time

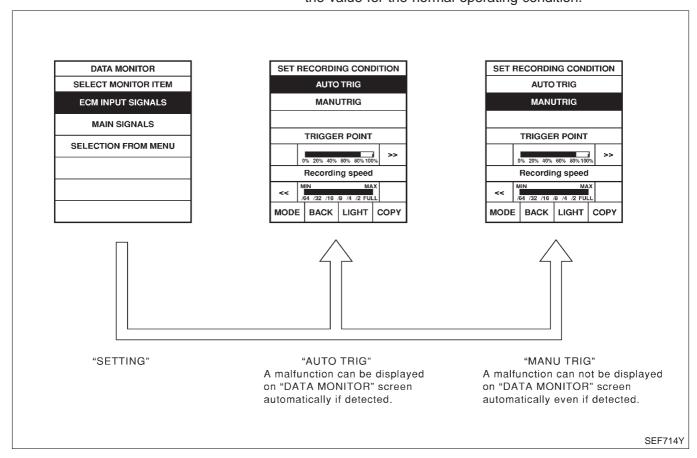
In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at left, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

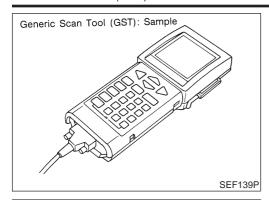
The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.

- 2) "MANU TRIG" (Manual trigger):
- DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.

DATA MONITOR can be performed continuously even though a malfunction is detected.


Use these triggers as follows:

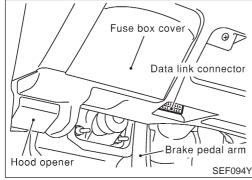
- 1) "AUTO TRIG"
- While trying to detect the DTC/1st trip DTC by performing the "DTC Confirmation Procedure", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
- While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.


CONSULT-II (Cont'd)

When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC Confirmation Procedure", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to GI-22, "Incident Simulation Tests".)

- 2) "MANU TRIG"
- If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

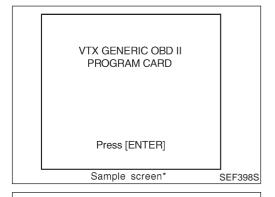
Generic Scan Tool (GST)



Generic Scan Tool (GST) DESCRIPTION

=NJEC0035

Generic Scan Tool (OBDII scan tool) complying with ISO15031-4 has 9 different functions explained on the next page. ISO9141 is used as the protocol.


The name "GST" or "Generic Scan Tool" is used in this service manual.

GST INSPECTION PROCEDURE

NJFC0035S02

- 1. Turn ignition switch OFF.
- 2. Connect "GST" to data link connector. (Data link connector is located under lower dash panel near the fuse box cover.)

- Turn ignition switch ON.
- 4. Enter the program according to instruction on the screen or in the operation manual.
- (*: Regarding GST screens in this section, sample screens are shown.)

OBD II FUNCTIONS

F0: DATA LIST

F1: FREEZE DATA

F2: DTCs

F3: SNAPSHOT

F4: CLEAR DIAG INFO

F5: O2 TEST RESULTS

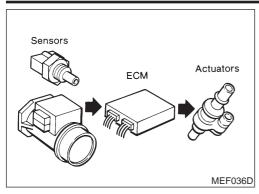
F6: READINESS TESTS F7: ON BOARD TESTS

F8: EXPAND DIAG PROT

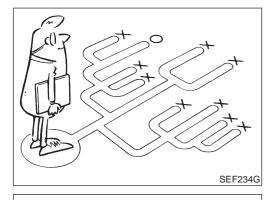
F9: UNIT CONVERSION

Sample screen*

SEF416S


Perform each diagnostic mode according to each service procedure.

For further information, see the GST Operation Manual of the tool maker.



Generic Scan Tool (GST) (Cont'd)

	FUNCTION NJEC0035803			
Dia	agnostic test mode	Function		
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, distance traveled while MI is activated and system status information.		
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. (For details, refer to "Freeze Frame Data", EC-84.)		
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.		
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)		
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.		
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.		
MODE 8		This mode is not applicable on this vehicle.		
MODE 9	(CALIBRATION ID)	This mode enables the off-board (External test equipment) to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.		

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE..... Road conditions
HOW Operating conditions,
Weather conditions,
Symptoms

SEF907L

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-96.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on next page should be used.

Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

DIAGNOSTIC WORKSHEET

NJEC0036S0

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make trouble-shooting faster and more accurate.

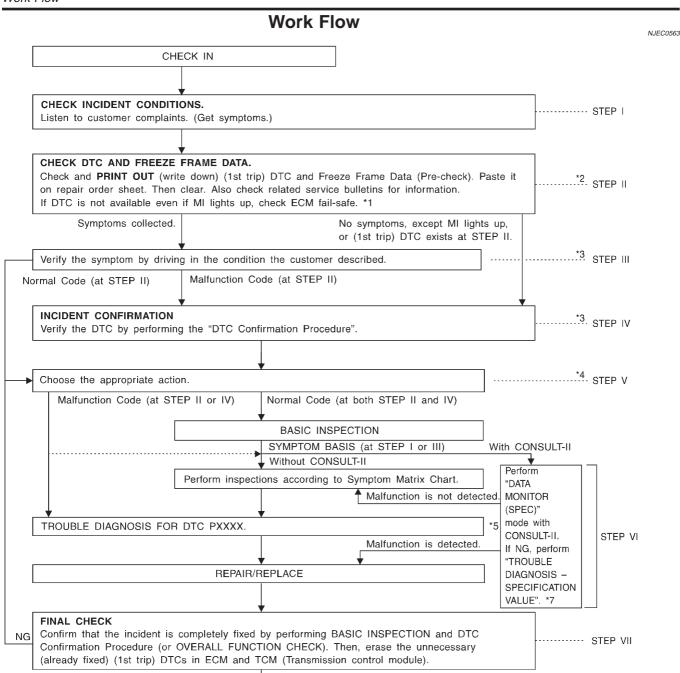
In general, each customer feels differently about a problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the malfunction indicator lamp to come on steady or blink and DTC to be detected. Example:

Vehicle ran out of fuel, which caused the engine to misfire.

TROUBLE DIAGNOSIS — INTRODUCTION


Worksheet Sample

NJEC0036S0101

Customer name MR/MS		Model & Year	VIN
Engine #		Trans.	Mileage
Incident Date		Manuf. Date	In Service Date
Fuel		☐ Vehicle ran out of fuel causing misfire	
	☐ Startability	☐ Impossible to start ☐ No combus ☐ Partial combustion affected by th ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	nrottle position d by throttle position
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ H☐ Others [High idle
3,77,75	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfi☐ Others [
	☐ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While dece	elerating
Incident occu	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐	☐ In the daytime
Frequency		☐ All the time ☐ Under certain cond	ditions
Weather cond	ditions	☐ Not affected	
	Weather	☐ Fine ☐ Raining ☐ Snowing	Others [
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold Humid °F
		☐ Cold ☐ During warm-up ☐	After warm-up
Engine conditions		Engine speed	4,000 6,000 8,000 rpm
Road conditions		☐ In town ☐ In suburbs ☐ Hig	jhway ☐ Off road (up/down)
Driving conditions		□ Not affected □ At starting □ While idling □ While accelerating □ While cruis □ While decelerating □ While turni	•
Malfunction in	ndicator	Vehicle speed 0 20 40 Turned on Not turned on	60 80 100 120 Km/h

MTBL0658

- *1 EC-123
- *2 If time data of "SELF-DIAG RESULTS" is other than "0" or "[1t]", perform "TROUBLE DIAG-NOSIS FOR INTERMITTENT INCIDENT", EC-144.

CHECK OUT

- *3 If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.
- *4 If the on board diagnostic system cannot be performed, check main power supply and ground circuit. Refer to "TROUBLE DIAGNOSIS FOR POWER SUPPLY", EC-145.

If the completion of SRT is needed, drive vehicle under the specific driving pattern. *6

- *5 If malfunctioning part cannot be
- detected, perform "TROUBLE DIAGNOSIS FOR INTERMIT-TENT INCIDENT", EC-144.

SFF5107D

- *6 EC-64
- *7 EC-140

TROUBLE DIAGNOSIS — INTRODUCTION

DESCRIPTION FOR WORK FLOW				
STEP	DESCRIPTION			
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-95.			
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the (1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-68, EC-71.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-124.) Also check related service bulletins for information.			
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144. If the malfunction code is detected, skip STEP IV and perform STEP V.			
STEP IV	Try to detect the (1st trip) DTC by driving in (or performing) the "DTC Confirmation Procedure". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144. In case the "DTC Confirmation Procedure" is not available, perform the "Overall Function Check" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "Overall Function Check" is the same as the (1st trip) DTC detection.			
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed refer to "BASIC INSPECTION", EC-98. If CONSULT-II is available, perform "DATA MONITOR (SPEC)" mode with CONSULT-II and proceed to the "TROUBLE DIAGNOSIS — SPECIFICATION VALUE". (Refer to EC-140.) (If malfunction is detected, proceed to "REPAIR/REPLACE".) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-124.)			
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-132. The "Diagnostic Procedure" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to GI section ("HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", "Circuit Inspection"). Repair or replace the malfunction parts. If malfunctioning part cannot be detected, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.			
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC Confirmation Procedure" and confirm the normal code [DTC No. P0000] is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-68, EC-71.)			

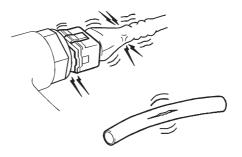
Basic Inspection

MODELS WITH THROTTLE POSITION SWITCH

NJEC1785 NJEC1785S01

Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;


Headlamp switch is OFF,

On vehicle equipped with daytime light systems, set lighting switch to the 1st position to light only small lamps.

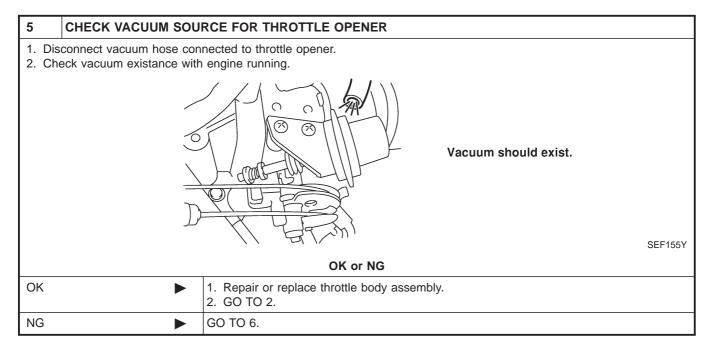
- Air conditioner switch is OFF,
- Rear window defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

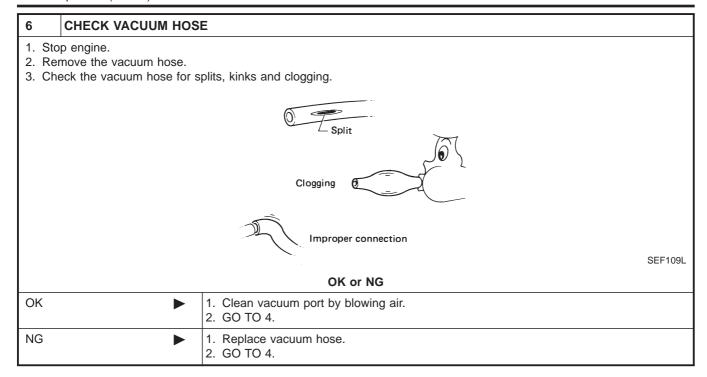
1 INSPECTION START

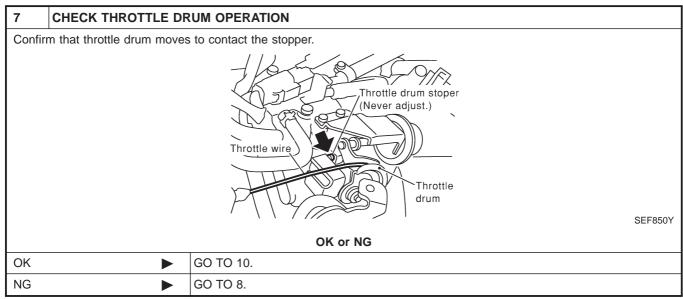
- 1. Check service records for any recent repairs that may indicate a related problem, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks and improper connections
- Wiring for improper connections, pinches and cuts
- Air cleaner clogging
- Hoses and ducts for leaks

SEF983U

GO TO 2.


Confirm that there is a clearance between throttle drum and stopper. Throttle drum stoper (Never adjust.) Throttle drum Throttle drum SEF850Y OK or NG OK GO TO 4. NG GO TO 3.


TROUBLE DIAGNOSIS — BASIC INSPECTION


Basic Inspection (Cont'd)

3	CHECK THROTTLE OPENER FIXING BOLTS		
Check throttle opener fixing bolts for loosening.			
OK or NG			
OK	>	 Repair or replace throttle body assembly. GO TO 2. 	
NG	>	 Retighten the fixing bolts. GO TO 2. 	

8	CHECK ACCELERATOR WIRE INSTALLATION			
	 Stop engine. Check accelerator wire for slack. 			
	OK or NG			
OK	>	GO TO 9.		
NG	>	 Adjust accelerator wire. Refer to FE-3, "Adjusting Accelerator Wire". GO TO 7. 		

TROUBLE DIAGNOSIS — BASIC INSPECTION

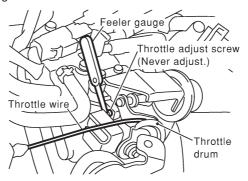
Basic Inspection (Cont'd)

9	CHECK THROTTLE VA	LVE OPERATION
Remove intake air ducts. Check throttle valve operation when moving throttle drum by hand.		
OK or NG		
OK	>	 Retighten the throttle drum fixing nuts. GO TO 7.
NG	>	 Clean the throttle body and throttle valve. GO TO 7.

10 CHECK THROTTLE POSITION SWITCH CLOSED POSITION-I (If throttle opener is equipped) NOTE: Always check ignition timing before performing the following. 1. Warm up engine to normal operating temperature. 2. Stop engine. 3. Remove the vacuum hose connected to the throttle opener. 4. Connect suitable vacuum hose to vacuum pump as shown below. Throttle opener Vacuum pump Throttle opener rod should move up when the vacuum is applied. Stopper -Throttle drum (Never touch) 5. Apply vacuum [more than -40.0 kPa (-400 mbar, -300 mmHg, -11.81 inHg)] until the throttle drum is free from the throttle opener rod. Models with CONSULT-II GO TO 11.

Models without CON-

SULT-II


GO TO 15.

Basic Inspection (Cont'd)

11 CHECK THROTTLE POSITION SWITCH CLOSED POSITION-II

(P) With CONSULT-II

- 1. Connect "CONSULT-II" to the data link connector and select "ENGINE" from the menu. Refer to EC-81.
- 2. Turn ignition switch "ON".
- 3. Select "TP SW/TP SEN IDLE POSI ADJ" in "WORK SUPPORT" mode with CONSULT-II.
- 4. Read "CLSD THL/P SW" signal under the following conditions.
- Insert a 0.05 mm (0.0020 in) and 0.15 mm (0.0059 in) feeler gauge alternately between stopper and throttle drum as shown in the figure and check the signal.

SEF073X

TP SW/TP SEN IDLE POSI ADJ	
MONITOR	
COOLAN TEMP/S	91 °C
CLSD THL POS	ON
CLSD THL/P SW	ON

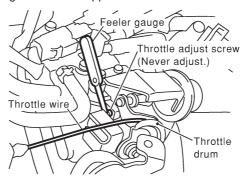
SEF715Y

"CLSD THL/P SW" signal should remain "ON" while inserting 0.05 mm (0.0020 in) feeler gauge. "CLSD THL/P SW" signal should remain "OFF" while inserting 0.15 mm (0.0059 in) feeler gauge.

OK or NG

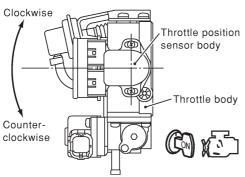
OK •	GO TO 14.
NG ►	GO TO 12.

TROUBLE DIAGNOSIS — BASIC INSPECTION


QG

Basic Inspection (Cont'd)

12 ADJUSTMENT THROTTLE POSITION SWITCH CLOSED POSITION-I

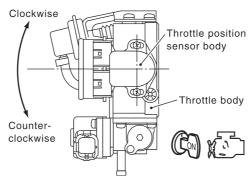

(P) With CONSULT-II

- 1. Loosen throttle position sensor fixing bolts.
- 2. Confirm that proper vacuum is applied. Refer to test No. 10. During adjustment, vacuum should be applied.
- 3. Insert 0.05 mm (0.0020 in) feeler gauge between stopper and throttle drum as shown in the figure.

SEF073X

4. Turn throttle position sensor body counterclockwise until "CLSD THL/P SW" signal switches to "OFF".

TP SW/TP SEN IDLE POSI ADJ	
MONITOR	
COOLAN TEMP/S	91°C
CLSD THL POS	ON
CLSD THL/P SW	OFF


SEF863Y

GO TO 13.

13 ADJUSTMENT THROTTLE POSITION SWITCH CLOSED POSITION-II

(P) With CONSULT-II

- 1. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when "CLSD THL/P SW" signal switches from "OFF" to "ON", then temporarily tighten sensor body fixing bolts.

SEF964W

- 2. Make sure two or three times that the signal is "ON" when the throttle valve is closed and "OFF" when it is opened.
- 3. Remove 0.05 mm (0.0020 in) feeler gauge then insert 0.15 mm (0.0059 in) feeler gauge.
- 4. Make sure two or three times that the signal remains "OFF" when the throttle valve is closed.
- 5. Tighten throttle position sensor.
- 6. Check the "CLSD THL/P SW" signal again.

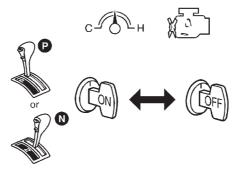
TP SW/TP SEN IDLE POSI ADJ	
MONITOR	
COOLAN TEMP/S	91°C
CLSD THL POS	ON
CLSD THL/P SW	OFF
·	

SEF716Y

The signal remains "OFF" while closing throttle valve.

OK or NG

OK •	GO TO 14.
NG ►	GO TO 12.


14 RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

(P) With CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

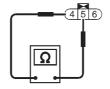
- 1. Confirm that proper vacuum is applied. Refer to Test No. 10.
- 2. Attach blind cap to vacuum port from which vacuum hose to throttle opener was disconnected.
- 3. Start engine.
- 4. Warm up engine to normal operating temperature.
- 5. Select "TP SW/TP SEN IDLE POSI ADJ" in "WORK SUPPORT" mode.
- 6. Stop engine. (Turn ignition switch "OFF".)
- 7. Turn ignition switch "ON" and wait at least 5 seconds.

SEF864V

- 8. Turn ignition switch "OFF" and wait at least 9 seconds.
- 9. Repeat steps 7 and 8 until "CLSD THL POS" signal changes to "ON".

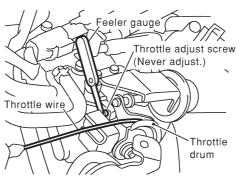
TP SW/TP SEN IDLE POSI ADJ	
MONITOR	
COOLAN TEMP/S	91°C
CLSD THL POS	ON
CLSD THL/P SW	ON

SEF715Y


GO TO 19.

15 CHECK THROTTLE POSITION SWITCH CLOSED POSITION-II

Without CONSULT-II


- 1. Disconnect closed throttle position switch harness connector.
- 2. Check continuity between closed throttle position switch terminals 4 and 5 under the following conditions.

SEF711X

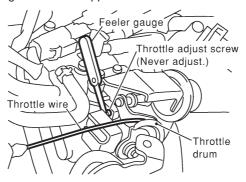
• Insert the 0.05 mm (0.0020 in) and 0.15 mm (0.0059 in) feeler gauge alternately between the stopper and throttle drum as shown in the figure.

SEF073X

OK or NG

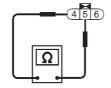
OK •	GO TO 18.
NG ►	GO TO 16.

[&]quot;Continuity should exist" while inserting 0.05 mm (0.0020 in) feeler gauge.

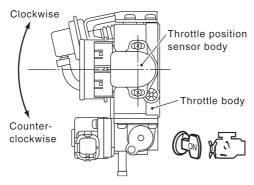

[&]quot;Continuity should not exist" while inserting 0.15 mm (0.0059 in) feeler gauge.

ADJUSTMENT THROTTLE POSITION SWITCH CLOSED POSITION-I

Without CONSULT-II


16

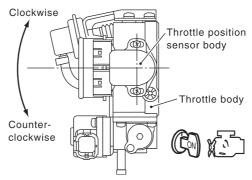
- 1. Loosen throttle position sensor fixing bolts.
- 2. Confirm that proper vacuum is applied. Refer to Test No. 10. During adjustment, vacuum should be applied.
- 3. Insert 0.05 mm (0.0020 in) feeler gauge between stopper and throttle drum as shown in the figure.


SEF073X

SEF711X

4. Turn throttle position sensor body counterclockwise until continuity does not exist.

SEF964W


GO TO 17.

Basic Inspection (Cont'd)

17 ADJUSTMENT THROTTLE POSITION SWITCH CLOSED POSITION-II

Without CONSULT-II

- 1. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when the continuity comes to exist, then temporarily tighten sensor body fixing bolts.

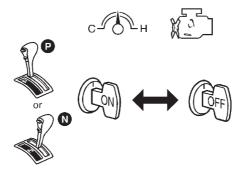
SEF964W

- 2. Make sure two or three times that the continuity exists when the throttle valve is closed and continuity does not exist when it is opened.
- 3. Remove 0.05 mm (0.0020 in) feeler gauge then insert 0.15 mm (0.0059 in) feeler gauge.
- 4. Make sure two or three times that the continuity does not exist when the throttle valve is closed.
- 5. Tighten throttle position sensor.
- 6. Check the continuity again.

Continuity does not exist while closing the throttle valve.

OK or NG

OK ►	GO TO 18.
NG ►	GO TO 16.


18 RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

Without CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Confirm that proper vacuum is applied. Refer to Test No. 10.
- 2. Attach blind cap to vacuum port from which vacuum hose to throttle opener was disconnected.
- 3. Start engine.
- 4. Warm up engine to normal operating temperature.
- 5. Stop engine. (Turn ignition switch "OFF".)
- 6. Turn ignition switch "ON" and wait at least 5 seconds.

SEF864V

- 7. Turn ignition switch "OFF" and wait at least 9 seconds.
- 8. Repeat steps 6 and 7, 20 times.

► GO TO 19.

QG

Basic Inspection (Cont'd)

CHECK (1ST TRIP) DTC Turn ignition switch "OFF". Release vacuum from throttle opener. Remove vacuum pump and vacuum hose from throttle opener. Reinstall original vacuum hose to throttle opener securely.

5. Start engine and warm it up to normal operating temperature.

6. Rev (2,000 to 3,000 rpm) two or three times.

7. Make sure no (1st trip) DTC is displayed with CONSULT-II or GST.

OK	or	NG
----	----	----

OK •	GO TO 21.
NG ►	GO TO 20.

20	REPAIR MALFUNCTION	
Repair or replace components as necessary according to corresponding "Diagnostic Procedure".		
	▶ GO TO 19.	

21 **CHECK TARGET IDLE SPEED** (P) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Select "ENG SPEED" in "DATA MONITOR" mode with CONSULT-II. 3. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) OK or NG OK GO TO 31. NG GO TO 22.

22	PERFORM IDLE AIR VOLUME LEARNING		
	Refer to "Idle Air Volume Learning", EC-55. Which is the result CMPLT or INCMP?		
	CMPLT or INCMP		
CMPL	CMPLT ▶ GO TO 23.		
INCMF	>	 Follow the construction of "Idle Air Volume Learning". GO TO 22. 	

Basic Inspection (Cont'd)

23 CHECK TARGET IDLE SPEED AGAIN (P) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Select "ENG SPEED" in "DATA MONITOR" mode with CONSULT-II. 3. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) OK or NG OK GO TO 29. NG (Models with Euro-GO TO 25. OBD system) NG (Models without GO TO 24. Euro-OBD system)

24	4 CHECK IACV-AAC VALVE CIRCUIT FOR OPEN AND SHORT		
	 Turn ignition switch "OFF". Check IACV-AAC valve circuit for open and short. Refer to "Diagnostic Procedure", EC-313. 		
	OK or NG		
OK	•	GO TO 25.	
NG	>	 Repair or replace. GO TO 26. 	

25	REPLACE IACV-AAC VALVE	
Replac	Replace IACV-AAC valve.	
	•	GO TO 26.

26	PERFORM IDLE AIR VOLUME LEARNING			
Refer to "Idle Air Volume Learning", EC-55 Which is the result CMPLT or INCMP?				
	CMPLT or INCMP			
CMPL	CMPLT ▶ GO TO 27.			
INCMF	>	 Follow the construction of "Idle Air Volume Learning". GO TO 22. 		

QG

Basic Inspection (Cont'd)

27 CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "ENG SPEED" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check idle speed.

M/T: 700±50 rpm

A/T: 800±50 rpm (in "P" or "N" position)

Without CONSULT-II

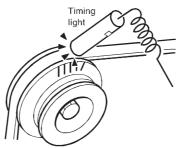
- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

M/T: 700±50 rpm

A/T: 800±50 rpm (in "P" or "N" position)

OK or NG

OK	•	GO TO 29.
NG	•	GO TO 28.


28 CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is rarely the case.)
- 2. Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to "NATS (Nissan Anti-Theft System)", EC-72.

► GO TO 22.

29 CHECK IGNITION TIMING

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check ignition timing at idle using a timing light.

SEF984U

Ignition timing:

M/T 8°±5° BTDC

A/T 10°±5° BTDC (in "P" or "N" position)

OK or NG

OK ▶	GO TO 37.
NG ►	GO TO 30.

Basic Inspection (Cont'd)

OK

NG

31 CHECK IGNITION TIMING 1. Start engine and let it idle. 2. Check ignition timing at idle using a timing light. Timing light Ignition timing: M/T 8°±5° BTDC A/T 10°±5° BTDC (in "P" or "N" position) OK or NG

32	PERFORM IDLE AIR V	OLUME LEARNING	
Refer to "Idle Air Volume Learning", EC-55. Which is the result CMPLT or INCMP?			
CMPLT or INCMP			
CMPL	CMPLT ▶ GO TO 33.		
INCM	P •	Follow the construction of "Idle Air Volume Learning". GO TO 32.	

GO TO 37.

GO TO 22.

CHECK TARGET IDLE SPEED AGAIN 33 With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Select "ENG SPEED" in "DATA MONITOR" mode with CONSULT-II. 3. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) OK or NG OK GO TO 35. NG GO TO 34.

34	CHECK ECM FUNCTIO	N
(EC	 Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is rarely the case.) Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to "NATS (Nissan Anti-Theft System)", EC-72. 	
	>	GO TO 32.

Basic Inspection (Cont'd)

35	5 CHECK IGNITION TIMING AGAIN	
Check ignition timing again. Refer to Test No. 31.		
OK or NG		
OK	•	GO TO 37.
NG	•	GO TO 36.

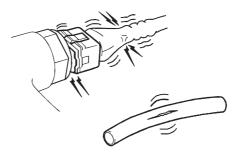
36	CHECK TIMING CHAIN INSTALLATION	
Check	Check timing chain installation. Refer to EM-27, "Installation".	
	OK or NG	
OK	>	GO TO 34.
NG	>	 Repair the timing chain installation. GO TO 32.

37	B7 ERASE UNNECESSARY DTC		
Erase	After this inspection, unnecessary DTC No. might be displayed. Erase the stored memory in ECM and TCM (Transmission control module). Refer to "How to Erase Emission-Related Diagnostic Information", EC-68 or EC-75 and AT-50, "HOW TO ERASE DTC".		
	OK or NG		
	•	INSPECTION END	

MODELS WITHOUT THROTTLE POSITION SWITCH

Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;


Headlamp switch is OFF,

On vehicle equipped with daytime light system, set lighting switch to the 1st position to light only small lamps.

- Air conditioner switch is OFF,
- Rear window defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related problem, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks and improper connections
- Wiring for improper connections, pinches and cuts
- Air cleaner clogging
- Hoses and ducts for leaks

SFF983U

GO TO 2.

Basic Inspection (Cont'd)

2	CHECK THROTT	LE DR	UM OPERATION-I
Confir	Confirm that throttle drum is in contact with the stopper.		
			OK or NG
OK (v	vith CONSULT-II)		GO TO 5.
OK (v	vithout CONSULT-	•	GO TO 8.
NG			GO TO 3.

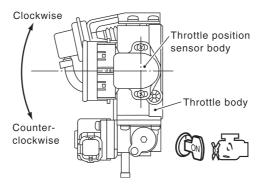
3	3 CHECK ACCELERATOR WIRE INSTALLATION		
Check	Check accelerator wire for slack.		
	OK or NG		
OK	>	GO TO 4.	
NG	•	Adjust accelerator wire. Refer to FE section, "Adjusting Accelerator Wire".	

4	CHECK THROTTLE VALVE OPERATION		
	 Remove intake air ducts. Check throttle valve operation when moving throttle drum by hand. 		
2. 011	OK or NG		
ОК	>	Retighten the throttle drum fixing nuts.	
NG	•	Clean the throttle body and throttle valve.	

5 CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION (B) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Turn ignition switch "ON".
- 4. Select "THRTL POS SEN" and "CLSD THL POS" in "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "THRTL POS SEN" indicates 0.35 to 0.65V, and "CLSD THL POS" indicates "ON". (Accelerator pedal is fully released).

α	0.5	NC
UN	OI	NG


OK •	GO TO 11.
NG ►	GO TO 6.

SEF964W

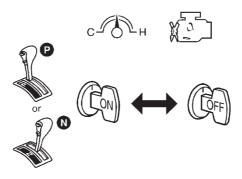
ADJUST THROTTLE POSITION SENSOR IDLE POSITION

(P) With CONSULT-II

- 1. Loosen throttle position sensor fixing bolts.
- 2. Turn throttle position sensor body clockwise or counterclockwise until "THRTL POS SEN" indication becomes 0.35 to 0.65V.

3. Tighten the throttle position sensor fixing bolts.

GO TO 7.


RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

(P) With CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "CLSD THL POS" in "DATA MONITOR" mode with CONSULT-II.
- 3. Stop engine. (Turn ignition switch "OFF".)
- 4. Turn ignition switch "ON" and wait at least 5 seconds.

SEF864V

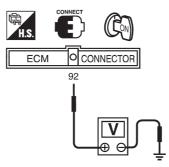
- 5. Turn ignition switch "OFF" and wait at least 9 seconds.
- 6. Repeat steps 4 and 6 until "CLSD THL POS" indication changes to "ON".

DATA MONIT	OR
MONITOR	NO DTC
CLSD THL POS	ON

SEF061Y

GO TO 11.

NEF315A

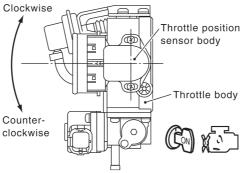

SEF964W

Basic Inspection (Cont'd)

8 CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Turn ignition switch "ON".
- 4. Check voltage between ECM terminal 92 and ground with accelerator pedal fully released.


Voltage: 0.35 to 0.65V

OK •	GO TO 6.
NG ►	GO TO 9.

9 CHECK THROTTLE VALVE OPERATION

Without CONSULT-II

- 1. Loosen throttle position sensor fixing bolts.
- 2. Turn throttle position sensor body clockwise or counterclockwise until the voltage between ECM terminal 92 and ground becomes 0.35 to 0.65V.

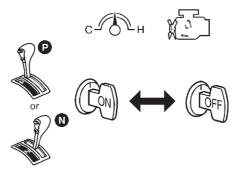
3. Tighten the throttle position sensor fixing bolts.

► GO TO 10.

EC-116

QG

Basic Inspection (Cont'd)


10 RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

Without CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine. (Turn ignition switch "OFF").
- 3. Turn ignition switch "ON" and wait at least 5 seconds.

SEF864V

- 4. Turn ignition switch "OFF" and wait at least 9 seconds.
- 5. Repeat steps 4 and 6, 20 times.

▶ GO TO 11.

11 CHECK (1ST TRIP) DTC

- 1. Start engine and warm it up to normal operating temperature.
- 2. Rev (2,000 to 3,000 rpm) two or three times.
- 3. Make sure no (1st trip) DTC is displayed with CONSULT-II GST or Diagnostic Test Mode II (Self-diagnostic Results).

OK or NG

OK ►	GO TO 13.
NG ►	GO TO 12.

12 REPAIR MALFUNCTION

Repair or replace components as necessary

■ GO TO 11.

13 CHECK TARGET IDLE SPEED

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "ENG SPEED" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check idle speed.

M/T: 700±50 rpm

A/T: 800±50 rpm (in "P" or "N" position)

Without CONSULT-II

1. Start engine and warm it up to normal operating temperature.

2. Check idle speed.

M/T: 700±50 rpm

A/T: 800±50 rpm (in "P" or "N" position)

OK or NG

OK		GO TO 22.
NG		GO TO 14.

Basic Inspection (Cont'd)

14 PERFOR	PERFORM IDLE AIR VOLUME LEARNING		
Refer to "Idle Air Volume Learning", EC-55 Which is the result CMPLT or INCMP?			
	CMPLT or INCMP		
CMPLT	•	GO TO 15.	
INCMP	>	 Follow the instruction of "Idle Air Volume Learning". GO TO 14. 	

15	CHECK TARGET IDLE	SPEED AGAIN	
(a) W 1. Sta 2. Se 3. Ch			
1. Sta 2. Ch	 Without CONSULT-II Start engine and warm it up to normal operating temperature. Check idle speed. M/T: 700±50 rpm A/T: 800±50 rpm (in "P" or "N" position) 		
		OK or NG	
ОК		GO TO 29.	
,	Models with Euro-	GO TO 17.	
,	NG (Models without Euro-OBD system) GO TO 16.		

16	CHECK IACV-AAC VALVE CIRCUIT FOR OPEN AND SHORT	
	 Turn ignition switch "OFF". Check IACV-AAC valve circuit for open and short. Refer to "Diagnostic Procedure", EC-313. 	
	OK or NG	
OK	•	GO TO 17.
NG	>	 Repair or replace. GO TO 18.

17	REPLACE IACV-AAC VALVE	
Replac	Replace IACV-AAC valve.	
	▶ GO TO 18.	

18	8 PERFORM IDLE AIR VOLUME LEARNING		
	Refer to "Idle Air Volume Learning", EC-55 Which is the result CMPLT or INCMP?		
	CMPLT or INCMP		
CMPL	CMPLT ▶ GO TO 19.		
INCM	P	 Follow the instruction of "Idle Air Volume Learning". GO TO 14. 	

QG

Basic Inspection (Cont'd)

19 CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "ENG SPEED" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check idle speed.

M/T: 700±50 rpm

A/T: 800±50 rpm (in "P" or "N" position)

Without CONSULT-II

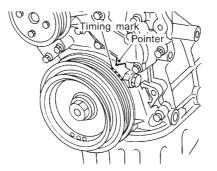
- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

M/T: 700±50 rpm

A/T: 800±50 rpm (in "P" or "N" position)

OK or NG

OK ▶	GO TO 21.
NG ▶	GO TO 20.


20 CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is rarely the case.)
- 2. Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to "NATS (Nissan Anti-Theft system)", EC-72.

► GO TO 14.

21 CHECK IGNITION TIMING

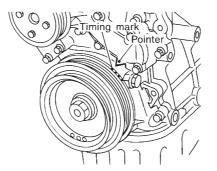
- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to "NATS (Nissan Anti-Theft System)", EC-72.

SEM872F

Ignition timing:

M/T 8°±5° BTDC

A/T 10°±5° BTDC (in "P" or "N" position)


OK ▶	GO TO 29.
NG ►	GO TO 22.

Check timing chain installation. Refer to EM section. OK or NG OK In Repair the timing chain installation. 1. Repair the timing chain installation. 2. GO TO 14.

Basic Inspection (Cont'd)

23 CHECK IGNITION TIMING

- 1. Start engine and let it idle.
- 2. Check ignition timing at idle using a timing light.

SEM872F

Ignition timing: M/T 8°±5° BTDC

A/T 10°±5° BTDC (in "P" or "N" position)

ОК	•	GO TO 29.
NG	•	GO TO 24.

25 CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "ENG SPEED" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check idle speed.

M/T: 700±50 rpm

A/T: 800±50 rpm (in "P" or "N" position)

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

M/T: 700±50 rpm

A/T: 800±50 rpm (in "P" or "N" position)

OK or NG

OK		GO TO 27.
NG	•	GO TO 26.

26 CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is rarely the case).
- 2. Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to "NATS (Nissan Anti-Theft System)", EC-72.

▶ GO TO 24.

QG

Basic Inspection (Cont'd)

27	CHECK IGNITION TIMING AGAIN	
Check	ignition timing again. Refe	er to Test No. 23.
OK	•	GO TO 29.
NG	•	GO TO 28.

28	CHECK TIMING CHAIN	INSTALLATION
Check	Check timing chain installation. Refer to EM section.	
	OK or NG	
OK	•	GO TO 26.
NG	•	 Repair the timing chain installation. GO TO 24.

29	ERASE UNNECESSAR	Y DTC
After the	his inspection, unnecessar	y DTC No. might be displayed.
Erase	Erase the stored memory in ECM.	
Refer	to "HOW TO ERASE EMIS	SION-RELATED DIAGNOSTIC INFORMATION", EC-68.
	>	INSPECTION END

DTC Inspection Priority Chart

DTC Inspection Priority Chart

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority	Detected items (DTC)
1	 P0100 Mass air flow sensor P0110 Intake air temperature sensor P0115 Engine coolant temperature sensor P0120 Throttle position sensor P0325 Knock sensor P0340 Camshaft position sensor (PHASE) circuit P0403 EGR volume control valve*1 P0500 Vehicle speed sensor P0605 ECM P0335 Crankshaft position sensor (POS) P1605 A/T diagnostic communication line P1706 Park/Neutral position switch
2	 P0130 - P0134 Heated oxygen sensor 1 (front) P0135 Heated oxygen sensor 1 heater (front) P0137 - P0140 Heated oxygen sensor 2 (rear) P0141 Heated oxygen sensor 2 heater (rear) P0443 EVAP canister purge volume control solenoid valve P0510 Closed throttle position switch*1 P0705 - P0725, P0740 - P1760 A/T related sensors, solenoid valves and switches P1217 Overheat (Cooling system) P1401 EGR temperature sensor*1
3	 P0171, P0172 Fuel injection system function P0300 - P0304 Misfire P0400, P1402 EGR function*1 P0420 Three way catalyst function P0505 IACV-AAC valve P0731 - P0734, P0744 A/T function P1111 Intake valve timing control

^{*1:} If so equipped

Fail-safe Chart

The ECM enters fail-safe mode if any of the following malfunctions is detected due to the open or short circuit. When the ECM enters the fail-safe mode, the MI illuminates.

DTO	C No.					
CON- SULT-II GST	ECM*1	Detected items	Engine operatin	g condition in fail-safe mode		
P0100	0100	Mass air flow sensor circuit	Engine speed will not rise more	than 2,400 rpm due to the fuel cut.		
P0115	0115	Engine coolant temperature sensor circuit	after turning ignition switch "ON"	be determined by ECM based on the time or "START". coolant temperature decided by ECM.		
			Condition	Engine coolant temperature decided (CONSULT-II display)		
			Just as ignition switch is turned ON or Start	40°C (104°F)		
			More than approx. 4 minutes after ignition ON or Start	80°C (176°F)		
			Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)		
P0120	0120	Throttle position sensor circuit	Throttle position will be determined based on the injected fuel amount at the engine speed. Therefore, acceleration will be poor.			
			Condition	Driving condition		
			When engine is idling Normal			
			When accelerating	Poor acceleration		
Unable to access ECM	Unable to access Diagnostic Test Mode II	ECM	When the fail-safe system actival condition in the CPU of ECM), the driver. However it is not possible to acc Engine control with fail-safe When ECM fail-safe is operating	ction CM was judged to be malfunctioning. Ites (i.e., if the ECM detects a malfunction on the instrument panel lights to warn the ess ECM and DTC cannot be confirmed. If, fuel injection, ignition timing, fuel pump operation are controlled under certain limitation.		
				ECM fail-safe operation		
			Engine speed	Engine speed will not rise more than 3,000 rpm		
			Fuel injection	Simultaneous multiport fuel injection system		
			Ignition timing Ignition timing is fixed at the preset va			
			Fuel pump	Fuel pump relay is "ON" when engine is running and "OFF" when engine stalls		
			IACV-AAC valve Full open	Full open		
			Cooling fans	Cooling fan relay "ON" (High speed condition) when engine is running, and "OFF" when engine stalls.		
			Replace ECM, if ECM fail-safe condition is confirmed.			

^{*:} In Diagnostic Test Mode II (Self-diagnostic results) (If so equipped)

Symptom Matrix Chart SYSTEM — ENGINE CONTROL SYSTEM

NJEC0041 NJEC0041S01

							SY	MPTC	M						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-464
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-39
	Injector circuit	1	1	2	3	2		2	2			2			EC-447
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-33
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-37
	Incorrect idle speed adjust- ment	3	3				1	1	1	1		1			EC-41
	IACV-AAC valve circuit	1	1	2	3	3	2	2	2	2		2		2	EC-313
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-41
	Ignition circuit	1	1	2	2	2		2	2			2			EC-451
EGR	EGR volume control valve circuit		2	2	3	3						3			EC-293
	EGR system	2	1	2	3	3	3	2	2	3		3			EC-285, 293, 353
Main pow	Main power supply and ground circuit		2	3	3	3		3	3		2	3		2	EC-145
Air condit	ioner circuit	2	2	3	3	3	3	3	3	3		3		2	HA section

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

Symptom Matrix Chart (Cont'd)

						SY	MPTC	OM						
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Crankshaft position sensor (POS) circuit	2	2												EC-272
Camshaft position sensor (PHASE) circuit	3	2									3			EC-278
Mass air flow sensor circuit	1	1	2	2	2		2	2			2			EC-152
Heated oxygen sensor 1 (front) circuit		1	2	3	2		2	2			2			EC-176, 183
Engine coolant temperature sensor circuit	1	1	2	3	2	3	2	2	3		2			EC-163, 165
Throttle position sensor circuit		1	2		2	2	2	2	2		2			EC-168
Incorrect throttle position sensor adjustment		3	1		1	1	1	1	1		1			EC-98
Vehicle speed sensor circuit		2	3		3						3			EC-309
Knock sensor circuit			2								3			EC-268
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-327, 123
Start signal circuit	2													EC-461
PNP switch circuit			3		3		3	3			3			EC-364
Power steering oil pressure switch circuit		2					3	3						EC-471
Electrical load signal circuit							3	3						EC-480

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

Symptom Matrix Chart (Cont'd)

			S	YST	EM ·	— Е	NGII	NE N	ΛEC	HAI	NICA	\L &	OTI	HER	NJEC0041S03	
			SYMPTOM													
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		
Fuel	Fuel tank	- 5													FE section	
	Fuel piping			5	5	5		5	5			5				
	Vapor lock		5													
	Valve deposit															
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5			_	
Air	Air duct															
	Air cleaner															
	Air leakage from air duct (Mass air flow sensor — throttle body)		5	5		5		5	5			5				
	Throttle body, Throttle wire	5			5		5			5					FE section	
	Air leakage from intake manifold/Collector/Gasket														_	
Cranking	Battery	1	1	1		1		1	1			1		1		
· -	Alternator circuit		1	1		1		1	1 1	1			1		1	EL section
	Starter circuit	3														
	Flywheel/drive plate	6													EM section	

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

							SY	MPTC	M						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Engine	Cylinder head	5	5	5	5	5		5	5			5			
	Cylinder head gasket										4		3		
	Cylinder block														
	Piston												4		EM section
	Piston ring	6	6	6	6	6		6	6			6			
	Connecting rod														
	Bearing Crankshaft														
	Timing chain														
mecha-	Camshaft														
nism	Intake valve	5	5	5	5	5		5	5			5			EM section
	Exhaust valve												3		
Exhaust	Exhaust manifold/Tube/ Muffler/Gasket	5	5	5	5	5		5	5			5			FE section
	Three way catalyst														1 2 00011011
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery	5	5	5	5	5		5	5			5			MA, EM and LC sections
	Oil level (Low)/Filthy oil														
Cooling	Radiator/Hose/Radiator filler cap														
	Thermostat									5					LC section
	Water pump	5	5	5	5	5		5	5		4	5			
	Water gallery										"				
	Cooling fan									5					EC-334
	Coolant level (low)/ Contaminated coolant														MA section

^{1 - 6:} The numbers refer to the order of inspection.

CONSULT-II Reference Value in Data Monitor Mode

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.

(i.e., Adjust ignition timing with a timing light before monitoring IGN TIMING. Specification data might be displayed even when ignition timing is not adjusted to specification. This IGN TIMING monitors the data calculated by the ECM according to the input signals from the crankshaft position sensor and other ignition timing related sensors.)

• If the real-time diagnosis results are NG, and the on board diagnostic system results are OK, when diagnosing the mass air flow sensor, first check to see if the fuel pump control circuit is normal.

MONITOR ITEM	CON	NDITION	SPECIFICATION
ENG SPEED	Tachometer: Connect Run engine and compare tachon value.	neter indication with the CONSULT-II	Almost the same speed as the CONSULT-II value.
MAS A/F SE-B1	Engine: After warming up Air conditioner switch: OFF	Idle	1.0 - 1.7V
MAS A/F SE-BT	Shift lever: "N"No-load	2,500 rpm	1.5 - 2.1V
B/FUEL SCHDL	Engine: After warming upAir conditioner switch: OFF	Idle	1.5 - 3.0 msec
B/I OLL SCHIDL	Shift lever: "N"No-load	2,000 rpm	1.2 - 3.0 msec
A/F ALPHA-B1	Engine: After warming up	Maintaining engine speed at 2,000 rpm	75 - 125%
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)
HO2S1 (B1)			0 - 0.3V ←→ 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.
HO2S2 (B1)	- F	Revving engine from idle to 3,000	0 - 0.3V ←→ 0.6 - 1.0V
HO2S2 MNTR (B1)	Engine: After warming up	rpm quickly	$LEAN \longleftrightarrow RICH$
VHCL SPEED SE	Turn drive wheels and compare SULT-II value	speedometer indication with the CON-	Almost the same speed as the CONSULT-II value
BATTERY VOLT	Ignition switch: ON (Engine stop)	ped)	11 - 14V
	Engine: Idle	Throttle valve fully closed	0.15 - 0.85V
THRTL POS SEN	Ignition switch: ON (Engine stopped)	Throttle valve fully opened	3.5 - 4.7V
EGR TEMP SEN*	Engine: After warming up		Less than 4.5V
START SIGNAL	ullet Ignition switch: ON $ o$ START $ o$	ON	$OFF \to ON \to OFF$
CLCD THE DOC	Engine: Idle	Throttle valve: Idle position	ON
CLSD THL POS CLSD THL/P SW*	Ignition switch: ON (Engine stopped)	Throttle valve: Slightly open	OFF
	-	A/C switch "OFF"	OFF
AIR COND SIG	Engine: After warming up, idle the engine	A/C switch "ON" (Compressor operates)	ON
D/N DOCL CVV	• Ignition quitch: ON	Shift lever "P" or "N"	ON
P/N POSI SW	Ignition switch: ON	Except above	OFF

QG

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

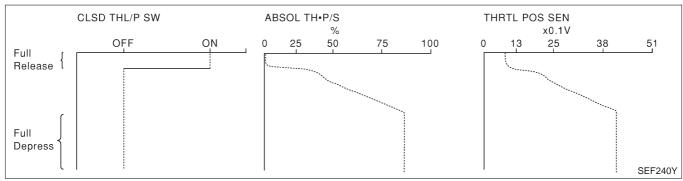
MONITOR ITEM	CON	IDITION	SPECIFICATION
PW/ST SIGNAL	Engine: After warming up, idle	Steering wheel in neutral position (forward direction)	OFF
	the engine	The steering wheel is turned	ON
LOAD SIGNAL	Engine: running	Rear window defogger or headlamp "ON"	ON
		Except the above	OFF
IGNITION SW	ullet Ignition switch: ON $ o$ OFF		$ON \to OFF$
HEATER FAN SW	Heater fan switch is "ON"		ON
TILATER TAN 3W	Heater fan switch is "OFF"		OFF
INJ PULSE-B1	Engine: After warming up Air conditioner switch: OFF	Idle	2.0 - 3.5 msec
	Shift lever: "N" No-load	2,000 rpm	1.5 - 3.5 msec
IGN TIMING	Engine: After warming up Air conditioner switch: OFF Shift lover: "N"	Idle	M/T: 8°±5° BTDC A/T: 10°±5° BTDC
	Shift lever: "N"No-load	2,000 rpm	Approx. 30° BTDC
CAL/LD VALUE	Engine: After warming up Air conditioner switch: OFF	Idle	Not used
CADED VALUE	Shift lever: "N"No-load	2,500 rpm	Not used
	Engine: Idle	Throttle valve fully closed	0.0°
ABSOL TH-P/S	Ignition switch: ON (Engine stopped)	Throttle valve fully opened	Approx. 80°
MASS AIRFLOW	Engine: After warming upAir conditioner switch: OFF	Idle	1.0 - 4.0 g·m/s
MAGG AIRT LOW	Shift lever: NNo-load	2,500 rpm	5.0 - 10.0 g·m/s
IACV-AAC/V	Engine: After warming upAir conditioner switch: OFF	Idle	5 - 25 steps
	Shift lever: "N"No-load	2,000 rpm	_
PURG VOL C/V	Engine: After warming up	Idle	0%
	No-load	Revving engine	_
	Engine: After warming up	Idle	0 step
EGR VOL CON/V*	Shift lever: "N" No-load	Revving engine up to 3,000 rpm quickly	1 - 10 steps
	Engine: After warming up	Idle	OFF
INT/V SOL-B1	Lift up drive wheels	Suitable gear position except "P" or "N" and revving engine	ON (Momentarily)
AIR COND RLY	ullet Air conditioner switch: OFF $ ightarrow$ OI	N	$OFF \to ON$
FUEL PUMP RLY	 Ignition switch is turned to ON (C Engine running and cranking When engine is stopped (stops in 		ON
	Except as shown above		OFF

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CON	DITION	SPECIFICATION		
COOLING FAN	After warming up engine, idle the engine	Engine coolant temperature is 99°C (210°F) or less	OFF		
COOLING FAIN	the engine. • Air conditioner switch: OFF	Engine coolant temperature is 100°C (212°F) or more	ON		
UO2C4 UTD (D4)	Engine speed: Below 3,200 rpm	Engine speed: Below 3,200 rpm			
HO2S1 HTR (B1)	Engine speed: Above 3,200 rpm		OFF		
HO2S2 HTR (B1)	Engine speed	Below 3,600 rpm [After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more]	ON		
110202 1111 (B1)		Above 3,600 rpm	OFF		
	Ignition switch ON (Engine stopped)	ed)	OFF		
TRVL AFTER MI	Ignition switch: ON	Vehicle has traveled after MI has turned ON.	0 - 65,535 km (0 - 40,723 mile)		

^{*:} If so equipped

Major Sensor Reference Graph in Data Monitor Mode

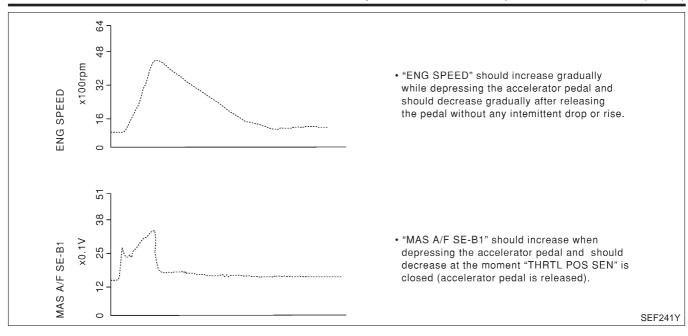

The following are the major sensor reference graphs in "DATA MONITOR" mode.

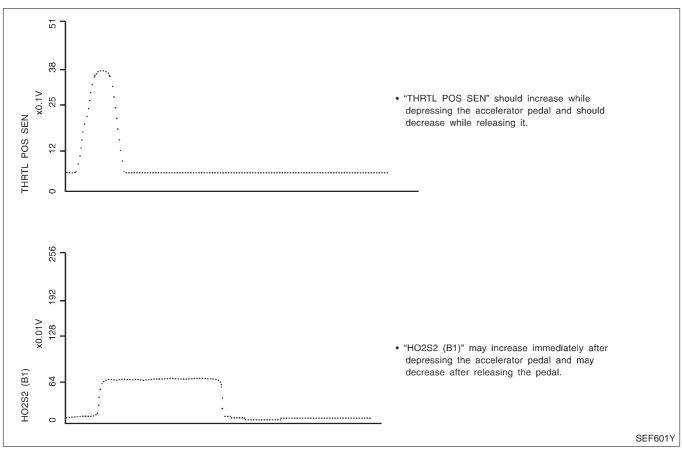
NJEC0043

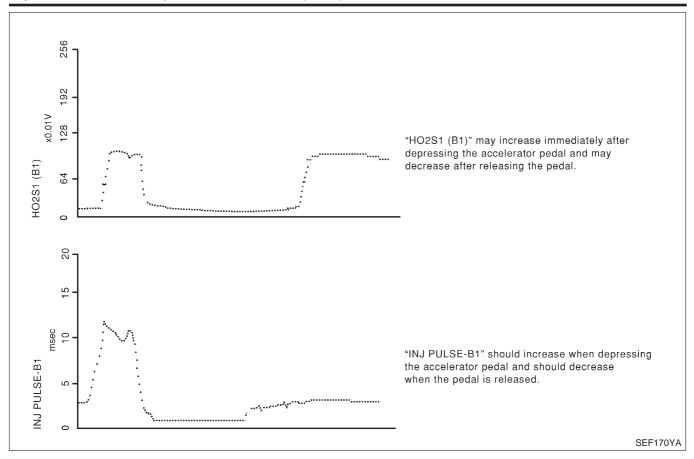
THRTL POS SEN, ABSOL TH-P/S, CLSD THL/P SW

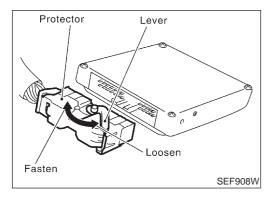
Below is the data for "THRTL POS SEN", "ABSOL TH-P/S" and "CLSD THL/P SW" when depressing the accelerator pedal with the ignition switch "ON".

The signal of "THRTL POS SEN" and "ABSOL TH-P/S" should rise gradually without any intermittent drop or rise after "CLSD THL/P SW" is changed from "ON" to "OFF".



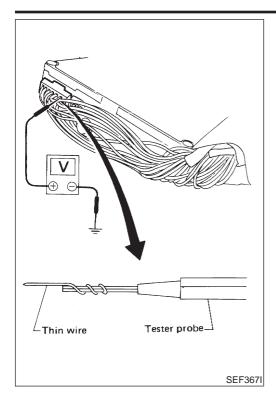

ENG SPEED, MAS A/F SE-B1, THRTL POS SEN, HO2S2 (B1), HO2S1 (B1), INJ PULSE-B1


Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL POS SEN", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine to normal operating temperature.


Each value is for reference, the exact value may vary.

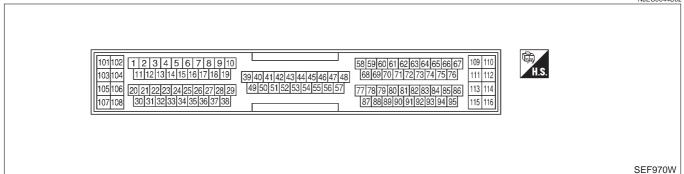
Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

ECM Terminals and Reference Value PREPARATION


NJEC0044 NJEC0044S01

ECM is locating beside of blower unit.

- 1. Remove the ECM bracket fixing.
- 2. Remove ECM harness protector.
- When connecting or disconnecting ECM harness connector, use lever as shown.
 When connecting, fasten connector securely with lever moved until it stops.


ECM Terminals and Reference Value (Cont'd)

- Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.
- Open harness securing clip to make testing easier.
- Use extreme care not to touch 2 pins at one time.
- Data is for comparison and may not be exact.

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

ECM HARNESS CONNECTOR TERMINAL LAYOUT

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)
1	Y/R	Intake valve timing control solenoid valve	 [Engine is running] Lift up drive wheels and suitable gear position Rev engine from 2,000 to 3,000 rpm 	Approximately 0V

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	W/R	Heated oxygen sensor 2	 [Engine is running] ● Engine speed is below 3,600 rpm ● After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more 	Approximately 0.7V
		heater (rear)	[Ignition switch "ON"] ■ Engine stopped ■ Engine speed is above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
4	D/D	Heated oxygen sensor 1	[Engine is running] • Engine speed is below 3,200 rpm	Approximately 0V
4	R/B	heater (front)	[Engine is running] • Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)
6 7 15 16	BR L/G P OR	IACV-AAC valve	[Engine is running] ■ Warm-up condition ■ Idle speed	0.1 - 14V
8* 9* 17* 18*	SB W/B R/Y BR/R	EGR volume control valve	[Engine is running] ■ Warm-up condition ■ Rev engine from 2,000 to 4,000 rpm	0 - 14V
10	Y/B	A/T signal No. 3	[Engine is running] • Idle speed	Approximately 0V
40	L C/D	Onelling for relay	[Engine is running] • Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
13	LG/R	Cooling fan relay	[Engine is running] ■ Cooling fan is operating	Approximately 0V
14	GY/L	EVAP canister purge volume control valve (ON/OFF duty)	[Engine is running] • Warm-up condition • Accelerator pedal depressed	5 - 12V (V) 30 20 10 200 ms SEF975W
19	BR/W	A/T signal No. 5	[Engine is running] • Idle speed	Approximately 8V
21	B/P	Fuel pump relay	[Ignition switch "ON"] ● For 1 second after turning ignition switch "ON" [Engine is running]	0 - 1V
			[Ignition switch "ON"] ■ More than 1 second after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "ON"]	0 - 1V
22	OR/L	Malfunction indicator	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)
23	L	Air conditioner relay	[Engine is running] ● Both A/C switch and blower switch are "ON"	Approximately 0V
۷3		7 to Conditioner relay	[Engine is running] ■ A/C switch is "OFF"	BATTERY VOLTAGE (11 - 14V)

			2011 101111111	als and Reference value (Cont d)
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
31	W/G	ECM relay (Self shut-off)	[Ignition switch "OFF"] ● For 9 seconds after turning ignition switch "OFF"	0 - 1V
31	W/G	ECW relay (Sell Stiut-Oil)	[Ignition switch "OFF"] ● 9 seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
32	L/OR	Tachometer	[Engine is running] ■ Warm-up condition ■ Idle speed	7 - 8V (V) 20 10 0 20 ms SEF928X
32	DOR	Tacriometer	[Engine is running] ● Engine speed is 2,000 rpm	7 - 8V (V) 20 10 0 20 ms SEF929X
35 36	L/W PU	Ignition signal (No. 1) Ignition signal (No. 2)	[Engine is running] ● Warm-up condition ● Idle speed	0 - 0.2V (V) 6 4 2 0 100 ms SEF971W
37 38	L/R GY/R	Ignition signal (No. 3) Ignition signal (No. 4)	[Engine is running] ● Engine speed is 2,000 rpm	0.2 - 0.4V
40*	Y/PU	Throttle position switch	[Engine is running] ■ Accelerator pedal released	BATTERY VOLTAGE (11 - 14V)
- 10	.,, 5	(Closed position)	[Engine is running] ● Accelerator pedal depressed	Approximately 0V
41	B/Y	Start signal	[Ignition switch "ON"]	Approximately 0V
		_	[Ignition switch "START"]	9 - 12V

QG

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch "ON"] ■ Gear position is "Neutral position" (M/T models) ■ Gear position is "P" or "N" (A/T models)	Approximately 0V
42	G/OR	PNP switch	[Ignition switch "ON"] • Except the above gear position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5V
			[Ignition switch "OFF"]	OV
43	B/R	Ignition switch	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
44	L/R	Air conditioner switch	[Engine is running] ■ Both air conditioner switch and blower switch are "ON" (Compressor operates)	Approximately 0V
			[Engine is running] ■ Air conditioner switch is "OFF"	Approximately 5V
46	DITAM	Power steering oil pres-	[Engine is running] • Steering wheel is fully turned	Approximately 0V
46	PU/W	sure switch	[Engine is running] • Steering wheel is not turned	Approximately 5V
48	В	ECM ground	[Engine is running] • Idle speed	Engine ground
50	I /D	Electrical load signal	[Engine is running] ● Headlamp switch or rear defogger switch is "ON"	BATTERY VOLTAGE (11 - 14V)
50	L/B	(Headlamp and Rear defogger)	[Engine is running] ● Headlamp switch and rear defogger switch are "OFF"	Approximately 0V
	1.0/5	Discover OW	[Ignition switch "ON"] ● Blower fan switch is "ON"	Approximately 0V
51	LG/B	Blower fan SW	[Ignition switch "ON"] ■ Blower fan switch is "OFF"	Approximately 5V
54	Y/R	A/T signal No. 1	[Engine is running] • Idle speed	Approximately 0V
55	Y/G	A/T signal No. 2	[Engine is running] • Idle speed	Approximately 0V
56	G/Y	A/T signal No. 4	[Engine is running] • Idle speed	Approximately 0V
57	В	ECM ground	[Engine is running] ● Idle speed	Engine ground
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

				als and Reference value (Contu)	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
	_	Mass air flow sensor	[Engine is running] ■ Warm-up condition ■ Idle speed	1.0 - 1.7V	
61	G		[Engine is running] ■ Warm-up condition ■ Engine speed is 2,500 rpm	1.5 - 2.1V	
62	w	Heated oxygen sensor 1 (front)	[Engine is running] ■ Warm-up condition ■ Engine speed is 2,000 rpm	0 - Approximately 0.7V (V) 2 1 0 SEF008W	
63	L	Heated oxygen sensor 2 (rear)	[Engine is running] ● After warming up to normal operating temperature and engine speed is 3,000 rpm	0 - Approximately 1.0V	
64	Y/B	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature	
66	RR	Camshaft position sensor (PHASE)	● Warı ● Idle :	[Engine is running] ■ Warm-up condition ■ Idle speed	2.0 - 3.0V (V) 15 10 20 ms SEF977W
66 75			[Engine is running] ● Engine speed is 2,000 rpm	2.0 - 3.0V (V) 15 10 5 0 10 ms SEF978W	
67	W/L	Power supply for ECM (Back-up)	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)	
70	BR/W	Engine coolant tempera- ture sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature	
71	GY	Throttle position sensor signal output	 [Engine is running] Warm-up condition Accelerator pedal fully released 	Approximately 0.4V	
			[Ignition switch "ON"] ■ Accelerator pedal fully depressed	Approximately 4V	

	Zoni Tonninale and Notoronee Value (Conta)				
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
72*	D (D	EGR temperature sensor	[Engine is running] ■ Warm-up condition ■ Idle speed	Less than 4.5V	
12	P/B		[Engine is running]Warm-up conditionEGR system is operating	0 - 1.0V	
73	В	Mass air flow sensor ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V	
		Refrigerant pressure sensor	[Engine is running] ● Air conditioner switch is "ON" (Compressor operates)	1.0 - 4.0V	
74	R/L		[Engine is running] ■ Warm-up condition ■ Idle speed ■ Air conditioner switch is turned from "ON" to "OFF"	Voltage is gradually decreasing.	
81	W	Knock sensor	[Engine is running] ● Idle speed	1.0 - 4.0V	
85	R	Crankshaft position sensor (POS)	[Engine is running] ■ Warm-up condition ■ Idle speed	3.0 - 4.0V (V) 15 10 2 ms SEF979W	
65			[Engine is running] ● Engine speed is 2,000 rpm	3.0 - 4.0V (V) 15 10 2 ms SEF980W	
86	PU/R	Vehicle speed sensor	[Engine is running] Lift up the vehicle Vehicle speed is 40 km/h (25 MPH)	2.5 - 3V (V) 15 10 5 0 200 ms SEF976W	
91	PU	A/T check signal	[Engine is running] ● Idle speed	0 - Approximately 5V	
92	Υ	Throttle position sensor	[Engine is running] ● Accelerator pedal released	0.15 - 0.85V	
			[Ignition switch "ON"] ■ Accelerator pedal fully depressed	3.5 - 4.7V	

QG

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
93	G/R	Data link connector	[Engine is running] ■ Idle speed (CONSULT-II or GST is disconnected)	Approximately 0V
101 103	R/B YB GB L/B	Injector No. 1 Injector No. 2	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 SEF011W
105 107		GB	Injector No. 3 Injector No. 4	[Engine is running] ■ Warm-up condition ■ Engine speed is 2,000 rpm
106 108	B/Y	ECM ground	[Engine is running] ● Idle speed	Engine ground
110 112	W	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
111	R	Sensors' power supply	[Ignition switch "ON"]	Approximately 5V
114	GY/R	Adjust switch	[Engine is running] • Idle speed	ov
115	LG	Data link connector	[Engine is running] ■ Idle speed (CONSULT-II or GST is disconnected)	0 - 10V

^{*} If so equipped

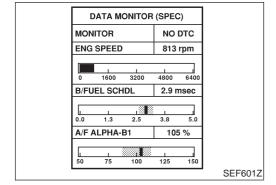
Description

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

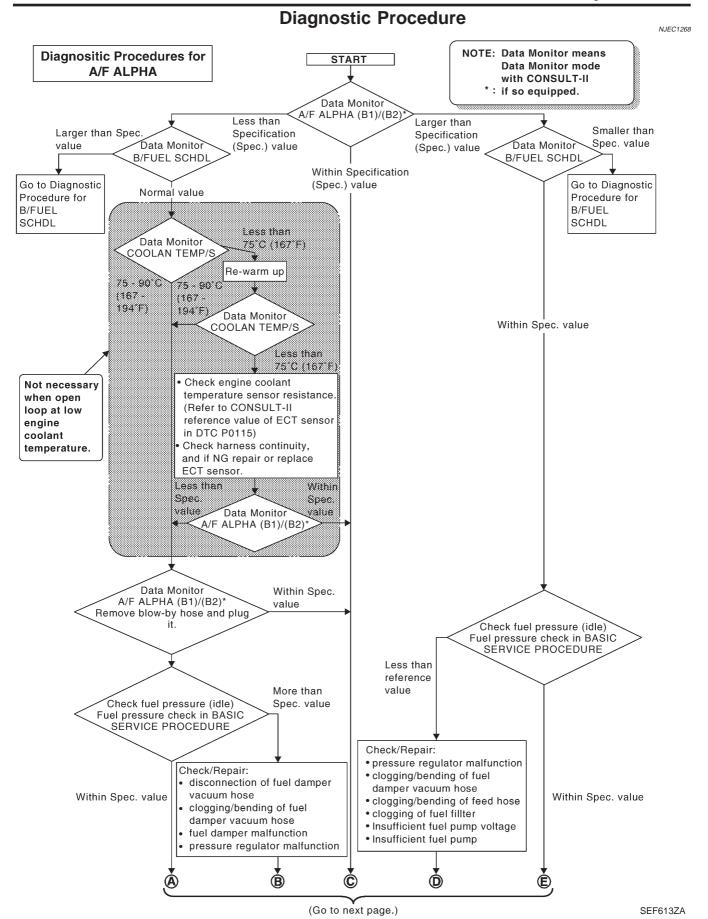

Testing Condition

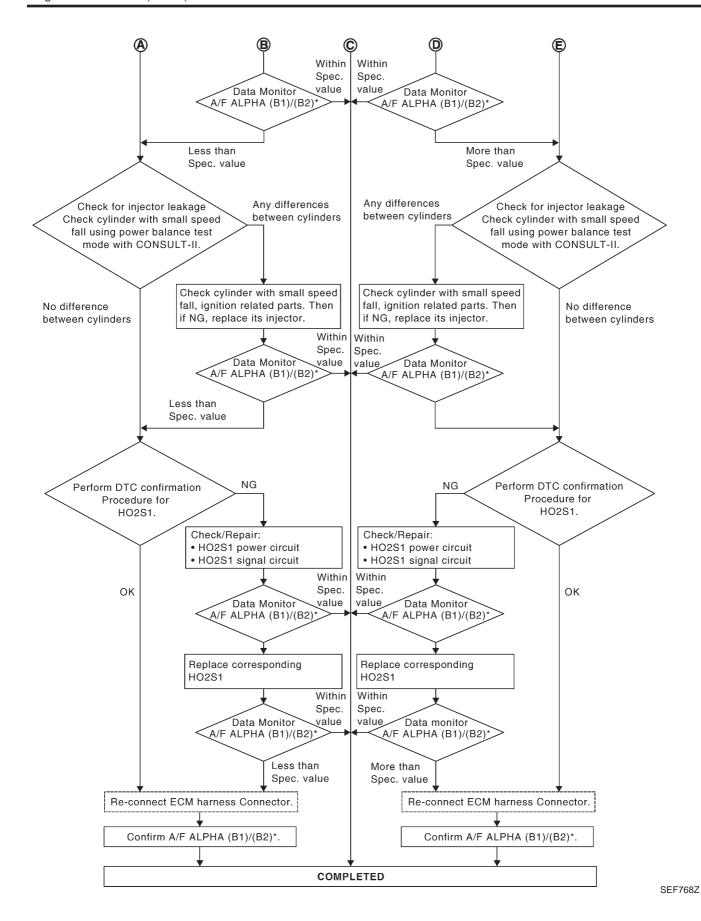
NJEC1266

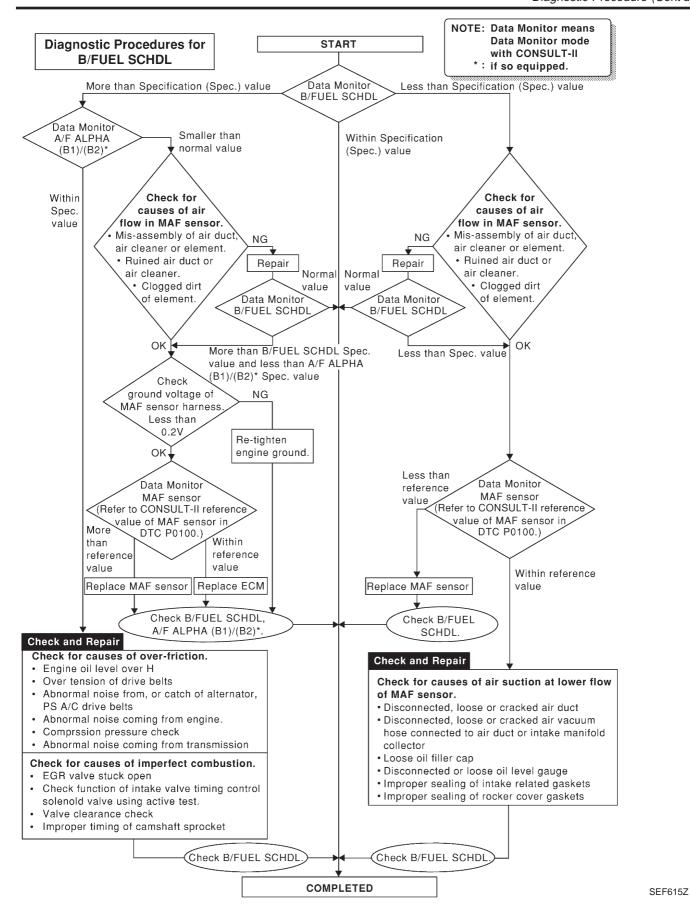
- Vehicle driven distance: More than 5,000 km (3,017 miles)
- Barometric pressure: 98.3 104.3 kPa (0.983 1.043 bar, 1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*1Electrical load: Not applied*2
- Engine speed: Idle

*1: For A/T or CVT models, after the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T or CVT fluid temperature sensor signal) indicates less than 0.9V. For M/T models, drive vehicle for 5 minutes after the engine is warmed up to normal operating temperature.

*2: Rear window defogger switch, air conditioner switch, lighting switch are "OFF". Cooling fans are not operating. Steering wheel is straight ahead.


Inspection Procedure


NJEC1267


NOTE:

Perform "DATA MONITOR (SPEC)" mode in maximum scale display.

- 1. Perform "Basic Inspection", EC-98.
- 2. Confirm that the testing conditions indicated above are met.
- 3. Select "B/FUEL SCHDL", "A/F ALPHA-B1" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- 4. Make sure that monitor items are within the SP value.
- If NG, go to "Diagnostic Procedure", EC-141.

Description

JECO045

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on DTC (1st trip) visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

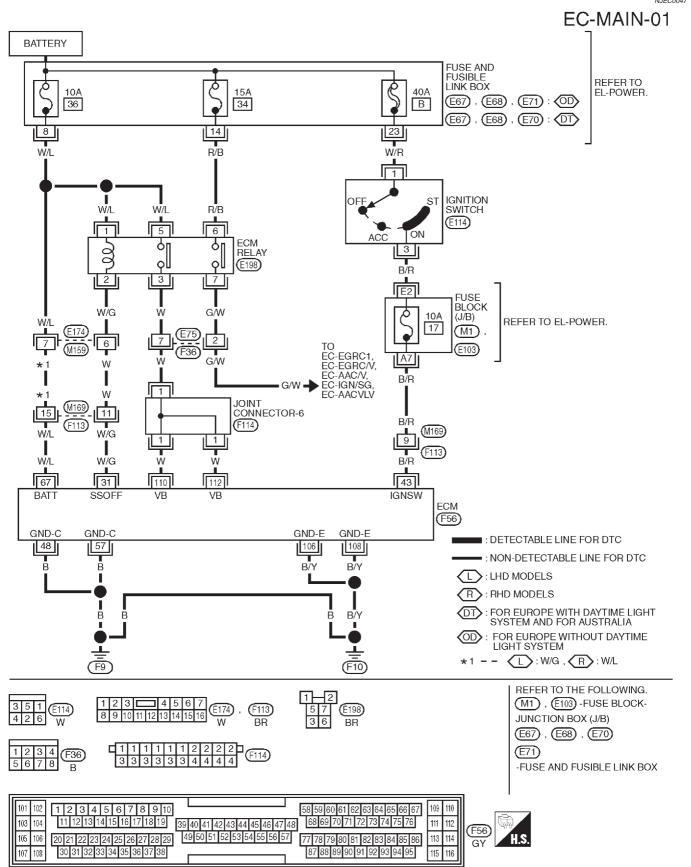
COMMON I/I REPORT SITUATIONS

NJEC0045S01

STEP in Work Flow	Situation
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "1t".
III	The symptom described by the customer does not recur.
IV	(1st trip) DTC data does not appear during the DTC Confirmation Procedure.
VI	The Diagnostic Procedure for PXXXX does not indicate the problem area.

Diagnostic Procedure

N.IECO046


1	INSPECTION START		
Erase	Erase (1st trip) DTCs. Refer to "How to Erase Emission-related Diagnostic Information", EC-68, EC-71.		
	>	GO TO 2.	

2	CHECK GROUND TERMINALS		
Check	Check ground terminals for corroding or loose connection. Refer to GI-27, "GROUND INSPECTION".		
	OK or NG		
OK	>	GO TO 3.	
NG	•	Repair or replace.	

3	SEARCH FOR ELECTRICAL INCIDENT	
Perform GI-22, "Incident Simulation Tests".		
OK or NG		
OK	OK INSPECTION END	
NG	>	Repair or replace.

Main Power Supply and Ground Circuit WIRING DIAGRAM

NJEC0047

TROUBLE DIAGNOSIS FOR POWER SUPPLY

QG

Main Power Supply and Ground Circuit (Cont'd)

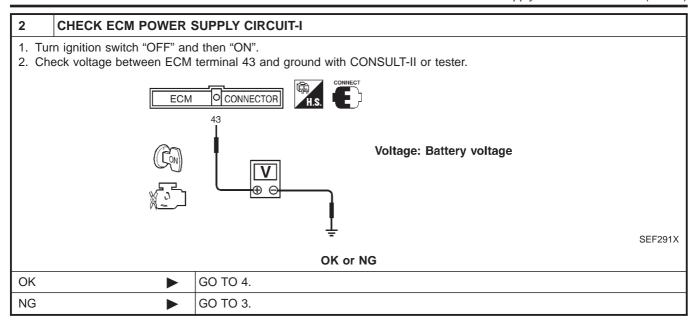
ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

NJEC0048

CAUTION:

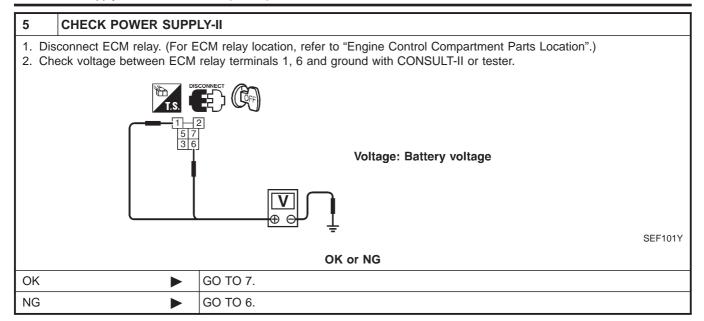
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	W/C	ECM relay (Salf abut off)	[Engine is running] [Ignition switch "OFF"] ● For 9 seconds after turning ignition switch "OFF"	0 - 1V
31 W/G		ECM relay (Self shut-off)	[Ignition switch "OFF"] ● 9 seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "OFF"]	OV
43	B/R	Ignition switch	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
48	В	ECM ground	[Engine is running] ● Idle speed	Engine ground
57	В	ECM ground	[Engine is running] ● Idle speed	Engine ground
67	W/L	Power supply for ECM (Back-up)	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)
106 108	B/Y B/Y	ECM ground	[Engine is running] ● Idle speed	Engine ground
110 112	W W	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

DIAGNOSTIC PROCEDURE

TROUBLE DIAGNOSIS FOR POWER SUPPLY

QG

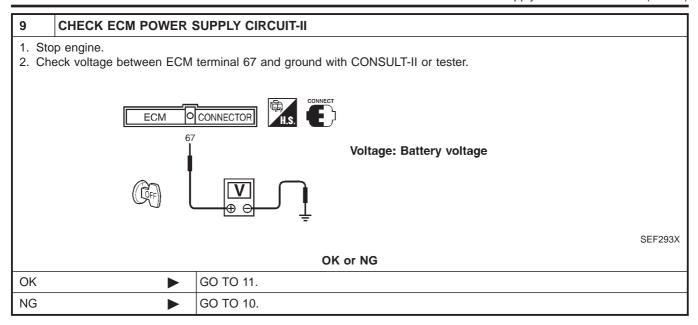

Main Power Supply and Ground Circuit (Cont'd)

3	DETECT MALFUNCTIO	NING PART	
Check the following.			
• Har	Harness connectors M169, F113		
• Fus	Fuse block (J/B) connector M1, E103		
• 10A	• 10A fuse		
• Har	 Harness for open or short between ECM and ignition switch 		
	•	Repair harness or connectors.	

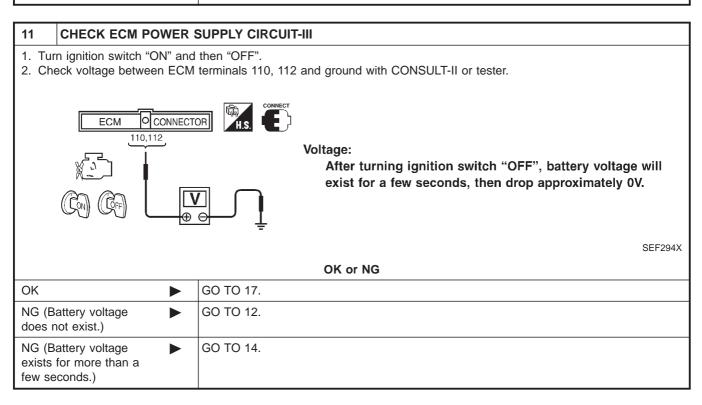
4	CHECK ECM GROUN	D CIRCUIT FOR OPEN AND SHORT-I	
2. Disc 3. Che Ref	 Turn ignition switch "OFF". Disconnect ECM harness connector. Check harness continuity between ECM terminals 48, 57, 106, 108 and engine ground. Refer to WIRING DIAGRAM. Continuity should exist. Also check harness for short to ground and short to power. 		
OK or NG			
OK	•	GO TO 5.	
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

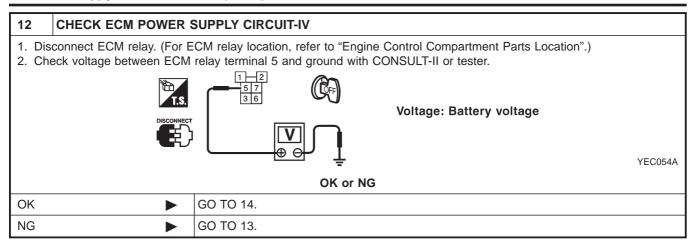
Main Power Supply and Ground Circuit (Cont'd)

6	DETECT MALFUNCTIONING PART	
Check the following. • 15A fuse and 10A fuse • Harness for open or short between ECM relay and battery		
	·	Repair open circuit or short to ground or short to power in harness or connectors.


7	CHECK OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT		
 Check harness continuity between ECM terminal 31 and ECM relay terminal 2. Continuity should exist. Also check harness for short to ground and short to power. 			
	OK or NG		
OK	>	Go to "IGNITION SIGNAL", EC-451.	
NG	>	GO TO 8.	

8	DETECT MALFUNCTIONING PART		
Check	Check the harness for open or short between ECM relay and ECM.		
	Repair open circuit or short to ground or short to power in harness or connectors.		


TROUBLE DIAGNOSIS FOR POWER SUPPLY


Main Power Supply and Ground Circuit (Cont'd)

10 DETECT MALFUNCTIONING PART Check the following. • Harness connectors E174, M159 • Harness connectors M169, F113 • Harness for open or short between ECM and fuse Repair harness or connectors.

Main Power Supply and Ground Circuit (Cont'd)

13	DETECT MALFUNCTIONING PART		
	Check the following. • Harness for open or short between ECM relay and 10A fuse		
	>	Repair open circuit or short to ground or short to power in harness or connectors.	

14	CHECK HARNESS CO	NTINUITY BETWEEN ECM RELAY AND ECM FOR OPEN AND SHORT	
Re	 Check harness continuity between ECM terminals 110, 112 and ECM relay terminal 3. Refer to WIRING DIAGRAM. Continuity should exist. Also check harness for short to ground and short to power. 		
	OK or NG		
OK	•	GO TO 16.	
NG	•	GO TO 15.	

15	DETECT MALFUNCTIO	NING PART	
JoiHa	Check the following. Joint connector-6 Harness connector E75, F36 Harness for open or short between ECM and ECM relay		
	>	Repair open circuit or short to ground or short to power in harness or connectors.	

TROUBLE DIAGNOSIS FOR POWER SUPPLY

Main Power Supply and Ground Circuit (Cont'd)

16 CHECK ECM RELAY

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5, 6 and 7.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

SEF296X

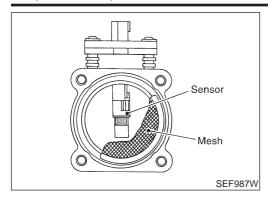
OK or NG

OK •	GO TO 17.
NG ►	Replace ECM relay.

17 CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-II

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminals 48, 57, 106, 108 and engine ground. Refer to WIRING DIAGRAM.

Continuity should exist.


4. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 18.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.

18	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	•	INSPECTION END	

Component Description

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot wire that is supplied with electric current from the ECM. The temperature of the hot wire is controlled by the ECM a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0051

MONITOR ITEM	CONDITION		SPECIFICATION
MAS A/F SE-B1	Engine: After warming upAir conditioner switch: "OFF"	Idle	1.0 - 1.7V
IVIAS A/F SE-DT	Shift lever: "N"No-load	2,500 rpm	1.5 - 2.1V
MASS AIRFLOW	 Engine: After warming up Air conditioner switch: "OFF" Shift lever: "N" No-load 	Idle	1.0 - 4.0 g·m/s
IVIASS AIRFLOW		2,500 rpm	5.0 - 10.0 g·m/s

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NJEC0052

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
64		Mass air flow sensor	[Engine is running] ■ Warm-up condition ■ Idle speed	1.0 - 1.7V
61	G		[Engine is running] ■ Warm-up condition ■ Engine speed is 2,500 rpm	1.5 - 2.1V
73	В	Mass air flow sensor ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V

On Board Diagnosis Logic

NJEC0053

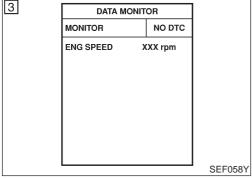
DTC No.		Malfunction is detected when	Check Items (Possible Cause)
P0100 0100	A)	An excessively high voltage from the sensor is sent to ECM when engine is not running.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor
	В)	An excessively low voltage from the sensor is sent to ECM* when engine is running.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MI lights up.

DTC P0100 MASS AIR FLOW SENSOR (MAFS)

Fail-safe Mode	
Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure


NJEC0054

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

With CONSULT-II 1) Turn ignition switch "ON". 2) Select "DATA MONITOR" mode with CONSULT-II. 3) Wait at least 2 seconds.

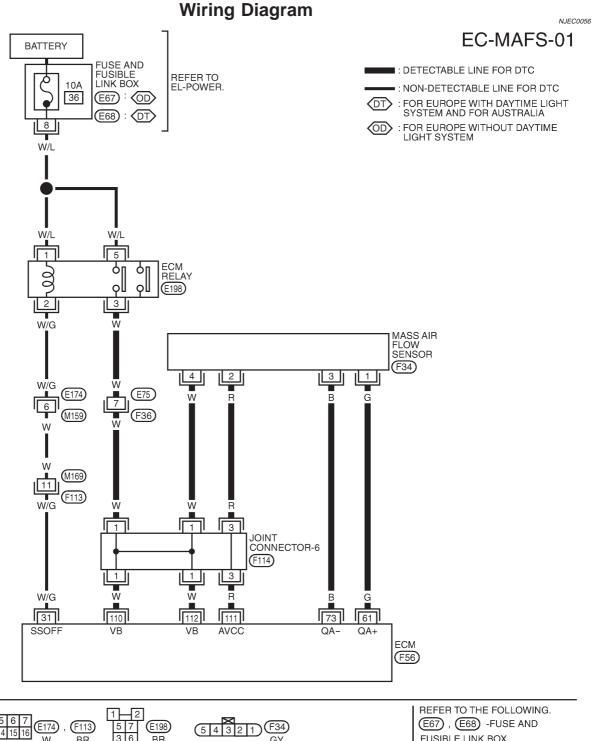
NJEC0054S01

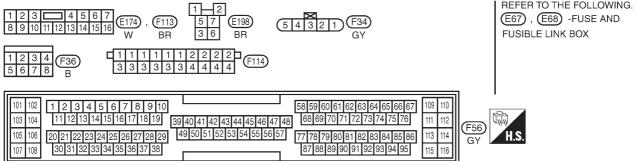
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-155.
- With GST

Follow the procedure "With CONSULT-II" above.

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

PROCEDURE FOR MALFUNCTION B


PROCEDURE FOR MALFUNCTION A


NJEC0054S02

- (I) With CONSULT-II
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait 2 seconds at most.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-155.
- With GST

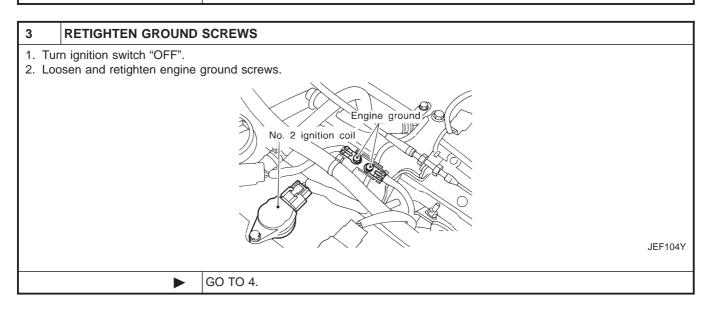
Follow the procedure "With CONSULT-II" above.

YEC963

DTC P0100 MASS AIR FLOW SENSOR (MAFS)

1 Which

В

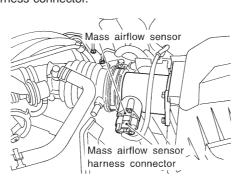


Diagnostic Procedure

Diagnostic Procedure

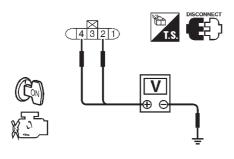
	<u> </u>	NJEC0057
INSPECTION START		
malfunction (A, or B) is du	plicated?	
	Malfunction A or B	
•	GO TO 3.	
•	GO TO 2.	

2	CHECK INTAKE SYSTE	M	
AirVac	Check the following for connection. • Air duct • Vacuum hoses • Intake air passage between air duct to collector		
	OK or NG		
OK	>	GO TO 3.	
NG	•	Reconnect the parts.	



DTC P0100 MASS AIR FLOW SENSOR (MAFS)

Diagnostic Procedure (Cont'd)


4 CHECK POWER SUPPLY

1. Disconnect mass air flow sensor harness connector.

JEF105Y

- 2. Turn ignition switch "ON".
- 3. Check voltage between terminal 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5
4	Battery voltage

SEF297X

OK or NG

OK •	GO TO 6.
NG ►	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-6
- Harness for open or short between ECM relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM
 - Repair harness or connectors.

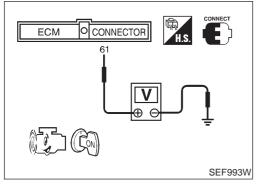
6 CHECK GROUND CIRCUIT

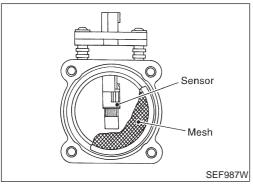
- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between mass air flow sensor harness connector terminal 3 and ECM terminal 73. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG


OK •	GO TO 7.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.


Diagnostic Procedure (Cont'd)

7	CHECK INPUT SIGNAL CIRCUIT		
Re	 Check harness continuity between mass air flow sensor harness connector terminal 1 and ECM terminal 61. Refer to wiring diagram. Continuity should exist. Also check harness for short to ground and short to power. 		
	OK or NG		
OK	>	GO TO 8.	
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.	

8	CHECK MASS AIR FLOW SENSOR		
Refer to "Component Inspection", EC-157.			
	OK or NG		
OK	>	GO TO 9.	
NG	>	Replace mass air flow sensor.	

9	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

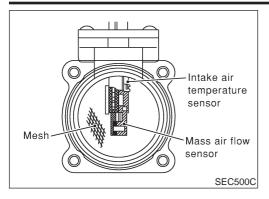
Component Inspection MASS AIR FLOW SENSOR

NJEC0058

NJEC0058S01

1. Turn ignition switch "ON".

- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 61 (Mass air flow sensor signal) and ground.


Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.2
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.1
Idle to about 4,000 rpm*	1.0 - 1.7 to Approx. 4.0

- *: Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.
- If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

QG

Component Description

Component Description

The intake air temperature sensor is built into the mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.3	1.9 - 2.1
80 (176)	1.28	0.31 - 0.37

^{*:} These data are reference values and are measured between ECM terminal 64 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

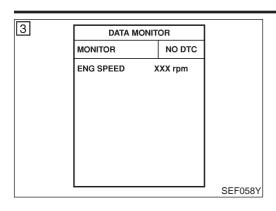
On Board Diagnosis Logic

NJEC0067

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0110 0110	An excessively low or high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air temperature sensor 	

DTC Confirmation Procedure

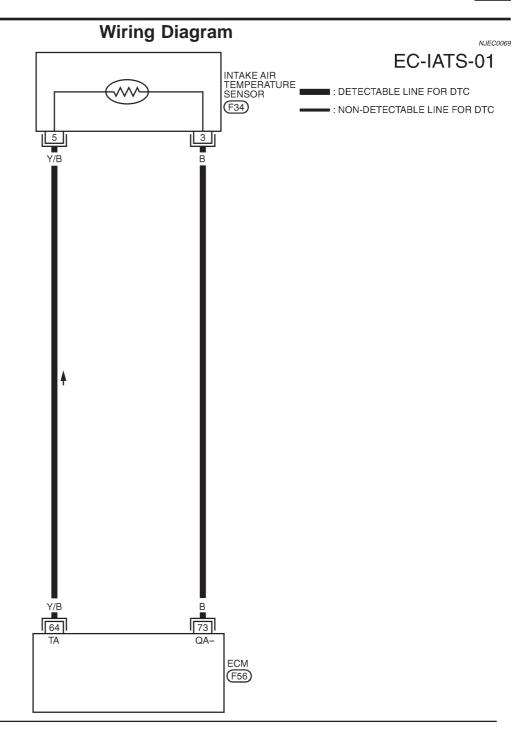
NJEC0068


NOTE:

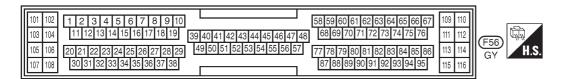
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

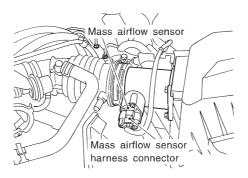
DTC Confirmation Procedure (Cont'd)



(I) With CONSULT-II

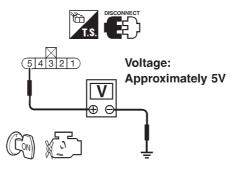

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-161.

With GST Follow the procedure "With CONSULT-II" above.


YEC964

Diagnostic Procedure

NJEC0070


1 CHECK POWER SUPPLY (Models with intake air temperature sensor in mass air flow sensor)

- 1. Turn ignition switch "OFF".
- 2. Disconnect mass air flow sensor harness connector.

JEF105Y

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 5 and ground with CONSULT-II or tester.

SEC503C

OK	or	NG
----	----	----

OK •	GO TO 3.
NG •	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECM and intake air temperature sensor
 - Repair harness or connectors.

3 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between intake air temperature sensor harness connector terminal 2 and engine ground. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

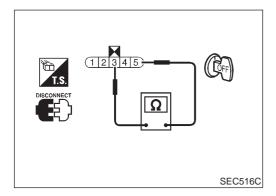
OK or NG

OK •	GO TO 5.
NG ▶	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECM and intake air temperature sensor
 - Repair open circuit or short to ground or short to power in harness or connectors.


DTC P0110 INTAKE AIR TEMPERATURE SENSOR

QG

Diagnostic Procedure (Cont'd)

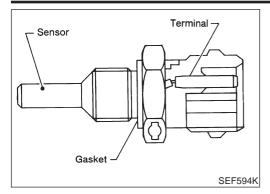
5	5 CHECK INTAKE AIR TEMPERATURE SENSOR		
Refer to "Component Inspection", EC-163.			
OK or NG			
OK	OK ▶ GO TO 6.		
NG	>	Replace intake air temperature sensor.	

6	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Inspection INTAKE AIR TEMPERATURE SENSOR

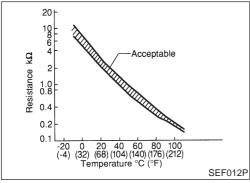
NJEC0071

Check resistance between mass air flow sensor harness connector terminals 3 and 5.


<Reference data>

Intake air temperature °C (°F)	Resistance $k\Omega$	
25 (77)	1.9 - 2.1	

If NG, replace intake air temperature sensor.


QG

Component Description

Component Description

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 70 (Engine coolant temperature sensor) and ground.

CAUTION:

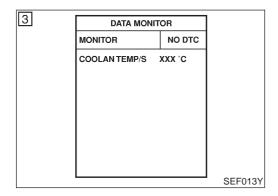
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

CONSULT-II Reference Value in Data Monitor Mode

		NJEC0073
MONITOR ITEM	CONDITION	SPECIFICATION
COOLAN TEMP/S	Engine: After warming up	More than 70°C (158°F)

On Board Diagnosis Logic

NJEC0074


DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0115 0115	An excessively high or low voltage from the sensor is sent to ECM.*	 Harness or connectors (The sensor circuit is open or shorted.) Engine coolant temperature sensor

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MI lights up.

Fail-safe Mode

Fail-safe Mode				
Detected items	Engine operating condition in fail-safe mode			
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.			
	Condition	Engine coolant temperature decided (CONSULT-II display)		
Engine coolant tempera-	Just as ignition switch is turned ON or Start	40°C (104°F)		
ture sensor circuit	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)		
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)		
	When the fail-safe system for engine coolant tempe while the engine is running.	erature sensor is activated, the cooling fan operates		

DTC Confirmation Procedure

NJEC0075

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(I) With CONSULT-II

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-166.

With GST

Follow the procedure "With CONSULT-II" above.

QG

Wiring Diagram

Wiring Diagram NJEC0076 EC-ECTS-01 ENGINE COOLANT TEMPERATURE SENSOR ■ : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC (F1) A : A/T MODELS 2 BR/W В 2 JOINT CONNECTOR-6 (F114) $\langle A \rangle$ BR/W 70 42 58 GND-A SENS GND TCM (TRANSMISSION CONTROL MODULE) **ECM** (F56) F110 : (A) 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 (F110) H.S. 46 47 48 GΥ 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 109 110 111 (F56) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 113 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

103 104

107

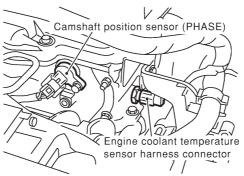
105 106

108

QG

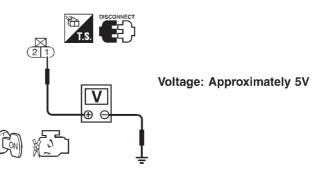
NJEC0077

SEF999W


SEF301X

Diagnostic Procedure

1 CHECK POWER SUPPLY


1. Turn ignition switch "OFF".

2. Disconnect engine coolant temperature sensor harness connector.

3. Turn ignition switch "ON".

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

OK or NG

OK ▶	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM and engine coolant temperature sensor.

Repair harness or connectors.

3 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between engine coolant temperature sensor harness connector terminal 2 and engine ground.

Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

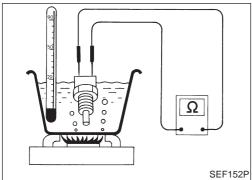
OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

QG

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART


Check the following.

- Joint connector-6
- Harness for open or short between ECM and engine coolant temperature sensor
- Harness for open or short between engine coolant temperature sensor and TCM (Transmission Control Module)

Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK ENGINE COOLANT TEMPERATURE SENSOR	
Refer to "Component Inspection", EC-167.		
OK or NG		
OK	>	GO TO 6.
NG	>	Replace engine coolant temperature sensor.

6	CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	•	INSPECTION END

SEF152P 20 10 10 86 6 4 9 2 0 1 10 155 0.8 0.4 0.2 0.1 -20 0 20 40 60 80 100 (-4) (32) (68) (104) (140) (176) (212) Temperature °C (°F)

SEF012P

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

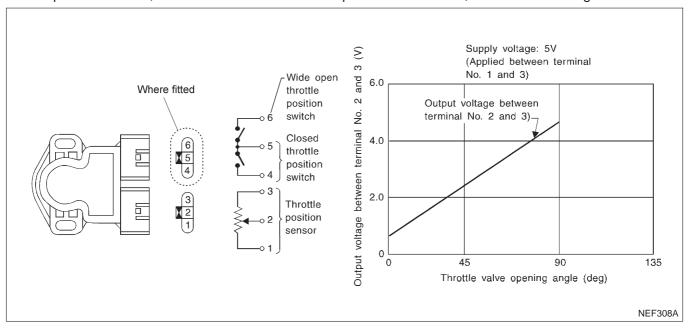
NJEC0078 NJEC0078S01

Check resistance as shown in the figure. <Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

N.JEC0079


Component Description

NOTE:

If DTC P0120 (0120) is displayed with DTC P0510 (0510), first perform trouble diagnosis for DTC P0510, EC-321.

The throttle position sensor responds to the accelerator pedal movement. This sensor is a kind of potentiometer which transforms the throttle position into output voltage, and emits the voltage signal to the ECM. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the ECM.

Idle position of the throttle valve is determined by the ECM receiving the signal from the throttle position sensor. This sensor controls engine operation such as fuel cut. On the other hand, the "Wide open and closed throttle position switch", which is built into the throttle position sensor unit, is not used for engine control.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0080

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: Idle	Throttle valve: fully closed	0.15 - 0.85V
THRTL POS SEN	Ignition switch: ON (Engine stopped)	Throttle valve: fully opened	3.5 - 4.7V
	Engine: Idle	Throttle valve: fully closed	0.0°
ABSOL TH-P/S	Ignition switch: ON (Engine stopped)	Throttle valve: fully opened	Approx. 80°

DTC P0120 THROTTLE POSITION SENSOR

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

=NJEC0081

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running]Warm up conditionIdle speed	Approximately 0V
02 V		Throtale position concer	[Engine is running] • Accelerator pedal fully released	0.15 - 0.85V
92	T	Throttle position sensor	[Ignition switch "ON"] ■ Accelerator pedal fully depressed	3.5 - 4.7V
111	R	Sensors' power supply	[Ignition switch "ON"]	Approximately 5V

On Board Diagnosis Logic

NJEC0082

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0120 0120	An excessively low or high voltage from the sensor is sent to ECM* while driving.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MI lights up.

Fail-safe Mode

NJEC0567

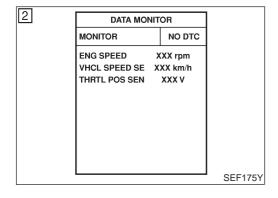
Detected items	Engine operating condition in fail-safe mode		
	Throttle position will be determined based on the injected fuel amount and the engine speed. Therefore, acceleration will be poor.		
Throttle position sensor circuit	Condition	Driving condition	
Circuit	When engine is idling	Normal	
	When accelerating	Poor acceleration	

DTC Confirmation Procedure

NJEC0083

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.


CAUTION:

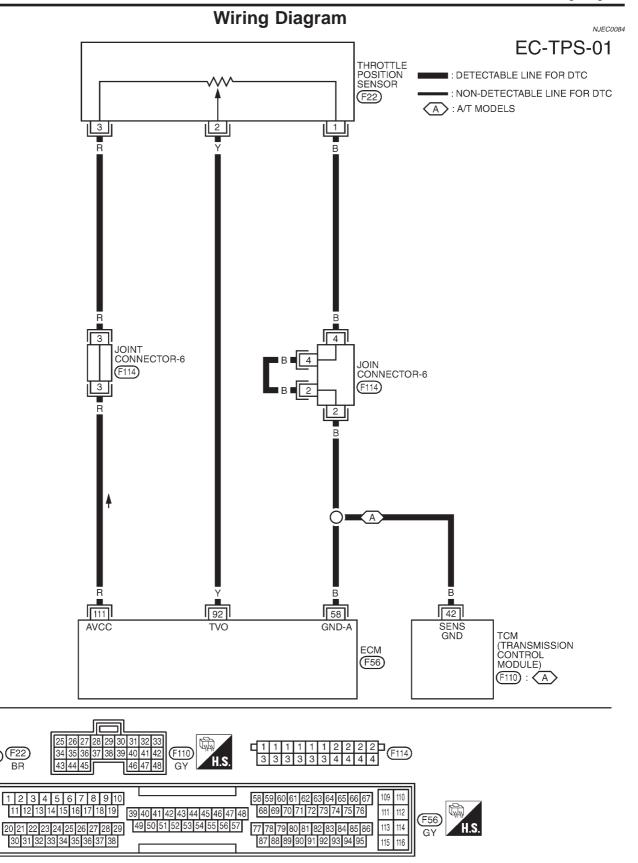
Always drive vehicle at a safe speed.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 10V at idle.
- This test may be conducted with the drive wheels lifted in

the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(I) With CONSULT-II


- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and maintain the following conditions for at least 5 consecutive seconds.

VHCL SPEED SE	More than 4 km/h (2 MPH)
Selector lever	Suitable position except "P" or "N" position

3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-172.

With GST

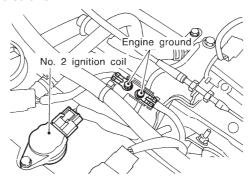
Follow the procedure "With CONSULT-II" above.

101 102

103 104

105 106

107 108

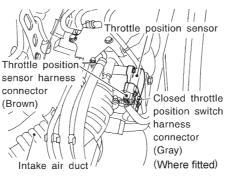

1

Diagnostic Procedure

NJEC0085

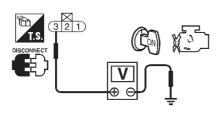
- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

RETIGHTEN GROUND SCREWS



JEF104Y

GO TO 2.


2 CHECK POWER SUPPLY

1. Disconnect throttle position sensor harness connector.

NEF309A

- 2. Turn ignition switch "ON".
- 3. Check voltage between terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

SEF306X

OK or NG

OK	•	GO TO 4.
NG	•	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-6
- Harness for open or short between throttle position sensor terminal 3 and ECM terminal 111

Repair harness or connectors.

DTC P0120 THROTTLE POSITION SENSOR

QG

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART

Check the following.

NG

NG

- Joint connector-6
- Harness for open or short between ECM terminal 58 and throttle position sensor

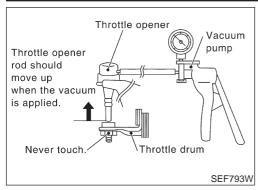
GO TO 5.

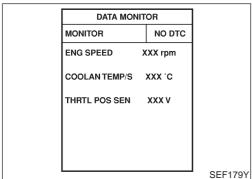
- Harness for open or short between ECM terminal 58 and TCM (Transmission Control Module)
 - Repair open circuit or short to ground or short to power in harness or connectors.

Repair open circuit or short to ground or short to power in harness or connectors.

6	CHECK INPUT SIGNAL	CIRCUIT	
	Disconnect ECM harness connector.		
	Check harness continuity between ECM terminal 92 and throttle position sensor harness connector terminal 2. Refer to wiring diagram.		
	Continuity should exist.		
3. Also check harness for short to ground and short to power.			
OK or NG			
OK	•	GO TO 7.	

7	7 CHECK THROTTLE POSITION SENSOR		
Refer	Refer to "Component Inspection", EC-174.		
OK or NG			
OK	OK ▶ GO TO 8.		
NG	>	Replace throttle position sensor. To adjust it, perform "Basic Inspection", EC-98.	


8	8 CHECK INTERMITTENT INCIDENT		
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	>	INSPECTION END	


NJEC0086

NJEC0086S01

NJFC0086S0101

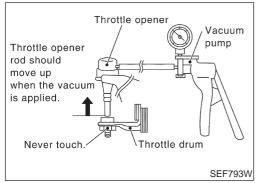
Component Inspection

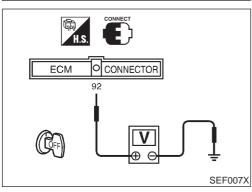
Component Inspection THROTTLE POSITION SENSOR

Models with Throttle Opener

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Stop engine (ignition switch OFF).
- 3) Remove the vacuum hose connected to the throttle opener.
- Connect suitable vacuum hose to the vacuum pump and the opener.
- Apply vacuum [more than -40.0 kPa (-400 mbar, -300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Check voltage of "THRTL POS SEN" under the following conditions.


NOTE:


Voltage measurement must be made with throttle position sensor installed in vehicle.

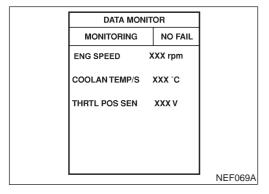
Throttle valve conditions	Voltage (V)	
Completely closed	0.15 - 0.85 (a)	
Partially open	Between (a) and (b)	
Completely open	3.5 - 4.7 (b)	

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-98.

If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

⋈ Without CONSULT-II

- Start engine and warm it up to normal operating temperature. 1)
- 2) Stop engine (ignition switch OFF).
- Remove the vacuum hose connected to the throttle opener.
- Connect suitable vacuum hose to the vacuum pump and the opener.
- Apply vacuum [more than -40.0 kPa (-400 mbar, -300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.
- 6) Turn ignition switch ON.
- Check voltage between ECM terminal 92 (Throttle position sensor signal) and ground under the following conditions.


NOTE:

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage (V)	
Completely closed	0.15 - 0.85 (a)	
Partially open	Between (a) and (b)	
Completely open	3.5 - 4.7 (b)	

Component Inspection (Cont'd)

- If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-98.
- 8) If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

Models without Throttle Opener

NJEC0086S0102

(P) With CONSULT-II

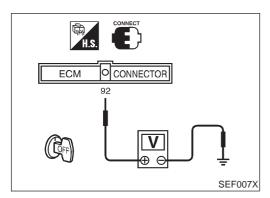
- 1) Stop engine (ignition switch OFF).
- 2) Turn ignition switch ON.
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- Check voltage of "THRTL POS SEN" under the following conditions.

NOTE:

Voltage measurement must be made with throttle position sensor installed in vehicle.

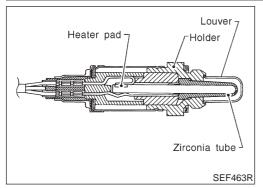
Throttle valve conditions	Voltage (V)	
Completely closed	0.35 - 0.65 (a)	
Partially open	Between (a) and (b)	
Completely open	3.7 - 4.5 (b)	

- If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-98.
- 5) If it is impossible to adjust closed throttle position sensor idle position in "Basic Inspection", replace throttle position sensor.


- 2) Turn ignition switch ON.
- 3) Check voltage between ECM terminal 92 (Throttle position sensor signal) and ground under the following conditions.

NOTE:

Voltage measurement must be made with throttle position sensor installed in vehicle.


Throttle valve conditions	Voltage (V)	
Completely closed	0.35 - 0.65 (a)	
Partially open	Between (a) and (b)	
Completely open	3.7 - 4.5 (b)	

- If NG, adjust throttle position sensor idle position. Refer to "Basic Inspection", EC-98.
- 4) If it is impossible to adjust throttle position sensor idle position in "Basic Inspection", replace throttle position sensor.

DTC P0130 HEATED OXYGEN SENSOR 1 (FRONT) (CIRCUIT)

Component Description

No entropy of the second of th

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0095

NJEC0096

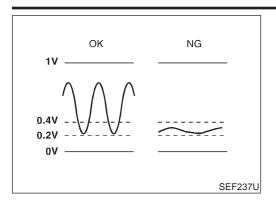
MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

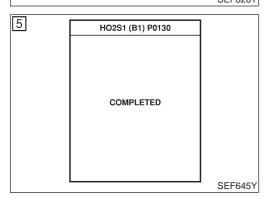

		<u> </u>		
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	W	Heated oxygen sensor 1 (front)	[Engine is running] ● After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0 SEF008W

DTC P0130 HEATED OXYGEN SENSOR 1 (FRONT) (CIRCUIT)

QG

NJEC0098

On Board Diagnosis Logic


On Board Diagnosis Logic

Under the condition in which the heated oxygen sensor 1 (front) signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0130 0130	The voltage from the sensor is constantly approx. 0.3V.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front)

			ı
[<u></u>	P0130 S102 CH	1 (R1)	
	HORS CONDIT		
	CONTROLE		
	TR/MN MOT XXX TR/MN		
	PLAN CAR BASE XXX msec		
	CAP PAPILLON XXX V		
	CAP VIT VEH		
			SEF825Y

5	P0130 S102 C	H1 (R1)	
	TEST EN CO	URS	
	CONTROL	.E	
	TR/MN MOT	XXX TR/MN	
	PLAN CAR BASE	XXX msec	
	CAP PAPILLON	xxx v	
	CAP VIT VEH	XXX km/h	
			SFF826Y

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

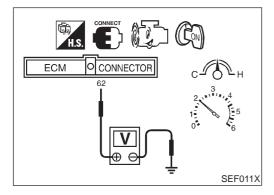
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "HO2S1 (B1) P0130" of "HO2S1 (B1)" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3) Touch "START".
- 4) Let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 4.


5) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

ENG SPEED	1,700 - 2,600 rpm
Vehicle speed	64 - 100 km/h (40 - 62 MPH)
B/FUEL SCHDL	3.0 - 5.2 msec
Selector lever	Suitable position

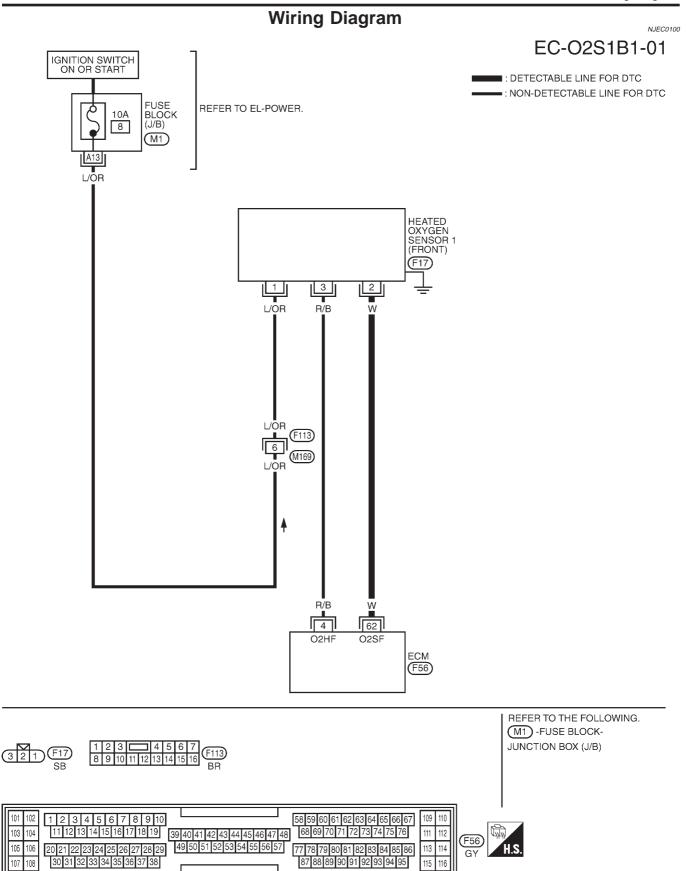
If "TESTING" is not displayed after 5 minutes, retry from step 2.

6) Make sure that "OK" is displayed after touching "SELF-DIAG

RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-180.

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.


⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 0.4V.
- 4) If NG, go to "Diagnostic Procedure", EC-180.

DTC P0130 HEATED OXYGEN SENSOR 1 (FRONT) (CIRCUIT)

Wiring Diagram



YEC967

87 88 89 90 91 92 93 94 95

101

Diagnostic Procedure

2 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 62 and heated oxygen sensor 1 (front) harness connector terminal 2. Refer to wiring diagram.

Continuity should exist.

3. Check harness continuity between ECM terminal 62 (or terminal 2) and ground.

GO TO 2.

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK		GO TO 3.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

3	3 CHECK HEATED OXYGEN SENSOR 1 (FRONT)			
Refer to "Component Inspection", EC-181.				
OK or NG				
OK	>	GO TO 4.		
NG	•	Replace heated oxygen sensor 1 (front).		

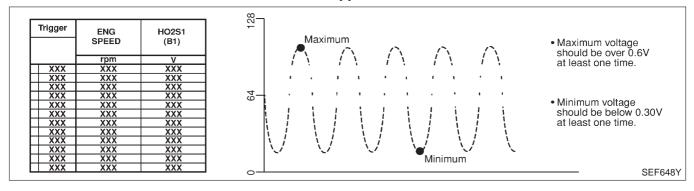
4	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

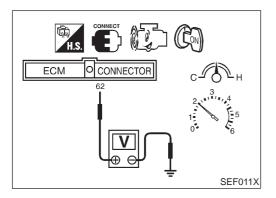
DTC P0130 HEATED OXYGEN SENSOR 1 (FRONT) (CIRCUIT)

Component Inspection

	_		1
4	DATA MON	TOR	
	MONITOR	NO DTC	
	ENG SPEED	XXX rpm	
	MAS A/F SE-B1	xxx v	
	COOLAN TEMP/S	XXX .C	
	HO2S1 (B1)	XXX V	
	HO2S1 MNTR (B1)	LEAN	
			SEF64

Component Inspection HEATED OXYGEN SENSOR 1 (FRONT)


NJEC0102 NJEC0102S01


(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown below:
 R = "HO2S1 MNTR (B1)", "RICH"
 L = "HO2S1 MNTR (B1)", "LEAN"
- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

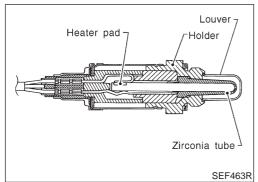
Nithout CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

DTC P0130 HEATED OXYGEN SENSOR 1 (FRONT) (CIRCUIT)

QG

Component Inspection (Cont'd)


1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

QG

NJEC0105

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values

Mixture ratio

SEF288D

1	are reference values.					
	CONDITION SPECIFICATION					
			0 - 0.3V ←→ Approx. 0.6 - 1.0V			
	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.			

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

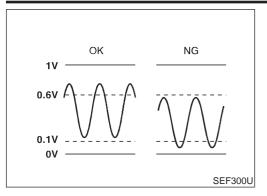
CAUTION:

MONITOR ITEM

HO2S1 (B1)

HO2S1 MNTR

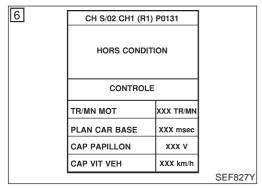
(B1)

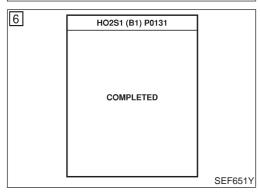

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	W	Heated oxygen sensor 1 (front)	 [Engine is running] ● After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 2 1 0 SEF008W

QG

NJEC0107


On Board Diagnosis Logic


On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0131 0131	The maximum and minimum voltages from the sensor are not reached to the specified voltages.	 Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors Intake air leaks

[6]	HO2S1 (B1) P0		
	TESTING		
	MONITOR		
	ENG SPEED	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	THRTL POS SEN	xxx v	
	VHCL SPEED SE	XXX km/h	
			SEF828Y

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

TESTING CONDITION:

- ◆ Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

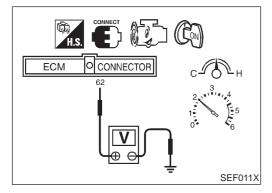
(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 9 seconds.
- 3) Turn ignition switch "ON" and select "HO2S1 (B1) P0131" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)


ENG SPEED	1,700 - 2,600 rpm
Vehicle speed	64 - 100 km/h (40 - 62 MPH)
B/FUEL SCHDL	3.0 - 5.2 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

QG

DTC Confirmation Procedure (Cont'd)

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-185.

Overall Function Check

NJEC0108

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is over 0.1V at least one time.
- 4) If NG, go to "Diagnostic Procedure", EC-185.

Diagnostic Procedure

NJEC0109

- RETIGHTEN HEATED OXYGEN SENSOR 1 (FRONT)
- 1. Turn ignition switch "OFF".

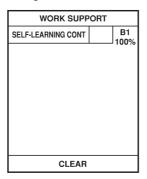
1

2. Loosen and retighten heated oxygen sensor 1 (front).

Tightening torque:

40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

GO TO 2.


QG

Diagnostic Procedure (Cont'd)

2 **CLEAR THE SELF-LEARNING DATA**

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "START".

SEF215Z

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "How to Erase Emission-related Diagnostic Information", EC-68.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171. Refer to EC-248.
No •	GO TO 3.

3	CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)			
Refer to "Component Inspection", EC-213.				
	OK or NG			
OK	OK ▶ GO TO 4.			
NG	•	Replace heated oxygen sensor 1 (front).		

4	4 CHECK HEATED OXYGEN SENSOR 1 (FRONT)			
Refer to "Component Inspection", EC-187.				
OK or NG				
OK ▶ GO TO 5.				
NG	•	Replace heated oxygen sensor 1 (front).		

CHECK INTERMITTENT INCIDENT Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144. Refer to "Wiring Diagram", EC-179, for circuit. **INSPECTION END**

QG

Component Inspection

DATA MON	ITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	XXX V	
HO2S1 MNTR (B1)	LEAN	
		SEF64

HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

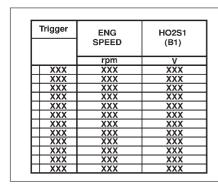
HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

1 2 3 4 5

1 2 3 4 5

SEF647Y

Component Inspection HEATED OXYGEN SENSOR 1 (FRONT)


NJEC0110 NJEC0110S02

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown below:
 R = "HO2S1 MNTR (B1)", "RICH"
 L = "HO2S1 MNTR (B1)", "LEAN"
- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

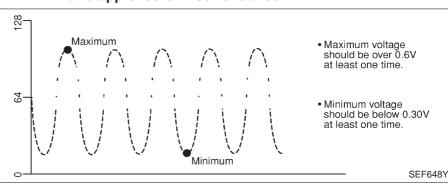
CAUTION:

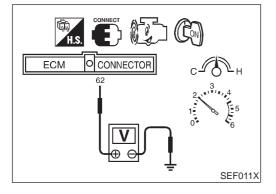
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

Bank 1

Bank 2

R means HO2S1


L means HO2S1


cycle

cycle

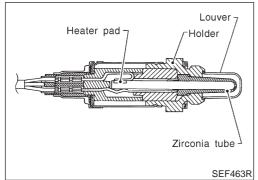
MNTR (B1)/(B2) indicates RICH

MNTR (B1)/(B2) indicates LEAN

Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

Component Inspection (Cont'd)


QG

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

QG

Component Description

Output voltage V, [v]

Ideal ratio

Mixture ratio

1 ean

SEF288D

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode NJEC0112

Specification data are reference values.

Rich

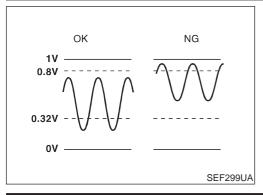
NJEC0113

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

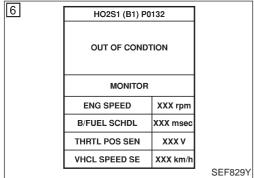
CAUTION:

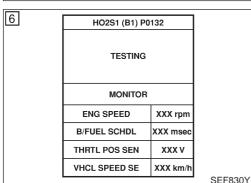

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

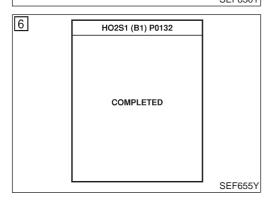
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	W	Heated oxygen sensor 1 (front)	 [Engine is running] ● After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 2 1 0 SEF008W

QG

NJEC0115


On Board Diagnosis Logic




On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0132 0132	The maximum and minimum voltages from the sensor are beyond the specified voltages.	 Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

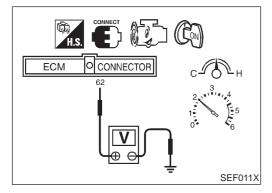
TESTING CONDITION:

- ◆ Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 9 seconds.
- 3) Turn ignition switch "ON" and select "HO2S1 (B1) P0132" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)


ENG SPEED	1,700 - 2,600 rpm
Vehicle speed	64 - 100 km/h (40 - 62 MPH)
B/FUEL SCHDL	3.0 - 5.2 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

QG

DTC Confirmation Procedure (Cont'd)

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-191.

Overall Function Check

NJEC0116

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.3V at least one time.
- 4) If NG, go to "Diagnostic Procedure", EC-191.

Diagnostic Procedure

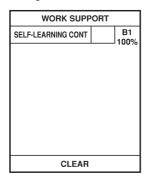
NJEC0117

- 1 RETIGHTEN HEATED OXYGEN SENSOR 1 (FRONT)
- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten heated oxygen sensor 1 (front).

Tightening torque:

40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

GO TO 2.


Diagnostic Procedure (Cont'd)

QG

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "START".

SEF215Z

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Without CONSULT-II

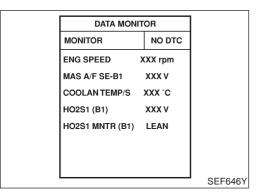
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "How to Erase Emission-related Diagnostic Information", EC-68.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0172 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0172. Refer to EC-255.
No	GO TO 3.

3	CHECK HARNESS CO	NNECTOR
Turn ignition switch "OFF". Disconnect heated oxygen sensor 1 (front) harness connector. Check harness connector for water. Water should not exit.		
OK or NG		
OK	>	GO TO 4.
NG	•	Repair or replace harness connector.


4	CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)		
Refer	Refer to "Component Inspection", EC-213.		
OK or NG			
OK	OK ▶ GO TO 5.		
NG	>	Replace heated oxygen sensor 1 (front).	

QG

Diagnostic Procedure (Cont'd)

5	CHECK HEATED OXYGEN SENSOR 1 (FRONT)		
Refer	Refer to "Component Inspection", EC-193.		
	OK or NG		
OK	OK ▶ GO TO 6.		
NG	•	Replace heated oxygen sensor 1 (front).	

6	CHECK INTERMITTENT INCIDENT		
	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144. Refer to "Wiring Diagram", EC-179, for circuit.		
	► INSPECTION END		

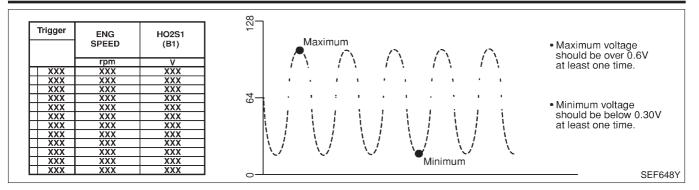
L means HO2S1

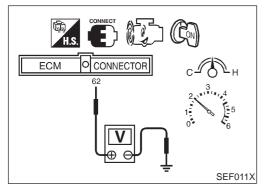
MNTR (B1)/(B2) indicates LEAN SEF647Y

Component Inspection HEATED OXYGEN SENSOR 1 (FRONT)

NJEC0118

NJEC0118S02


(P) With CONSULT-II


- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown below:
 R = "HO2S1 MNTR (B1)", "RICH"
 L = "HO2S1 MNTR (B1)", "LEAN"
- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

QG

Component Inspection (Cont'd)

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V. 1 time: 0 $0.3V \rightarrow 0.6$ $1.0V \rightarrow 0$ 0.3V 2 times: 0 $0.3V \rightarrow 0.6$ $1.0V \rightarrow 0$ $0.3V \rightarrow 0.6$ $1.0V \rightarrow 0$ 0.3V

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

NJEC0121

Component Description

SEF463R SEF463R

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

Ideal ratio

Mixture ratio

1 ean

SEF288D

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

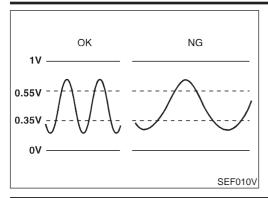
ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

delineation data are reference values and are measured section seen terminal

CAUTION:

Rich

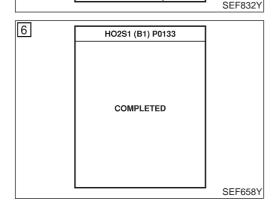

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

3	.g			
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	w	Heated oxygen sensor 1 (front)	[Engine is running] ● After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0 SEF008W

QG

NJEC0123

On Board Diagnosis Logic


On Board Diagnosis Logic

To judge the malfunction of heated oxygen sensor 1 (front), this diagnosis measures response time of heated oxygen sensor 1 (front) signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 (front) temperature index. Judgment is based on whether the compensated time [heated oxygen sensor 1 (front) cycling time index] is inordinately long or not.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0133 0133	The response of the voltage signal from the sensor takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

6 HO2S1 (B1) P0133 OUT OF CONDTION MONITOR ENG SPEED XXX rpm B/FUEL SCHDL XXX msec THRTL POS SEN XXX V VHCL SPEED SE XXX km/h SEF831Y

			SEF8311
[6]	HO2S1 (B1) P0	133	
	TESTING		
	MONITOR		
	ENG SPEED	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	THRTL POS SEN	xxx v	
	VHCL SPEED SE	XXX km/h	OFF022V

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

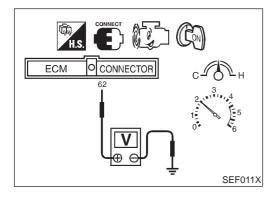
TESTING CONDITION:

- ◆ Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 9 seconds.
- 3) Turn ignition switch "ON" and select "HO2S1 (B1) P0133" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds.)


ENG SPEED	2,100 - 3,100 rpm
Vehicle speed	80 - 120 km/h (50 - 75 MPH)
B/FUEL SCHDL	3.8 - 7.6 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

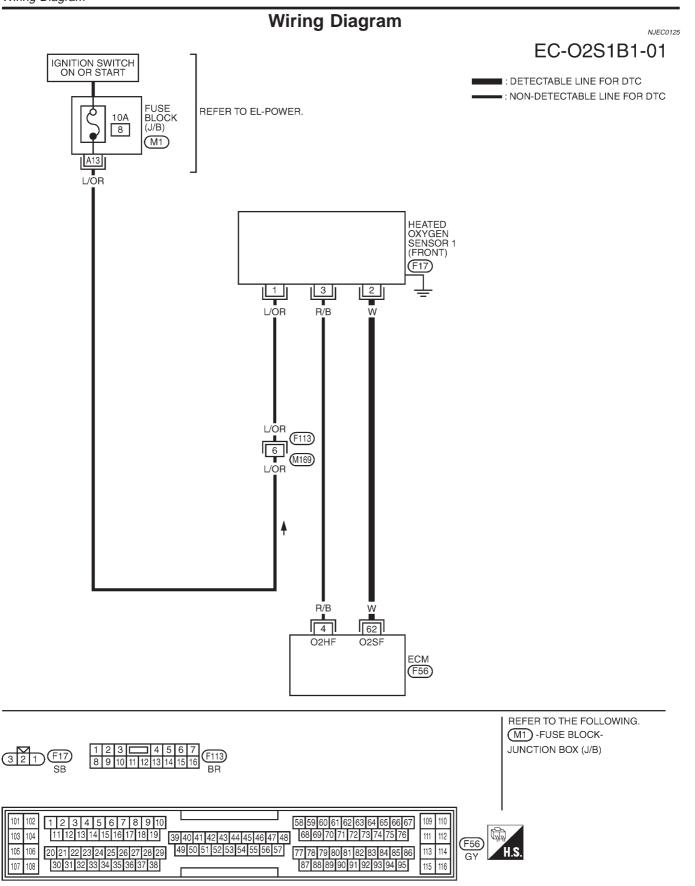
DTC Confirmation Procedure (Cont'd)

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-199.

Overall Function Check

NJEC0124

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.


⋈ Without CONSULT-II

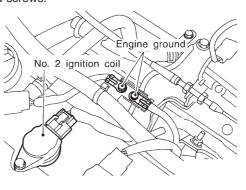
- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

4) If NG, go to "Diagnostic Procedure", EC-199.

YEC967

QG


NJEC0126

Diagnostic Procedure

Diagnostic Procedure

1 RETIGHTEN GROUND SCREWS

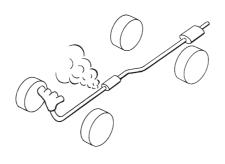
Turn ignition switch "OFF".
 Loosen and retighten engine ground screws.

JEF104Y

► GO TO 2.

2 RETIGHTEN HEATED OXYGEN SENSOR 1 (FRONT)

Loosen and retighten heated oxygen sensor 1 (front).


Tightening torque:

40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

■ GO TO 3.

3 CHECK EXHAUST AIR LEAK

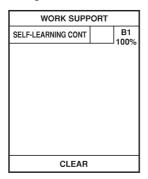
- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst.

SEF099P

OK or NG

OK	>	GO TO 4.
NG	•	Repair or replace.

4 CHECK FOR INTAKE AIR LEAK Listen for an intake air leak after the mass air flow sensor. OK or NG OK Repair or replace.


Diagnostic Procedure (Cont'd)

QG

5 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "START".

SEF215Z

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "How to Erase Emission-related Diagnostic Information", EC-68.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0171 or 0172 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171, P0172. Refer to EC-248, 255.
No	GO TO 6.

6 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect heated oxygen sensor 1 (front) harness connector and ECM harness connector.
- 2. Check harness continuity between ECM terminal 62 and heated oxygen sensor 1 (front) harness connector terminal 2. Refer to wiring diagram.

Continuity should exist.

3. Check harness continuity between ECM terminal 62 (or terminal 2) and ground.

Continuity should not exist.

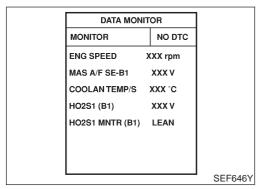
4. Also check harness for short to power.

OK or NG

OK •	GO TO 7.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

7	7 CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)					
Refer to "Component Inspection", EC-213.						
OK or NG						
ОК	OK ▶ GO TO 8.					
NG	>	Replace heated oxygen sensor 1 (front).				

QG


Diagnostic Procedure (Cont'd)

8	CHECK HEATED OXYGEN SENSOR 1 (FRONT)						
Refer	Refer to "Component Inspection", EC-201.						
	OK or NG						
ОК	>	GO TO 9.					
NG	•	Replace heated oxygen sensor 1 (front).					

9	CHECK MASS AIR FLOW SENSOR						
Refer	Refer to "Component Inspection", EC-157.						
	OK or NG						
OK	>	GO TO 10.					
NG	>	Replace mass air flow sensor.					

10	CHECK PCV VALVE						
Refer	Refer to "Positive Crankcase Ventilation", EC-37.						
	OK or NG						
OK	>	GO TO 11.					
NG	•	Repair or replace PCV valve.					

11	CHECK INTERMITTENT INCIDENT					
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.					
	•	INSPECTION END				

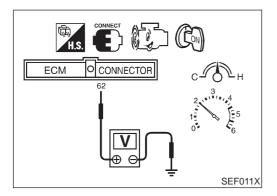
Component Inspection HEATED OXYGEN SENSOR 1 (FRONT)

NJEC0127 NJEC0127S02

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" five times in 10 seconds.
 5 times (cycles) are counted as shown below:
 R = "HO2S1 MNTR (B1)", "RICH"
 L = "HO2S1 MNTR (B1)", "LEAN"
- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:

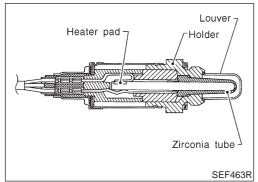

 Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

QG

Component Inspection (Cont'd)

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

Trigger	ENG SPEED	HO2S1 (B1)		128			imun		,		,-		,		Maximum voltage
	rpm	v	1			_/	- /	\	į	\	- /	\	į	1	should be over 0.6V at least one time.
XXX	XXX	XXX	1		'	•	,	•	•	•	'	•	•	•	at least one time.
XXX	XXX	XXX	1					1	•		,	1	•	1	
XXX	XXX	XXX	1												
XXX	XXX	XXX]	64 		1	:	•				•	•	'	1.40 · 1.
XXX	XXX	XXX]	_	· .										 Minimum voltage should be below 0.30V
XXX	XXX	XXX]			į	- 1	į	- i	į	i	1	- 1	1	
XXX	XXX	XXX]		\ i	- 1	i	- 1	į.	- 1	į	١,	i i	1	at least one time.
XXX	XXX	XXX]		1 /	i	- !	i	!	i	-	į	!	į	
XXX	XXX	XXX]		1. /	, į	/	,	i	'	,	' '	i	\	
XXX	XXX	XXX]		_/	'	J.	',	1	``		`,	J	,	
XXX	XXX	XXX]								- Mini	mum	1		
XXX	XXX	XXX	1	_											SEF6



⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V. 1 time: 0 $0.3V \rightarrow 0.6$ $1.0V \rightarrow 0$ 0.3V 2 times: 0 $0.3V \rightarrow 0.6$ $1.0V \rightarrow 0$ $0.3V \rightarrow 0.6$ $1.0V \rightarrow 0$ 0.3V

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

NJEC0130

Output voltage V, [v] Rich -Ideal ratio 1 ean Mixture ratio

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

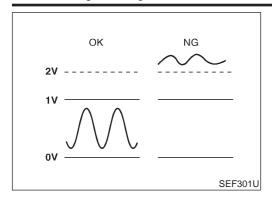
CONSULT-II Reference Value in Data Monitor Mode NJEC0129

Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

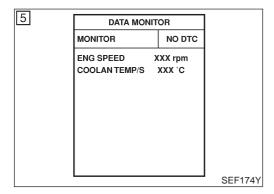
Specification data are reference values and are measured between each terminal and ground.


SEF288D

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	W	Heated oxygen sensor 1 (front)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 2 1 0 SEF008W


On Board Diagnosis Logic

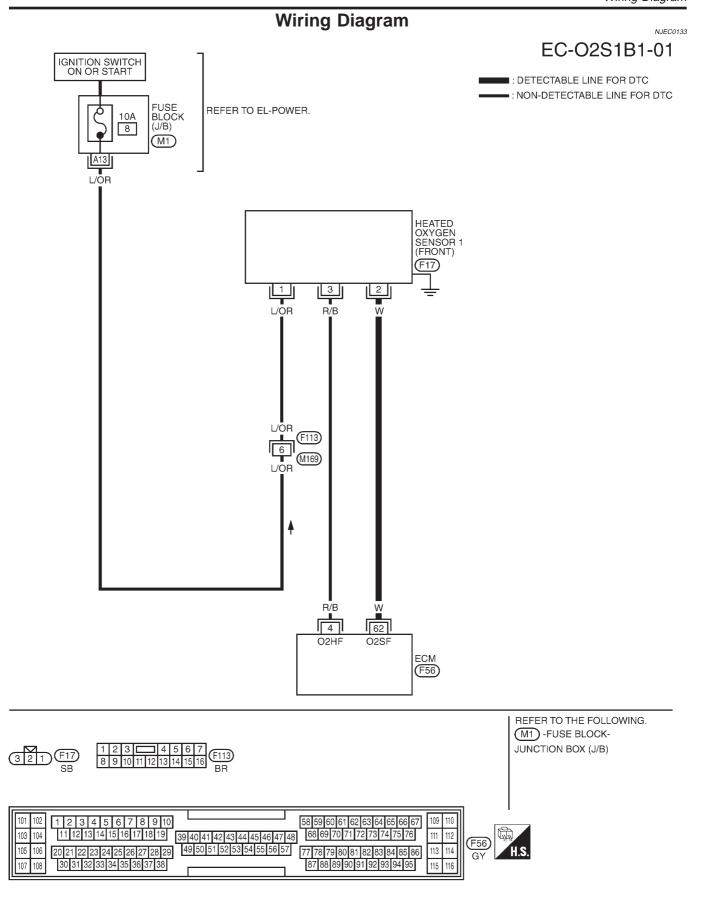
On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 (front) output is not inordinately high.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0134 0134	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front)

DTC Confirmation Procedure

NJEC0132


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 9 seconds.
- 3) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II. 4)
- 5) Restart engine and let it idle for 2 minutes.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-206.

With GST

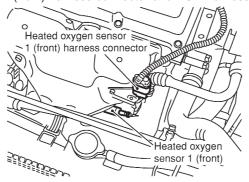
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 9 seconds. 2)
- 3) Restart engine and let it idle for 2 minutes.
- Turn ignition switch "OFF" and wait at least 9 seconds. 4)
- 5) Restart engine and let it idle for 2 minutes.
- Select "MODE 3" with GST. 6)
- If DTC is detected, go to "Diagnostic Procedure", EC-206. 7)
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

Diagnostic Procedure

LIECO134

1 RETIGHTEN HEATED OXYGEN SENSOR 1 (FRONT)

Loosen and retighten heated oxygen sensor 1 (front).


Tightening torque:

40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

GO TO 2.

2 CHECK INPUT SIGNAL CIRCUIT

1. Disconnect heated oxygen sensor 1 (front) harness connector and ECM harness connector.

SEF012XA

2. Check harness continuity between ECM terminal 62 and heated oxygen sensor 1 (front) harness connector terminal 2. Refer to wiring diagram.

Continuity should exist.

- 3. Check harness continuity between ECM terminal 62 (or terminal 2) and ground.
 - Continuity should not exist.
- 4. Also check harness for short to power.

OK or NG

OK ▶	GO TO 3.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.

3	CHECK HARNESS COM	NNECTOR
Check heated oxygen sensor 1 (front) harness connector for water. Water should not exist.		
	OK or NG	
		OK or NG
ОК	>	OK or NG GO TO 4.

4	CHECK HEATED OXYG	EN SENSOR 1 (FRONT)
Refer	Refer to "Component Inspection", EC-207.	
	OK or NG	
OK	>	GO TO 5.
NG	>	Replace heated oxygen sensor 1 (front).

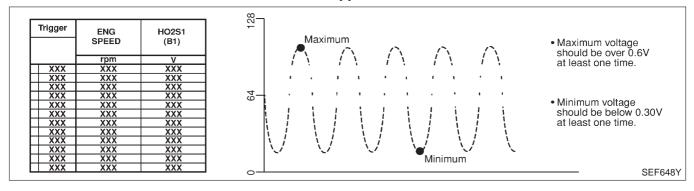
5	CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.	
	>	INSPECTION END

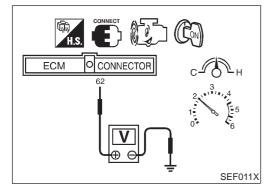
Component Inspection

DATA MON	ITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	XXX V	
HO2S1 MNTR (B1)	LEAN	
		SEF646

Bank 1 1 2 3 4 5 cycle HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R Bank 2 1 2 3 4 5 cycle HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R R means HO2S1 MNTR (B1)/(B2) indicates RICH L means HO2S1 MNTR (B1)/(B2) indicates LEAN SEF647Y

Component Inspection HEATED OXYGEN SENSOR 1 (FRONT)


NJEC0135 NJEC0135S01


(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- Hold engine speed at 2,000 rpm under no load during the following steps.
- Touch "RECORD" on CONSULT-II screen. 4)
- 5) Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" five times in 10 seconds. 5 times (cycles) are counted as shown below: R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"
- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

Component Inspection (Cont'd)

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

DTC P0135 HEATED OXYGEN SENSOR 1 (FRONT) HEATER

Description

SYSTEM DESCRIPTION

NJEC0136

NJEC0136S01

			11000100001
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Heated oxygen sensor 1 heater (front) con- trol	Heated oxygen sensor 1 heater (front)

The ECM performs ON/OFF control of the heated oxygen sensor 1 heater (front) corresponding to the engine operating condition.

OPERATION

NJEC0136S02

Engine speed	Heated oxygen sensor 1 heater (front)
Above 3,200 rpm	OFF
Below 3,200 rpm	ON

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0137

MONITOR ITEM	CONDITION	SPECIFICATION
LICOCA LITE (DA)	• Engine speed: Below 3,200 rpm	ON
HO2S1 HTR (B1)	• Engine speed: Above 3,200 rpm	OFF

ECM Terminals and Reference Value

NJEC0138

Specification data are reference values and are measured between each terminal and ground.

CALITION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

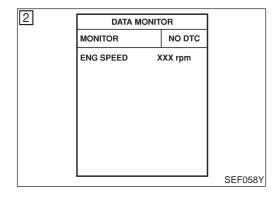
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	4 R/B Heated oxygen sensor 1	[Engine is running] ● Engine speed is below 3,200 rpm.	Approximately 0V	
4	R/B	heater (front)	[Engine is running] ● Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NJEC0139

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0135 0135	The current amperage in the heated oxygen sensor 1 heater (front) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through the heated oxygen sensor 1 heater (front).]	 Harness or connectors (The heated oxygen sensor 1 heater (front) circuit is open or shorted.) Heated oxygen sensor 1 heater (front)

DTC Confirmation Procedure


NOTE:

NJEC0140

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

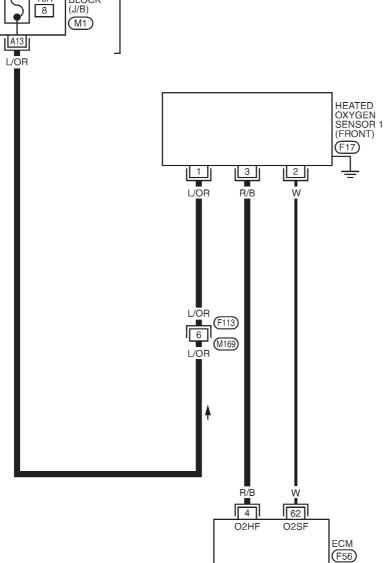
TESTING CONDITION:

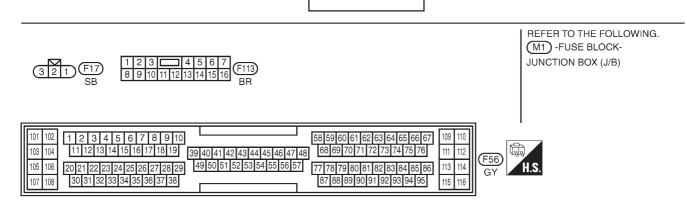
Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) With CONSULT-II

- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 5 seconds at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-212.

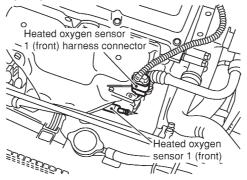
With GST


- 1) Start engine and run it for at least 5 seconds at idle speed.
- 2) Turn ignition switch "OFF" and wait at least 9 seconds.
- 3) Start engine and run it for at least 5 seconds at idle speed.
- 4) Select "MODE 3" with GST.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-212.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.


Wiring Diagram

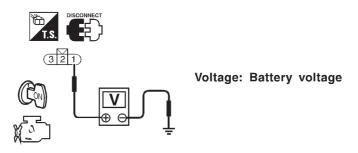
NJEC0141

EC-O2H1B1-01


YEC968

Diagnostic Procedure

NJEC0142


1 CHECK POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 (front) harness connector.

SEF012XA

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

SEF934X

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F113, M169
- 10A fuse
- Harness for open or short between heated oxygen sensor 1 (front) and fuse
 - Repair harness or connectors.

3 CHECK GROUND CIRCUIT

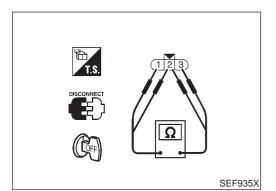
- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between heated oxygen sensor 1 (front) harness connector terminal 3 and ECM terminal 4. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.


DTC P0135 HEATED OXYGEN SENSOR 1 (FRONT) HEATER

Diagnostic Procedure (Cont'd)

4	CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)		
Refer	Refer to "Component Inspection", EC-213.		
	OK or NG		
OK	OK ▶ GO TO 5.		
NG	•	Replace heated oxygen sensor 1 (front).	

5	CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
► INSPECTION END		

Component Inspection

HEATED OXYGEN SENSOR 1 HEATER (FRONT)

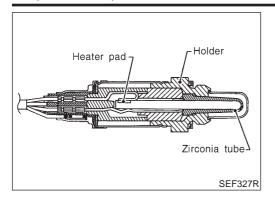
NJEC0143

Check resistance between terminals 3 and 1.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.


If NG, replace the heated oxygen sensor 1 (front).

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

DTC P0137 HEATED OXYGEN SENSOR 2 (REAR) (MIN. VOLTAGE MONITORING)

QG

Component Description

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

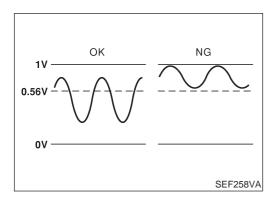
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0145

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up	Revving engine from idle to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)			$LEAN \longleftrightarrow RICH$

ECM Terminals and Reference Value


NJEC0146

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	L	Heated oxygen sensor 2 (rear)	[Engine is running] ● After warming up to normal operating temperature and engine speed is 3,000 rpm	0 - Approximately 1.0V

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the minimum voltage of the sensor is sufficiently low during various driving conditions such as fuel-cut.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0137 0137	The minimum voltage from the sensor does not reach the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure Injectors

DTC P0137 HEATED OXYGEN SENSOR 2 (REAR) (MIN. VOLTAGE MONITORING)

QG

NJEC0594

On Board Diagnosis Logic (Cont'd)

			. 1
[8]	HO2S2 (B1) P0	137	
	COND1: OUT OF CO	ONDITION	
	COND2: INCOMI	PLETE	
	COND3: INCOMI	PLETE	
	MONITOR		
	ENG SPEED	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	COOLAN TEMP/S	XXX °C	
	VHCL SPEED SE	XXX km/h	
			SEF833Y

П			ı
	HO2S2 (B1) P0	137	
	COND1: TEST	ING	
	COND2: INCOMI	PLETE	
	COND3: INCOM	PLETE	
	MONITOR		
	ENG SPEED	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	COOLAN TEMP/S	XXX °C	
	VHCL SPEED SE	XXX km/h	
			SEF834Y

[8]	HO2S2 (B1) P0	137	
	COND1: COMPL	.ETED	
	COND2: INCOMI	PLETE	
	COND3: INCOMI	PLETE	
	MONITOR		
	ENG SPEED	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	COOLAN TEMP/S	XXX °C	
	VHCL SPEED SE	XXX km/h	
			SEF835Y

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- "COMPLETED" will appear on CONSULT-II screen when all tests "COND1", "COND2" and "COND3" are completed.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

TESTING CONDITION:

Never stop engine during this procedure. If the engine is stopped, retry this procedure from step 2 in "Procedure for COND1".

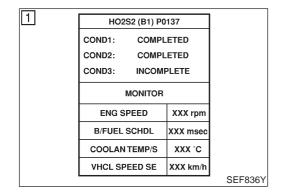
(II) With CONSULT-II

Procedure for COND1

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 9 seconds.
- 3) Turn ignition switch "ON" and select "HO2S2 (B1) P0137" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- Start engine and let it idle for at least 30 seconds.
- 6) Rev engine up to 2,000 rpm 2 or 3 times quickly under no load. If "COMPLETED" appears on CONSULT-II screen, go to step 2 in "Procedure for COND3".
 - If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.
- 7) Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 8) When the following conditions are met, "TESTING" will be displayed at "COND1" on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 60 seconds.)

ENG SPEED	1,500 - 3,600 rpm
Vehicle speed	Above 70 km/h (43 MPH)
Selector lever	Suitable position

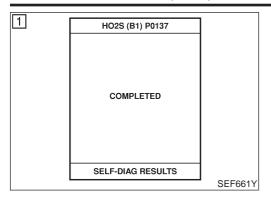
NOTE:

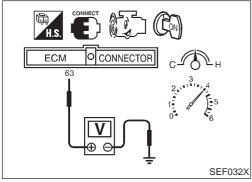

- If "TESTING" is not displayed after 5 minutes, retry from step 2 in "Procedure for COND1".
- If "COMPLETED" already appears at "COND2" on CON-SULT-II screen before "Procedure for COND2" is conducted, it is unnecessary to conduct step 1 in "Procedure for COND2".

Procedure for COND2

 While driving, release accelerator pedal completely with "OD" OFF (A/T models), or 4th gear position (M/T models) from the above condition [step 8] until "INCOMPLETE" at "COND2" on CONSULT-II screen has turned to "COMPLETED". (It will take approximately 4 seconds.)

NOTE:


If "COMPLETED" already appears at "COND3" on CONSULT-II screen before "Procedure for COND3" is conducted, it is unnecessary to conduct step 1 in "Procedure for COND3".



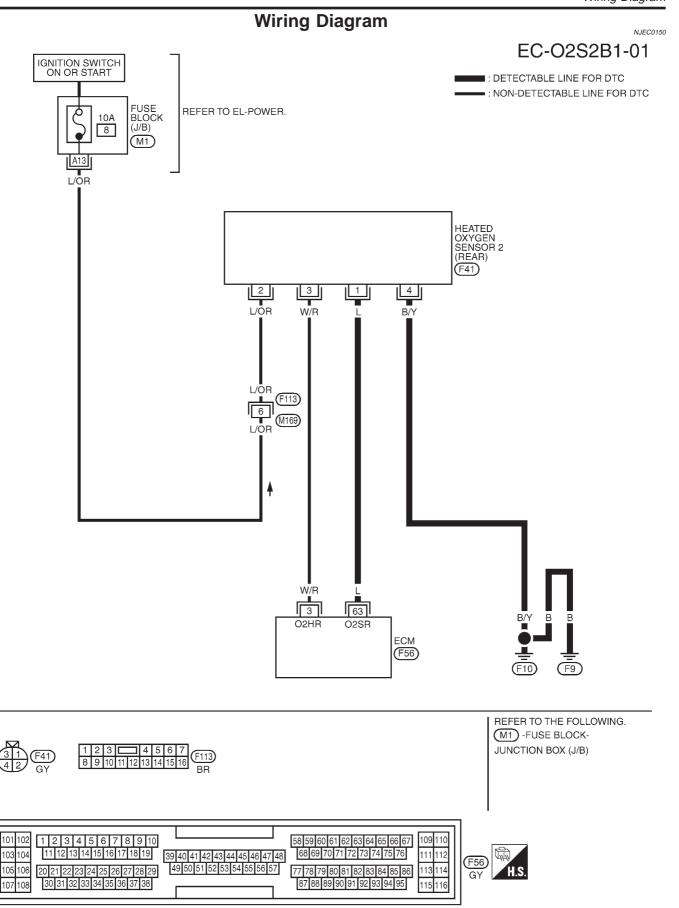
DTC P0137 HEATED OXYGEN SENSOR 2 (REAR) (MIN. VOLTAGE MONITORING)

DTC Confirmation Procedure (Cont'd)

QG

Procedure for COND3

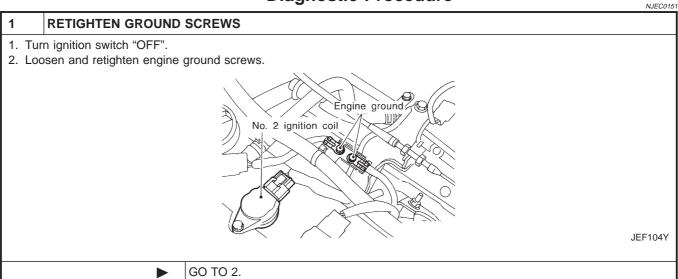
- Stop vehicle and let it idle until "INCOMPLETE" of "COND3" on CONSULT-II screen has turned to "COMPLETED". (It will take a maximum of approximately 6 minutes.)
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-218.


Overall Function Check

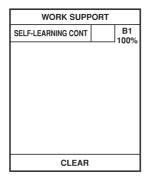
Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 (HO2S2 sig-3) nal) and engine ground.
- Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.56V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should be below 0.56V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-218.


QG Wiring Diagram

Diagnostic Procedure


Diagnostic Procedure

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "START".

SEF215Z

4. Run engine for at least 10 minutes at idle speed.

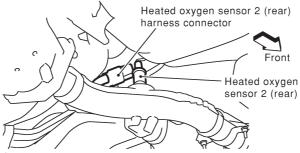
Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "How to Erase Emission-related Diagnostic Information", EC-68.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0172 detected? Is it difficult to start engine?

Yes or No


Yes Perform trouble diagnosis for DTC P0172. Refer to EC-255.	
No ►	GO TO 3.

QG

Diagnostic Procedure (Cont'd)

CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.

View from the underside of the vehicle

NEF345A

3. Check harness continuity between ECM terminal 63 and heated oxygen sensor 2 (rear) harness connector terminal 1. Refer to wiring diagram.

Continuity should exist.

4. Check harness continuity between ECM terminal 63 [or heated oxygen sensor 2 (rear) harness connector terminal 1] and ground.

Continuity should not exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG ▶	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the harness for open or short between heated oxygen sensor 2 (rear) and ECM.

Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK GROUND CIRCUIT

1. Check harness continuity between heated oxygen sensor 2 (rear) harness connector terminal 4 and body ground. Refer to wiring diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

6	CHECK HEATED OXYGEN SENSOR 2 (REAR)		
Refer	Refer to "Component Inspection", EC-220.		
	OK or NG		
ОК	•	GO TO 7.	
NG	•	Replace heated oxygen sensor 2 (rear).	

7	CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.	
	•	INSPECTION END

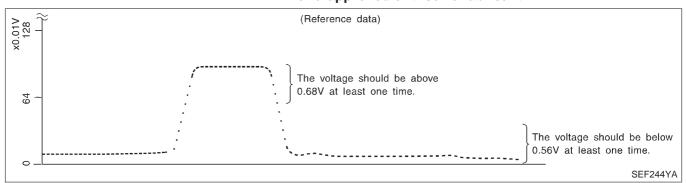
QG

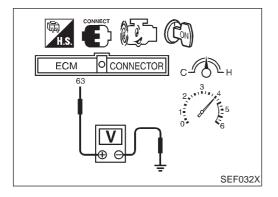
Component Inspection

_			I
	ACTIVE TEST		
	FUEL INJECTION	25 %	
	MONITOR		
	ENG SPEED	XXX rpm	
	HO2S1 (B1)	xxx v	
	HO2S2 (B1)	XXX V	
	HO2S1 MNTR (B1)	RICH	
	HO2S2 MNTR (B1)	RICH	
		•	SEF662Y

Component Inspection HEATED OXYGEN SENSOR 2 (REAR)

NJEC0152 NJEC0152S01


(P) With CONSULT-II


- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.56V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

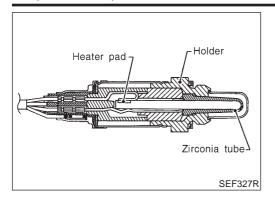
⋈ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 (HO2S2 signal) and engine ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once.
 - If the voltage is above 0.68V at step 4, step 5 is not necessary.
- 5) Check the voltage when revving up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).

The voltage should be below 0.56V at least once.

CAUTION:

 Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.


QG

Component Inspection (Cont'd)

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

QG

Component Description

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

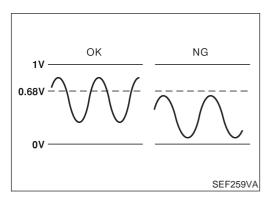
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0154

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm	$LEAN \longleftrightarrow RICH$

ECM Terminals and Reference Value


NJEC0155

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	L	Heated oxygen sensor 2 (rear)	[Engine is running] ● After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the maximum voltage of the sensor is sufficiently high during various driving conditions such as fuel-cut.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0138 0138	The maximum voltage from the sensor does not reach the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure Injectors Intake air leaks


QG

NJEC0596

On Board Diagnosis Logic (Cont'd)

[8]	HO2S2 (B1) PO	HO2S2 (B1) P0138		
	COND1: OUT OF CO	NOITION		
	COND2: INCOM	PLETE		
	COND3: INCOM	PLETE		
	MONITOR			
	ENG SPEED	XXX rpm		
	B/FUEL SCHDL	XXX msec		
	COOLAN TEMP/S	XXX °C		
	VHCL SPEED SE	XXX km/h		
			SEF837Y	

8 HO2S2 (B1) P0138 COND1: **TESTING** COND2: INCOMPLETE COND3: INCOMPLETE MONITOR **ENG SPEED** XXX rpm B/FUEL SCHDL XXX mse COOLAN TEMP/S XXX °C VHCL SPEED SE XXX km/h SEF838Y

1 HO2S2 (B1) P0138 COND1: COMPLETED COND2: COMPLETED COND3: INCOMPLETE MONITOR **ENG SPEED** XXX rpm B/FUEL SCHDL XXX mse COOLAN TEMP/S XXX °C VHCL SPEED SE XXX km/h SEF840Y

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- "COMPLETED" will appear on CONSULT-II screen when all tests "COND1", "COND2" and "COND3" are completed.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

TESTING CONDITION:

Never stop engine during this procedure. If the engine is stopped, retry this procedure from step 2 in "Procedure for COND1".

(P) With CONSULT-II

Procedure for COND1

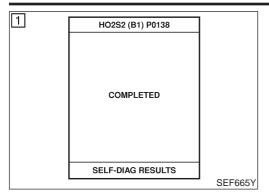
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 9 seconds.
- Turn ignition switch "ON" and select "HO2S2 (B1) P0138" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 30 seconds.
- 6) Rev engine up to 2,000 rpm 2 or 3 times quickly under no load. If "COMPLETED" appears on CONSULT-II screen, go to step 2 in "Procedure for COND3".
 - If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.
- Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 8) When the following conditions are met, "TESTING" will be displayed at "COND1" on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 60 seconds.)

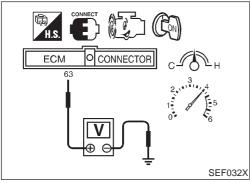
ENG SPEED	1,500 - 3,600 rpm
Vehicle speed	Above 70 km/h (43 MPH)
Selector lever	Suitable position

NOTE:

- If "TESTING" is not displayed after 5 minutes, retry from step 2 in "Procedure for COND1".
- If "COMPLETED" already appears at "COND2" on CON-SULT-II screen before "Procedure for COND2" is conducted, it is unnecessary to conduct step 1 in "Procedure for COND2".

Procedure for COND2


 While driving, release accelerator pedal completely with "OD" OFF (A/T models), or 4th gear position (M/T models) from the above condition [step 8] until "INCOMPLETE" at "COND2" on CONSULT-II screen is turned to "COMPLETED". (It will take approximately 4 seconds.)

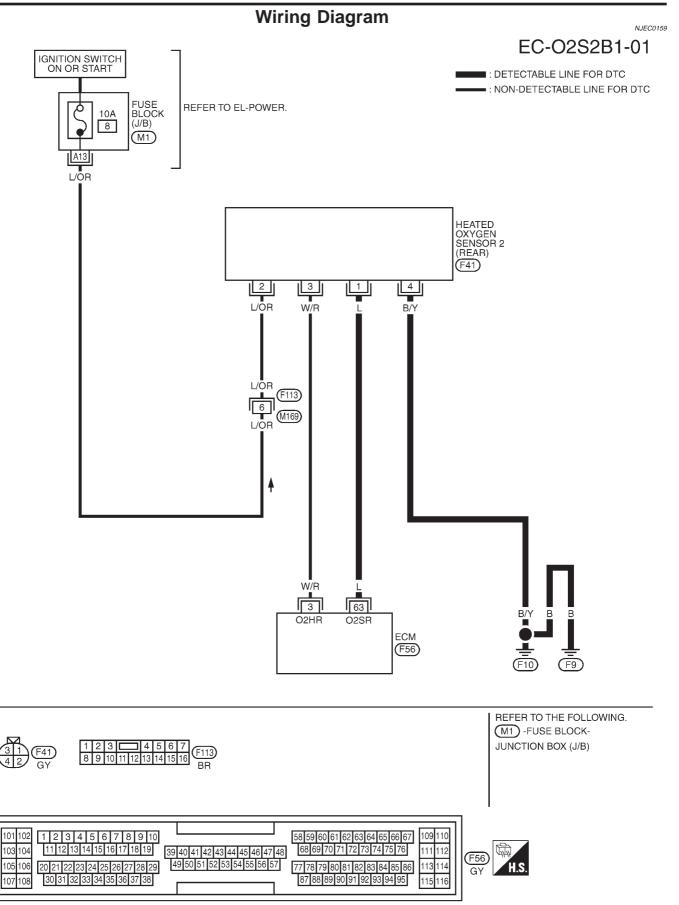

NOTE:

If "COMPLETED" already appears at "COND3" on CONSULT-II screen before "Procedure for COND3" is conducted, it is unnecessary to conduct step 1 in "Procedure for COND3".

DTC Confirmation Procedure (Cont'd)

Procedure for COND3

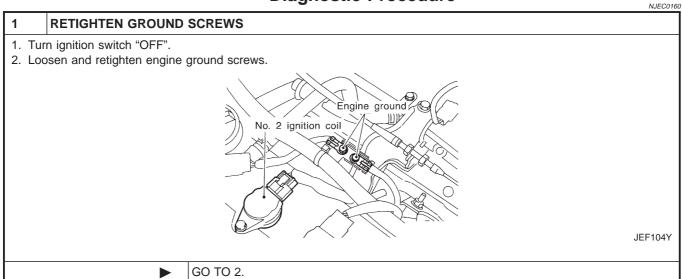
- Stop vehicle and let it idle until "INCOMPLETE" of "COND3" on CONSULT-II screen has turned to "COMPLETED". (It will take a maximum of approximately 6 minutes.)
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to "Diagnostic Procedure", EC-226.


Overall Function Check

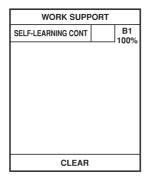
Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- Start engine and drive vehicle at a speed of 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 (HO2S2 sig-3) nal) and engine ground.
- 4) Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should be above 0.68V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-226.


QG Wiring Diagram

Diagnostic Procedure


Diagnostic Procedure

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "START".

SEF215Z

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "How to Erase Emission-related Diagnostic Information", EC-68.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0171 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171. Refer to EC-248.
No •	GO TO 3.

QG

Diagnostic Procedure (Cont'd)

3 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.
- 2. Check harness continuity between ECM terminal 63 and heated oxygen sensor 2 (rear) harness connector terminal 1. Refer to wiring diagram.

Continuity should exist.

3. Check harness continuity between ECM terminal 63 [or heated oxygen sensor 2 (rear) harness connector terminal 1] and ground.

Continuity should not exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK ▶	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART Check the harness for open or short between ECM and heated oxygen sensor 2 (rear). Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK GROUND CIRCUIT

Check harness continuity between heated oxygen sensor 2 (rear) harness connector terminal 4 and engine ground.
 Refer to wiring diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

6	6 CHECK HEATED OXYGEN SENSOR 2 (REAR)		
Refer	Refer to "Component Inspection", EC-227.		
OK or NG			
OK	•	GO TO 7.	
NG	•	Replace heated oxygen sensor 2 (rear).	

7	CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.	
	>	INSPECTION END

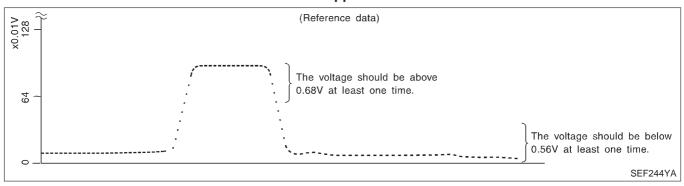
		i
ACTIVE TEST		
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 (B1)	xxx v	
HO2S2 (B1)	XXX V	
HO2S1 MNTR (B1)	RICH	
HO2S2 MNTR (B1)	RICH	
		SEF662Y

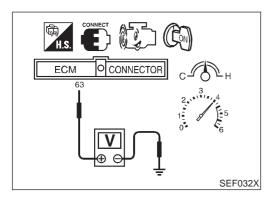
Component Inspection HEATED OXYGEN SENSOR 2 (REAR)

NJEC0161

NJEC0161S01

- (I) With CONSULT-II
- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes..
- 2) Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.


"HO2S2 (B1)" should be above 0.68V at least once when


QG

the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.56V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

Nithout CONSULT-II

- 1) Start engine and drive vehicle at a speed of 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 (HO2S2 signal) and engine ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 (Depress and release accelerator pedal as soon as possible.)
 - The voltage should be above 0.68V at least once. If the voltage is above 0.68V at step 4, step 5 is not necessary.
- Check the voltage when revving up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T)


The voltage should be below 0.56V at least once.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

QG

Component Description

Component Description

NUEGOAG

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

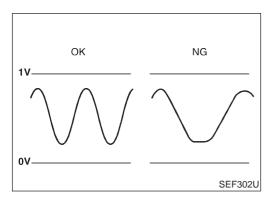
CONSULT-II Reference Value in Data Monitor Mode

NJEC0163

Specification data are reference values.

MONITOR ITEM	CONE	DITION	SPECIFICATION
HO2S2 (B1)	i ● Engine: Aiter warming up - i	Revving engine from idle to 3,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)			$LEAN \longleftrightarrow RICH$

ECM Terminals and Reference Value


NJEC0164

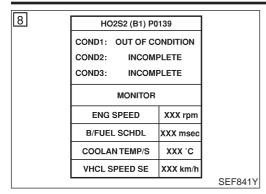
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

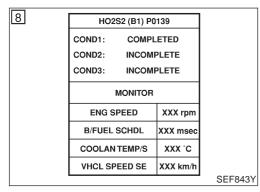
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	L	Heated oxygen sensor 2 (rear)	[Engine is running] ● After warming up to normal operating temperature and revving engine from idle to 2,000 rpm	0 - Approximately 1.0V

On Board Diagnosis Logic


The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the switching response of the sensor's voltage is faster than specified during various driving conditions such as fuel-cut.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0139 0139	It takes more than the specified time for the sensor to respond between rich and lean.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure Injectors Intake air leaks


QG

NJEC0598

On Board Diagnosis Logic (Cont'd)

8 HO2S2 (B1) P0139 COND1: **TESTING** COND2: INCOMPLETE COND3: INCOMPLETE MONITOR **ENG SPEED** XXX rpm B/FUEL SCHDL XXX mse COOLAN TEMP/S XXX °C VHCL SPEED SE XXX km/h SEF842Y

1 HO2S2 (B1) P0139 COND1: COMPLETED COND2: COMPLETED COND3: INCOMPLETE MONITOR **ENG SPEED** XXX rpm B/FUEL SCHDL XXX mse COOLAN TEMP/S XXX °C VHCL SPEED SE XXX km/h SEF844Y

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- "COMPLETED" will appear on CONSULT-II screen when all tests "COND1", "COND2" and "COND3" are completed.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

TESTING CONDITION:

Never stop engine during this procedure. If the engine is stopped, retry this procedure from step 2 in "Procedure for COND1".

(II) With CONSULT-II

Procedure for COND1

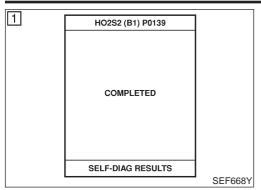
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 9 seconds.
- 3) Turn ignition switch "ON" and select "HO2S2 (B1) P0139" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 30 seconds.
- 6) Rev engine up to 2,000 rpm 2 or 3 times quickly under no load. If "COMPLETED" appears on CONSULT-II screen, go to step 2 in "Procedure for COND3".
 - If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.
- 7) Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 8) When the following conditions are met, "TESTING" will be displayed at "COND1" on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 60 seconds.)

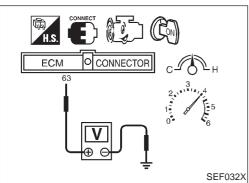
ENG SPEED	1,500 - 3,600 rpm
Vehicle speed	Above 70 km/h (43 MPH)
Selector lever	Suitable position

NOTE:

- If "TESTING" is not displayed after 5 minutes, retry from step 2 in "Procedure for COND1".
- If "COMPLETED" already appears at "COND2" on CON-SULT-II screen before "Procedure for COND2" is conducted, it is unnecessary to conduct step 1 in "Procedure for COND2".

Procedure for COND2


 While driving, release accelerator pedal completely with "OD" OFF (A/T models), or 4th gear position (M/T models) from the above condition [step 8] until "INCOMPLETE" at "COND2" on CONSULT-II screen has turned to "COMPLETED". (It will take approximately 4 seconds.)


NOTE:

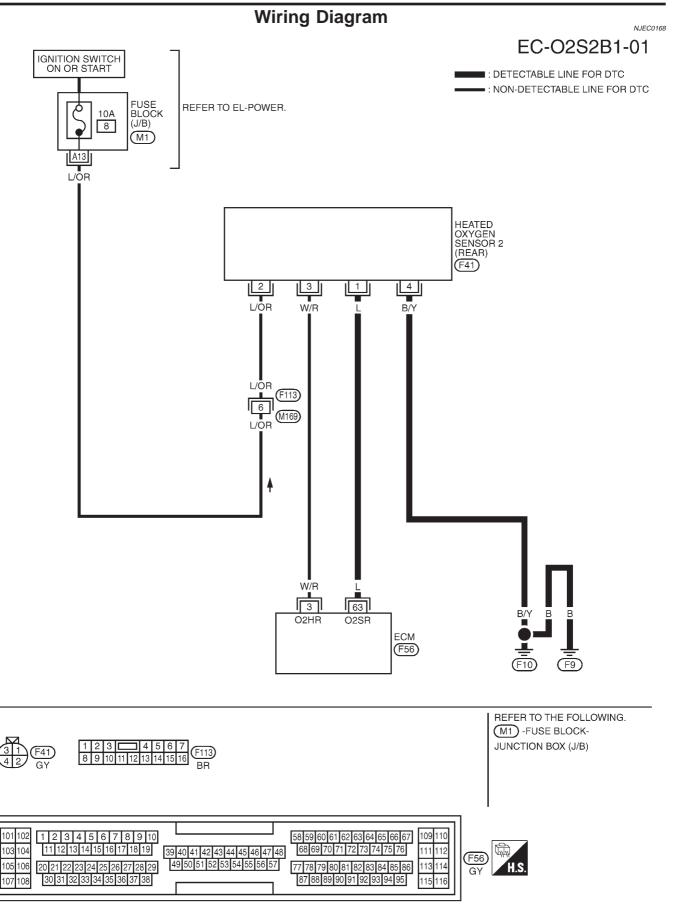
If "COMPLETED" already appears at "COND3" on CONSULT-II screen before "Procedure for COND3" is conducted, it is unnecessary to conduct step 1 in "Procedure for COND3".

QG

DTC Confirmation Procedure (Cont'd)

Procedure for COND3

- Stop vehicle and let it idle until "INCOMPLETE" of "COND3" on CONSULT-II screen has turned to "COMPLETED". (It will take a maximum of approximately 6 minutes.)
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to "Diagnostic Procedure", EC-233.


Overall Function Check

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

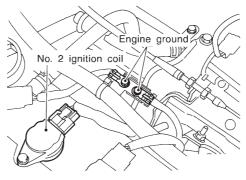
- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 (HO2S2 sig-3) nal) and engine ground.
- Check the voltage when revving up to 4,000 rpm under no load 4) at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should change at more than 0.06V for 1 second during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should change at more than 0.06V for 1 second during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-233.

YEC969

QG

Diagnostic Procedure

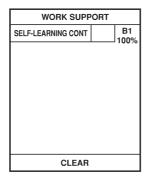
Diagnostic Procedure


NJEC0169

1. Turn ignition switch "OFF".

2. Loosen and retighten engine ground screws.

RETIGHTEN GROUND SCREWS


JEF104Y

GO TO 2.

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "START".

SEF215Z

4. Run engine for at least 10 minutes at idle speed.

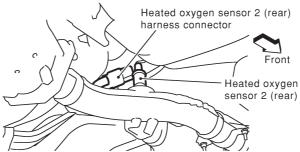
Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "How to Erase Emission-related Diagnostic Information", EC-68.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0172 detected? Is it difficult to start engine?

Yes or No


Yes	Perform trouble diagnosis for DTC P0172. Refer to EC-255.
No ►	GO TO 3.

QG

Diagnostic Procedure (Cont'd)

3 CHECK INPUT SIGNAL CIRCUIT

1. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.

View from the underside of the vehicle

NFF345A

2. Check harness continuity between ECM terminal 63 and heated oxygen sensor 2 (rear) harness connector terminal 1. Refer to wiring diagram.

Continuity should exist.

3. Check harness continuity between ECM terminal 63 [or heated oxygen sensor 2 (rear) harness connector terminal 1] and ground.

Continuity should not exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART Check the harness for open or short between heated oxygen sensor 2 (rear) and ECM. Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK GROUND CIRCUIT

1. Check harness continuity between heated oxygen sensor 2 (rear) harness connector terminal 4 and engine ground. Refer to wiring diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 6.	
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.	

6	CHECK HEATED OXYG	SEN SENSOR 2 (REAR)	
Refer to "Component Inspection", EC-235.			
	OK or NG		
OK	OK ▶ GO TO 7.		
NG	•	Replace heated oxygen sensor 2 (rear).	

7	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

QG

Component Inspection

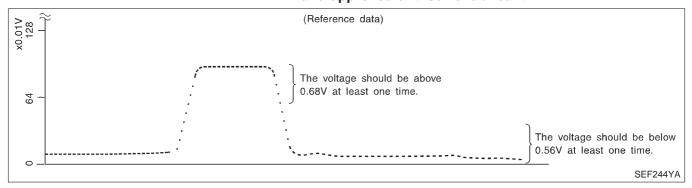
ACTIVE TES	ST	
FUEL INJECTION	25 %	
MONITOR	1	
ENG SPEED	XXX rpm	
HO2S1 (B1)	xxx v	
HO2S2 (B1)	XXX V	
HO2S1 MNTR (B1)	RICH	
HO2S2 MNTR (B1)	RICH	
		SEF662Y

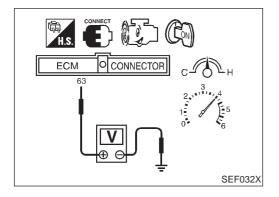
Component Inspection HEATED OXYGEN SENSOR 2 (REAR)

NJEC0170

NJEC0170S01

(P) With CONSULT-II


- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- 4) Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.


"HO2S2 (B1)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)" should be below 0.56V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

⋈ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 (HO2S2 signal) and engine ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once.

If the voltage is above 0.68V at step 4, step 5 is not necessary.

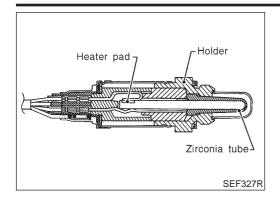
5) Check the voltage when revving up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).

The voltage should be below 0.56V at least once.

CAUTION:

 Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

QG


Component Inspection (Cont'd)

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

DTC P0140 HEATED OXYGEN SENSOR 2 (REAR) (HIGH VOLTAGE)

Component Description

Component Description

N IECO17

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

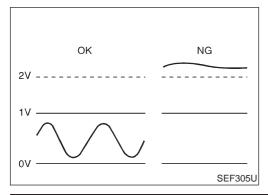
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0172

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up	Revving engine from idle to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)		rpm	$LEAN \longleftrightarrow RICH$

ECM Terminals and Reference Value


NJEC0173

Specification data are reference values and are measured between each terminal and ground.

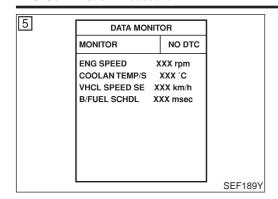
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	L	Heated oxygen sensor 2 (rear)	[Engine is running] ● After warming up to normal operating temperature and revving engine from idle to 2,000 rpm	0 - Approximately 1.0V

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether or not the voltage is too high during various driving conditions such as fuel-cut.


DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0140 0140	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear)

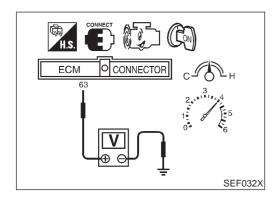
DTC P0140 HEATED OXYGEN SENSOR 2 (REAR) (HIGH VOLTAGE) QG

NJEC0175

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(P) With CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Let engine idle for 1 minute.
- Maintain the following conditions for at least 5 consecutive minutes.

ENG SPEED	Above 1,500 rpm
Selector lever	Suitable position

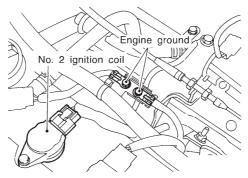
6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-240.

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 (HO2S2 signal) and engine ground.
- Check the voltage after revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 2V during this procedure.
- 5) If NG, go to "Diagnostic Procedure", EC-240.

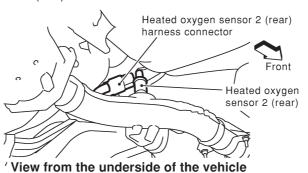

Wiring Diagram NJEC0177 EC-02S2B1-01 IGNITION SWITCH ON OR START : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC FUSE BLOCK (J/B) REFER TO EL-POWER. 10A 8 (M1)L/OR HEATED OXYGEN SENSOR 2 (REAR) (F41) L/OR 4 3 W/R B/Y (F113) 6 (M169) L/OR W/R 3 63 O2HR O2SR ECM (F56) (F10) REFER TO THE FOLLOWING. M1 -FUSE BLOCK-JUNCTION BOX (J/B) F41 GY 101 102 1 2 3 4 5 6 7 8 9 10 58 59 60 61 62 63 64 65 66 67 109 110 11 12 13 14 15 16 17 18 19 103 104 68 69 70 71 72 73 74 75 76 111 112 39 40 41 42 43 44 45 46 47 48 (F56) 105 106 49 50 51 52 53 54 55 56 57 20 21 22 23 24 25 26 27 28 29 77 78 79 80 81 82 83 84 85 86 113 114 107 108 30 31 32 33 34 35 36 37 38 87 88 89 90 91 92 93 94 95

Diagnostic Procedure

NJEC0178

1 RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.



JEF104Y

GO TO 2.

2 CHECK INPUT SIGNAL CIRCUIT

1. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.

NEF345A

2. Check harness continuity between ECM terminal 63 and heated oxygen sensor 2 (rear) harness connector terminal 1. Refer to wiring diagram.

Continuity should exist.

3. Check harness continuity between ECM terminal 63 [or heated oxygen sensor 2 (rear) harness connector terminal 1] and ground.

Continuity should not exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 4.
NG ►	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the harness for open or short between heated oxygen sensor 2 (rear) and ECM.

Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0140 HEATED OXYGEN SENSOR 2 (REAR) (HIGH VOLTAGE)

Diagnostic Procedure (Cont'd)

4	CHECK GROUND CIRC	CUIT		
Ref	 Check harness continuity between heated oxygen sensor 2 (rear) harness connector terminal 4 and engine ground. Refer to wiring diagram. Continuity should exist. Also check harness for short to ground and short to power. 			
	OK or NG			
OK	OK • GO TO 5.			
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.		

5	CHECK HARNESS CONNECTOR		
	Check heated oxygen sensor 2 (rear) harness connector for water. Water should not exist. OK or NG		
OK			
NG	•	Repair or replace harness connector.	

6	CHECK HEATED OXYGEN SENSOR 2 (REAR)		
Refer	Refer to "Component Inspection", EC-241.		
	OK or NG		
OK	OK ▶ GO TO 7.		
NG	>	Replace heated oxygen sensor 2 (rear).	

7	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

	ACTIVE TES		
	FUEL INJECTION 25 %		
	MONITOR		
	ENG SPEED	XXX rpm	
	HO2S1 (B1)	xxx v	
	HO2S2 (B1)	xxx v	
	HO2S1 MNTR (B1)	RICH	
	HO2S2 MNTR (B1)	RICH	
- 1		1	SEF662Y

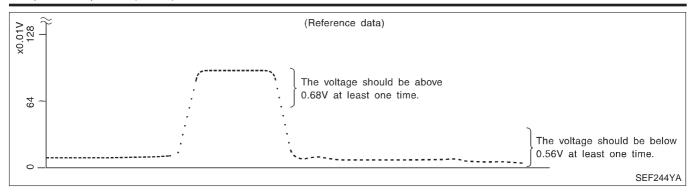
Component Inspection HEATED OXYGEN SENSOR 2 (REAR)

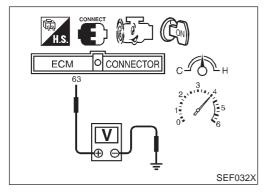
NJEC0179

NJEC0179S01

- (P) With CONSULT-II
- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- 1) Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.


"HO2S2 (B1)" should be below 0.56V at least once when the "FUEL INJECTION" is -25%.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

DTC P0140 HEATED OXYGEN SENSOR 2 (REAR) (HIGH VOLTAGE) QG

Component Inspection (Cont'd)

₩ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h 1) (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 (HO2S2 signal) and engine ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.68V at least once. If the voltage is above 0.68V at step 4, step 5 is not nec-

essary.

Check the voltage when revving up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).

The voltage should be below 0.56V at least once.

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

Description

SYSTEM DESCRIPTION

NJEC0180

NJEC0180S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Heated oxygen sensor 2 heater (rear) con- trol	Heated oxygen sensor 2 heater (rear)

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater (rear) corresponding to the engine speed.

OPERATION

NJEC0180S02

Engine condition		Heated oxygen sensor 2 heater (rear)
Engine stopped		OFF
Engine is running.	After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more	ON
	Engine speed above 3,600 rpm	OFF

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0181

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 HTR (B1)	Engine speed	Below 3,600 rpm [After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more]	ON
		Above 3,600 rpm	OFF
	Ignition switch ON (E	ngine stopped)	OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NJEC0182

CAUTION:

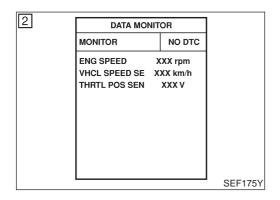
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		Heated oxygen sensor 2	 [Engine is running] ● Engine speed is below 3,600 rpm [After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more] 	Approximately 0.7V
heater (rear) [Engine is run		, , ,	[Engine is running] ● Engine speed is above 3,600 rpm	BATTERY VOLTAGE
			[Ignition switch "ON"] ● Engine stopped	(11 - 14V)

On Board Diagnosis Logic

	On Board Diagn	osis Logic
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0141 0141	The current amperage in the heated oxygen sensor 2 heater (rear) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through the heated oxygen sensor 2 heater (rear).]	Harness or connectors (The heated oxygen sensor 2 heater (rear) circuit is open or shorted.) Heated oxygen sensor 2 heater (rear)

DTC Confirmation Procedure


NJEC0184

NOTE:

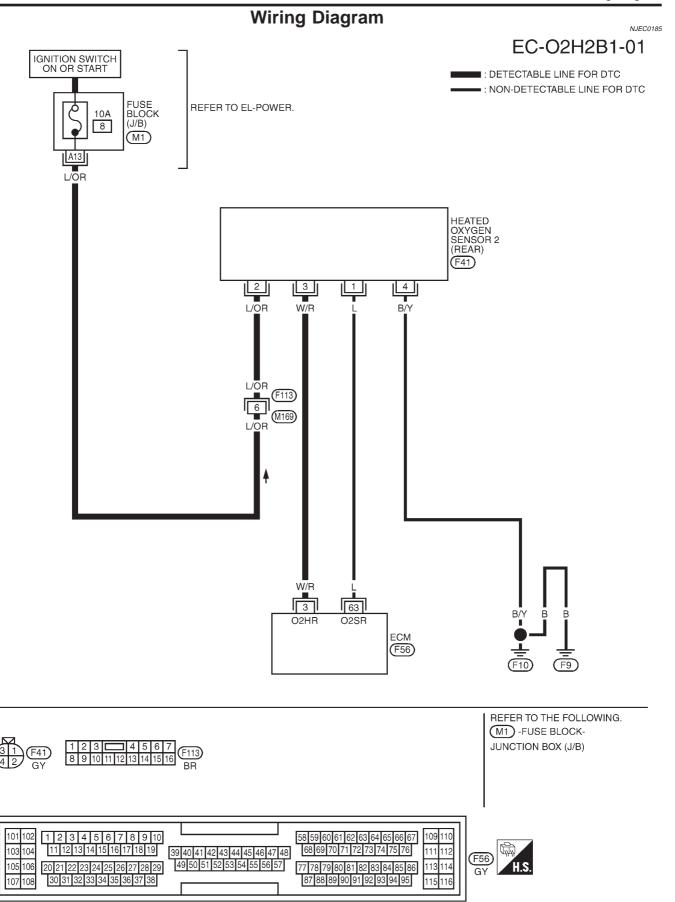
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is in between 10.5V and 16V at idle.

(II) With CONSULT-II

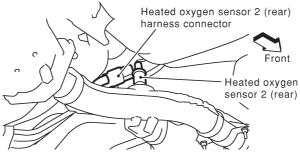
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. Engine speed must be maintained at speeds of 3,600 rpm or less during vehicle operations.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-246.


With GST

- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. Engine speed must be maintained at speeds of 3,600 rpm or less during vehicle operations.
- 2) Turn ignition switch "OFF" and wait at least 9 seconds.
- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- 4) Select "MODE 3" with GST.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-246.

When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

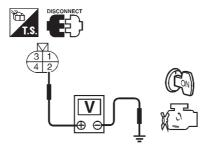
Wiring Diagram



Diagnostic Procedure

NJEC0186

1 CHECK POWER SUPPLY


- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 (rear) harness connector.

View from the underside of the vehicle

NEF345A

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 2 and ground.

OK or NG

SEF218W

	•	GO TO 3.
i	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M169, F113
- Harness for open or short between heated oxygen sensor 2 (rear) and fuse
- 10A fuse

OK NG

Repair harness or connectors.

3 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between heated oxygen sensor 2 (rear) harness connector terminal 3 and ECM terminal 3. Refer to wiring diagram.

Continuity should exist.

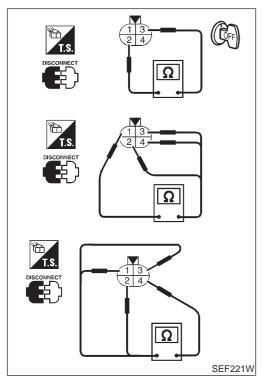
4. Also check harness for short to ground and short to power.

ок	٥r	NG
OIL	OI.	110

OK ▶	GO TO 5.
NG ▶	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the harness for open or short between heated oxygen sensor 2 heater (rear) and ECM.


Repair open circuit or short to ground or short to power in harness or connectors.

QG

Diagnostic Procedure (Cont'd)

5	CHECK HEATED OXYG	GEN SENSOR 2 HEATER (REAR)	
Refer	Refer to "Component Inspection", EC-247.		
	OK or NG		
OK	OK ▶ GO TO 6.		
NG	•	Replace heated oxygen sensor 2 (rear).	

6	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Inspection HEATED OXYGEN SENSOR 2 HEATER (REAR)

NJEC0187 NJEC0187S01

Check the following.

1. Check resistance between terminals 1 and 4.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

2. Check continuity.

Terminal No.	Continuity
1 and 2, 3, 4	No
4 and 1, 2, 3	INU

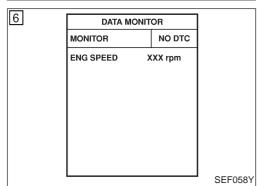
If NG, replace the heated oxygen sensor 2 (rear).

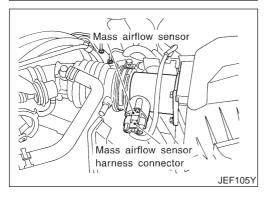
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

On Board Diagnosis Logic

V.JEC0188


With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios


In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Heated oxygen sensor 1 (front)	, , , , , ,	Fuel injection & mixture ratio	Injectors

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0171 0171	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 	 Intake air leaks Heated oxygen sensor 1 (front) Injectors Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor

WORK SUPPORT SELF-LEARNING CONT B1 100% CLEAR SEF215Z

DTC Confirmation Procedure

NJEC0189

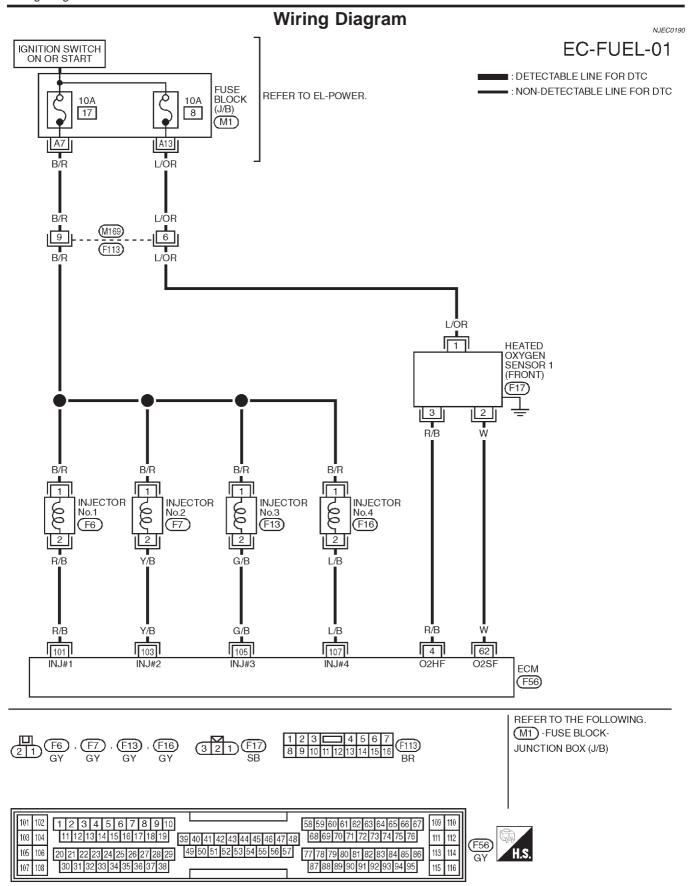
NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 9 seconds.
- 3) Turn ignition switch "ON" and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "START".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-251.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction.
- 8) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-251. If engine does not start, visually check for exhaust and intake air leak.

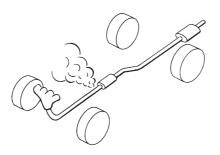
With GST


- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 9 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- 4) Stop engine and reconnect mass air flow sensor harness connector.
- Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- 6) Select "MODE 4" with GST and erase the 1st trip DTC P0100.

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

DTC Confirmation Procedure (Cont'd)

- 7) Start engine again and run it for at least 10 minutes at idle speed.
- 8) Select "MODE 7" with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-251.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-251. If engine does not start, visually check for exhaust and intake air leak.



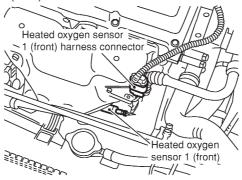
Diagnostic Procedure

NJEC0191

1 CHECK EXHAUST AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst.

SEF099P


OK or NG

OK •	•	GO TO 2.
NG	•	Repair or replace.

2	CHECK FOR INTAKE AIR LEAK	
Listen for an intake air leak after the mass air flow sensor.		
OK or NG		
OK	•	GO TO 3.
NG	•	Repair or replace.

3 CHECK HEATED OXYGEN SENSOR 1 (FRONT) CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 (front) harness connector and ECM harness connector.

SEF012XA

3. Check harness continuity between ECM terminal 62 and heated oxygen sensor 1 (front) harness connector terminal 2. Refer to wiring diagram.

Continuity should exist.

4. Check harness continuity between ECM terminal 62 [or heated oxygen sensor 1 (front) harness connector terminal 2] and ground.

Continuity should not exist.

5. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK	>	GO TO 4.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

Diagnostic Procedure (Cont'd)

4	CHECK FUEL PRESSU	RE		
	Release fuel pressure to zero.			
R	Refer to EC-38.			
2. Ir	nstall fuel pressure gauge an	d check fuel pressure.		
	At idling:			
	When fuel pressure regulator valve vacuum hose is connected. 235 kPa (2.35 bar, 2.4 kg/cm², 34 psi) When fuel pressure regulator valve vacuum hose is disconnected. 294 kPa (2.94 bar, 3.0 kg/cm², 43 psi)			
	OK or NG			
ОК	>	GO TO 6.		
NG	>	GO TO 5.		

5	DETECT MALFUNCTIONING PART		
• Fue • Fue	Check the following. Fuel pump and circuit (Refer to EC-464.) Fuel pressure regulator (Refer to EC-39.) Fuel lines (Refer to "ENGINE MAINTENANCE" in MA section.) Fuel filter for clogging		
	>	Repair or replace.	

6	6 CHECK MASS AIR FLOW SENSOR		
Chec	With CONSULT-II Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II. at idling: 1.0 - 4.0 g-m/sec at 2,500 rpm: 5.0 - 10.0 g-m/sec		
Chec	With GST Check mass air flow sensor signal in MODE 1 with GST. at idling: 1.0 - 4.0 g-m/sec at 2,500 rpm: 5.0 - 10.0 g-m/sec		
	OK or NG		
OK	>	GO TO 7.	
NG	>	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-152.	

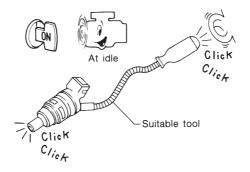
QG

Diagnostic Procedure (Cont'd)

7 CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II

- 1. Install all parts removed.
- 2. Start engine.
- 3. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.


ACTIVE TEST		
POWER BALANCE		
MONITOR	1	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
IACV-AAC/V	XXX step	

SEF190Y

4. Make sure that each circuit produces a momentary engine speed drop.

Without CONSULT-II

- 1. Install all parts removed.
- 2. Start engine.
- 3. Listen to each injector operating sound.

MEC703B

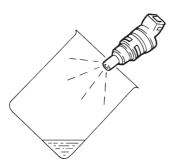
Clicking noise should be heard.

OK or NG

OK ►	GO TO 8.
NG ►	Perform trouble diagnosis for "INJECTORS", EC-446.

8 REMOVE INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch "OFF".
- Remove injector with fuel tube assembly. Refer to EC-39.
 Keep fuel hose and all injectors connected to injector gallery. The injector harness connectors should remain connected.


► GO TO 9.

Diagnostic Procedure (Cont'd)

9 CHECK INJECTOR

- 1. Disconnect all ignition coil harness connectors.
- 2. Place pans or saucers under each injector.
- 3. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.

Fuel should be sprayed evenly for each cylinder.

SEF595Q

OK	GO TO 10

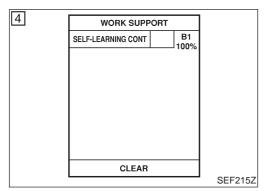
NG Replace injectors from which fuel does not spray out. Always replace O-ring with new one.

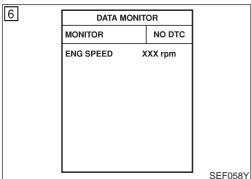
OK or NG

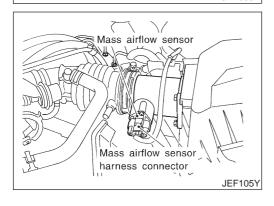
10	10 CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.	
	► INSPECTION END	

On Board Diagnosis Logic

On Board Diagnosis Logic


LIFC0192


With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.


In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Heated oxygen sensor 1 (front)	, , , , , ,	Fuel injection & mixture ratio	Injectors

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0172 0172	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	 Heated oxygen sensor 1 (front) Injectors Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

DTC Confirmation Procedure

NJEC0193

NOTE:

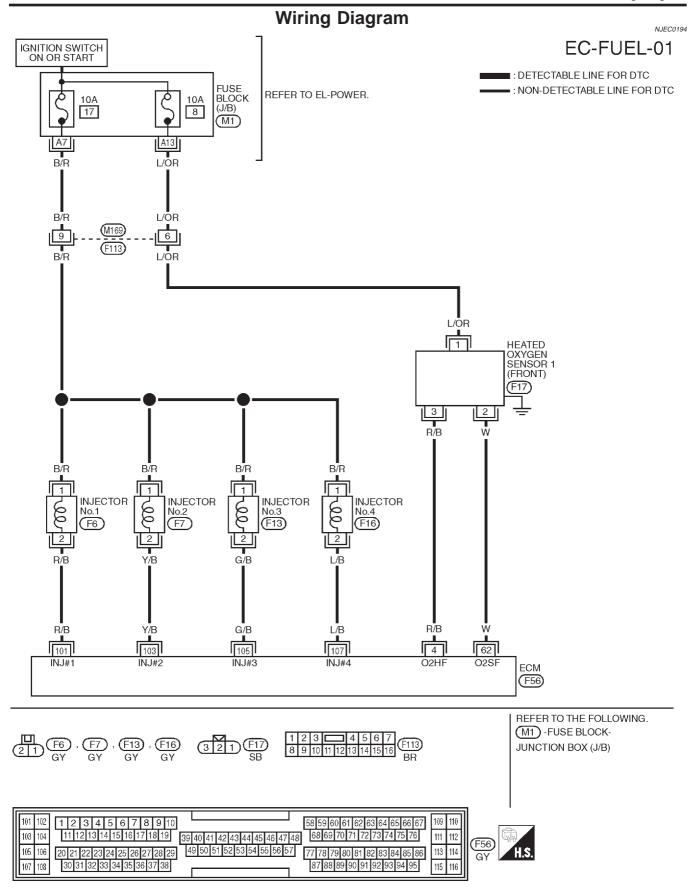
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(II) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 9 seconds.
- Turn ignition switch "ON" and select "SELF-LEARN CON-TROL" in "WORK SUPPORT" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "START".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-258.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction.
- 8) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-258. If engine does not start, remove ignition plugs and check for fouling, etc.

With GST

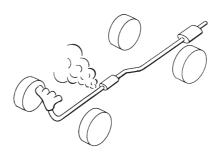
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 9 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- 6) Select "MODE 4" with GST and erase the 1st trip DTC P0100.



DTC Confirmation Procedure (Cont'd)

- 7) Start engine again and run it for at least 10 minutes at idle speed.
- 8) Select "MODE 7" with GST. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-258.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-258. If engine does not start, remove ignition plugs and check for fouling, etc.

Wiring Diagram

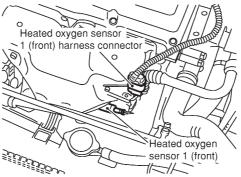


Diagnostic Procedure

NJEC0195

1 CHECK FOR EXHAUST AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before the three way catalyst.


SEF099P

OK or NG

OK •	GO TO 2.
NG	Repair or replace.

2 CHECK HEATED OXYGEN SENSOR 1 (FRONT) CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 (front) harness connector and ECM harness connector.

SEF012XA

3. Check harness continuity between ECM terminal 62 and heated oxygen sensor 1 (front) harness connector terminal 2. Refer to wiring diagram.

Continuity should exist.

4. Check harness continuity between ECM terminal 62 [or heated oxygen sensor 1 (front) harness connector terminal 2] and ground.

Continuity should not exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 3.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

3	CHECK FUEL PRESSU	IRE	
1. R	elease fuel pressure to zero).	
R	efer to EC-38.		
2. Ir	nstall fuel pressure gauge ar	nd check fuel pressure.	
	At idling:		
	When fuel pressure re	egulator valve vacuum hose is connected.	
	Approximately 235 kPa (2.35 bar, 2.4 kg/cm ² , 34 psi)		
	When fuel pressure regulator valve vacuum hose is disconnected.		
	Approximately 294 kPa (2.94 bar, 3.0 kg/cm ² , 43 psi)		
	OK or NG		
OK	•	GO TO 5.	
NG	•	GO TO 4.	

4	DETECT MALFUNCTIONING PART	
• Fue	Check the following. • Fuel pump and circuit (Refer to EC-464.) • Fuel pressure regulator (Refer to EC-39.)	
	•	Repair or replace.

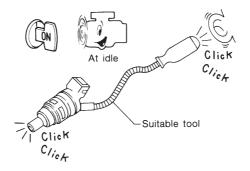
5	CHECK MASS AIR FLOW SENSOR		
With CONSULT-II Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II. at idling: 1.0 - 4.0 g·m/sec at 2,500 rpm: 5.0 - 10.0 g·m/sec			
Check at i	With GST Check mass air flow sensor signal in MODE 1 with GST. at idling: 1.0 - 4.0 g-m/sec at 2,500 rpm: 5.0 - 10.0 g-m/sec		
	OK or NG		
ОК	OK ▶ GO TO 6.		
NG	>	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-155.	

Diagnostic Procedure (Cont'd)

6 CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II

- 1. Install all parts removed.
- 2. Start engine.
- 3. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.


ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
IACV-AAC/V	XXX step	

SEF190Y

4. Make sure that each circuit produces a momentary engine speed drop.

Without CONSULT-II

- 1. Install all parts removed.
- 2. Start engine.
- 3. Listen to each injector operating sound.

MEC703B

Clicking noise should be heard.

OK or NG

OK	>	GO TO 7.
NG	•	Perform trouble diagnosis for "INJECTORS", EC-447.

7 REMOVE INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch "OFF".
- Remove injector assembly. Refer to EC-39.Keep fuel hose and all injectors connected to injector gallery.

■ GO TO 8.

8 CHECK INJECTOR

- 1. Disconnect all injector harness connectors.
- 2. Disconnect all ignition coil harness connectors.
- 3. Prepare pans or saucers under each injectors.
- 4. Crank engine for about 3 seconds.

Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip)	•	GO TO 9.
NG (Drips)		Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

QG

Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT INCIDENT		
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

On Board Diagnosis Logic

On Board Diagnosis Logic

LIFC0202

If a misfire occurs, the engine speed will fluctuate. If the fluctuation is detected by the crankshaft position sensor (POS), the misfire is diagnosed.

Sensor	Input Signal to ECM	ECM function	
Crankshaft position sensor (POS)	Engine speed	On board diagnosis of misfire	

The misfire detection logic consists of the following two conditions.

- One Trip Detection Logic (Three Way Catalyst Damage)
 When a misfire is detected which will overheat and damage the three way catalyst, the MI will start blinking; even during the first trip. In this condition, ECM monitors the misfire every 200 revolutions.
 If the misfire frequency decreases to a level that will not damage the three way catalyst, the MI will change from blinking to lighting up. (After the first trip detection, the MI will light up from engine starting. If a misfire is detected that will cause three way catalyst damage, the MI will start blinking.)
- 2. Two Trip Detection Logic (Exhaust quality deterioration)
 When a misfire that will not damage the three way catalyst (but will affect exhaust emission) occurs, the
 MI will light up based on two trip detection logic. In this condition, ECM monitors the misfire for every 1,000
 revolutions of the engine.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0300 0300	Multiple cylinders misfire.	Improper spark plug Insufficient compression
P0301 0301	No. 1 cylinder misfires.	 Incorrect fuel pressure EGR volume control valve The injector circuit is open or shorted
P0302 0302	No. 2 cylinder misfires.	 Injectors Intake air leak Insufficient ignition spark
P0303 0303	No. 3 cylinder misfires.	Lack of fuel Heated oxygen sensor 1 (front)
P0304 0304	No. 4 cylinder misfires.	

[4]	DATA M	DATA MONITOR		
	MONITOR		NO DTC	
	ENG SPEED	X	XX rpm	
				SEF058Y

DTC Confirmation Procedure

NJEC0203

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(P) With CONSULT-II

- Turn ignition switch "ON", and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF" and wait at least 9 seconds.
- 4) Start engine again and drive at 1,500 3,000 rpm for at least 3 minutes.

Hold the accelerator pedal as steady as possible.

NOTE:

Refer to the freeze frame data for the test driving conditions.

- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-263.
- With GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

Diagnostic Procedure

		<u> </u>	NJEC0204
1	CHECK FOR INTAKE A	IR LEAK	
	1. Start engine and run it at idle speed. 2. Listen for the sound of the intake air leak. OK or NG		
OK	>	GO TO 2.	
NG	•	Discover air leak location and repair.	

2	CHECK FOR EXHAUST SYSTEM CLOGGING			
Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.				
	OK or NG			
OK	OK ▶ GO TO 3.			
NG	>	Repair or replace it.		

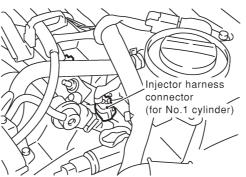
3	CHECK EGR FUNCTIO	N		
	Perform DTC Confirmation Procedure for DTC P1402 EGR FUNCTION (OPEN). Refer to EC-353.			
	OK or NG			
OK	OK ▶ GO TO 4.			
NG	>	Repair EGR system.		

Diagnostic Procedure (Cont'd)

4 PERFORM POWER BALANCE TEST

(P) With CONSULT-II

1. Perform "POWER BALANCE" in "ACTIVE TEST" mode.


ACTIVE TEST				
POWER BALANCE				
MONITOR				
ENG SPEED	XXX rpm			
MAS A/F SE-B1	xxx v			
IACV-AAC/V	XXX step			

SEF190Y

2. Is there any cylinder which does not produce a momentary engine speed drop?

Without CONSULT-II

When disconnecting each injector harness connector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

SEF604Y

Yes or No

Yes	GO TO 5.
No ►	GO TO 7.

Does each injector make an operating sound at idle? At idle Click C/ich Suitable tool Yes ► GO TO 6. No ► Check injector(s) and circuit(s). Refer to EC-447.

Diagnostic Procedure (Cont'd)

6 CHECK IGNITION SPARK 1. Turn Ignition switch "OFF". 2. Disconnect ignition coil assembly from rocker cover. 3. Connect a known good spark plug to the ignition coil assembly. 4. Place end of spark plug against a suitable ground and crank engine. 5. Check for spark. SEF575Q OK or NG OK Check ignition coil, power transistor and their circuits. Refer to EC-451.

7	CHECK SPARK PLUG	S
Rem	ove the spark plugs and ch	eck for fouling, etc.
		SEF156I
		OK or NG
OK	>	GO TO 8.
NG	>	Repair or replace spark plug(s) with standard type one(s). For spark plug type, refer to EM-18, "Checking and changing".

8	CHECK COMPRESSION PRESSURE			
	Minimum: 1,128 kPa (11.28 Difference between	bar, 1 bar, 1 each	13.5 kg/cm ² , 192 psi)/350 rpm 1.5 kg/cm ² , 164 psi)/350 rpm cylinder:	
	98 kPa (0.98 bar, 1.0 kg/cm², 14 psi)/350 rpm OK or NG			
OK	DK			
NG	NG Check pistons, piston rings, valves, valve seats and cylinder head gaskets.			

Diagnostic Procedure (Cont'd)

9 CHECK FUEL PRESSURE 1. Install any parts removed. 2. Release fuel pressure to zero. Refer to EC-38. 3. Install fuel pressure gauge and check fuel pressure. Fuel pressure gauge Fuel pressure Fuel pressure Gauge Fuel pressure Fuel pressure Gauge Fuel pressure Gauge Fuel pressure Fuel pressure Gauge Fuel pressure Fuel pressure Fuel pressure Gauge Fuel pressure Fuel pressure Gauge Fuel pressure Fuel

10	DETECT MAI FUNCTIO	NING PART	
		•	
NG	•	GO TO 10.	
OK	>	GO TO 11.	

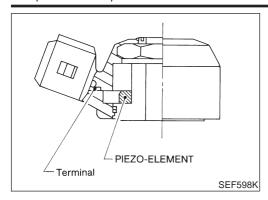
10	DETECT MALFUNCTIONING PART		
Check the following. Fuel pump and circuit (Refer to EC-464.) Fuel pressure regulator (Refer to EC-39.) Fuel lines Fuel filter for clogging			
	•	Repair or replace.	

11	CHECK IGNITION TIMING			
	Perform "Basic Inspection". Refer to EC-98.			
	OK or NG			
OK ▶ GO TO 12.		GO TO 12.		
NG 1. Perform "Idle Air Volume Learning". Refer to EC-55. 2. Check camshaft position sensor (PHASE) (EC-278) and crankshaft position sensor (POS) (EC-272).				

12	2 CHECK HEATED OXYGEN SENSOR 1 (FRONT)				
Refer	Refer to "Component Inspection", EC-181.				
	OK or NG				
OK	>	GO TO 13.			
NG	NG Replace heated oxygen sensor 1 (front).				

Diagnostic Procedure (Cont'd)

13	13 CHECK MASS AIR FLOW SENSOR			
Check at	With CONSULT-II Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II. at idling: 1.0 - 4.0 g-m/sec at 2,500 rpm: 5.0 - 10.0 g-m/sec			
Check at	With GST Check mass air flow sensor signal in MODE 1 with GST. at idling: 1.0 - 4.0 g·m/sec at 2,500 rpm: 5.0 - 10.0 g·m/sec			
	OK or NG			
OK	•	GO TO 15.		
NG	NG GO TO 14.			


14	4 CHECK CONNECTORS				
	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-152.				
	OK or NG				
NG	NG Repair or replace it.				

15	15 CHECK SYMPTOM MATRIX CHART		
Checl	Check items on the rough idle symptom in "Symptom Matrix Chart", EC-124.		
	OK or NG		
OK	•	GO TO 16.	
NG	>	Repair or replace.	

16	ERASE THE 1ST TRIP DTC			
1	e tests may cause a 1st trip DTC to be set. e the 1st trip DTC from the ECM memory after performing the tests. Refer to EC-68.			
	▶ GO TO 17.			

17	CHECK INTERMITTENT INCIDENT		
Perfor	erform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
► INSPECTION END			

Component Description

Component Description

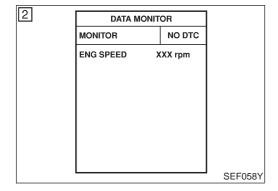
The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM. Freeze frame data will not be stored in the ECM for the knock sensor. The MI will not light for knock sensor malfunction. The knock sensor has one trip detection logic.

ECM Terminals and Reference Value

NJEC0207

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
81	W	Knock sensor	[Engine is running] ● Idle speed	1.0 - 4.0V

On Board Diagnosis Logic

NJEC0208

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0325 0325	An excessively low or high voltage from the knock sensor is sent to ECM.	Harness or connectors (The knock sensor circuit is open or shorted.) Knock sensor

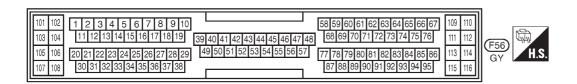
DTC Confirmation Procedure

NJEC0209

NOTE:

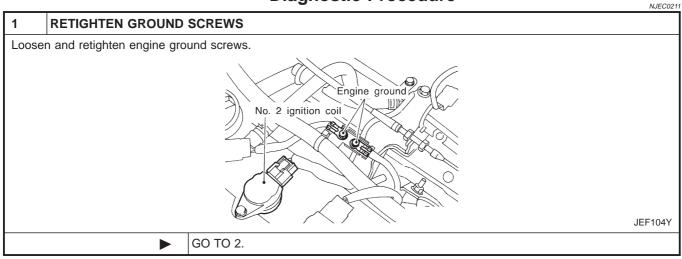
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

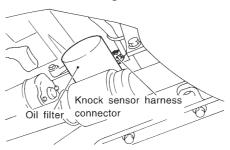
TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- (P) With CONSULT-II
- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 5 seconds at idle speed.
- 3) If DTC is detected, go to "Diagnostic Procedure", EC-270.
- With GST

Follow the procedure "With CONSULT-II" above.


Wiring Diagram NJEC0210 **EC-KS-01** : DETECTABLE LINE FOR DTC ECM (F56) : NON-DETECTABLE LINE FOR DTC KNK 81 W 2 KNOCK SENSOR (F21)


Diagnostic Procedure

2 CHECK INPUT SIGNAL CIRCUIT-1

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and knock sensor harness connector.

View under the engine room

JEF110Y

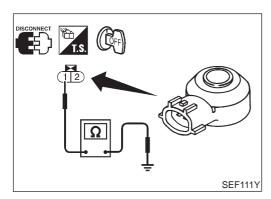
3. Check harness continuity between knock sensor signal terminal 1 and ECM terminal 81. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 3.


3 DETECT MALFUNCTIONING PART

Check the harness for open or short between knock sensor and ECM.

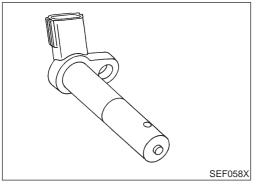
Repair open circuit or short to ground or short to power in harness or connectors.

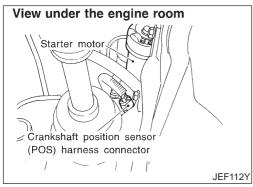
4 CHECK KNOCK SENSOR Refer to "Component Inspection", EC-271. OK or NG OK PGO TO 5. NG Replace knock sensor.

5	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Inspection KNOCK SENSOR

NJEC0212


- Use an ohmmeter which can measure more than 10 M Ω .
- 1. Disconnect knock sensor harness connector.
- 2. Check resistance between terminal 1 and ground.


Resistance: 500 - 620 k Ω [at 25°C (77°F)]

CAUTION:

Discard any knock sensors that have been dropped or physically damaged. Use only new ones.

Component Description

Component Description

The crankshaft position sensor (POS) is located on the right-rear wall of the cylinder block in relation to the signal plate at the rear end of the crankshaft.

The sensor consists of a permanent magnet, and hall IC.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

ECM Terminals and Reference Value

NJEC0552

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)
		Crankshaft position	[Engine is running] ■ Warm-up condition ■ Idle speed	3 - 4V (V) 15 10 5 0 2 ms SEF979W
85	R	sensor (POS)	[Engine is running] ● Engine speed is 2,000 rpm	3 - 4V (V) 15 10 2 ms SEF980W

DTC P0335 CRANKSHAFT POSITION SENSOR (POS)

On Board Diagnosis Logic

On Board Diagnosis Logic

NJEC0553

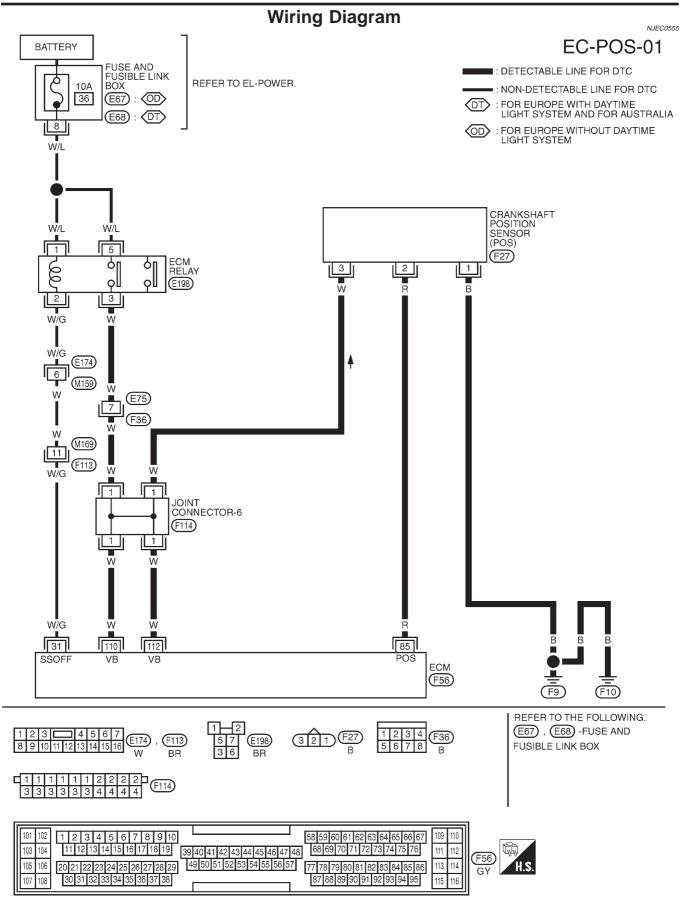
		NJECU553
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0335 0802	 The 10° signal is not entered to ECM for the first few seconds during engine cranking. The 10° signal is not entered to ECM during engine running. The 10° signal is not in the normal pattern at each engine revolution. 	 Harness or connectors (The crankshaft position sensor (POS) circuit is open or shorted.) Crankshaft position sensor (POS) Starter motor (Refer to EL section.) Starting system circuit (Refer to EL section.) Dead (Weak) battery

DATA M	ONITOR		
MONITOR	MONITOR NO DTC		
ENG SPEED	XXX rpm		

DTC Confirmation Procedure

NJEC0554

NOTE:

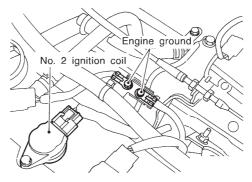

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(I) With CONSULT-II

- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 2 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-275.

With GST

Follow the procedure "With CONSULT-II" above.

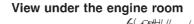


Diagnostic Procedure

NJEC0556

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

RETIGHTEN GROUND SCREWS

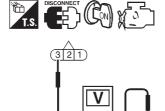


JEF104Y

GO TO 2.

2 CHECK POWER SUPPLY

1. Disconnect crankshaft position sensor harness connector.



Starter motor

Crankshaft position sensor (POS) harness connector

JEF112Y

- 2. Turn ignition switch "ON".
- 3. Check voltage between terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF113Y

OK or NG

OK ►	GO TO 4.
NG ►	GO TO 3.

DTC P0335 CRANKSHAFT POSITION SENSOR (POS)

QG

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-6
- Harness connectors E75, F36
- Harness for open or short between joint connector and ECM relay
- Harness for open or short between crankshaft position sensor and joint connector
- Harness for open or short between joint connector and ECM
- ECM relay

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK INPUT SIGNAL CIRCUIT

1. Disconnect crankshaft position sensor and ECM harness connectors.

View under the engine room

Crankshaft position sensor (POS) harness connector

Starter motor

JEF112Y

2. Check continuity between ECM terminal 85 and crankshaft position sensor harness connector terminal 2. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 5.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK GROUND CIRCUIT

- 1. Reconnect ECM harness connector.
- Check harness continuity between terminal 1 and engine ground. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 6.
NG	Repair open circuit or short to ground or short to power in harness or connectors.


6	CHECK CRANKSHAFT POSITION SENSOR			
Refer to "Component Inspection", EC-277.				
	OK or NG			
OK	OK ▶ GO TO 7.			
NG	•	Replace crankshaft position sensor.		

7		CHECK INTERMITTENT INCIDENT		
Р	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.			
	► INSPECTION END			

DTC P0335 CRANKSHAFT POSITION SENSOR (POS)

Component Inspection

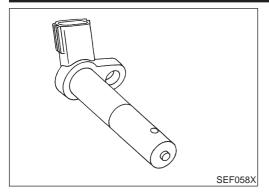
SEF121X

Component Inspection CRANKSHAFT POSITION SENSOR (POS)

NJEC0557

NJEC0557S01

- Disconnect crankshaft position sensor (POS) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.


5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
3 (+) - 1 (–)	
2 (+) - 1 (–)	Except 0 or ∞
3 (+) - 2 (–)	

If NG, replace crankshaft position sensor.

Component Description

Component Description

The camshaft position sensor (PHASE) senses the protrusion provided with exhaust valve cam sprocket to identify a particular cylinder. The crankshaft position sensor senses the piston position. The sensor consists of a permanent magnet and hall IC.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the cylinder number signal.

ECM Terminals and Reference Value

NJEC0221

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
66	R	Camshaft position sensor (PHASE)	[Engine is running] ■ Warm-up condition ■ Idle speed	3 - 4V (V) 15 10 5 0 20 ms SEF977W
75	R		[Engine is running] • Engine speed is 2,000 rpm	3 - 4V (V) 15 10 5 0 10 ms SEF978W

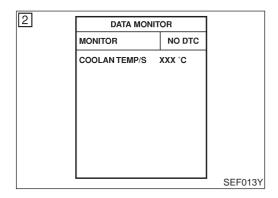
On Board Diagnosis Logic

On Board Diagnosis Logic

N IECO22

		NJEC0222
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0340 0340	 The cylinder No. signal is not entered to ECM for the first few seconds during engine cranking. The cylinder No. signal is not entered to ECM during engine running. The cylinder No. signal is not in the normal pattern during engine running. 	 Harness or connectors (The camshaft position sensor (PHASE) circuit is open or shorted.) Camshaft position sensor (PHASE) Starter motor (Refer to EL section.) Starting system circuit (Refer to EL section.)

DTC Confirmation Procedure

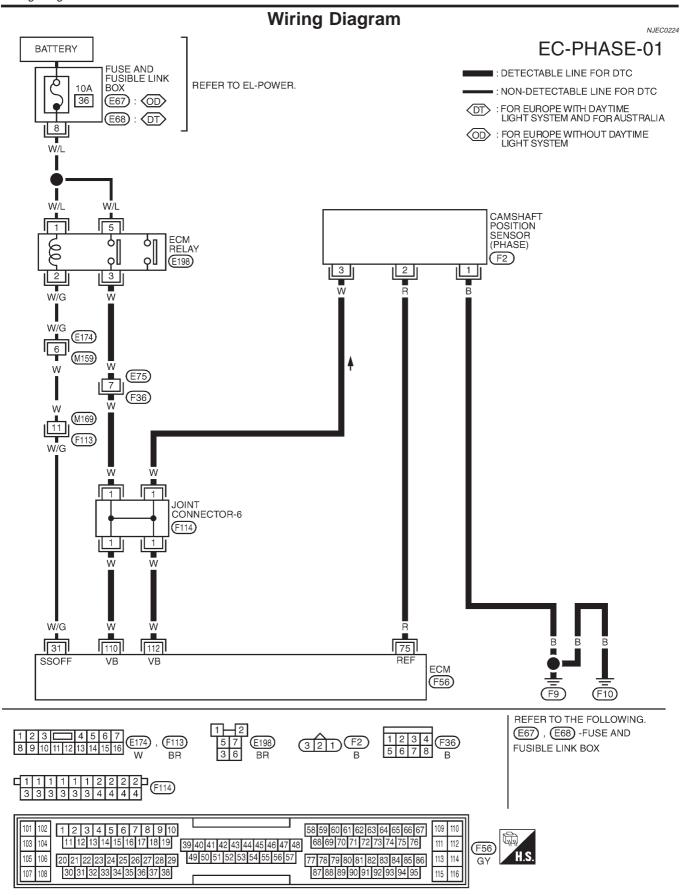

NJEC0223

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

TESTING CONDITION:

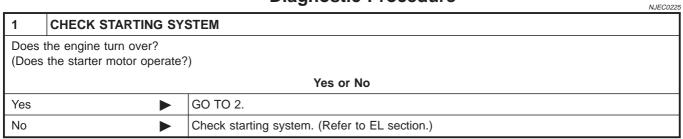
Before performing the following procedure, confirm that battery voltage is more than 10.5V.

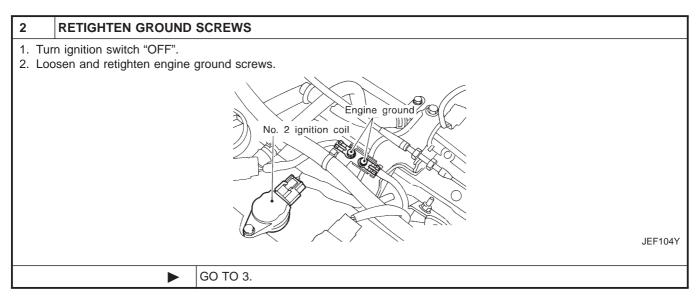


(II) With CONSULT-II

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Crank engine for at least 2 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-281.

With GST


Follow the procedure "With CONSULT-II" above.

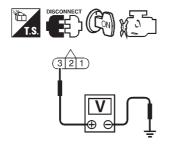


Diagnostic Procedure

Diagnostic Procedure

QG

Diagnostic Procedure (Cont'd)


3 CHECK POWER SUPPLY

1. Disconnect camshaft position sensor harness connector.

JEF114Y

- 2. Turn ignition switch "ON".
- 3. Check voltage between terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF113Y

OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-6
- Harness connectors E75, F36
- Harness for open or short between joint connector and ECM relay
- Harness for open or short between camshaft position sensor and joint connector
- Harness for open or short between joint connector and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between sensor terminal 2 and ECM terminal 75. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 7.
NG ►	GO TO 6.

QG

Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECM and joint connector
- Harness for open or short between joint connector and camshaft position sensor

Repair open circuit or short to ground or short to power in harness or connectors.

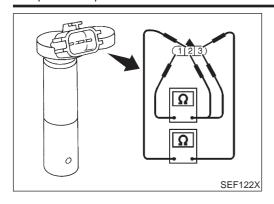
7 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between sensor terminal 1 and engine ground. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

_	.,		ь і	_
()	ĸ	or	Ν	(-


OK	GO TO 8.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

8	CHECK CAMSHAFT PO	DSITION SENSOR		
Refer	Refer to "Component Inspection", EC-284.			
	OK or NG			
OK	OK ▶ GO TO 9.			
NG	NG Replace camshaft position sensor.			

9	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Inspection

Component Inspection CAMSHAFT POSITION SENSOR

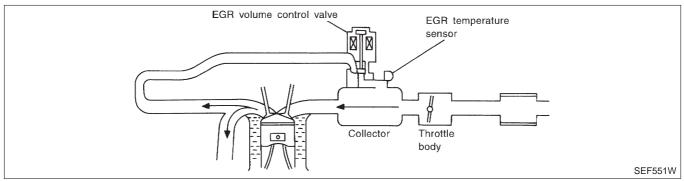
=NJEC0226

- Disconnect camshaft position sensor (PHASE) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.
- 5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
3 (+) - 1 (–)	
2 (+) - 1 (–)	Except 0 or ∞
3 (+) - 2 (-)	

If NG, replace camshaft position sensor.

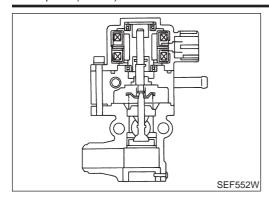
DTC P0400 EGR FUNCTION (CLOSED) (WHERE FITTED)


DescriptionSYSTEM DESCRIPTION

NJEC0227

	N	NJEC0227S01	
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal	1	
Throttle position sensor	Throttle position	EGR vol-	ECD values control value
Vehicle speed sensor	Vehicle speed	ume control	EGR volume control valve
Battery	Battery voltage	-	
Air conditioner switch	Air conditioner operation		
Power steering oil pressure switch	Power steering load signal		
Electrical load	Electrical load signal	1	
PNP switch	Park/Neutral position signal	1	

This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. The EGR volume control valve remains close under the following conditions.


- Low engine coolant temperature
- Engine starting
- High-speed engine operation
- Extremely light load engine operation
- Engine idling
- Excessively high engine coolant temperature
- Wide open throttle
- Mass air flow sensor malfunction
- Low battery voltage

DTC P0400 EGR FUNCTION (CLOSED) (WHERE FITTED)

Description (Cont'd)

COMPONENT DESCRIPTION **EGR Volume Control Valve**

NJEC0227S02

The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

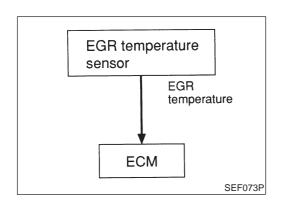
CONSULT-II Reference Value in Data Monitor Mode

NJEC0502

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
	Engine: After warming up Air conditioner switch: "OFF"	Idle	0 step
EGR VOL CON/V	Shift lever: "N" No-load	Revving engine up to 3,000 rpm quickly	10 - 55 step

ECM Terminals and Reference Value


NJEC0503

Specification data are reference values and are measured between each terminal and ground.

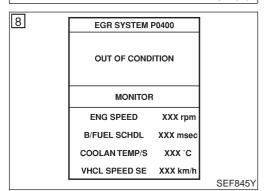
CAUTION:

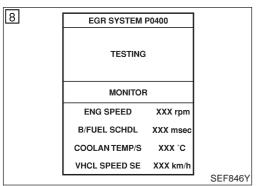
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

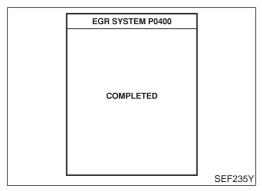
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
8 9 17 18	SB W/B R/Y BR/R	EGR volume control valve	[Engine is running] ● Idle speed	0 - 14V
58	В	Sensor's ground	[Engine is running] ■ Warm-up condition ■ Idle speed	ov
70	D/D	COD to manage to the contract	[Engine is running] ■ Warm-up condition ■ Idle speed	Less than 4.5V
72 P/B E		EGR temperature sensor	[Engine is running] ■ Warm-up condition ■ EGR system is operating.	0 - 1V

On Board Diagnosis Logic

If the absence of EGR flow is detected by EGR temperature sensor under the condition that calls for EGR, a low-flow malfunction is diagnosed.


DTC P0400 EGR FUNCTION (CLOSED) (WHERE FITTED)




On Board Diagnosis Logic (Cont'd)

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0400 0400	No EGR flow is detected under conditions that call for EGR.	 Harness or connectors (EGR volume control valve circuit is open or shorted.) EGR volume control valve stuck closed Dead (Weak) battery EGR passage clogged EGR temperature sensor and circuit Exhaust gas leaks

8	DATA MONITOR		
	MONITOR	NO DTC	
	COOLAN TEMP/	s xxx°c	
			SEF013

DTC Confirmation Procedure

NJEC0229

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.
- P0400 will not be displayed at "SELF-DIAG RESULTS" mode with CONSULT-II even though DTC work support test result is "NG".

TESTING CONDITION:

- Before performing the following procedure, confirm battery voltage is more than 10V at idle, then stop engine immediately.
- For best result, perform the test at a temperature of 0°C (32°F) or higher.
- (P) With CONSULT-II
- 1) Turn ignition switch "OFF" and wait at least 9 seconds.
- 2) Turn ignition switch "ON".
- 3) Check "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II and confirm it is within the range listed below.

COOLAN TEMP/S: Less than 40°C (104°F)

If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the engine coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

- Start engine and let it idle monitoring "COOLAN TEMP/S" value. When the "COOLAN TEMP/S" value reaches 70°C (158°F), immediately go to the next step.
- 5) Select "EGR SYSTEM P0400" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 6) Touch "START".
- Accelerate vehicle to a speed of 40 km/h (25 MPH) once and then stop vehicle with engine running.
 If "COMPLETED" appears on CONSULT-II screen, go to step 9.

If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.

8) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions until "TESTING" changes to "COMPLETED". (It will take approximately 45 seconds or more.)

ENG SPEED	Above 2,400 rpm
Vehicle speed	Above 90 km/h (56 MPH)
B/FUEL SCHDL	4.0 - 8.0 msec
Selector lever	4th or 5th

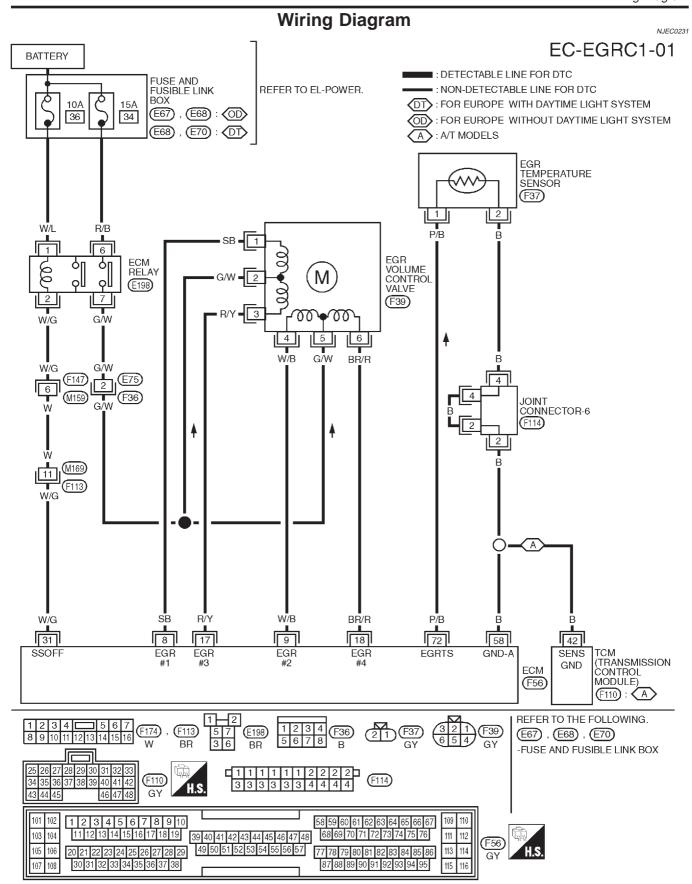
If "TESTING" is not displayed after 5 minutes, retry from step 2.

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-290.

With GST

- 1) Turn ignition switch "ON".
- 2) Check engine coolant temperature in MODE 1 with GST.

Engine coolant temperature: Less than 40°C (104°F)

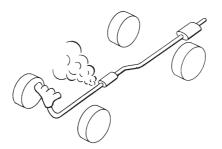

If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the engine coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

- 3) Start engine and let it idle monitoring the value of "COOLAN TEMP/S". When the engine coolant temperature reaches 70°C (158°F), immediately go to the next step.
- 4) Maintain the following conditions for at least 1 minute.

Engine speed	Above 2,400 rpm
Vehicle speed	Above 90 km/h (56 MPH)
Selector lever	4th or 5th

- 5) Stop vehicle.
- 6) Turn ignition switch "OFF" and wait at least 9 seconds, then turn "ON".
- 7) Repeat step 2 to 4.
- 8) Select "MODE 3" with GST.
- If DTC is detected, go to "DIAGNOSTIC PROCEDURE", FC-290
- When using GST, "DTC CONFIRMATION PROCEDURE" should be performed twice as much as when using CON-SULT-II because GST cannot diaplay MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CON-SULT-II is recommended.

DTC P0400 EGR FUNCTION (CLOSED) (WHERE FITTED)

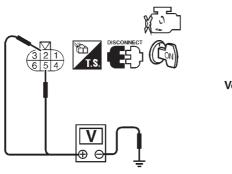


Diagnostic Procedure

NJEC0232

1 CHECK EXHAUST SYSTEM

- 1. Start engine.
- 2. Check exhaust pipes and muffler for leaks.


SEF099P

OK or NG

OK (With CONSULT-II)	•	GO TO 2.
OK (Without CONSULT-II)	>	GO TO 4.
NG		Repair or replace exhaust system.

2 CHECK POWER SUPPLY

- 1. Disconnect EGR volume control valve harness connector.
- 2. Turn ignition switch "ON".
- 3. Check voltage between terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF327X

OK or NG

OK	•	GO TO 4.
NG		GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between EGR volume control valve and ECM relay
 - Repair harness or connectors.

DTC P0400 EGR FUNCTION (CLOSED) (WHERE FITTED)

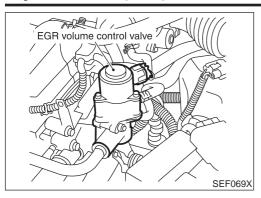
QG

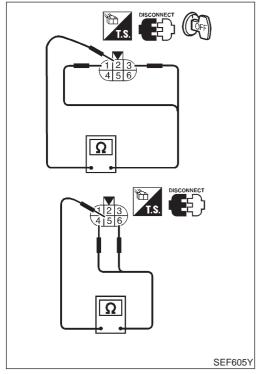
Diagnostic Procedure (Cont'd)

4 CHECK OUTPUT SIGI	NAL CIRCUIT			
1. Turn ignition switch "OFF".				
2. Disconnect ECM harness co	nnector.			
Check harness continuity be	tween			
ECM terminal 8 and termina	l 1,			
ECM terminal 9 and termina	I 4,			
ECM terminal 17 and termin	al 3,			
ECM terminal 18 and termin	al 6.			
Refer to wiring diagram.	Refer to wiring diagram.			
Continuity should exist.				
If OK, check harness for short to ground and short to power.				
OK or NG				
OK ► GO TO 5.				
NG Repair open circuit, short to ground or short to power in harness connectors.				

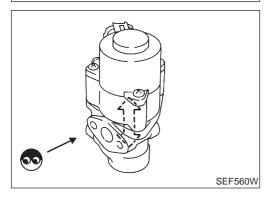
5	CHECK EGR PASSAGE			
Check EGR passage for clogging and cracks.				
OK or NG				
OK	OK			
NG	>	Repair or replace EGR passage.		

6	CHECK EGR TEMPERATURE SENSOR			
Refer to "COMPONENT INSPECTION", EC-352.				
OK or NG				
OK	OK ▶ GO TO 7.			
NG	•	Replace EGR temperature sensor.		


7	7 CHECK EGR VOLUME CONTROL VALVE		
Refer to "COMPONENT INSPECTION", EC-292.			
OK or NG			
OK ▶ GO TO 8.			
NG Replace EGR volume control valve.			


8	CHECK INTERMITTENT INCIDENT			
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.			
	► INSPECTION END			

DTC P0400 EGR FUNCTION (CLOSED) (WHERE FITTED)


QG

Diagnostic Procedure (Cont'd)

ACTIVE TES		
EGR VOL CONT/V	20 step	
MONITOF	₹	
ENG SPEED	XXX rpm	
EGR TEMP SEN	xxx v	
		SEF015

Component Inspection EGR VOLUME CONTROL VALVE

NJEC0233 NJEC0233S01

(P) With CONSULT-II

- 1) Disconnect EGR volume control valve harness connector.
- Check resistance between the following terminals. terminal 2 and terminals 1, 3 terminal 5 and terminals 4, 6

Temperature °C (°F)	Resistance Ω	
20 (68)	20 - 24	

- 3) Reconnect EGR volume control valve harness connector.
- Remove EGR volume control valve from cylinder head. (The EGR volume control valve harness connector should remain connected.)
- Turn ignition switch "ON".
- 6) Perform "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that EGR volume control valve shaft moves smoothly forward and backward according to the valve opening.

If NG, replace the EGR volume control valve.

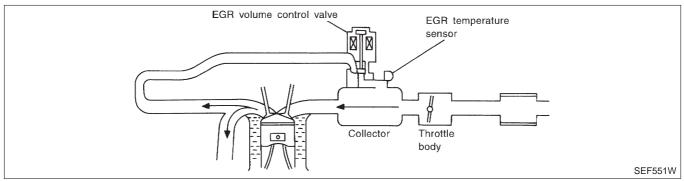
⋈ Without CONSULT-II

- 1) Disconnect EGR volume control valve harness connector.
- Check resistance between the following terminals. terminal 2 and terminals 1, 3 terminal 5 and terminals 4, 6

Temperature °C (°F)	Resistance Ω	
20 (68)	20 - 24	

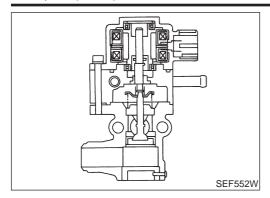
3) Turn ignition switch "ON" and "OFF". Check that EGR volume control valve shaft moves smoothly forward and backward according to the ignition switch position. If NG, replace the EGR volume control valve.

Description SYSTEM DESCRIPTION


NJEC0504

NJEC0504S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal		
Throttle position sensor	Throttle position	EGR vol-	EGR volume control valve
Vehicle speed sensor	Vehicle speed	ume control	EGR volume control valve
Battery	Battery voltage		
Air conditioner switch	Air conditioner operation		
Power steering oil pressure switch	Power steering load signal		
Electrical load	Electrical load signal		
PNP switch	Park/Neutral position signal	7	


This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. The EGR volume control valve remains close under the following conditions.

- Low engine coolant temperature
- Engine starting
- High-speed engine operation
- Extremely light load engine operation
- Engine idling
- Excessively high engine coolant temperature
- Wide open throttle
- Mass air flow sensor malfunction
- Low battery voltage

QG

Description (Cont'd)

COMPONENT DESCRIPTION EGR Volume Control Valve

NJEC0504S02

The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0506

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0 step
EGR VOL CON/V	Shift lever: "N"No-load	Revving engine up to 3,000 rpm quickly	1 - 10 step

ECM Terminals and Reference Value

NJEC0507

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
8 9 17 18	SB W/B R/Y BR/R		[Engine is running] ■ Warm-up condition ■ Idle speed	0 - 14V

On Board Diagnosis Logic

NJEC0508

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0403 0403	An improper voltage signal is sent to ECM through the valve.	Harness or connectors (The EGR volume control valve circuit is open or shorted.) EGR volume control valve

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

DTC Confirmation Procedure

NJEC0509

NOTE:

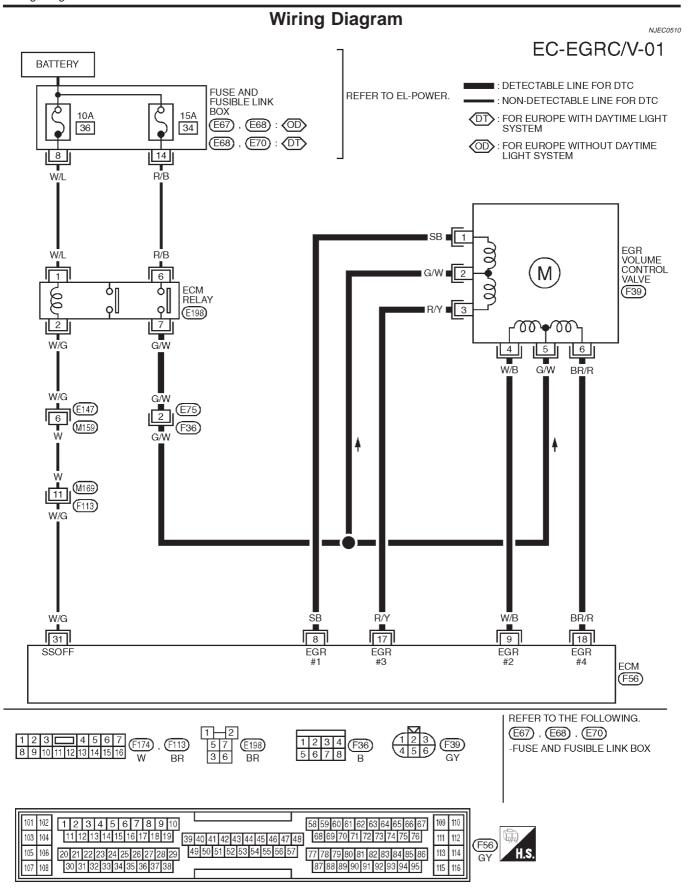
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- 4) Rev engine from idle to 2,000 rpm 20 times.

QG

DTC Confirmation Procedure (Cont'd)


If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-297.

With GST

Follow the procedure "With CONSULT-II" above.

QG

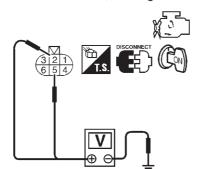
Wiring Diagram

QG

NJEC0511

Diagnostic Procedure

Diagnostic Procedure


CHECK POWER SUPPLY

Disconnect EGR volume control valve harness connector.

2. Turn ignition switch "ON".

1

3. Check voltage between terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF327X

OK or NG

OK	GO TO 3.
NG	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between EGR volume control valve and ECM relay

Repair harness or connectors.

3 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between

ECM terminal 8 and terminal 1,

ECM terminal 9 and terminal 4,

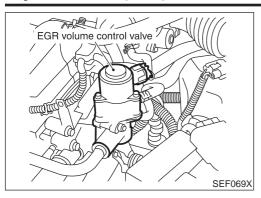
ECM terminal 17 and terminal 3, ECM terminal 18 and terminal 6.

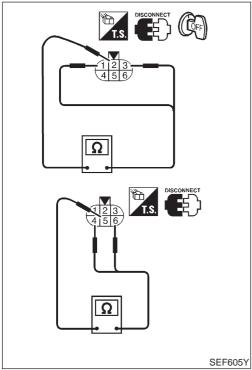
Refer to wiring diagram.

Continuity should exist.

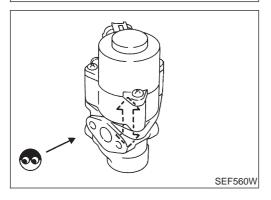
If OK, check harness for short to ground and short to power.

OK or NG


OK •	>	GO TO 4.
NG	>	Repair open circuit, short to ground or short to power in harness connectors.


4	CHECK EGR VOLUME	CONTROL VALVE		
Refer	Refer to "COMPONENT INSPECTION", EC-298.			
	OK or NG			
OK	OK ▶ GO TO 5.			
NG	•	Replace EGR volume control valve.		

5	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	INSPECTION END		


QG

Diagnostic Procedure (Cont'd)

ACTIVE TEST		
EGR VOL CONT/V	20 step	
MONITOF	₹	
ENG SPEED	XXX rpm	
EGR TEMP SEN	xxx v	
		SEF015

Component Inspection EGR VOLUME CONTROL VALVE

NJEC0512 NJEC0512S01

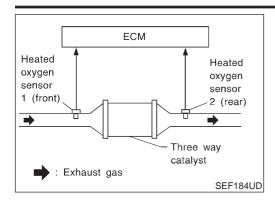
- (P) With CONSULT-II
- 1) Disconnect EGR volume control valve harness connector.
- Check resistance between the following terminals. terminal 2 and terminals 1, 3 terminal 5 and terminals 4. 6

Temperature °C (°F)	Resistance Ω	
20 (68)	20 - 24	

- 3) Reconnect EGR volume control valve harness connector.
- Remove EGR volume control valve from cylinder head. (The EGR volume control valve harness connector should remain connected.)
- Turn ignition switch "ON".
- 6) Perform "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that EGR volume control valve shaft moves smoothly forward and backward according to the valve opening.

If NG, replace the EGR volume control valve.

⋈ Without CONSULT-II


- 1) Disconnect EGR volume control valve harness connector.
- Check resistance between the following terminals. terminal 2 and terminals 1, 3 terminal 5 and terminals 4, 6

Temperature °C (°F)	Resistance Ω	
20 (68)	20 - 24	

3) Turn ignition switch "ON" and "OFF". Check that EGR volume control valve shaft moves smoothly forward and backward according to the ignition switch position.

If NG, replace the EGR volume control valve.

On Board Diagnosis Logic

On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of heated oxygen sensors 1 (front) and 2 (rear).

A three way catalyst with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2 (rear). As oxygen storage capacity decreases, the heated oxygen sensor 2 (rear) switching frequency will increase.

When the frequency ratio of heated oxygen sensors 1 (front) and 2 (rear) approaches a specified limit value, the three way catalyst malfunction is diagnosed.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0420 0420	 Three way catalyst does not operate properly. Three way catalyst does not have enough oxygen storage capacity. 	 Three way catalyst Exhaust tube Intake air leaks Injectors Injector leaks Spark plug Improper ignition timing

SRT WORK SUPPORT		
CATALYST	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
EGR SYSTEM	INCMP	
MONITO	OR	1
ENG SPEED	XXX rpm	1
MAS A/F SE B1	xxx v	
B/FUEL SCHDL	XXX msec	
A/F ALPHA-B1	XXX V	l
COOLAN TEMP/S	XXX °C	l
HO2S1 (B1)	XXX V	l
		SEF847

[7]	SRT WORK S		
	CATALYST	CMPLT	
	HO2S HTR	CMPLT	
	HO2S	INCMP	
	EGR SYSTEM	INCMP	
	MONITO	OR	1
	ENG SPEED	XXX rpm	1
	MAS A/F SE B1	xxx v	
	B/FUEL SCHDL	XXX msec	
	A/F ALPHA-B1	XXX V	
	COOLAN TEMP/S	XXX °C	1
	HO2S1 (B1)	XXX V	1
			SEF848Y

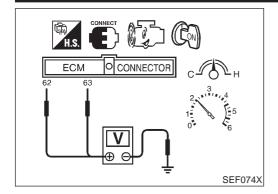
SELF DIAG RESU	JLTS	
DTC RESULTS	TIME	
NO DTC IS DETECTED.		
FURTHER TESTING		
MAY BE REQUIRED.		
		SEF560X

DTC Confirmation Procedure

NJEC0241

CAUTION:

Always drive vehicle at a safe speed.


NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

With CONSULT-II TESTING CONDITION:

- Open engine hood before conducting following procedure.
- Do not hold engine speed more than specified minutes below.
- 1) Turn ignition switch "ON".
- Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- 3) Start engine.
- 4) Rev engine up to 3,000±500 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely. If "COMPLETED" appears on the CONSULT-II screen, go to step 7.
- 5) Wait 5 seconds at idle.
- 6) Rev engine up to 2,500±500 rpm and maintain it until "INCMP" of CATALYST changes to "CMPLT" (it will take approximately 5 minutes.)
 - If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest from step 1.
- 7) Select "SELF-DIAG RESULTS" mode with CONSULT-II.
- 8) Confirm that the 1st trip DTC is not detected. If the 1st trip DTC is detected, go to "Diagnostic Procedure", EC-300.

Overall Function Check

Overall Function Check

N IECO24

Use this procedure to check the overall function of the three way catalyst. During this check, a 1st trip DTC might not be confirmed.

Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeters probes between ECM terminals 62 (HO2S1 signal), 63 (HO2S2 signal) and engine ground.
- 4) Keep engine speed at 2,000 rpm constant under no load.
- 5) Make sure that the voltage switching frequency (high & low) between ECM terminal 63 and engine ground is much less than that of ECM terminal 62 and engine ground.

Switching frequency ratio = A/B

A: Heated oxygen sensor 2 (rear) voltage switching frequency

B: Heated oxygen sensor 1 (front) voltage switching frequency

This ratio should be less than 0.75.

If the ratio is greater than above, it means three way catalyst does not operate properly.

NOTE:

If the voltage at terminal 62 does not switch periodically more than 5 times within 10 seconds at step 4, perform trouble diagnosis for DTC P0133 first. (See EC-195.)

Diagnostic Procedure

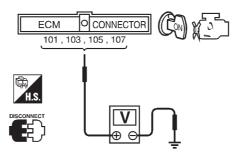
NJEC0243

1	1 CHECK EXHAUST SYSTEM			
Visual	Visually check exhaust tubes and muffler for dent.			
	OK or NG			
OK	OK ▶ GO TO 2.			
NG	NG Repair or replace.			

DTC P0420 THREE WAY CATALYST FUNCTION

QG

Diagnostic Procedure (Cont'd)


2 CHECK EXHAUST AIR LEAK 1. Start engine and run it at idle. 2. Listen for an exhaust air leak before the three way catalyst. SEF099P OK or NG OK PG Repair or replace.

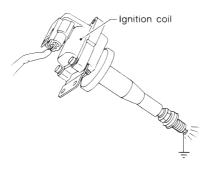
3	CHECK INTAKE AIR LEAK		
Listen	Listen for an intake air leak after the mass air flow sensor.		
	OK or NG		
ОК	OK ▶ GO TO 4.		
NG	>	Repair or replace.	

4	CHECK IGNITION TIMII	NG	
	Check for ignition timing. Refer to "BASIC INSPECTION", EC-98.		
	OK or NG		
OK	>	GO TO 5.	
NG	>	Check camshaft position sensor (PHASE) (EC-278) and crankshaft position sensor (POS) (EC-272).	

5 CHECK INJECTORS

- 1. Refer to Wiring Diagram for Injectors, EC-447.
- 2. Stop engine and then turn ignition switch "ON".
- 3. Check voltage between ECM terminals 101, 103, 105 and 107 and ground with CONSULT-II or tester.

SEF075X


Battery voltage should exist.

OK or NG

OK •	GO TO 6.
NG ►	Perform "Diagnostic Procedure" INJECTOR, EC-448.

6 CHECK IGNITION SPARK

- 1. Disconnect ignition coil assembly from rocker cover.
- 2. Connect a known good spark plug to the ignition coil assembly.
- 3. Place end of spark plug against a suitable ground and crank engine.
- 4. Check for spark.

SEF575Q

OK or NG

OK		GO TO 7.
NG	•	Check ignition coil, power transistor and their circuits. Refer to EC-451.

7 CHECK INJECTOR

- 1. Turn ignition switch "OFF".
- 2. Remove injector assembly. Refer to EC-39.

Keep fuel hose and all injectors connected to injector gallery.

- 3. Disconnect camshaft position sensor harness connector.
- 4. Turn ignition switch "ON".

Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip)		GO TO 8.
NG (Drips)	•	Replace the injector(s) from which fuel is dripping.

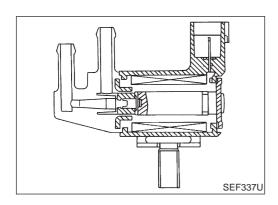
DTC P0420 THREE WAY CATALYST FUNCTION

QG

Diagnostic Procedure (Cont'd)

8	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
Troubl	Trouble is fixed INSPECTION END		
Troubl	e is not fixed		Replace three way catalyst.

Description


Description SYSTEM DESCRIPTION

N.IEC0248 NJEC0248S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Battery	Battery voltage		
Ignition switch	Start signal	EVAP can- ister purge	EVAP canister purge volume
Closed throttle position switch*	Closed throttle position	control	control solenoid valve
Throttle position sensor	Throttle position		
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Fuel tank temperature sensor*	Fuel temperature in fuel tank		
Vehicle speed sensor	Vehicle speed		

^{*:} If so equipped

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the

CONSULT-II Reference Value in Data Monitor Mode

NJEC0249

			NJLC0249
MONITOR ITEM	COND	DITION	SPECIFICATION
PURG VOL C/V	Engine: After warming up	Idle	0%
	No-load	Revving engine	_

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

=NJEC0250

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

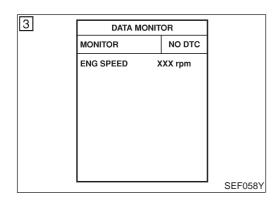
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] ■ Warm-up condition ■ Idle speed	BATTERY VOLTAGE (11 - 14V)
14	GY/L	EVAP canister purge volume control solenoid valve	[Engine is running] ■ Warm-up condition ■ 2,000 rpm	5 - 12V (V) 30 20 10 200 ms SEF975W

On Board Diagnosis Logic

NJEC0251

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0443 0443	An improper voltage signal is sent to ECM through the valve.	Harness or connectors (The valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve

DTC Confirmation Procedure

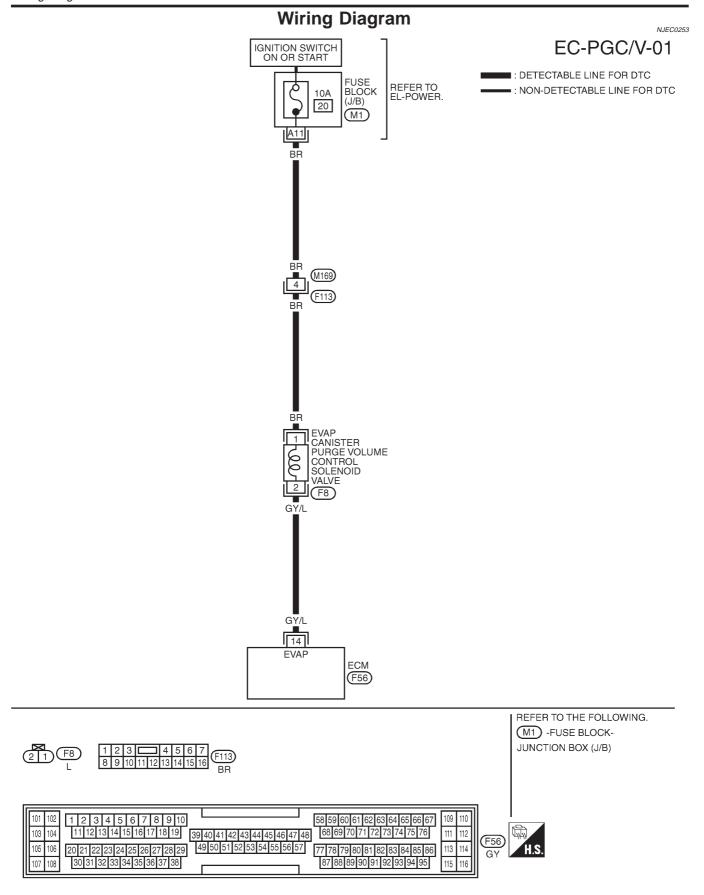

NOTE:

NJEC0252

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V.

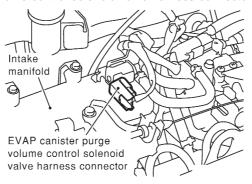

(F) With CONSULT-II

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-307.

With GST

Follow the procedure "With CONSULT-II" above.

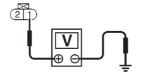
Wiring Diagram


Diagnostic Procedure

Diagnostic Procedure

NJEC0254

1 CHECK POWER SUPPLY


- 1. Turn ignition switch "OFF".
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.

SEF076X

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminals 1 and engine ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF606Y

OK or NG

OK ▶	GO TO 3.
NG ▶	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M169, F113
- 10A fuse
- Harness for open or short between EVAP canister purge volume control solenoid valve and fuse
 - Repair harness or connectors.

3 CHECK OUTPUT SIGNAL CIRCUIT

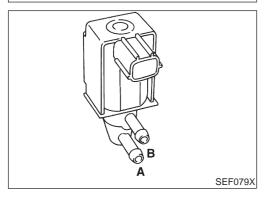
- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 14 and terminal 2. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.


Diagnostic Procedure (Cont'd)

4	CHECK EVAP CANISTE	ER PURGE VOLUME CONTROL SOLENOID VALVE	
Refer to "Component Inspection" EC-308.			
	OK or NG		
ОК	OK ▶ GO TO 5.		
NG	>	Replace EVAP canister purge volume control solenoid valve.	

5	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

ACTIVE TEST		
PURG VOL CONT/V XXX		
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
A/F ALPHA-B2	XX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
THRTL POS SEN	X. XX V	

SEF677Y

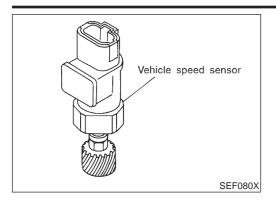
Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

NJEC0255

N.JEC0255S01

- (II) With CONSULT-II
- 1) Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.
 - If OK, inspection end. If NG, go to following step.
- B) Check air passage continuity.

Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No


If NG or operation takes more than 1 second, replace the EVAP canister purge volume control solenoid valve.

⋈ Without CONSULT-II

Check air passage continuity.

Condition	Air passage continuity between A and B
12V direct current supply between terminals	Yes
No supply	No

If NG or operation takes more than 1 second, replace the EVAP canister purge volume control solenoid valve.

Component Description

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM.

ECM Terminals and Reference Value

NJEC0273

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
86	PU/R	Vehicle speed sensor	[Engine is running] ■ Lift up the vehicle ■ In 2nd gear position ■ Vehicle speed is 40 km/h (25 MPH)	2.5 - 3V (V) 15 10 5 0 200 ms SEF976W

On Board Diagnosis Logic

NJEC0274

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0500 0500	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connector (The vehicle speed sensor circuit is open or shorted.) Vehicle speed sensor

DTC Confirmation Procedure

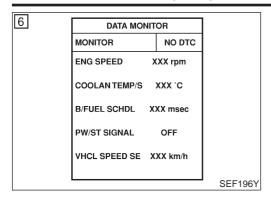
NJEC0275

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.


TESTING CONDITION:

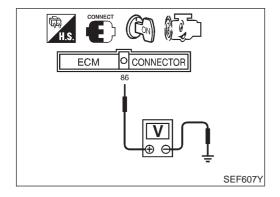
This procedure may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

DTC P0500 VEHICLE SPEED SENSOR (VSS)

QG

DTC Confirmation Procedure (Cont'd)

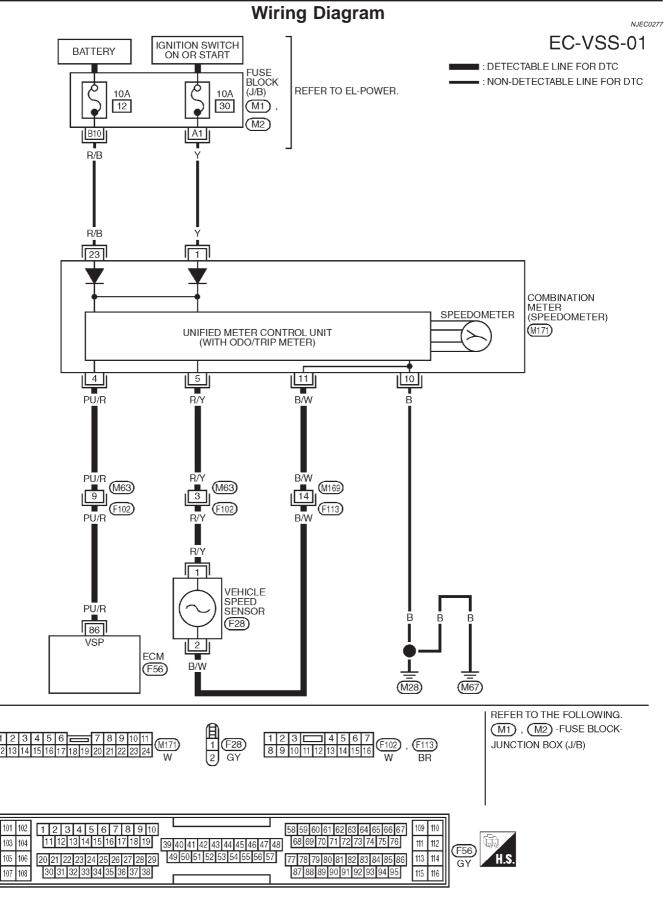
(P) With CONSULT-II


- 1) Start engine
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 3) If NG, go to "Diagnostic Procedure", EC-312. If OK, go to following step.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	2,600 - 4,000 rpm (M/T) 2,600 - 3,000 rpm (A/T)
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	5.3 - 10.7 msec (M/T) 4.8 - 10.7 msec (A/T)
Selector lever	Suitable position
PW/ST SIGNAL	OFF

7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-312.

With GST


Follow the procedure "With CONSULT-II" above.

⋈ Without CONSULT-II

- 1) Lift up drive wheels.
- 2) Start engine.
- 3) Read the voltage signal between ECM terminal 86 (Vehicle speed sensor signal) and ground with oscilloscope.
- 4) Verify that the oscilloscope screen shows the signal wave as shown in the figure.
- 5) If NG, go to "Diagnostic Procedure", EC-312.

DTC P0500 VEHICLE SPEED SENSOR (VSS)

Diagnostic Procedure

NJEC0278

1 CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and combination meter harness connector.
- Check harness continuity between ECM terminal 86 and meter terminal 4. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

Oł	<		GO TO 3.
NO	3		GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

NG

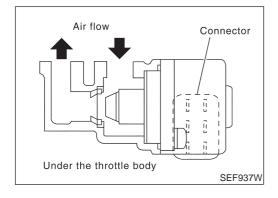
- Harness connectors M63, F102
- Harness for open or short between ECM and combination meter

Repair open circuit or short to ground or short to power in harness or connectors.

Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK SPEEDOMETER CIRCUIT Check the following. ■ Harness connectors M63, F102 ■ Harness connectors M169, F113 ■ Harness for open or short between combination meter and vehicle speed sensor OK Check combination meter and vehicle speed sensor. Refer to EL-89, "METERS AND GAUGES".

5	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		


Description

Description SYSTEM DESCRIPTION

NJEC0279 NJEC0279S01

			140200273001
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal		
Throttle position sensor	Throttle position		
PNP switch	Park/Neutral position	Idle air	IACV-AAC valve
Air conditioner switch	Air conditioner operation	control	IACV-AAC valve
Power steering oil pressure switch	Power steering load signal		
Battery	Battery voltage		
Vehicle speed sensor	Vehicle speed		
Cooling fan	Cooling fan operation		
Electrical load	Electrical load signal		

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which by-passes the throttle valve via IACV-AAC valve. The IACV-AAC valve changes the opening of the air by-pass passage to control the amount of auxiliary air. This valve is actuated by a step motor built into the valve, which moves the valve in the axial direction in steps corresponding to the ECM output signals. One step of IACV-AAC valve movement causes the respective opening of the air by-pass passage. (i.e. when the step advances, the opening is enlarged.) The opening of the valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM. The ECM then controls the step position of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner, power steering, cooling fan operation and electrical load).

COMPONENT DESCRIPTION IACV-AAC Valve

NJEC0279S02

NUECOSTOCOSOS

The IACV-AAC valve is operated by a step motor for centralized control of auxiliary air supply. This motor has four winding phases and is actuated by the output signals of ECM which turns ON and OFF two windings each in sequence. Each time the IACV-AAC valve opens or closes to change the auxiliary air quantity, the ECM sends a pulse signal to the step motor. When no change in the auxiliary air quantity is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

NJEC0280

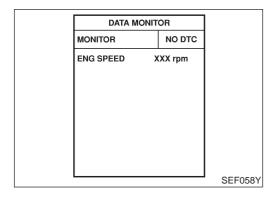
MONITOR ITEM	CONDITION		SPECIFICATION
IACV-AAC/V	 Engine: After warming up Air conditioner switch: OFF Shift lever: "N" No-load 	Idle	5 - 25 steps
IAC V-AAC/ V		2,000 rpm	_

ECM Terminals and Reference Value

NJEC0281

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

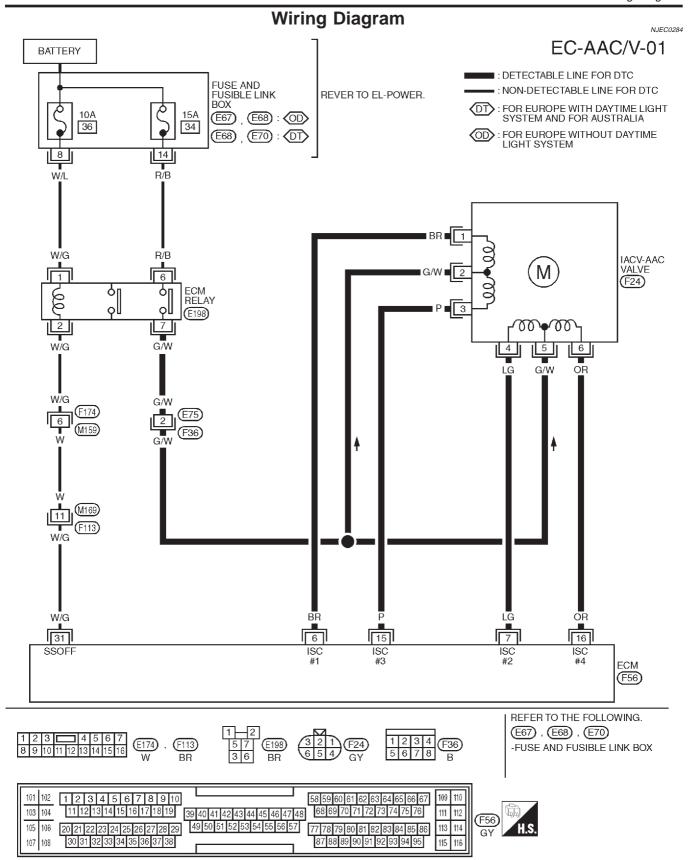
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6 7 15 16	BR LG P OR	IACV-AAC valve	[Engine is running] ■ Warm-up condition ■ Idle speed	0.1 - 14V

On Board Diagnosis Logic

NJEC0282

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0505 0505	An improper voltage signal is sent to ECM through the valve.	Harness or connectors (The IACV-AAC valve circuit is open.) IACV-AAC valve

DTC Confirmation Procedure

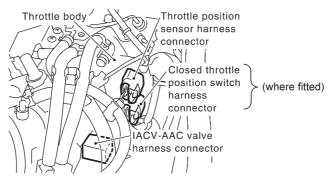

NJEC0283

NOTE:

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform "Idle Air Volume Learning", refer to EC-55, before conducting "DTC Confirmation Procedure". For the target idle speed, refer to "SERVICE DATA AND SPECIFICATIONS (SDS)", EC-489.
- (P) With CONSULT-II
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and warm it up to normal operating temperature.
- Rev engine from idle to 2,000 rpm 20 times.
 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-297.
- With GST

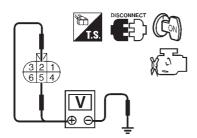
Follow the procedure "With CONSULT-II" above.

Wiring Diagram


Diagnostic Procedure

Diagnostic Procedure

NJEC0285


1 CHECK POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect IACV-AAC valve harness connector.

3. Turn ignition switch "ON".

4. Check voltage between terminal 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF343X

NEF316A

OK or NG

OK ►	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between IACV-AAC and ECM relay

Repair harness or connectors.

3 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between

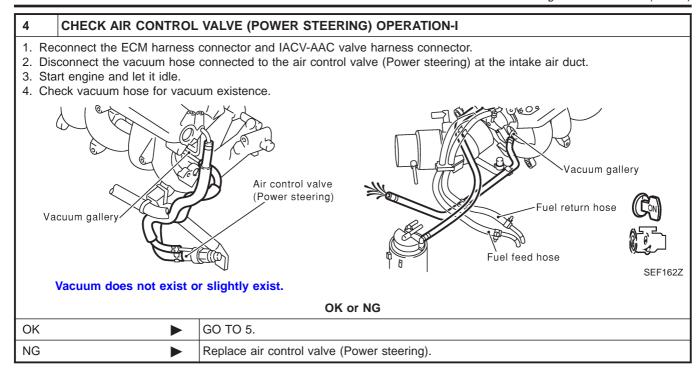
ECM terminal 6 and terminal 1,

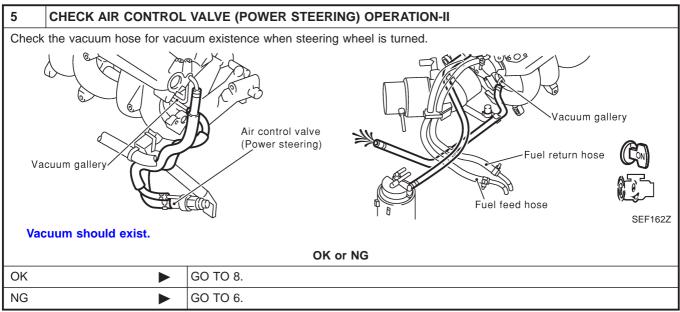
ECM terminal 7 and terminal 4,

ECM terminal 15 and terminal 3,

ECM terminal 16 and terminal 6.

Refer to wiring diagram.

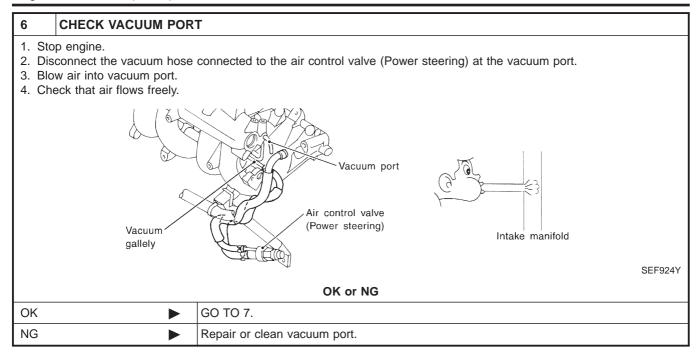

Continuity should exist.

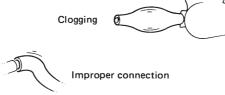

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)




Diagnostic Procedure (Cont'd)

7

CHECK VACUUM HOSES AND TUBES

Disconnect vacuum hoses between the air control valve (Power steering) and vacuum port, air control valve (Power steering) and air duct. Check hoses and tubes for cracks, clogging, improper connection or disconnection.

SEF109L

OK or NG	
OK ►	GO TO 8.
NG ►	Repair hoses or tubes.

8	CHECK IACV-AAC VALVE	
Refer to "Component Inspection", EC-320.		
OK or NG		
OK	•	GO TO 10.
NG	>	GO TO 9.

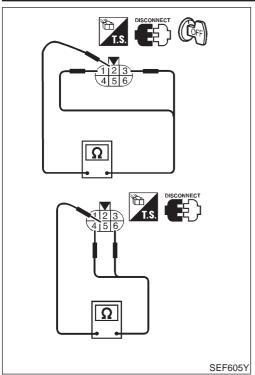
Diagnostic Procedure (Cont'd)

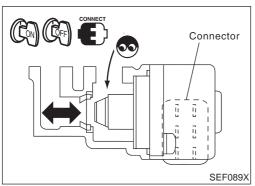
9	REPLACE IACV-AAC V	ALVE	
2. Per	1. Replace IACV-AAC valve assembly. 2. Perform "Idle Air Volume Learning", EC-55. Is the result CMPLT or INCMP? CMPLT or INCMP		
CMDL	т ь	INCRECTION FND	
CMPL		INSPECTION END	
INCMF	>	Follow the construction of "Idle Air Volume Learning".	

10 CHECK TARGET IDLE SPEED

- 1. Turn ignition switch "OFF".
- 2. Reconnect all harness connectors and vacuum hoses.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Also warm up transmission to normal operating temperature.
- For A/T models with CONSULT-II, drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of "A/T" system indicates less than 0.9V.
- For A/T models without CONSULT-II and M/T models, drive vehicle for 10 minutes.
- 5. Stop vehicle with engine running.
- 6. Check target idle speed.

M/T: 700±50 rpm


A/T: 800±50 rpm (in "P" or "N" position)


OK or NG

OK •	GO TO 11.
NG ▶	Perform "Idle Air Volume Learning", EC-55.

11	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

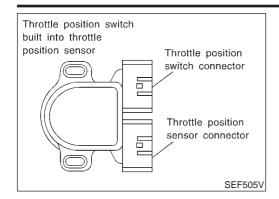
Component Inspection

Component Inspection IACV-AAC VALVE

NJEC0286

NJEC0286S01

- 1) Disconnect IACV-AAC valve harness connector.
- 2) Check IACV-AAC valve resistance.


Condition	Resistance	
Terminal 2 and terminals 1, 3	20 - 24Ω [at 20°C (68°F)]	
Terminal 5 and terminals 4, 6	20 - 2412 [at 20 C (66 F)]	

- 3) Reconnect IACV-AAC valve harness connector.
- Remove idle air adjusting unit assembly (IACV-AAC valve is built-in) from engine. (The IACV-AAC valve harness connector should remain connected.)
- 5) Turn ignition switch "ON" and "OFF", and ensure the IACV-AAC valve shaft smoothly moves forward and backward, according to the ignition switch position.

 If NG, replace the IACV-AAC valve.

DTC P0510 CLOSED THROTTLE POSITION SWITCH (WHERE FITTED) QG

Component Description

Component Description

A closed throttle position switch and wide open throttle position switch are built into the throttle position sensor unit. The wide open throttle position switch is used only for A/T control.

When the throttle valve is in the closed position, the closed throttle position switch sends a voltage signal to the ECM. The ECM only uses this signal to open or close the EVAP canister purge control valve when the throttle position sensor is malfunctioning.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0571

MONITOR ITEM	CONDITION		SPECIFICATION
CLSD THI /B SW		Throttle valve: Idle position	ON
CLSD THL/P SW • Engine: Idle	Throttle valve: Slightly open	OFF	

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NJEC0288

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
40	Throttle position switch	[Engine is running] • Accelerator pedal released	BATTERY VOLTAGE (11 - 14V)	
40 Y/PU (Closed position)	[Engine is running] • Accelerator pedal depressed	Approximately 0V		

On Board Diagnosis Logic

NJEC0289

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0510 0510	Battery voltage from the closed throttle position switch is sent to ECM with the throttle valve opened.	 Harness or connectors (The closed throttle position switch circuit is shorted.) Closed throttle position switch Throttle position sensor

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX 'C CLSD THL/P SW ON SEF197Y

DTC Confirmation Procedure

NJEC0290

CAUTION:

Always drive vehicle at a safe speed.

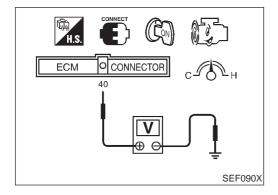
NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(I) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF", wait at least 9 seconds and then start engine.

- Select "CLSD THL/P SW" in "DATA MONITOR" mode. If "CLSD THL/P SW" is not available, go to step 5.
- 4) Check the signal under the following conditions.


Condition	Signal indication
Throttle valve: Idle position	ON
Throttle valve: Slightly open	OFF

If the result is NG, go to "Diagnostic Procedure", EC-324. If OK, go to following step.

- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Drive the vehicle for at least 5 consecutive seconds under the following condition.

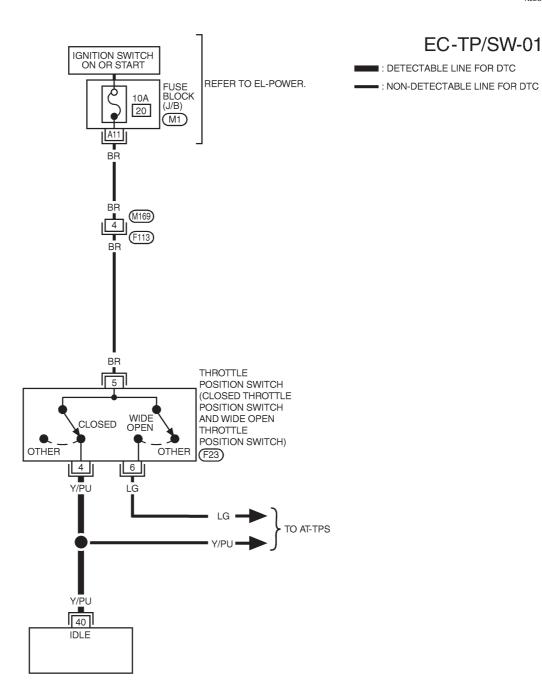
THRTL POS SEN	More than 2.3V
VHCL SPEED SE	More than 4 km/h (2 MPH)
Selector lever	Suitable position
Driving pattern	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

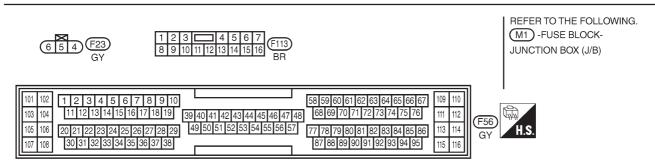
 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-324.

Overall Function Check

Use this procedure to check the overall function of the closed throttle position switch circuit. During this check, a 1st trip DTC might not be confirmed.

⊗ Without CONSULT-II


- 1) Start engine and warm it up to normal operating temperature.
- Check the voltage between ECM terminal 40 (Closed throttle position switch signal) and ground under the following conditions.


Condition	Voltage
At idle	Battery voltage
At 2,000 rpm	Approximately 0V

3) If NG, go to "Diagnostic Procedure", EC-324.

Wiring Diagram

NJEC0292

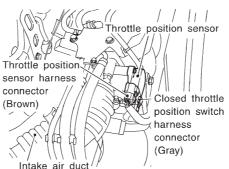
YEC052A

DTC P0510 CLOSED THROTTLE POSITION SWITCH (WHERE FITTED) QG

Diagnostic Procedure

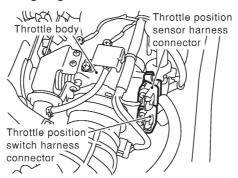
Diagnostic Procedure

NJEC0293


JEF091Y

SEF837X

1 CHECK POWER SUPPLY


1. Turn ignition switch "OFF".

2. Disconnect throttle position switch harness connector.

3. Turn ignition switch "ON".

4. Check voltage between terminal 5 and engine ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M169, F113
- 10A fuse
- Harness for open or short between throttle position switch and fuse

Repair harness or connectors.

3 CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 40 and terminal 4. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 5.
NG ▶	GO TO 4.

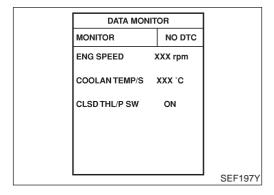
DTC P0510 CLOSED THROTTLE POSITION SWITCH (WHERE FITTED) QG

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between throttle position switch and ECM
- Harness for open or short between throttle position switch and TCM (Transmission Control Module)


Repair open circuit or short to ground or short to power in harness or connectors.

5 ADJUST THROTTLE POSITION SWITCH IDLE POSITION Perform Basic Inspection, EC-98. GO TO 6.

6	6 CHECK CLOSED THROTTLE POSITION SWITCH			
Refer	Refer to "Component Inspection", EC-325.			
	OK or NG			
OK	OK ▶ GO TO 7.			
NG	NG Replace throttle position switch.			

7	CHECK THROTTLE POSITION SENSOR			
Refer	Refer to "Component Inspection", EC-174.			
	OK or NG			
OK	OK ▶ GO TO 8.			
NG	NG Replace throttle position sensor.			

8	CHECK INTERMITTENT INCIDENT		
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	INSPECTION END		

Component Inspection CLOSED THROTTLE POSITION SWITCH

NJEC0294 NJEC0294S01

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and turn ignition switch "ON".
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- Check indication of "CLSD THL/P SW" under the following conditions.

NOTE:

Measurement must be made with closed throttle position switch installed in vehicle.

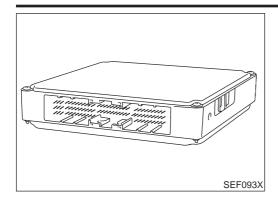
Throttle valve conditions	CLSD THL/P SW
Completely closed	ON
Partially open or completely open	OFF

- If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-98.
- 5) If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.
- **⊗** Without CONSULT-II

DTC P0510 CLOSED THROTTLE POSITION SWITCH (WHERE FITTED) QG

Component Inspection (Cont'd)

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF".
- 3) Disconnect throttle position switch harness connector.
- 4) Check continuity between terminals 4 and 5 under the following conditions. Refer to wiring diagram.


NOTE:

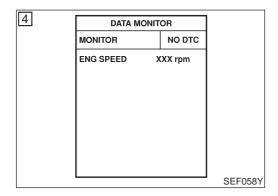
Continuity measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-98.

5) If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

Component Description


VIECO20E

The ECM consists of a microcomputer, and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

NJEC0296

			710200200
DTC No. Malfunction is detected when		Malfunction is detected when	Check Items (Possible Cause)
	P0605 0605	ECM calculation function is malfunctioning.	• ECM

DTC Confirmation Procedure

NJEC0297

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(I) With CONSULT-II

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine.
- 4) Run engine for at least 1 second at idle speed.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-328.

With GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

=NJEC0298

1 INSPECTION START

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure". See EC-327.
- 5. Is the 1st trip DTC P0605 displayed again?

(S) With GST

- 1. Turn ignition switch "ON".
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure". See EC-327.
- 5. Is the 1st trip DTC P0605 displayed again?

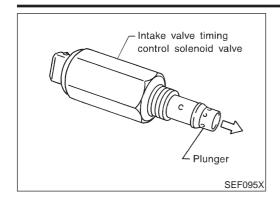
Yes or No

Yes	GO TO 2.
No •	INSPECTION END

2 REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of NATS (NISSAN ANTI-THEFT SYSTEM) system and registration of all NATS ignition key IDs. Refer to "NATS (NISSAN ANTI-THEFT SYSTEM)", EC-72.
- 3. Perform "Idle Air Volume Learning", EC-55,

Is the result CMPLT or INCMP?


CMPLT or INCMP

CMPLT	INSPECTION END
INCMP	Follow the construction of "Idle Air Volume Learning".

DTC P1111 INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Component Description

Component Description

The valve timing control system is utilized to control intake valve opening and closing timing. Engine coolant temperature signals, engine speed and throttle position are used to determine intake valve timing.

The intake camshaft sprocket position is regulated by oil pressure controlled by the intake valve timing control.

When ECM sends ON signal to intake valve timing control solenoid valve, oil pressure is transmitted to camshaft sprocket. Then, intake side camshaft is advanced.

Operation

NJEC0514

Engine operating condition			Intake valve tim-	Intake valve		
Engine coolant temperature	Engine speed	B/FUEL SCHDL	Neutral switch	ing control sole- noid valve	opening and closing time	Valve overlap
20°C (68°F) - 70°C (158°F)	` ' Δηρίνε 3 msec	Above 3 msec	- OFF	ON	Advance	Increased
		OH	ON	Advance	moreaseu	
Conditions other than those above			OFF	Normal	Normal	

CONSULT-II Reference Value in Data Monitor Mode

NJEC0515

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	OFF
INT/V SOL-B1	Lift up drive wheels and suitable gear position	Revving engine from 2,000 to 3,000 rpm	ON

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NJEC0516

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	Y/R	Intake valve timing control solenoid valve	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NJEC0517

DTC No. Malfunction is detected when		Check Items (Possible Cause)	
P1111 1111	An improper voltage signal is entered to ECM through intake valve timing control solenoid valve.	Harness or connectors (The intake valve timing control solenoid valve circuit is open or shorted.) Intake valve timing control solenoid valve	

DTC P1111 INTAKE VALVE TIMING CONTROL SOLENOID VALVE

QG

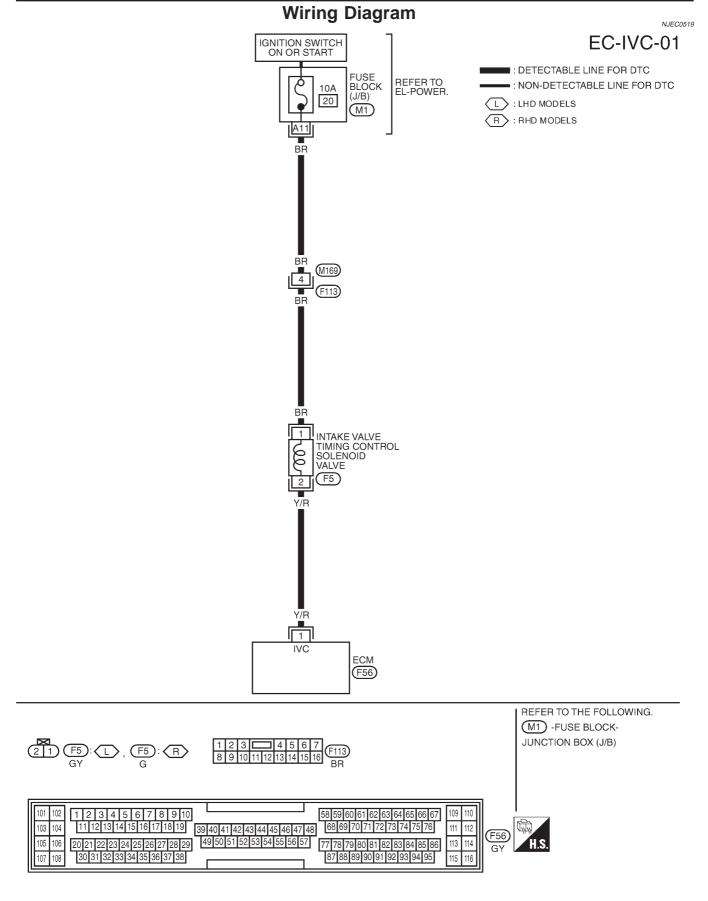
DTC Confirmation Procedure

		ı
DATA MONIT	OR	
MONITOR	NO DTC	
ENG SPEED	(XX rpm	
COOLAN TEMP/S	xxx °C	
THRTL POS SEN	xxx v	
B/FUEL SCHDL X	XX msee	
INT/V SOL-BL	OFF	
		SEF608Y

DTC Confirmation Procedure

NJEC0518

NOTE:

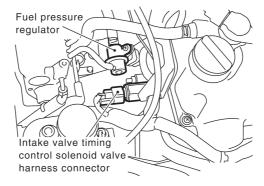

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(I) With CONSULT-II

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-332.

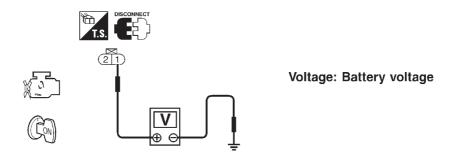
Without CONSULT-II

- 1) Turn ignition switch "ON", wait at least 5 seconds.
- 2) Perform "Diagnostic Test Mode II" (Self-diagnostic results), EC-72.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-332.



Diagnostic Procedure

NJEC0520


1 CHECK POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect intake valve timing control solenoid valve harness connector.

SEF149X

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 1 and engine ground with CONSULT-II or tester.

SEF619X

ΟK	or	NG

-	OK •	GO TO 3.
	NG •	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M169, F113
- 10A fuse
- Harness for open or short between valve timing control solenoid valve and fuse

Repair harness or connectors.

3 CHECK OUTPUT SIGNAL CIRCUIT

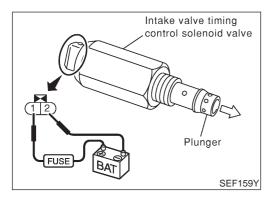
- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 1 and intake valve timing control solenoid valve harness connector terminal 2. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground to short to power or connectors.


DTC P1111 INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Diagnostic Procedure (Cont'd)

4	CHECK VALVE TIMING CONTROL SOLENOID VALVE			
Refer to "Component Inspection", EC-333.				
	OK or NG			
OK	OK ▶ GO TO 5.			
NG	NG Replace valve timing control solenoid valve.			

5	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Inspection

INTAKE VALVE TIMING CONTROL SOLENOID VALVE

- 1. Check oil passage visually for any metal debris.
- 2. Supply intake valve timing control solenoid valve terminals with battery voltage.
- 3. Make sure that inside plunger protrudes. If NG, replace intake valve timing control solenoid valve.

System Description

COOLING FAN CONTROL

NJEC0433 NJEC0433S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Vehicle speed sensor	Vehicle speed		
Engine coolant temperature sensor	Engine coolant temperature		
Air conditioner switch	Air conditioner "ON" signal	Cooling fan	Cooling fan relay(s)
Ignition switch	Start signal		
Refrigerant pressure sensor	Refrigerant pressure		

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure, and air conditioner ON signal. The control system has ON-OFF control.

OPERATION

NJEC0433S02

Engine coolant temperatures at which the cooling fan turns "ON" are indicated in the Table below.

		Vehicle speed km/h (MPH)		
Air conditioner switch	High pressure of refrigerant kPa (bar, kg/cm², psi)	Less than 50 (30)	50 - 80 (30 - 50)	More than 80 (50)
011	More than 1,680 (16.8, 17.14, 244)	Always	Always	More than 95°C (203°F)
ON	Less than 1,680 (16.8, 17.14, 244)	Always	More than 95°C (203°F)	More than 95°C (203°F)
OFF		More than 100°C (212°F)	More than 95°C (203°F)	More than 95°C (203°F)

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0486

MONITOR ITEM	CONDITION		SPECIFICATION
AIR COND SIG	Engine: After warming up, idle	Air conditioner switch: OFF	OFF
	the engine	Air conditioner switch: ON (Compressor operates)	ON
COOLING FAN		Engine coolant temperature is less than 100°C (212°F)	OFF
		Engine coolant temperature is 100°C (212°F) or more	ON

DTC P1217 OVERHEAT (COOLING SYSTEM)

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

=NJEC0487

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

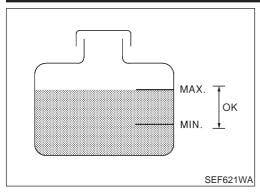
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
40	LC/P	Cooling for roley	[Engine is running] ■ Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
13 LG/R	Cooling fan relay	[Engine is running] ■ Cooling fan is operating	0 - 0.6V	
23	L/W	Air conditioner switch	[Engine is running] ■ Both air conditioner switch and blower switch are "ON" (Compressor operates)	Approximately 0V
			[Engine is running] ● Air conditioner switch is "OFF"	BATTERY VOLTAGE (11 - 14V)

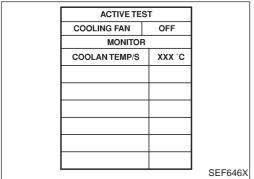
On Board Diagnosis Logic

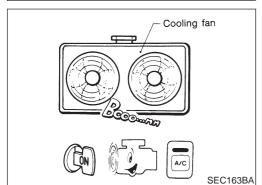
NJEC057

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise.

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.


DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1217 1217	The engine coolant temperature is extraordinary high, even when the load is not heavy.	 Harness or connectors (The cooling fan circuit is open or shorted) Cooling fan Thermostat Improper ignition timing Engine coolant temperature sensor Blocked radiator Blocked front end (Improper fitting of nose mask) Crushed vehicle frontal area (Vehicle frontal is collided but not repaired) Blocked air passage by improper installation of front fog lamp or fog lamps. Improper mixture ratio of coolant Damaged bumper For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-345.


CAUTION:


When a malfunction is indicated, be sure to replace the coolant following the procedure in the LC-17, "Changing Engine Coolant". Also, replace the engine oil.

- 1) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-22, "Anti-freeze Coolant Mixture Ratio", "RECOM-MENDED FLUIDS AND LUBRICANTS".
- 2) After refilling coolant, run engine to ensure that no water-flow noise is emitted.

On Board Diagnosis Logic (Cont'd)

Overall Function Check

NJEC0489

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(P) With CONSULT-II

1) Check the coolant level and mixture ratio (using coolant tester) in the reservoir tank and radiator.

Allow engine to cool before checking coolant level and mixture ratio.

- If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-339.
- If the coolant mixture ratio is out of the range of 45 to 55%, replace the coolant in the following procedure LC-17, "Changing Engine Coolant".
- Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-339.
- 3) Turn ignition switch "ON".
- Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.
- 5) If the results are NG, go to "Diagnostic Procedure", EC-339.

N Without CONSULT-II

1) Check the coolant level and mixture ratio (using coolant tester) in the reservoir tank and radiator.

Allow engine to cool before checking coolant level and mixture ratio.

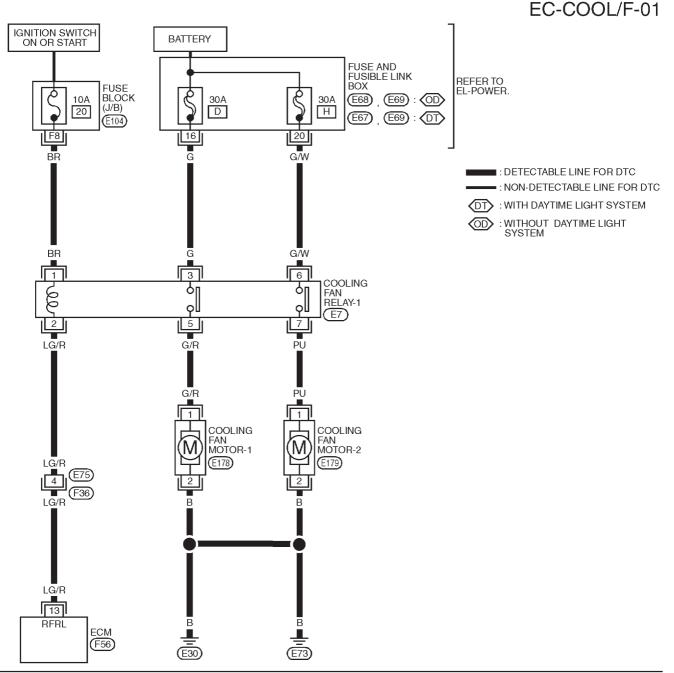
- If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-339.
- If the coolant mixture ratio is out of the range of 45 to 55%, replace the coolant in the following procedure LC-17, "Changing Engine Coolant".
- 2) Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-339.
- 3) Start engine.

Be careful not to overheat engine.

- 4) Set temperature control lever to full cold position.
- 5) Turn air conditioner switch "ON".
- 6) Turn blower fan switch "ON".
- Run engine at idle for a few minutes with air conditioner operating.

Be careful not to overheat engine.

 Make sure that cooling fan operates. Refer to "OPERATION" table for cooling fan, EC-334.

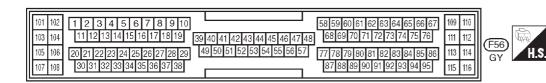

If NG, go to "Diagnostic Procedure", EC-339.

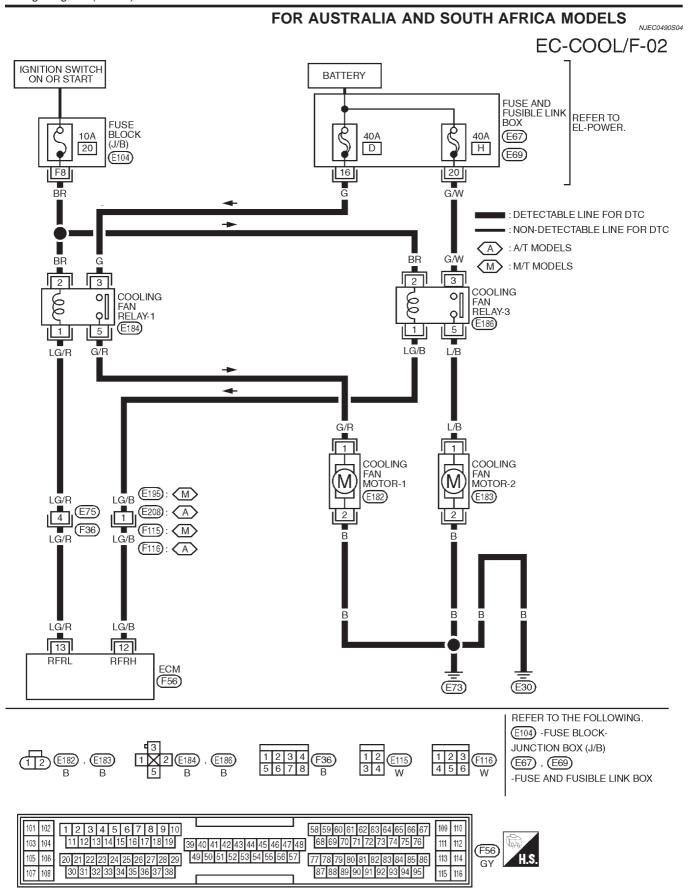
DTC P1217 OVERHEAT (COOLING SYSTEM)

Wiring Diagram FOR EUROPE

NJEC0490

NJEC0490S03

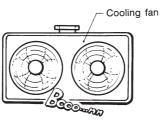



REFER TO THE FOLLOWING.

(£104) -FUSE BLOCKJUNCTION BOX (J/B)

(£67) , (£68) , (£69)

-FUSE AND FUSIBLE LINK BOX

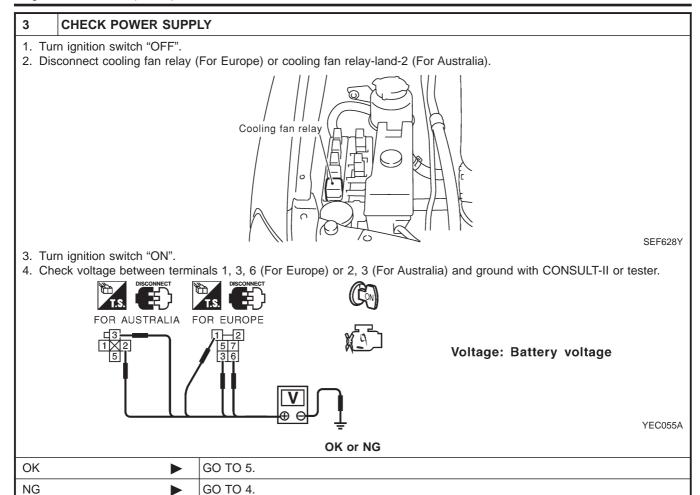

YEC047A

Diagnostic Procedure

NJEC0491

1 CHECK COOLING FAN OPERATION

- 1. Start engine and let it idle.
- 2. Set temperature lever at full cold position.
- 3. Turn air conditioner switch "ON".
- 4. Turn blower fan switch "ON".
- 5. Make sure that cooling fans-1 and -2 operate.



SEC163BA

()K	or	NG

ОК	>	GO TO 11.
NG	•	GO TO 2.

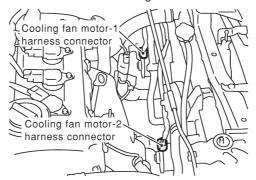
2	2 CHECK AIR CONDITIONER OPERATION		
	Is air conditioner operating? (Check operation of compressor and blower motor.) OK or NG		
OK	OK ▶ GO TO 3.		
NG	>	Check for failure of air conditioner to operate. Refer to HA section.	

4 DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- 30A fusible link (For Europe)
- 40A fusible link (For Australia)
- Harness for open or short between cooling fan relay and fuse

Repair open circuit or short to ground or short to power in harness or connectors.


DTC P1217 OVERHEAT (COOLING SYSTEM)

Diagnostic Procedure (Cont'd)

5 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.

SEF609Y

3. Check harness continuity between relay terminal 5 and motor-1 terminal 2, motor-1 terminal 1 and body ground. Refer to wiring diagram.

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Check harness continuity between relay terminal 7 (For Europe) or 5 (For Australia) and motor-2 terminal 2, motor-2 terminal 1 and body ground.

Refer to wiring diagram.

Continuity should exist.

6. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 13 and relay terminal 2. Refer to wiring diagram. (For Europe)
- 3. Check harness continuity between ECM terminal 12 and relay-3 terminal 1. Refer to wiring diagram. (For Australia)
- 4. Check harness continuity between ECM terminal 13 and relay-1 terminal 1. Refer to wiring diagram. (For Australia) Continuity should exist.
- 5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 8.
NG ▶	GO TO 7.

7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness connectors E195, F115 (MT models for Australia) or E208, F116 (AT models for Australia)
- Harness for open or short between cooling fan relay and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

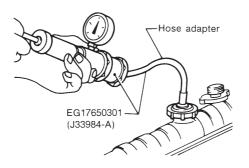
8	CHECK COOLING FAN	RELAY		
Refer to "Component Inspection", EC-345.				
OK or NG				
OK	OK ▶ GO TO 9.			
NG	•	Replace cooling fan relay.		

DTC P1217 OVERHEAT (COOLING SYSTEM)

Diagnostic Procedure (Cont'd)

9	CHECK COOLING FAN	MOTORS-1 AND -2		
Refer	Refer to "Component Inspection", EC-345.			
	OK or NG			
ОК	OK ▶ GO TO 10.			
NG	•	Replace cooling fan motors.		

10	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

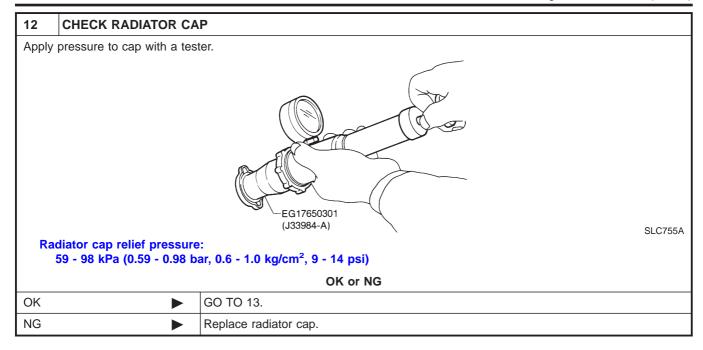

11 CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.

Testing pressure: 157 kPa (1.57 bar, 1.6 kg/cm², 23 psi)

CAUTION:

Higher than the specified pressure may cause radiator damage.



SLC754A

Pressure should not drop.

OK or NG

OK •	GO TO 12.
NG ►	Check the following for leak
	• Hose
	Radiator
	Water pump
	Refer to LC-14, "Water Pump".

It should seat tightly. 2. Check valve opening temperature and valve lift.

1. Check valve seating condition at normal room temperatures.

SLC343

Valve opening temperature: 82°C (180°F) [standard] Valve lift:

CHECK THERMOSTAT

13

More than 8 mm/95°C (0.31 in/203°F)

3. Check if valve is closed at 5°C (9°F) below valve opening temperature.

For details, refer to LC section ("Thermostat").

OK or NG

OK •	GO TO 14.
NG ►	Replace thermostat

14	CHECK ENGINE COOL	ANT TEMPERATURE SENSOR	
Refer to "COMPONENT INSPECTION", EC-167.			
OK or NG			
OK	OK 🕨 GO TO 15.		
NG	>	Replace engine coolant temperature sensor.	

DTC P1217 OVERHEAT (COOLING SYSTEM)

QG

Diagnostic Procedure (Cont'd)

15	CHECK MAIN 12 CAUSES		
If the	If the cause cannot be isolated, go to "MAIN 12 CAUSES OF OVERHEATING", EC-345.		
	► INSPECTION END		

Main 12 Causes of Overheating

=NJEC0492

Main 12 Causes of Overheating

See LC-17, "Changing

See LC-18, "Refilling

"CYLINDER HEAD".

See EM-36, "Inspection",

See EM-54, "Inspection", "CYLINDER BLOCK".

Engine Coolant".

Engine Coolant".

Engine Step Inspection item Equipment Standard Reference page **OFF** 1 Blocked radiator Visual No blocking Blocked condenser Blocked radiator grille Blocked bumper 2 Coolant mixture Coolant tester 50 - 50% coolant mixture See MA-20, "RECOM-MENDED FLUIDS AND LUBRICANTS". See LC-17, "Changing 3 Coolant level Visual Coolant up to MAX level in reservoir tank and Engine Coolant". radiator filler neck 4 Radiator cap Pressure tester 59 - 98 kPa See LC-10, "System (0.59 - 0.98 bar, 0.6 - 1.0 Check". kg/cm², 9 - 14 psi) (Limit) ON*2 Visual 5 Coolant leaks No leaks See LC-10, "System Check". ON*2 See LC-15, "Thermostat" 6 Thermostat • Touch the upper and Both hoses should be lower radiator hoses and LC-16, "Radiator". ON*1 • CONSULT-II See "TROUBLE DIAG-7 Cooling fan Operating NOSIS FOR OVER-HEAT" (EC-334). **OFF** 8 · Combustion gas leak · Color checker chemi-Negative cal tester 4 Gas ana-

lyzer

Visual

Visual

Visual

gauge

Visual

• Straight gauge feeler

ON*3

OFF*4

OFF

Coolant temperature

Coolant overflow to

Coolant return from

reservoir tank to radia-

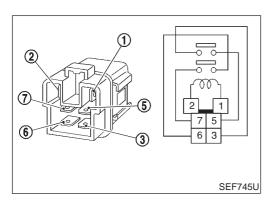
reservoir tank

• Cylinder head

pistons

Cylinder block and

gauge


9

10

11

12

For more information, refer to LC-23, "OVERHEATING CAUSE ANALYSIS".

Component Inspection COOLING FAN RELAY

NJEC0493

NJEC0493S01

Check continuity between terminals 3 and 5, 6 and 7.

Gauge less than 3/4

No overflow during driv-

Should be initial level in

0.1 mm (0.004 in) Maxi-

mum distortion (warping)

No scuffing on cylinder

when driving

ing and idling

reservoir tank

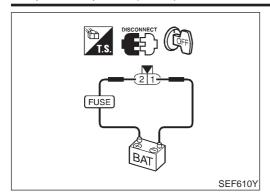
walls or piston

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

If NG, replace relay.

^{*1:} Turn the ignition switch ON.

^{*2:} Engine running at 3,000 rpm for 10 minutes.


^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

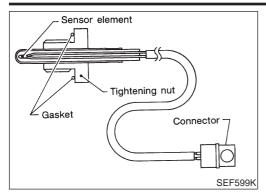
^{*4:} After 60 minutes of cool down time.

DTC P1217 OVERHEAT (COOLING SYSTEM)

Component Inspection (Cont'd)

COOLING FAN MOTORS-1 AND -2

NJEC0493S02


- 1. Disconnect cooling fan motor harness connectors.
- 2. Supply cooling fan motor terminals with battery voltage and check operation.

	Term	ninals
	(+)	(-)
Cooling fan motor	2	1

Cooling fan motor should operate.

If NG, replace cooling fan motor.

Component Description

1,000 100 Resistance kΩ 10 50 100 150 200 (32)(122)(302)(392)(212)Temperature °C (°F) SEF068X

Component Description

The EGR temperature sensor detects temperature changes in the EGR passageway. When the EGR volume control valve opens, hot exhaust gases flow, and the temperature in the passageway changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases. This sensor is not used to control the engine system. It is used only for the on board diagnosis.

<Reference data>

EGR temperature °C (°F)	Voltage* V	Resistance MΩ
0 (32)	4.56	0.62 - 1.05
50 (122)	2.25	0.065 - 0.094
100 (212)	0.59	0.011 - 0.015

^{*:} These data are reference values and are measured between ECM terminal 72 (EGR temperature sensor) and ground.

When EGR system is operating.

Voltage: 0 - 1.5V

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

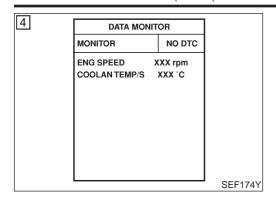
NJEC0343

DTC No.		Malfunction is detected when	Check Items (Possible Cause)	
P1401 1401	A)	An excessively low voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is low.	 Harness or connectors (The EGR temperature sensor circuit is shorted.) EGR temperature sensor Malfunction of EGR function 	
	В)	An excessively high voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is high.	 Harness or connectors (The EGR temperature sensor circuit is open.) EGR temperature sensor Malfunction of EGR function 	

DTC Confirmation Procedure

NJEC034

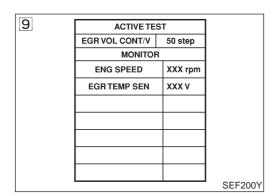
Perform "PROCEDURE FOR MALFUNCTION A" first. If 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".


NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

DTC P1401 EGR TEMPERATURE SENSOR (WHERE FITTED)

DTC Confirmation Procedure (Cont'd)



PROCEDURE FOR MALFUNCTION A

=NJEC0344S01

- (P) With CONSULT-II
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Verify that "COOLAN TEMP/S" is less than 50°C (122°F). If the engine coolant temperature is above the range, cool the engine down.
- 4) Start engine and let it idle for at least 5 seconds.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-351.
- **With GST**

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B

NJEC0344S02

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

Always perform the test at a temperature above –10°C (14°F).

- (I) With CONSULT-II
- 1) Start engine and warm it up to above 80°C (176°F).
- 2) Select "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT.
- 3) Hold engine speed at 1,500 rpm.
- Touch "Qu" and set the EGR volume control valve opening to 50 step and check EGR TEMP SEN.

EGR TEMP SEN should decrease to less than 1.0V.

If the check result is NG, go to "DIAGNOSTIC PROCEDURE", EC-351.

If the check result is OK, go to the following step.

DATA MO	NITOR
MONITOR	NO DTO
ENG SPEED COOLAN TEMP/S VHCL SPEED SE THRTL POS SEN B/FUEL SCHDL	XXX km/h XXX V

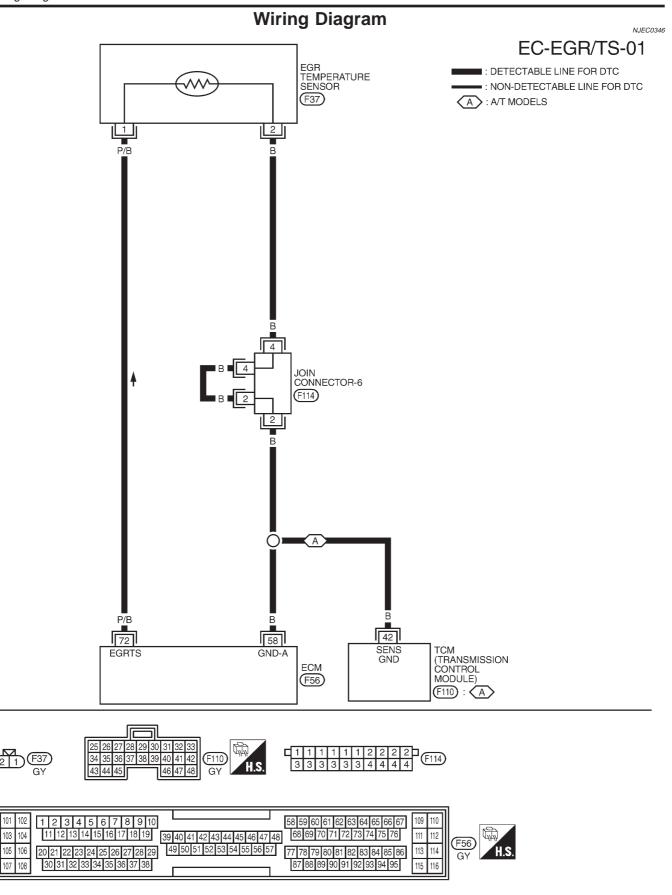
- 5) Turn ignition switch "OFF" and wait at least 9 seconds.
- 6) Start engine and maintain the following conditions for at least 5 consecutive seconds.

ENG SPEED	Above 2,400 rpm
VHCL SPEED SE	Above 90 km/h (56 MPH) or more
B/FUEL SCHDL	4.0 - 4.8 msec
Selector lever	Suitable position

7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-351.

DTC P1401 EGR TEMPERATURE SENSOR (WHERE FITTED)

DTC Confirmation Procedure (Cont'd)

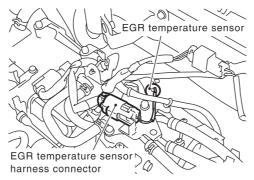

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 9 seconds, then turn "ON".
- 3) Select "MODE 1" with GST and maintain the following conditions for at least 5 consecutive seconds.

Engine speed	Above 2,400 rpm
Vehicle speed	Above 90 km/h (56 MPH)
Selector lever	4th or 5th

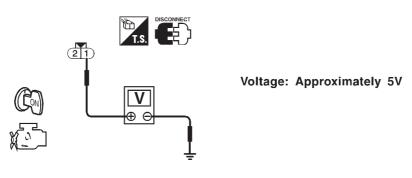
- 4) Select "MODE 7" with GST
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-351.

103


Diagnostic Procedure

Diagnostic Procedure

NJEC0347


1 CHECK POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect EGR temperature sensor harness connector.

SEF127X

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

SEF945X

OK	or	NG
----	----	----

OK ▶	GO TO 2.
NG ▶	Repair harness or connectors.

2 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- Check harness continuity between EGR temperature sensor harness terminal 2 and engine ground. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

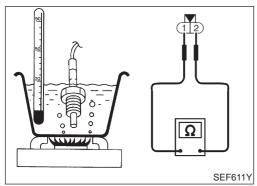
OK		GO TO 4.
NG		GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between EGR temperature sensor and ECM
- Harness for open or short between TCM (Transmission Control Module) and ECM
- Joint connector-6

Repair open circuit or short to ground or short to power in harness or connector.


DTC P1401 EGR TEMPERATURE SENSOR (WHERE FITTED)

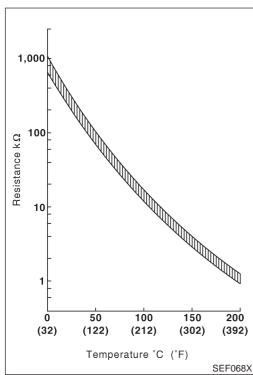
Diagnostic Procedure (Cont'd)

4	CHECK EGR TEMPERATURE SENSOR		
Refer to "Component Inspection", EC-352.			
	OK or NG		
OK	•	GO TO 5.	
NG	•	Replace EGR temperature sensor.	

5	5 CHECK EGR VOLUME CONTROL VALVE		
Refer to "Component Inspection", EC-359.			
	OK or NG		
OK	>	GO TO 6.	
NG	>	Replace EGR volume control valve.	

6	CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.	
	>	INSPECTION END

Component Inspection EGR TEMPERATURE SENSOR

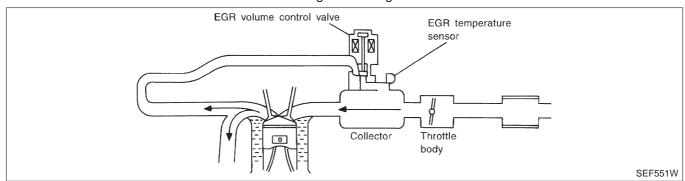

NJEC0348

NJEC0348S01

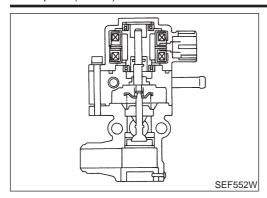
Check resistance change and resistance value. <Reference data>

EGR temperature °C (°F)	Voltage V	Resistance $M\Omega$
0 (32)	4.56	0.62 - 1.05
50 (122)	2.25	0.065 - 0.094
100 (212)	0.59	0.011 - 0.015

If NG, replace EGR temperature sensor.


Description SYSTEM DESCRIPTION

NJEC0349 NJEC0349S01


Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature	EGR vol-	ECD values control value
Ignition switch	Start signal	ume control EGR volume control val	EGR volume control valve
Throttle position sensor	Throttle position		
Vehicle speed sensor	Vehicle speed		
Battery	Battery voltage		

This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. The EGR volume control valve remains close under the following conditions.

- Extremely light load engine operation
- Mass air flow sensor malfunction
- Engine idling
- Low engine coolant temperature
- Excessively high engine coolant temperature
- High-speed engine operation
- Wide open throttle
- Low battery voltage
- Engine starting

Description (Cont'd)

COMPONENT DESCRIPTION EGR Volume Control Valve

NJEC0349S02

The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

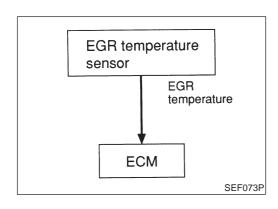
CONSULT-II Reference Value in Data Monitor Mode

NJEC0539

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
	Engine: After warming up Air conditioner switch: "OFF"	Idle	0 step
EGR VOL CON/V	Shift lever: "N" No-load	Revving engine up to 3,000 rpm quickly	10 - 55 step

ECM Terminals and Reference Value


NJEC0540

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

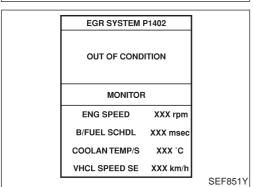
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
8 9 17 18	SB W/B R/Y BR/R	EGR volume control valve	[Engine is running.] ■ Warm-up condition ■ Idle speed	0 - 14V
58	В	Sensor's ground	[Engine is running.] ■ Warm-up condition ■ Idle speed	ov
70	D/D	ECD temperature geneer	[Engine is running.] ■ Warm-up condition ■ Idle speed	Less than 4.5V
72	P/B EGR temperature sensor	[Engine is running.] ■ Warm-up condition ■ EGR system is operating.	0 - 1.0V	

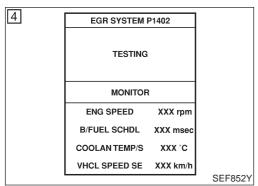
On Board Diagnosis Logic

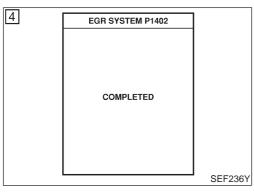
NJEC0350

If EGR temperature sensor detects EGR flow under the condition that does not call for EGR, a high-flow malfunction is diagnosed.

NOTE:


Diagnosis for this DTC will occur when engine coolant temperature is below 50 to 60°C (122 to 140°F). Therefore, it will be better to turn ignition switch "ON" (start engine) at the engine coolant temperature below 30°C (86°F) when starting DTC confirmation procedure.




On Board Diagnosis Logic (Cont'd)

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1402 1402	EGR flow is detected under conditions that do not call for EGR.	 Harness or connectors (The valve circuit is open or shorted.) EGR volume control valve leaking or stuck open EGR temperature sensor

DATA MON	IITOR	
MONITOR	NO DTC	
COOLAN TEMP/S EGR TEMP SEN	XXX 'C XXX V	
		SEF202

DTC Confirmation Procedure

NJEC0351

NOTE:

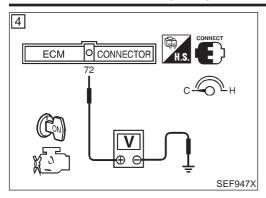
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Engine coolant temperature and EGR temperature must be verified in "DATA MONITOR" mode with CONSULT-II before starting DTC WORK SUPPORT test. If it is out of range below, the test cannot be conducted.

COOLAN TEMP/S: -10 to 40°C (14 to 104°F)* EGR TEMP SEN: Less than 4.8V

If the values are out of the ranges indicated above, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to reduce the engine coolant or EGR temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.


*: Although CONSULT-II screen displays "-10 to 40°C (14 to 104°F)" as a range of engine coolant temperature, ignore it.

(P) With CONSULT-II

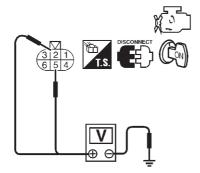
- 1) Turn ignition switch "OFF" and wait at least 9 seconds, then turn ignition switch "ON".
- 2) Select "EGR SYSTEM P1402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3) Touch "START". Follow instruction of CONSULT-II.
- Start engine and let it idle until "TESTING" on CONSULT-II screen is turned to "COMPLETED". (It will take 45 seconds or more.)
 - If "TESTING" is not displayed after 5 minutes, turn ignition "OFF" and cool the engine coolant temperature to the range of -10 to 40°C (14 to 104°F). Retry from step 1.
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-358.


QG

DTC Confirmation Procedure (Cont'd)

With GST

- 1) Turn ignition switch "ON" and select "MODE 1" with GST.
- 2) Check that engine coolant temperature is within the range of -10 to 40°C (14 to 104°F).
- 3) Check that voltage between ECM terminal 72 (EGR temperature sensor signal) and ground is less than 4.8V.
- 4) Start engine and let it idle for at least 45 seconds.
- 5) Stop engine.
- 6) Perform from step 1 to 4.
- 7) Select "MODE 3" with GST.
- 8) If DTC is detected, go to "Diagnostic Procedure", EC-358.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.


1

Diagnostic Procedure

NJEC0353

CHECK POWER SUPPLY

- 1. Disconnect EGR volume control valve harness connector.
- 2. Turn ignition switch "ON".
- 3. Check voltage between terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF327X

OK or NG

OK	>	GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between EGR volume control valve and ECM relay

Repair harness or connectors.

3 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between

ECM terminal 8 and terminal 1,

ECM terminal 9 and terminal 4,

ECM terminal 17 and terminal 3,

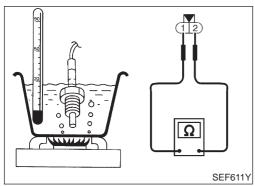
ECM terminal 18 and terminal 6.

Refer to wiring diagram.

Continuity should exist.

If OK, check harness for short to ground and short to power.

OK or NG


OK •	GO TO 4.
NG ►	Repair open circuit, short to ground or short to power in harness connectors.

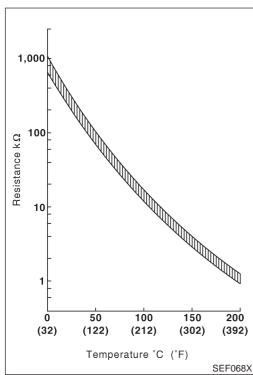
4	4 CHECK EGR TEMPERATURE SENSOR		
Refer to "COMPONENT INSPECTION", EC-359.			
OK or NG			
OK ▶ GO TO 5.			
NG	•	Replace EGR temperature sensor.	

Diagnostic Procedure (Cont'd)

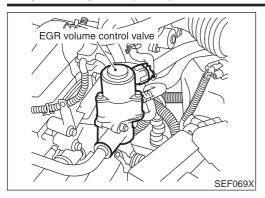
5	5 CHECK EGR VOLUME CONTROL VALVE			
Refer	Refer to "COMPONENT INSPECTION", EC-359.			
	OK or NG			
OK	OK ▶ GO TO 6.			
NG	•	Replace EGR volume control valve.		

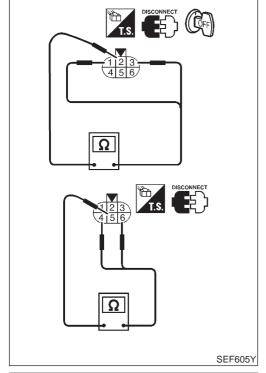
6	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Inspection EGR TEMPERATURE SENSOR

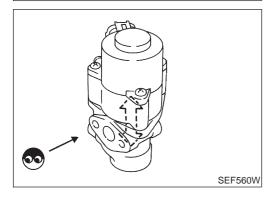

NJEC0354

NJEC0354S01


Check resistance change and resistance value. <Reference data>


EGR temperature °C (°F)	Voltage V	Resistance MΩ
0 (32)	4.56	0.62 - 1.05
50 (122)	2.25	0.065 - 0.094
100 (212)	0.59	0.011 - 0.015

If NG, replace EGR temperature sensor.



Component Inspection (Cont'd)

ACTIVE TEST		
EGR VOL CONT/V	20 step	
MONITOR		
ENG SPEED	XXX rpm	
EGR TEMP SEN	XXX V	
		SEF015

EGR VOLUME CONTROL VALVE

(P) With CONSULT-II

-) Disconnect EGR volume control valve harness connector.
- Check resistance between the following terminals. terminal 2 and terminals 1, 3 terminal 5 and terminals 4, 6

Temperature °C (°F)	Resistance Ω	
20 (68)	20 - 24	

- 3) Reconnect EGR volume control valve harness connector.
- Remove EGR volume control valve from cylinder head. (The EGR volume control valve harness connector should remain connected.)
- 5) Turn ignition switch "ON".
- 6) Perform "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that EGR volume control valve shaft moves smoothly forward and backward according to the valve opening

If NG, replace the EGR volume control valve.

⋈ Without CONSULT-II

- 1) Disconnect EGR volume control valve harness connector.
- 2) Check resistance between the following terminals. terminal 2 and terminals 1, 3 terminal 5 and terminals 4, 6

Temperature °C (°F)	Resistance Ω	
20 (68)	20 - 24	

3) Turn ignition switch "ON" and "OFF". Check that EGR volume control valve shaft moves smoothly forward and backward according to the ignition switch position. If NG, replace the EGR volume control valve.

System Description

System Description

NJEC0573

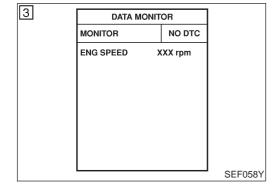
The malfunction information related to A/T (Automatic Transaxle) is transferred through the line (circuit) from TCM (Transmission Control Module) to ECM. Therefore, be sure to erase the malfunction information such as DTC not only in TCM (Transmission Control Module) but also ECM after the A/T related repair.

ECM Terminals and Reference Value

NJEC0574

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI NAL NO.	WIRE	ITEM	CONDITION	DATA (DC Voltage)
91	PU	A/T check signal	[Ignition switch "ON"]	0 - Approximately 5V

On Board Diagnosis Logic

NJEC0575

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1605 1605	An incorrect signal from TCM (Transmission Control Module) is sent to ECM.	Harness or connectors [The communication line circuit between ECM and TCM (Transmission Control Module) is open or shorted.] Dead (Weak) battery TCM (Transmission Control Module)

DTC Confirmation Procedure

NJEC0576

NOTE:

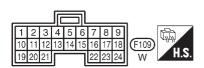
If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 40 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-363.

With GST

Follow the procedure "With CONSULT-II" above.


Wiring Diagram

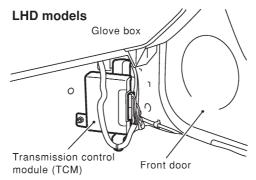
NJEC0577

EC-ATDIAG-01

101 102 103 104 105 106 107 108	109 110 111 112	(F56)
105 106 107 108	113 114 115 116	GY H.S.

YEC981

Diagnostic Procedure


Diagnostic Procedure

NJEC0578

SEF116Y

1 CHECK INPUT SIGNAL CIRCUIT

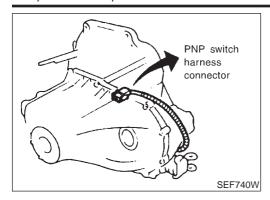
- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and TCM harness connector.

3. Check harness continuity between ECM terminal 91 and TCM terminal 15. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG


OK •	GO TO 2.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

2	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

DTC P1706 PARK/NEUTRAL POSITION (PNP) SWITCH

Component Description

Component Description

When the gear position is "P" (A/T models only) or "N", park/neutral position (PNP) switch is "ON".

ECM detects the park/neutral position when continuity with ground exists.

CONSULT-II Reference Value in Data Monitor Mode

NJEC0425

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	SI SW • Ignition switch: ON -	Shift lever: "P" or "N"	ON
F/N FO31 3W		Except above	OFF

ECM Terminals and Reference Value

NJEC0426

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch "ON"] • Gear position is "Neutral position" (M/T models) • Gear position is "N" or "P" (A/T models)	Approximately 0V
42	G/OR	PNP switch	[Ignition switch "ON"] ■ Except the above gear position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5V

On Board Diagnosis Logic

NJEC0427

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1706 1706	The signal of the PNP switch is not changed in the process of engine starting and driving.	 Harness or connectors (The PNP switch circuit is open or shorted.) PNP switch

DTC Confirmation Procedure

NJEC0428

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 9 seconds before conducting the next test.

(P) With CONSULT-II

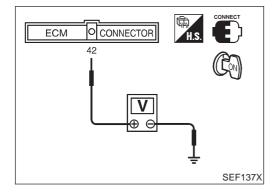
1) Turn ignition switch "ON".

DTC P1706 PARK/NEUTRAL POSITION (PNP) SWITCH

DTC Confirmation Procedure (Cont'd)

[4]	DATA MONIT		
	MONITOR	NO DTC	
	ENG SPEED	XXX rpm	
	COOLAN TEMP/S	XXX °C	
	VHCL SPEED SE	(XX km/h	
	P/N POSI SW	OFF	
	B/FUEL SCHDL >	(XX msec	
			SEF213Y

 Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.


Position (Selector lever)	Known-good signal	
"N" and "P" (A/T only) position	ON	
Except the above position	OFF	

If NG, go to "Diagnostic Procedure", EC-367. If OK, go to following step.

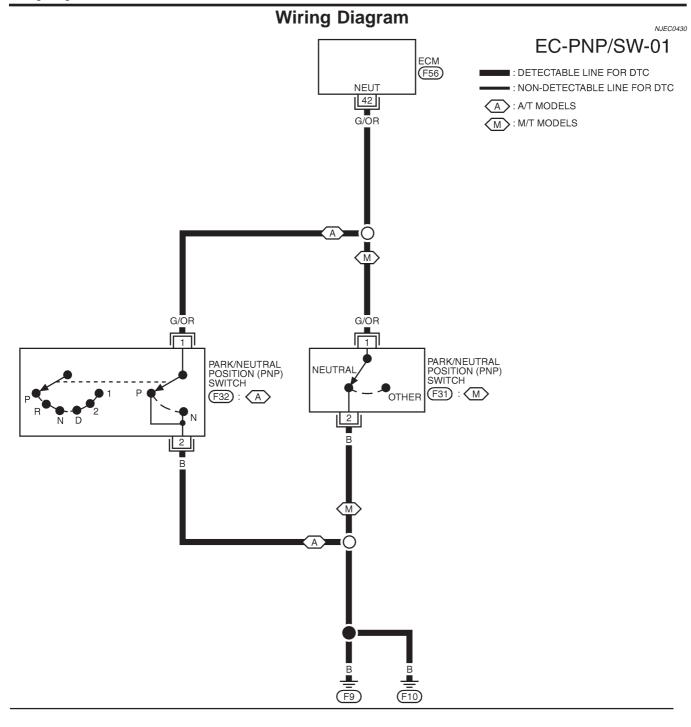
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and warm it up to normal operating temperature.
- 5) Maintain the following conditions for at least 50 consecutive seconds.

ENG SPEED	1,550 - 4,000 rpm	
COOLAN TEMP/S	More than 70°C (158°F)	
B/FUEL SCHDL	3.0 msec or more	
VHCL SPEED SE	70 - 130 km/h (43 - 81 MPH)	
Selector lever	Suitable position	

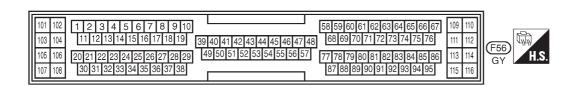
6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-367.

Overall Function Check

Use this procedure to check the overall function of the park/neutral position switch circuit. During this check, a 1st trip DTC might not be confirmed.


Nithout CONSULT-II

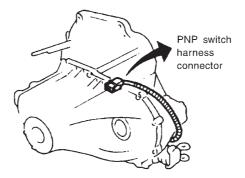
- 1) Turn ignition switch "ON".
- 2) Check voltage between ECM terminal 42 (PNP switch signal) and body ground under the following conditions.


Condition (Gear position)	Voltage (V) (Known good data)	
"P" (A/T only) and "N" position	Approx. 0	
Except the above position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5	

3) If NG, go to "Diagnostic Procedure", EC-367.

YEC984

DTC P1706 PARK/NEUTRAL POSITION (PNP) SWITCH


Diagnostic Procedure

Diagnostic Procedure

NJEC0431

1 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect PNP switch harness connector.

SEF740W

Check harness continuity between PNP switch harness connector terminal 2 and body ground. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 3.
NG		GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the harness for open or short between PNP switch and body ground.

Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 42 and PNP switch harness connector terminal 1. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART

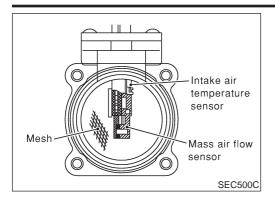
Check the harness for open or short between ECM and PNP switch.

Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK PNP SWITCH

Refer to MT-21, "POSITION SWITCH CHECK" or AT-181, "PARK/NEUTRAL POSITION (PNP) SWITCH".

OK or NG


OK		GO TO 6.
NG		Replace PNP switch.

DTC P1706 PARK/NEUTRAL POSITION (PNP) SWITCH

QG

Diagnostic Procedure (Cont'd)

6	6 CHECK INTERMITTENT INCIDENT			
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.			
► INSPECTION END				

Component Description

N IEC1737

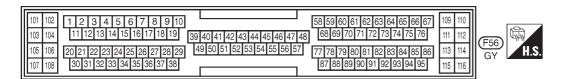
The intake air temperature sensor is built into the mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

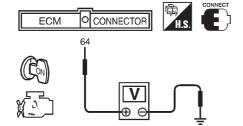
Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.3	1.9 - 2.1
80 (176)	1.28	0.31 - 0.37

^{*:} These data are reference values and are measured between ECM terminal 64 (Intake air temperature sensor) and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Wiring Diagram NJEC1738 **EC-IATSEN-01** INTAKE AIR TEMPERATURE SENSOR ■ : DETECTABLE LINE FOR DTC (F34) -: NON-DETECTABLE LINE FOR DTC 3 Y/B 64 73 ECM (F56)


YEC985

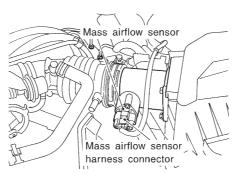
Diagnostic Procedure

NJEC1739

1 CHECK OVERALL FUNCTION

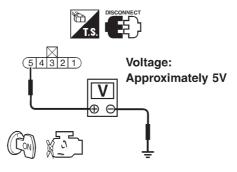
- 1. Turn ignition switch "ON".
- 2. Check voltage between ECM terminal 64 and ground with CONSULT-II or tester.

Voltage: Approximately 0 - 4.8V


SEF004YA

OK or NG

OK ►	INSPECTION END
NG	GO TO 2.


2 CHECK POWER SUPPLY (Models with intake air temperature sensor in mass air flow sensor)

- 1. Turn ignition switch "OFF".
- 2. Disconnect mass air flow sensor harness connector.

JEF105Y

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

SEC503C

OK or NG

OK •	GO TO 4.
NG ►	GO TO 3.

Diagnostic Procedure (Cont'd)

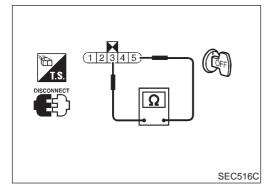
3 DETECT MALFUNCTIONING PART Check harness for open or short between ECM and intake air temperature sensor. Repair harness or connectors.

4 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between mass air flow sensor harness connector terminal 3 and engine ground. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.


0	K	or	Ν	G

OK	•	GO TO 6.
NG	•	GO TO 5.

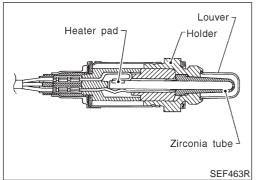
5 DETECT MALFUNCTIONING PART Check harness for open or short between ECM and intake air temperature sensor. Repair open circuit or short to ground or short to power in harness or connectors.

6	6 CHECK INTAKE AIR TEMPERATURE SENSOR		
Refer	Refer to "Component Inspection", EC-372.		
	OK or NG		
OK	>	GO TO 7.	
NG	•	Replace intake air temperature sensor.	

7	CHECK INTERMITTENT INCIDENT		
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
► INSPECTION END			

Component Inspection INTAKE AIR TEMPERATURE SENSOR

NJEC1740


Check resistance between mass air flow sensor harness connector terminals 3 and 5.

<Reference data>

Intake air temperature °C (°F)	Resistance k Ω	
25 (77)	1.9 - 2.1	

If NG, replace intake air temperature sensor.

NJEC1216

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	■ Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

SEF288D

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			-	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	W	Heated oxygen sensor 1 (front)	[Engine is running] ● After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0 SEF008W

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57

103 104

105 106

Wiring Diagram NJEC1220 EC-FRO2-01 IGNITION SWITCH ON OR START ■ : DETECTABLE LINE FOR DTC =: NON-DETECTABLE LINE FOR DTC FUSE BLOCK (J/B) REFER TO EL-POWER. 10A 8 $\overline{M1}$ A13 L/OR HEATED OXYGEN SENSOR 1 (FRONT) (F17) 3 2 L/OR R/B L/OR 6 L/OR (F113) (M169) R/B 4 62 O2HF O2SF ECM (F56) REFER TO THE FOLLOWING. (M1) -FUSE BLOCK-JUNCTION BOX (J/B) 321 F17

YEC986

58 59 60 61 62 63 64 65 66 67

68 69 70 71 72 73 74 75 76

77 78 79 80 81 82 83 84 85 86

87 88 89 90 91 92 93 94 95

111 112

113

F56 GY

Diagnostic Procedure

N.IFC1221

1	INSPECTION START							
Do yo	Do you have CONSULT-II?							
		Yes or No						
Yes	>	GO TO 2.						
No	>	GO TO 3.						

2 CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "HO2S1 MNTR (B1)" in "DATA MONITOR" mode with CONSULT-II.
- 3. Keep the engine speed at 2,000 rpm under no load, and make sure that the monitors fluctuate between LEAN and RICH more than five times in 10 seconds.

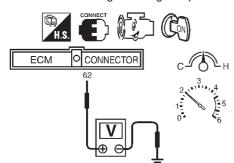
DATA MONITOR								
MONITOR	NO DTC							
ENG SPEED	XXX rpm							
MAS A/F SE-B1	xxx v							
COOLAN TEMP/S	XXX °C							
HO2S1 (B1)	XXX V							
HO2S1 MNTR (B1)	LEAN							

1 time: RICH → LEAN → RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

SEF218Z

SEC518C


OK or NG

OK •	INSPECTION END
NG ►	GO TO 4.

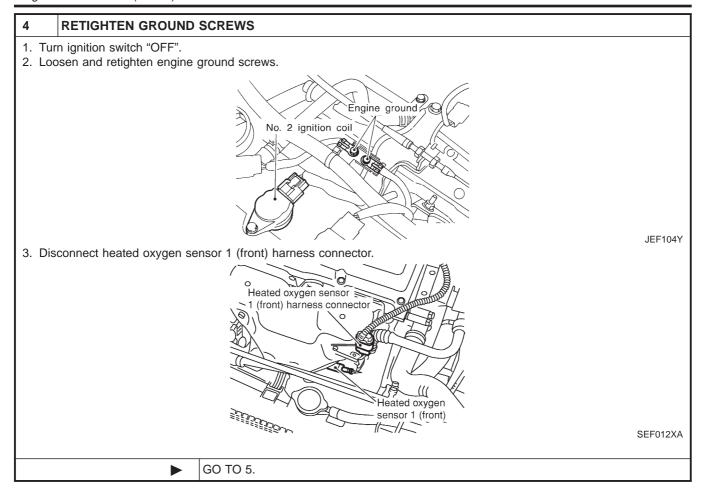
3 CHECK OVERALL FUNCTION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$


2 times: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK •	INSPECTION END						
NG ►	GO TO 4.						

5 RETIGHTEN HEATED OXYGEN SENSOR 1 (FRONT)

Loosen and retighten corresponding heated oxygen sensor 1 (front).

Tightening torque:

40 - 50 N-m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

GO TO 6.

6 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 62 and heated oxygen sensor 1 (front) harness connector terminal 2. Refer to wiring diagram.

Continuity should exist.

3. Check harness continuity between ECM terminal 62 (or terminal 2) and ground.

Continuity should not exist.

4. Also check harness for short to power.

OK	or	NC
OIL	OI.	140

OK ►	GO TO 7.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

7	7 CHECK HEATED OXYGEN SENSOR 1 (FRONT)								
Refer to "Component Inspection", EC-377.									
OK or NG									
OK	OK ▶ GO TO 8.								
NG	NG Replace heated oxygen sensor 1 (front).								

8	CHECK INTERMITTENT INCIDENT						
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.						
	► INSPECTION END						

<u> </u>	DATA MONI		
	MONITOR	NO DTC	
	ENG SPEED	XXX rpm	
	MAS A/F SE-B1	xxx v	
	COOLAN TEMP/S	xxx .c	
	HO2S1 (B1)	xxx v	
	HO2S1 MNTR (B1)	LEAN	
			SEF646Y

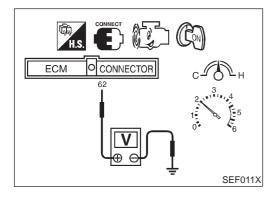
Component Inspection HEATED OXYGEN SENSOR 1 (FRONT)

NJEC1222

NJEC1222S01

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown below:
 R = "HO2S1 MNTR (B1)", "RICH"
 L = "HO2S1 MNTR (B1)", "LEAN"
- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

HEATED OXYGEN SENSOR 1 (FRONT)

Component Inspection (Cont'd)

Г Т		I	1	128											
Trigger	ENG	HO2S1		_		Max	imum								
	SPEED	(B1)			,		االىاااا.		,	`.	,-	`.	,-		 Maximum voltage should be over 0.6V
	rpm	V			<i>i</i>	1	-	<i>)</i>	- /	/	- /	/	/	j.	at least one time.
XXX	XXX	XXX	l			•		•	-	•				•	at loadt one time.
XXX	XXX	XXX	l		- 1			1	•			1			
XXX	XXX	XXX	1												
XXX	XXX	XXX	1	64		•	:	•	•			•	•	•	
XXX	XXX	XXX	1	_											 Minimum voltage should be below 0.30V
XXX	XXX	XXX	1		i !	i	- !	i	- !	i	- !	1	- !	1	should be below 0.30V
XXX	XXX	XXX	1		1 i	!	i	1	i	1	i	1	i	1	at least one time.
XXX	XXX	XXX	1		1 1	- 1	į	١,	!	- 1	!	i	!	i	
XXX	XXX	XXX	1		i /	i	- /	į	/	, į	/	,	/	,	
XXX	XXX	XXX	1		\./	١,	j	ν,	j .	\ \	ď	,	i	'	
XXX	XXX	XXX	1		-		-			•	Mini	mum			
XXX	XXX	XXX	1	0-											SEF648Y

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 (HO2S1 signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V. 1 time: 0 $0.3V \rightarrow 0.6$ $1.0V \rightarrow 0$ 0.3V 2 times: 0 $0.3V \rightarrow 0.6$ $1.0V \rightarrow 0$ $0.3V \rightarrow 0.6$ $1.0V \rightarrow 0$ 0.3V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Description

SYSTEM DESCRIPTION

NJEC1223

NJEC1223S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Heated oxygen sensor 1 heater (front) con- trol	Heated oxygen sensor 1 heater (front)

The ECM performs ON/OFF control of the heated oxygen sensor 1 heater (front) corresponding to the engine operating condition.

OPERATION

NJEC1223S02

Engine speed	Heated oxygen sensor 1 heater (front)	
Above 3,200 rpm	OFF	
Below 3,200 rpm	ON	

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC1224

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S1 HTR (B1)	• Engine speed: Below 3,200 rpm	ON
	• Engine speed: Above 3,200 rpm	OFF

ECM Terminals and Reference Value

NJEC1225

Specification data are reference values and are measured between each terminal and ground.

CALITION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4 R/B	D/D		[Engine is running] ■ Engine speed is below 3,200 rpm.	Approximately 0V
	R/B	heater (front)	[Engine is running] ● Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)

Wiring Diagram NJEC1228 EC-FRO2/H-01 IGNITION SWITCH ON OR START : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC FUSE BLOCK (J/B) REFER TO EL-POWER. 10A 8 M1L/OR HEATED OXYGEN SENSOR 1 (FRONT) (F17) 2 ¥ 3 L/OR R/B W L/OR 6 L/OR (F113) (M169) R/B 4 62 O2HF O2SF **ECM** (F56) REFER TO THE FOLLOWING. M1) -FUSE BLOCK-JUNCTION BOX (J/B) (321) F17

YEC987

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

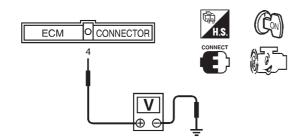
109

111 112

113 114 (F56)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

102 103 104


105 106

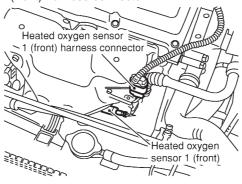
Diagnostic Procedure

NJEC1229

1 CHECK OVERALL FUNCTION

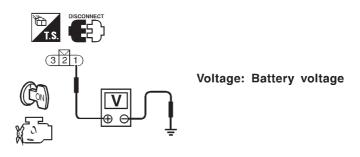
- 1. Turn ignition switch "ON".
- 2. Set the tester probe between ECM terminals 4 [HO2S1 Heater (front) signal] and ground.
- 3. Start engine and let it idle.
- 4. Check the voltage under the following conditions.

Conditions	Voltage	
At idle	0 - 1V	
Engine speed is above 3,200 rpm.	Battery voltage	


SEF239Z

OK or NG

C	oK •	INSPECTION END
Ν	G •	GO TO 2.


2 CHECK POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 (front) harness connector.

SEF012XA

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

SEF934X

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 3.

HEATED OXYGEN SENSOR 1 HEATER (FRONT)

QG

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

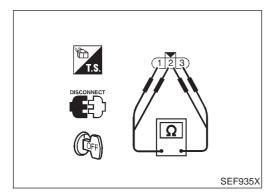
Check the following.

- Harness connectors F113, M169
- 10A fuse
- Harness for open or short between heated oxygen sensor 1 (front) and fuse
 - Repair harness or connectors.

4 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between heated oxygen sensor 1 (front) harness connector terminal 3 and ECM terminal 4. Refer to wiring diagram.

Continuity should exist.


4. Also check harness for short to ground and short to power.

OK	or	NG
	OI.	ING

OK •	GO TO 5.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.

5	5 CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)		
Refer to "Component Inspection", EC-382.			
OK or NG			
OK	OK ▶ GO TO 6.		
NG	>	Replace heated oxygen sensor 1 (front).	

6	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Inspection HEATED OXYGEN SENSOR 1 HEATER (FRONT)

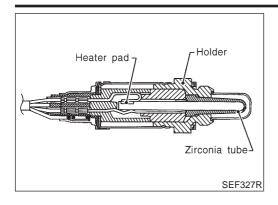
NJEC1230 NJEC1230S01

Check resistance between terminals 3 and 1.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.


If NG, replace the heated oxygen sensor 1 (front).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

HEATED OXYGEN SENSOR 2 (REAR)

Component Description

Component Description

N IEC122

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

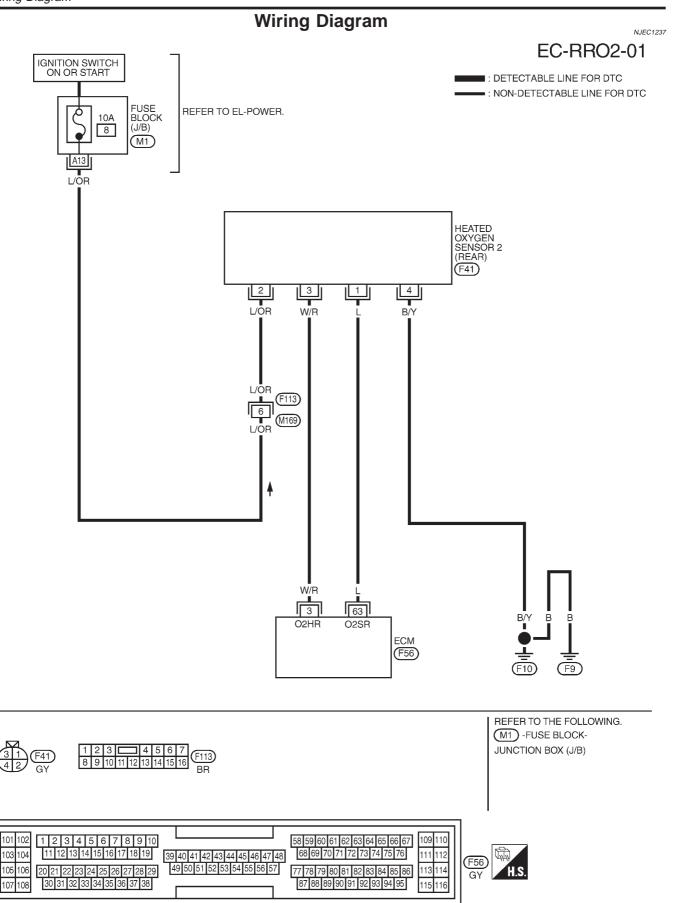
NJEC1232

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	• Engine: After warming up		0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)		Revving engine from idle to 3,000 rpm	$LEAN \longleftrightarrow RICH$

ECM Terminals and Reference Value

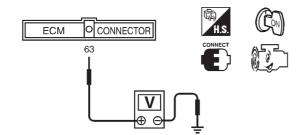
NJEC1233


Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	L	Heated oxygen sensor 2 (rear)	[Engine is running] ● After warming up to normal operating temperature and engine speed is 3,000 rpm	0 - Approximately 1.0V


YEC988

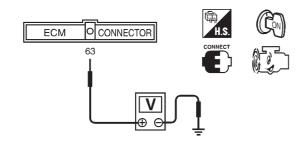
Diagnostic Procedure

NJEC1238

1 CHECK OVERALL FUNCTION-I

- 1. Start engine and drive the vehicle at over 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle and keep the engine running.
- 3. Set voltmeter probes between ECM terminals 63 [HO2S2 (B1) signal] and ground.
- 4. Check the voltage while revving up to 4,000 rpm under no load at least 10 times. (Depress and release the accelerator pedal as quickly as possible.)

The voltage does not remain in the range of 0.2 - 0.4V.

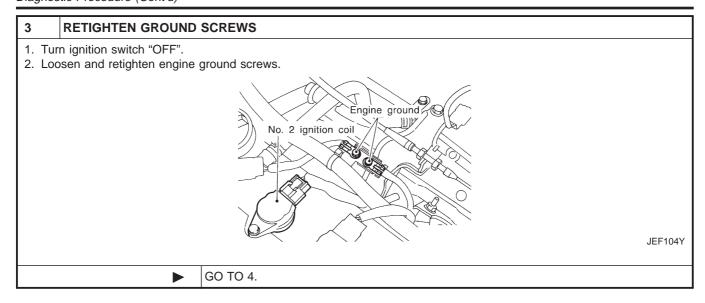

SEF240Z

OK or NG

OK •	INSPECTION END
NG ▶	GO TO 2.

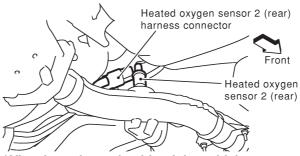
2 CHECK OVERALL FUNCTION-II

Keep engine at idle for 10 minutes, then check the voltage between ECM terminal 63 and ground, or check the voltage when coasting at 80 km/h (50 MPH) in 3rd gear (M/T), "D" position with "OD" OFF (A/T).



The voltage does not remain in the range of 0.2 - 0.4V.

SEF240Z


OK or NG

OK D	>	INSPECTION END
NG		GO TO 3.

4 CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.

View from the underside of the vehicle

NEF345A

3. Check harness continuity between ECM terminal 63 and heated oxygen sensor 2 (rear) harness connector terminal 1. Refer to wiring diagram.

Continuity should exist.

4. Check harness continuity between ECM terminal 63 [or heated oxygen sensor 2 (rear) harness connector terminal 1] and ground.

Continuity should not exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG ►	GO TO 5.

5	DETECT MALFUNCTIONING PART			
Check the harness for open or short between heated oxygen sensor 2 (rear) and ECM.				
Repair open circuit or short to ground or short to power in harness or connectors.				

6	CHECK GROUND CIRCUIT				
Re	Check harness continuity between heated oxygen sensor 2 (rear) harness connector terminal 4 and body ground. Refer to wiring diagram. Continuity should exist. Also check harness for short to ground and short to power.				
	OK or NG				
OK	OK				
NG	NG Repair open circuit or short to ground or short to power in harness or connectors.				

7	7 CHECK HEATED OXYGEN SENSOR 2 (REAR)			
Refer	Refer to "Component Inspection", EC-387.			
	OK or NG			
OK	OK ▶ GO TO 8.			
NG	NG Replace heated oxygen sensor 2 (rear).			

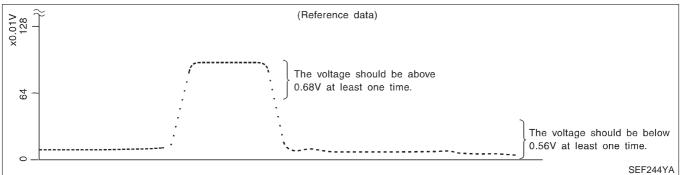
8	CHECK INTERMITTENT INCIDENT				
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.				
	► INSPECTION END				

ACTIVE TES	ACTIVE TEST		
FUEL INJECTION	25 %		
MONITOR			
ENG SPEED	XXX rpm		
HO2S1 (B1)	xxx v		
HO2S2 (B1)	xxx v		
HO2S1 MNTR (B1)	RICH		
HO2S2 MNTR (B1)	RICH		
		SEF662Y	

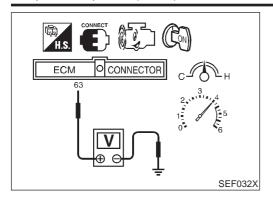
Component Inspection HEATED OXYGEN SENSOR 2 (REAR)

NJEC1239

NJEC1239S01


(II) With CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.


"HO2S2 (B1)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.56V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

Component Inspection (Cont'd)

⋈ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 (HO2S2 signal) and engine ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once.
 - If the voltage is above 0.68V at step 4, step 5 is not necessary.
- 5) Check the voltage when revving up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).

The voltage should be below 0.56V at least once.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

HEATED OXYGEN SENSOR 2 HEATER (REAR)

Description

SYSTEM DESCRIPTION

NJEC1240

NJEC1240S01

			110201210001
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Heated oxygen sensor 2 heater (rear) con- trol	Heated oxygen sensor 2 heater (rear)

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater (rear) corresponding to the engine speed.

OPERATION

NJEC1240S02

Engine	Heated oxygen sensor 2 heater (rear)	
Engine	OFF	
Engine is running.	After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more	ON
	Engine speed above 3,600 rpm	OFF

CONSULT-II Reference Value in Data Monitor Mode

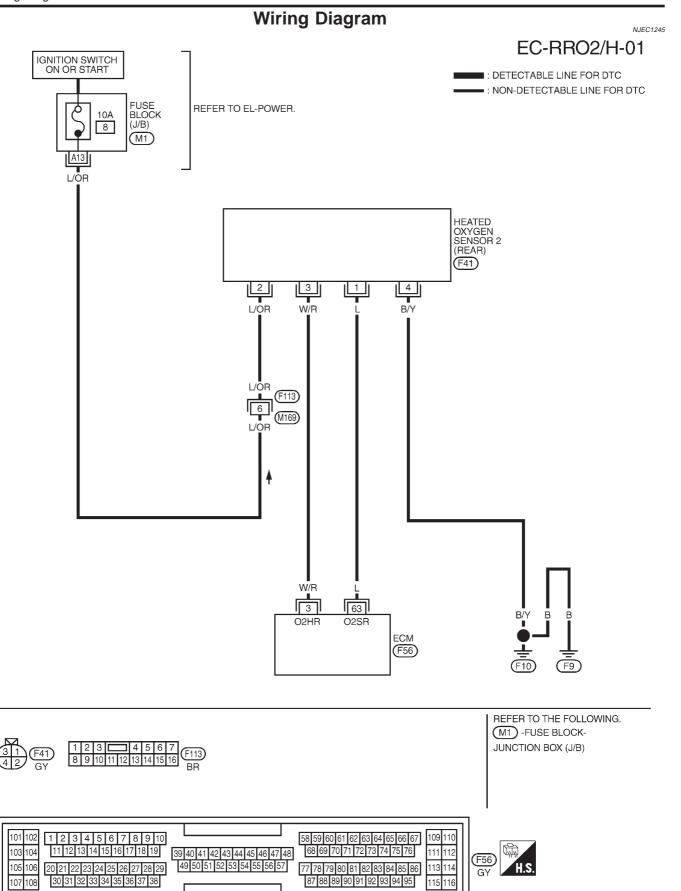
Specification data are reference values.

NJEC1241

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine speed	Below 3,600 rpm [After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more]	ON
HO2S2 HTR (B1)		Above 3,600 rpm	OFF
	Ignition switch ON (E	ngine stopped)	OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

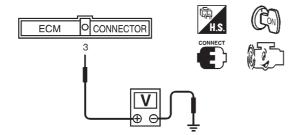

NJEC1242

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3 W/R	Heated oxygen sensor 2	 Engine is running Engine speed is below 3,600 rpm [After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more 	0 - 1V	
	1 ////R 1	heater (rear)	[Engine is running] ● Engine speed is above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "ON"] ● Engine stopped	

YEC989


Diagnostic Procedure

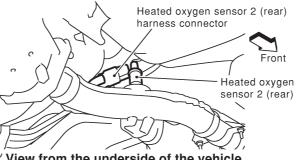
NJEC1246

CHECK OVERALL FUNCTION

Without CONSULT-II

- 1. Start engine and drive the vehicle at over 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle and keep the engine running.
- 3. Set the voltmeter probe between ECM terminals 3 [HO2S2 HTR (B1) signal] and ground.
- 4. Check the voltage under the following conditions.

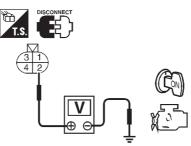
Conditions	Voltage
At idle	0 - 1V
Engine speed is above 3,600 rpm.	Battery voltage


SEF241Z

OK or NG

OK •	INSPECTION END
NG ▶	GO TO 2.

CHECK POWER SUPPLY


- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 (rear) harness connector.

'View from the underside of the vehicle

NEF345A

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 2 and ground.

SEF218W

OK	or	NO

OK ▶	GO TO 4.
NG ▶	GO TO 3.

HEATED OXYGEN SENSOR 2 HEATER (REAR)

QG

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M169, F113
- · Harness for open or short between heated oxygen sensor 2 (rear) and fuse
- 10A fuse

Repair harness or connectors.

4 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between heated oxygen sensor 2 (rear) harness connector terminal 3 and ECM terminal 3. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK	>	GO TO 6.
NG	•	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the harness for open or short between heated oxygen sensor 2 heater (rear) and ECM.

Repair open circuit or short to ground or short to power in harness or connectors.

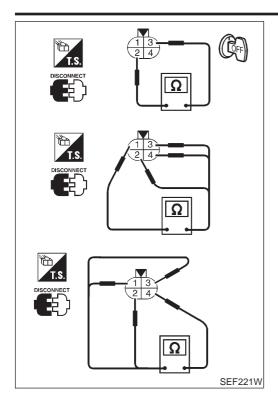
6 CHECK HEATED OXYGEN SENSOR 2 HEATER (REAR)

Refer to "Component Inspection", EC-393.

OK or NG

OK	GO TO 7.

NG Replace heated oxygen sensor 2 (rear).


7 CHECK INTERMITTENT INCIDENT

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.

► INSPECTION END

HEATED OXYGEN SENSOR 2 HEATER (REAR)

Component Inspection

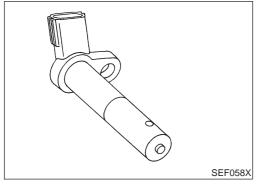
Component Inspection HEATED OXYGEN SENSOR 2 HEATER (REAR)

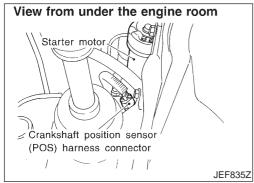
NJEC1247 NJEC1247S01

Check the following.

1. Check resistance between terminals 1 and 4.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)


2. Check continuity.


Terminal No.	Continuity	
1 and 2, 3, 4	- No	
4 and 1, 2, 3		

If NG, replace the heated oxygen sensor 2 (rear).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool and approved anti-seize lubricant.

Component Description

The crankshaft position sensor (POS) is located on the right-rear wall of the cylinder block in relation to the signal plate at the rear end of the crankshaft.

The sensor consists of a permanent magnet, and hall IC.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

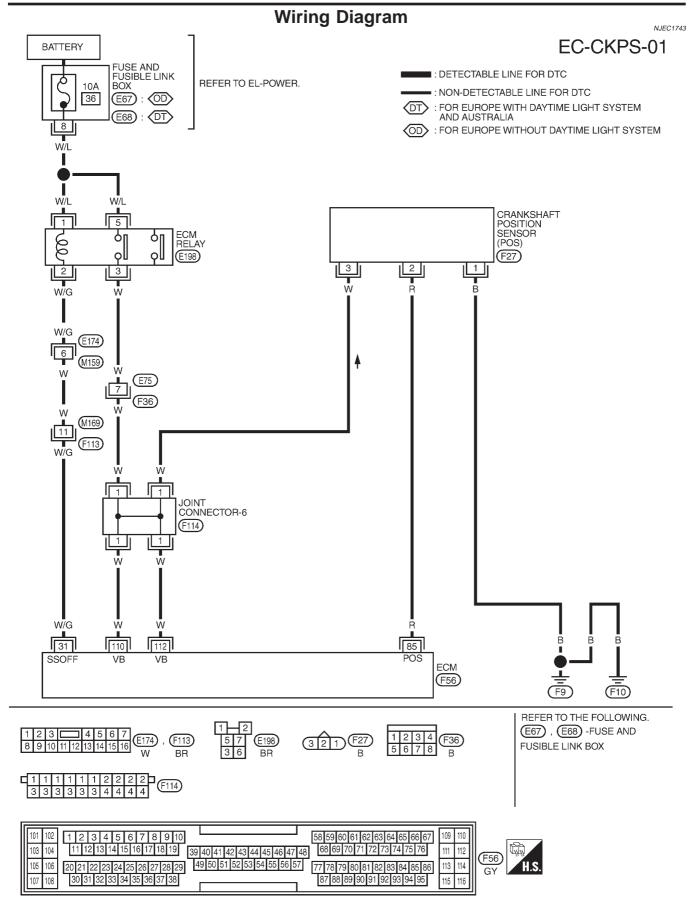
The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

ECM Terminals and Reference Value

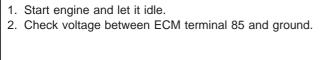
NJEC1742

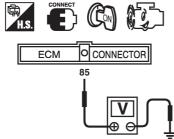

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

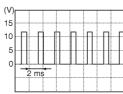
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

	·			
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)
			[Engine is running] ■ Warm-up condition ■ Idle speed	3 - 4V (V) 15 10 5 0 2 me SEF979W
85	R	Crankshaft position sensor (POS)	[Engine is running] ● Engine speed is 2,000 rpm	3 - 4V (V) 15 10 2 ms SEF980W


CRANKSHAFT POSITION SENSOR (POS)

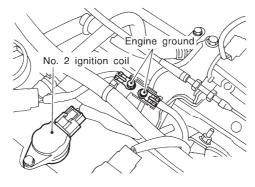

1

Diagnostic Procedure


NJEC1744

CHECK OVERALL FUNCTION

Voltage is 3 to 4V.

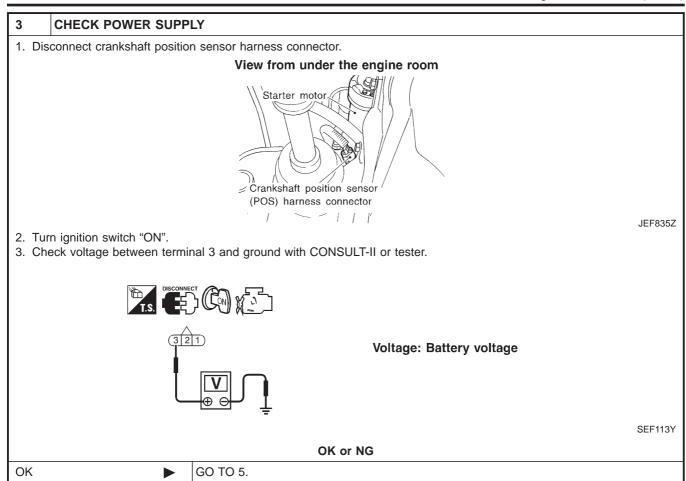

SEF761Z

OK or NG

OK ▶	INSPECTION END
NG ►	GO TO 2.

2 RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.


JEF104Y

▶ GO TO 3.

CRANKSHAFT POSITION SENSOR (POS)

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-6
- Harness for open or short between joint connector and ECM relay

GO TO 4.

- Harness for open or short between crankshaft position sensor and joint connector
- Harness for open or short between joint connector and ECM
- ECM relay

NG

▶ Repair open circuit or short to ground or short to power in harness or connectors.

CRANKSHAFT POSITION SENSOR (POS)

Diagnostic Procedure (Cont'd)

OK

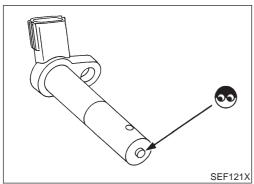
NG

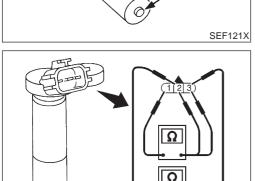
5 CHECK INPUT SIGNAL CIRCUIT 1. Turn ignition switch "OFF". 2. Disconnect ECM harness connectors. View from under the engine room Starter motor (POS) harness connector (POS) harness connector

6	CHECK GROUND CIR	CUIT		
2. Che Ref	 Reconnect ECM harness connector. Check harness continuity between terminal 1 and engine ground. Refer to wiring diagram. Continuity should exist. Also check harness for short to ground and short to power. 			
	OK or NG			
OK	OK ▶ GO TO 8.			
NG	>	GO TO 7.		

Repair open circuit or short to ground or short to power in harness or connectors.

GO TO 6.


7	DETECT MALFUNCTIONING PART		
	the following. rness for open between cra	nkshaft position sensor harness connector terminal 1 and engine ground.	
	•	Repair open circuit or short to power in harness or connectors.	


8	CHECK CRANKSHAFT POSITION SENSOR		
Refer	Refer to "Component Inspection", EC-399.		
	OK or NG		
OK	OK ▶ GO TO 9.		
NG	>	Replace crankshaft position sensor.	

9	CHECK INTERMITTENT INCIDENT		
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

CRANKSHAFT POSITION SENSOR (POS)

Component Inspection

SEF122X

Component Inspection CRANKSHAFT POSITION SENSOR (POS)

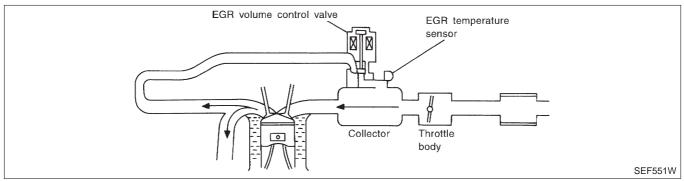
NJEC1745

- Disconnect crankshaft position sensor (POS) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

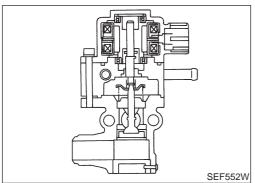
5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
3 (+) - 1 (–)	
2 (+) - 1 (-)	Except 0 or ∞
3 (+) - 2 (-)	

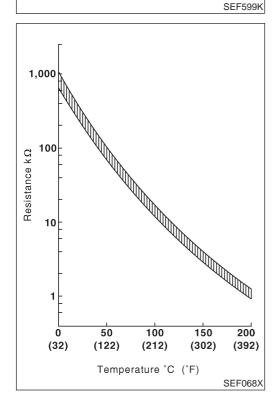
If NG, replace crankshaft position sensor.


Description SYSTEM DESCRIPTION

NJEC1746 NJEC1746S01


Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal	EGR volume control valve	
Throttle position sensor	Throttle position		ECD volume central valve
Vehicle speed sensor	Vehicle speed		EGR volume control valve
Battery	Battery voltage		
Air conditioner switch	conditioner switch Air conditioner operation		
Power steering oil pressure switch	Power steering load signal	1	
Electrical load	Electrical load signal		
PNP switch	Park/Neutral position signal		

This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. The EGR volume control valve remains close under the following conditions.


- Low engine coolant temperature
- Engine starting
- High-speed engine operation
- Extremely light load engine operation
- Engine idling
- Excessively high engine coolant temperature
- Wide open throttle
- Mass air flow sensor malfunction
- Low battery voltage

Description (Cont'd)

SEF552W Sensor element Tightening nut Connector

COMPONENT DESCRIPTION EGR Volume Control Valve

NJEC1746S02

The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

EGR Temperature Sensor

NJEC1746S0202

The EGR temperature sensor detects temperature changes in the EGR passageway. When the EGR volume control valve opens, hot exhaust gases flow, and the temperature in the passageway changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases. This sensor is not used to control the engine system.

<Reference data>

EGR temperature °C (°F)	Voltage* V	Resistance MΩ
0 (32)	4.56	0.62 - 1.05
50 (122)	2.25	0.065 - 0.094
100 (212)	0.59	0.011 - 0.015

^{*:} These data are reference values and are measured between ECM terminal 72 (EGR temperature sensor) and ground.

When EGR system is operating.

Voltage: 0 - 1.5V

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

CONSULT-II Reference Value in Data Monitor Mode

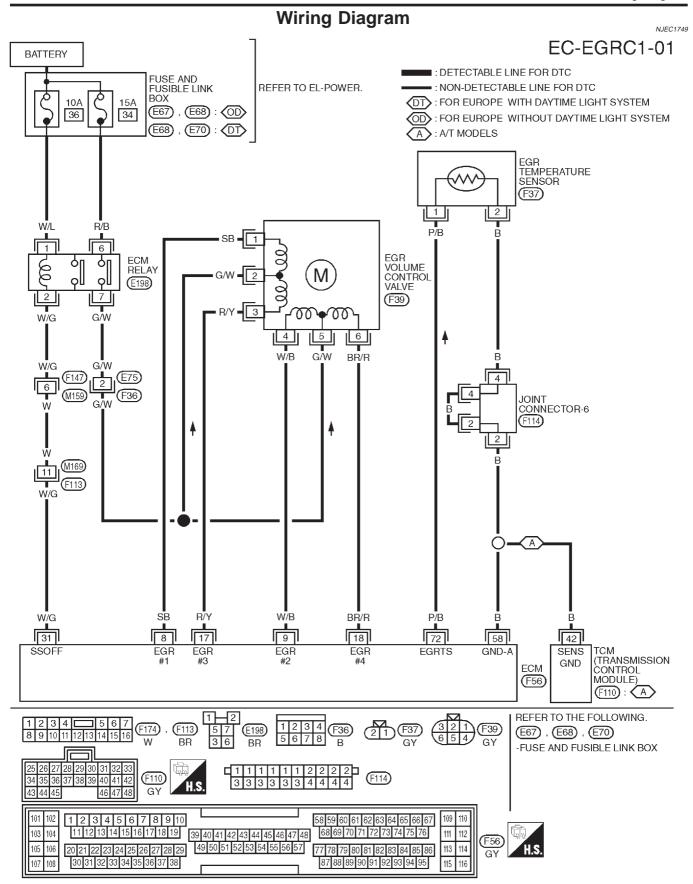
Specification data are reference values.

NJEC1747

MONITOR ITEM	CONDITION		SPECIFICATION
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
	Engine: After warming upAir conditioner switch: "OFF"	Idle	0 step
EGR VOL CON/V	Shift lever: "N" No-load	Revving engine up to 3,000 rpm quickly	10 - 55 step

ECM Terminals and Reference Value

ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and ground.

NJEC1748

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
8 9 17 18	SB W/B R/Y BR/R	EGR volume control valve	[Engine is running] ● Idle speed	0 - 14V
58	В	Sensor's ground	[Engine is running] ■ Warm-up condition ■ Idle speed	ov
72	P/B	ECD temporature geneer	[Engine is running] ■ Warm-up condition ■ Idle speed	Less than 4.5V
12	P/D	EGR temperature sensor	[Engine is running] ■ Warm-up condition ■ EGR system is operating.	0 - 1V

Diagnostic Procedure

			NJEC1750	
1	INSPECTION START			
Do yo	Do you have CONSULT-II?			
		Yes or No		
Yes	>	GO TO 2.		
No	•	GO TO 4.		

2 CHECK OVERALL FUNCTION-I

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Confirm that "COOLAN TEMP/S" indicates less than 40°C (104°F). If the indication is out of range, cool the engine down.

DATA MONITOR		
MONITOR	NO DTC	
COOLAN TEMP/S	XXX °C	

SEF013Y

- 4. Start engine and let it idle.
- 5. Make sure that "EGR TEMP SEN" in "DATA MONITOR" mode indicates more than 3V. Print out the screen or note the indication.

DATA MONITOR		
MONITOR	NO DTC	
EGR TEMP SEN	xxx v	

SEF014Y

OK •	GO TO 3.
NG ►	GO TO 6.

Diagnostic Procedure (Cont'd)

3 CHECK OVERALL FUNCTION-II

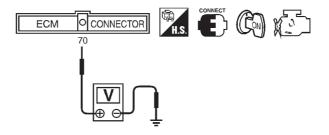
(P) With CONSULT-II

- 1. Warm up engine to normal operating temperature.
- 2. Select "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Keep engine speed at 2,000 rpm and set the "EGR VOL CONT/V" opening to "20 step".
- 4. Make sure the "EGR TEMP SEN" indicated is lower than the value indicated in test No. 2 by 1.0V or more.

ACTIVE TEST			
EGR VOL CONT/V	20 step		
MONITOR			
ENG SPEED	XXX rpm		
EGR TEMP SEN	xxx v		

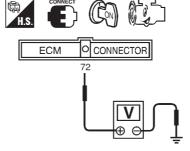
SEF015Y

OK or NG


OK ▶	INSPECTION END
NG ►	GO TO 6.

4 CHECK OVERALL FUNCTION-I

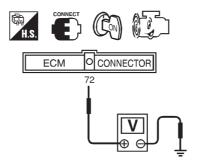
Without CONSULT-II


- 1. Turn ignition switch "ON".
- 2. Confirm that the voltage between ECM terminal 70 (Engine coolant temperature sensor signal) and ground is more than 2.72V.

If the voltage is out of range, cool the engine down.

SEF016Y

- 3. Start engine and let it idle.
- 4. Make sure that the voltage between ECM terminal 72 (EGR temperature sensor signal) and ground is more than 3V.

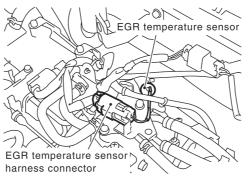

SEF755Z

OK ►	GO TO 5.
NG ►	GO TO 6.

5 CHECK OVERALL FUNCTION-II

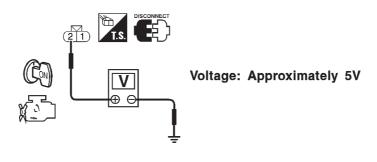
Without CONSULT-II

- 1. Warm up engine to normal operating temperature.
- 2. Rev engine from idle up to about 3,000 rpm two to three times.
- 3. Make sure the voltage between ECM terminal 72 and ground is lower than the voltage measured in test No. 4 by 1.0V or more



SEF755Z

OK •	INSPECTION END
NG ►	GO TO 6.


6 CHECK EGR TEMPERATURE SENSOR POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect EGR temperature sensor harness connector.

SEF127X

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

SEF896X

OK •	>	GO TO 7.
NG	>	Repair harness or connectors.

YEC056A

Diagnostic Procedure (Cont'd)

7 CHECK EGR TEMPERATURE SENSOR GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- Check harness continuity between EGR temperature sensor harness terminal 2 and engine ground. Refer to wiring diagram.

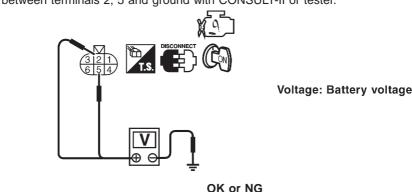
Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 9.
NG ►	GO TO 8.

8 DETECT MALFUNCTIONING PART


Check the following.

- Harness for open or short between EGR temperature sensor and ECM
- Harness for open or short between TCM (Transmission Control Module) and ECM
- Joint connector-6
- Repair open circuit or short to ground or short to power in harness or connector.

9	CHECK EGR TEMPERATURE SENSOR	
Refer to "Component Inspection", EC-410.		
OK or NG		
OK	>	GO TO 10.
NG	>	Replace EGR temperature sensor.

10 CHECK EGR VOLUME CONTROL VALVE POWER SUPPLY

- 1. Disconnect EGR volume control valve harness connector.
- 2. Turn ignition switch "ON".
- 3. Check voltage between terminals 2, 5 and ground with CONSULT-II or tester.

11 DETECT MALFUNCTIONING PART

Check the following.

- 15A fuse
- Harness connectors E75, F36
- Harness for open or short between fuse and ECM relay
- ECM relay
- Harness for open or short between EGR volume control valve and ECM relay.
 - Repair harness or connectors, or replace fuse or ECM relay.

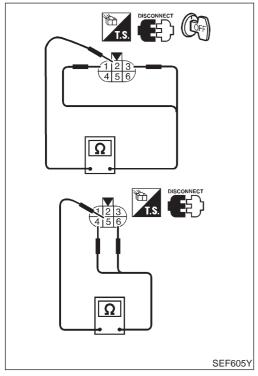
QG

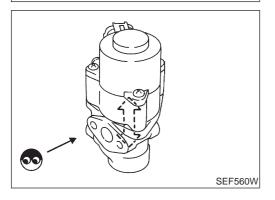
Diagnostic Procedure (Cont'd)

12 **CHECK OUTPUT SIGNAL CIRCUIT** 1. Turn ignition switch "OFF". 2. Disconnect ECM harness connector. 3. Check harness continuity between ECM terminal 8 and EGR volume control valve terminal 1, ECM terminal 9 and EGR volume control valve terminal 4, ECM terminal 17 and EGR volume control valve terminal 3, ECM terminal 18 and EGR volume control valve terminal 6. Refer to wiring diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG GO TO 13. OK NG Repair open circuit, short to ground or short to power in harness connectors.

13	13 CHECK EGR PASSAGE	
Check EGR passage for clogging and cracks.		
OK or NG		
OK	•	GO TO 14.
NG	•	Repair or replace EGR passage.

14	14 CHECK EGR VOLUME CONTROL VALVE	
Refer to "COMPONENT INSPECTION", EC-409.		
OK or NG		
OK	>	GO TO 15.
NG	>	Replace EGR volume control valve.


15	CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	•	INSPECTION END


Diagnostic Procedure (Cont'd)

EGR volume control valve

SEF069X

ACTIVE TEST		
EGR VOL CONT/V	20 step	
MONITOR	R	
ENG SPEED	XXX rpm	
EGR TEMP SEN	xxx v	
		SEF015Y

Component Inspection EGR VOLUME CONTROL VALVE

NJEC1751

NJEC1751S01

- (II) With CONSULT-II
- 1) Disconnect EGR volume control valve harness connector.
- Check resistance between the following terminals. terminal 2 and terminals 1, 3 terminal 5 and terminals 4. 6

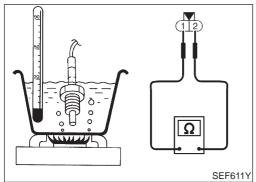
Temperature °C (°F)	Resistance Ω
20 (68)	20 - 24

- 3) Reconnect EGR volume control valve harness connector.
- Remove EGR volume control valve from cylinder head. (The EGR volume control valve harness connector should remain connected.)
- Turn ignition switch "ON".
- 6) Perform "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that EGR volume control valve shaft moves smoothly forward and backward according to the valve opening.

If NG, replace the EGR volume control valve.

⋈ Without CONSULT-II

- 1) Disconnect EGR volume control valve harness connector.
- Check resistance between the following terminals. terminal 2 and terminals 1, 3 terminal 5 and terminals 4, 6


Temperature °C (°F)	Resistance Ω
20 (68)	20 - 24

3) Turn ignition switch "ON" and "OFF". Check that EGR volume control valve shaft moves smoothly forward and backward according to the ignition switch position. If NG, replace the EGR volume control valve.

QG

NJEC1751S02

Component Inspection (Cont'd)

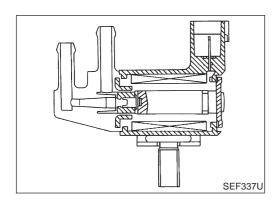
1,000 100 Resistance kΩ 10 50 100 150 200 (32) (122) (212)(302) (392) Temperature °C (°F) SEF068X

EGR TEMPERATURE SENSOR

Check resistance change and resistance value. <Reference data>

EGR temperature °C (°F)	Voltage V	Resistance $M\Omega$
0 (32)	4.56	0.62 - 1.05
50 (122)	2.25	0.065 - 0.094
100 (212)	0.59	0.011 - 0.015

If NG, replace EGR temperature sensor.


Description

Description SYSTEM DESCRIPTION

NJEC1752 NJEC1752S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Battery	Battery voltage	5)/AD 202	
Ignition switch	Start signal	EVAP can- ister purge	EVAP canister purge volume control solenoid valve
Closed throttle position switch (If so equipped)	Closed throttle position	control	Control Solenoid Valve
Throttle position sensor	Throttle position		
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Vehicle speed sensor	Vehicle speed		

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

NJEC1752S0

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

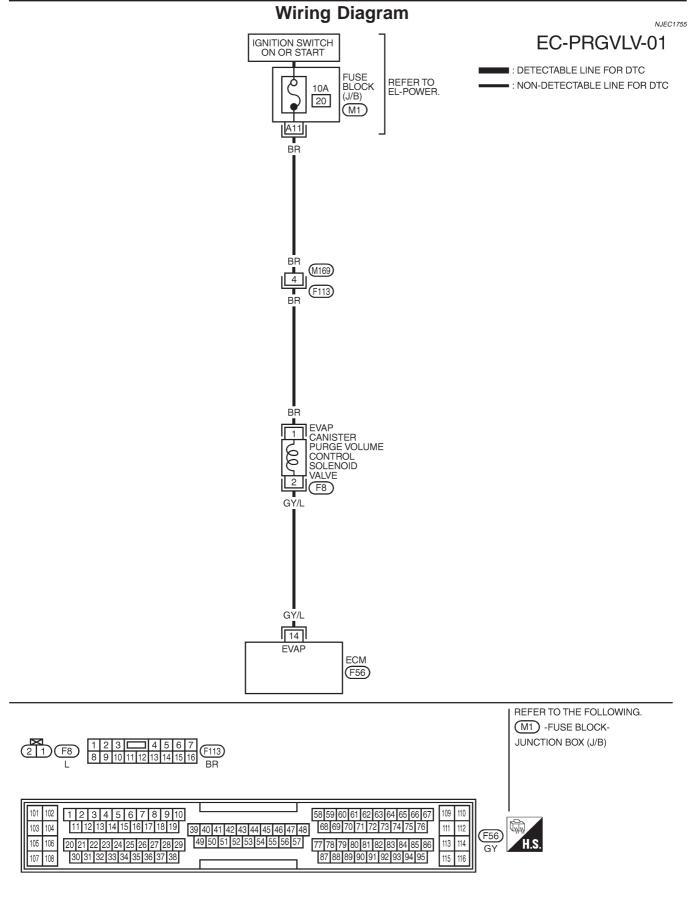
CONSULT-II Reference Value in Data Monitor Mode

NJEC1753

			NJEC1755
MONITOR ITEM	CONDITION		SPECIFICATION
PURG VOL C/V	Engine: After warming up	Idle	0%
	No-load	Revving engine	_

ECM Terminals and Reference Value

ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and ground.

=NJEC1754

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
14	GY/L	EVAP canister purge volume control solenoid valve	[Engine is running] ■ Warm-up condition ■ 2,000 rpm	5 - 12V (V) 30 20 10 0 200 ms SEF975W

Diagnostic Procedure

Diagnostic Procedure

NJEC1756

1	INSPECTION START	
Do you have CONSULT-II?		
Yes or No		
Yes	>	GO TO 2.
No	>	GO TO 3.

2 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE CONTROL FUNCTION

(P) With CONSULT-II

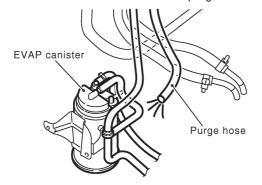
- 1. Turn ignition switch "OFF".
- 2. Disconnect the EVAP purge hose connected to the EVAP canister purge volume control solenoid valve at the EVAP canister
- 3. Turn ignition switch "ON" and select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Start engine and let it idle.
- 5. Change the valve opening percentage touching "Qu" and "Qd" and check for vacuum existence under the following conditions.

ACTIVE TEST		
PURG VOL CONT/V XXX %		
MONITOR	₹	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	LEAN	
THRTL POS SEN	xxx v	

Conditions	Vacuum
At idle	Should not exist.
Engine speed is about 2,000 rpm.	Should exist.

SEC582C

OK ▶	GO TO 4.
NG ▶	GO TO 5.



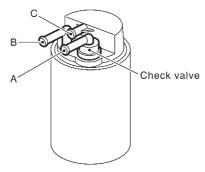
Diagnostic Procedure (Cont'd)

3 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE CONTROL FUNCTION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- Disconnect the EVAP purge hose connected to the EVAP canister purge volume control solenoid valve at the EVAP canister.
- 4. Start engine and let it idle for at least 90 seconds.
- 5. Check for vacuum existence at the EVAP purge hose under the following conditions.

Conditions	Vacuum
At idle	Should not exist.
Engine speed is approx. 2,000 rpm.	Should exist.

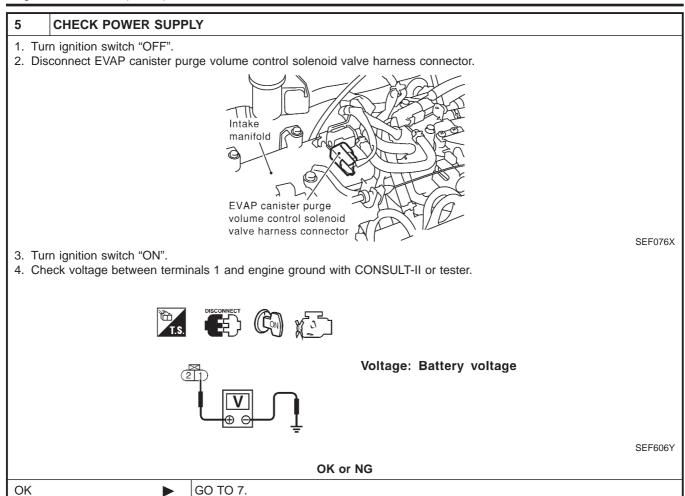

SEF760Z

OI	K	or	N	G
----	---	----	---	---

OK	>	GO TO 4.
NG	•	GO TO 5.

4 CHECK EVAP CANISTER

- 1. Turn ignition switch "OFF".
- 2. Remove EVAP canister.
- 3. Block port B of EVAP canister.
- 4. Blow air through port A orally, and confirm that air flows freely through port C with check valve resistance.
- 5. Block port A of EVAP canister.
- 6. Blow air through port B orally, and confirm that air flows freely through port C.


SEF917W

OK or NG

OK •	INSPECTION END
NG ►	Replace EVAP canister.

QG

Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M169, F113
- 10A fuse

NG

• Harness for open or short between EVAP canister purge volume control solenoid valve and fuse

Repair harness or connectors.

7 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 14 and terminal 2. Refer to wiring diagram.

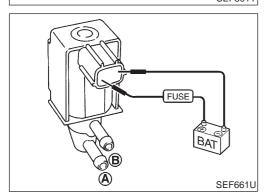
GO TO 6.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 8.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.


QG

Diagnostic Procedure (Cont'd)

8	8 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE		
Refer to "Component Inspection", EC-417.			
OK or NG			
ОК	OK ▶ GO TO 9.		
NG	NG Replace EVAP canister purge volume control solenoid valve.		

9	CHECK INTERMITTENT INCIDENT		
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
► INSPECTION END			

		ı
ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	LEAN	
THRTL POS SEN	xxx v	
		SFF801

Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

NJEC1757

NJEC1757S01

(I) With CONSULT-II

- 1) Start engine.
- 2) Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

If OK, inspection end. If NG, go to following step.

3) Check air passage continuity.

Condition PURG VOL CONT/V value	Air passage continuity between A and B	
100.0%	Yes	
0.0%	No	

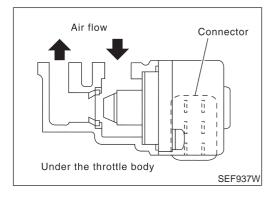
If NG, replace the EVAP canister purge volume control solenoid valve.

⋈ Without CONSULT-II

Check air passage continuity.

Condition	Air passage continuity between A and B	
12V direct current supply between terminals	Yes	
No supply	No	

If NG, replace the EVAP canister purge volume control solenoid valve.


Description

Description SYSTEM DESCRIPTION

NJEC1758 NJEC1758S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal		
Throttle position sensor	Throttle position		
PNP switch	Park/Neutral position	Idle air	IACV-AAC valve
Air conditioner switch	Air conditioner operation	control	IACV-AAC Valve
Power steering oil pressure switch	Power steering load signal		
Battery	Battery voltage		
Vehicle speed sensor	Vehicle speed		
Cooling fan	Cooling fan operation		
Electrical load	Electrical load signal		

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which by-passes the throttle valve via IACV-AAC valve. The IACV-AAC valve changes the opening of the air by-pass passage to control the amount of auxiliary air. This valve is actuated by a step motor built into the valve, which moves the valve in the axial direction in steps corresponding to the ECM output signals. One step of IACV-AAC valve movement causes the respective opening of the air by-pass passage. (i.e. when the step advances, the opening is enlarged.) The opening of the valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM. The ECM then controls the step position of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner, power steering, cooling fan operation and electrical load).

COMPONENT DESCRIPTION IACV-AAC Valve

NJEC1758S02

NJEC1758S020

The IACV-AAC valve is operated by a step motor for centralized control of auxiliary air supply. This motor has four winding phases and is actuated by the output signals of ECM which turns ON and OFF two windings each in sequence. Each time the IACV-AAC valve opens or closes to change the auxiliary air quantity, the ECM sends a pulse signal to the step motor. When no change in the auxiliary air quantity is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

QG

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

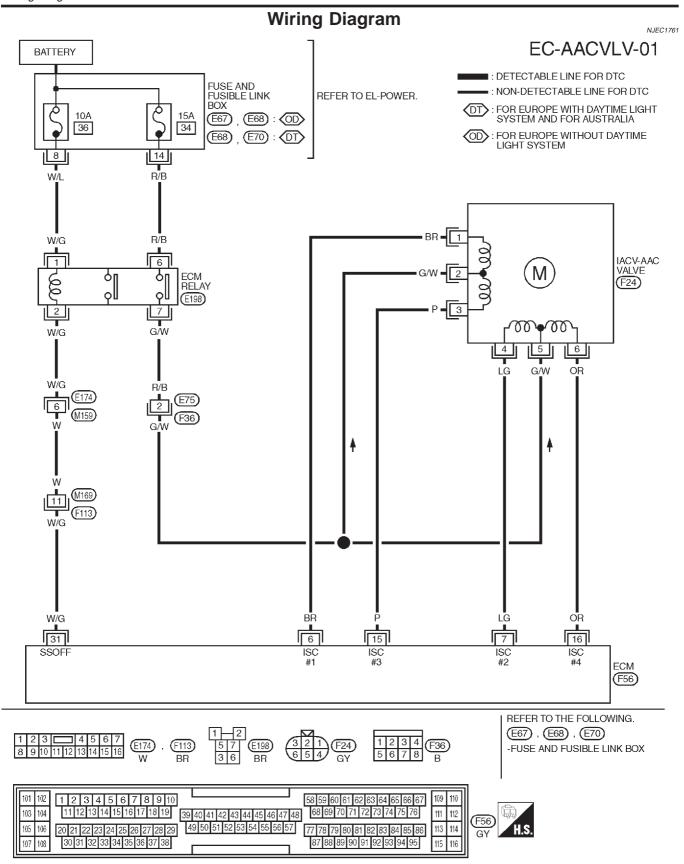
NJEC1759

MONITOR ITEM	CONDITION		SPECIFICATION
 Engine: After warming up Air conditioner switch: OFF Shift lever: "N" No-load 	Idle	5 - 25 steps	
	2,000 rpm	_	

ECM Terminals and Reference Value

NJEC1760

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

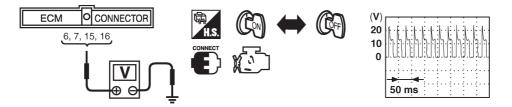
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6 7 15 16	BR LG P OR	IACV-AAC valve	[Engine is running] • Warm-up condition • Idle speed	0.1 - 14V

QG

Wiring Diagram

QG

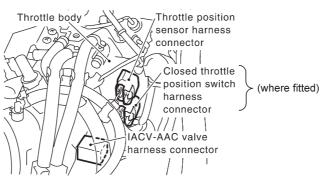

Diagnostic Procedure

Diagnostic Procedure

NJEC1762

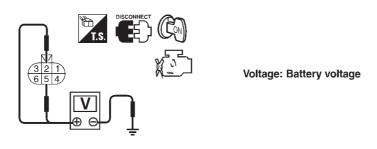
1 CHECK OVERALL FUNCTION

- 1. Turn ignition switch "OFF".
- 2. Read the voltage signal between ECM terminals 6, 7, 15, 16 (IACV-AAC valve signal) and ground with an oscilloscope.
- 3. Turn ignition switch "ON", wait at least 5 seconds and then "OFF".
- 4. Verify that the oscilloscope screen shows the signal wave as shown below at least once every 10 seconds after turning ignition switch "OFF".


SEF756Z

OK or NG

OK •	INSPECTION END
NG ►	GO TO 2.


2 CHECK POWER SUPPLY

- 1. Turn ignition switch "OFF".
- Disconnect IACV-AAC valve harness connector.

NEF316A

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 2, 5 and ground with CONSULT-II or tester.

SEF343X

OK •	GO TO 4.
NG ►	GO TO 3.

Diagnostic Procedure (Cont'd)

QG

3 DETECT MALFUNCTIONING PART

Check the following.

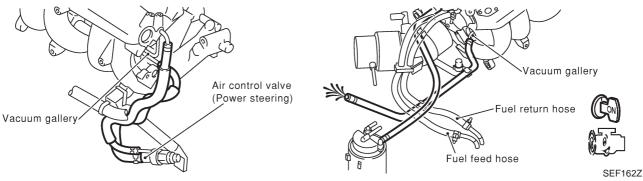
- 15A fuse
- Harness connectors E75, F36 (If so equipped)
- Harness for open or short between fuse and ECM relay
- ECM relay
- Harness for open or short between IACV-AAC and ECM relay.
 - ▶ Repair harness or connectors, or replace fuse or ECM relay.

4 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between
 - ECM terminal 6 and IACV-AAC valve terminal 1,
 - ECM terminal 7 and IACV-AAC valve terminal 4,
 - ECM terminal 15 and IACV-AAC valve terminal 3,
 - ECM terminal 16 and IACV-AAC valve terminal 6.

Refer to wiring diagram.

Continuity should exist.

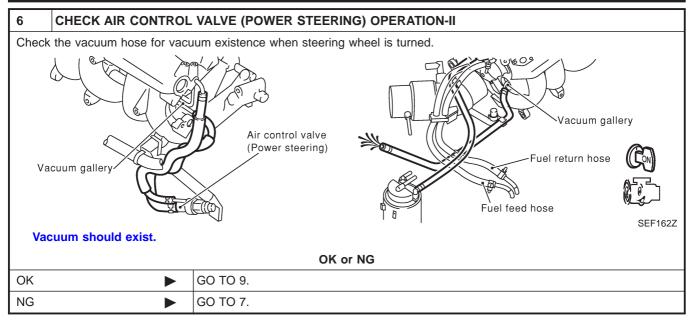

4. Also check harness for short to ground and short to power.

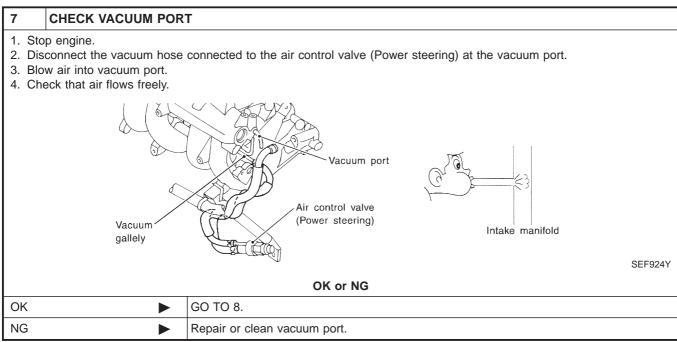
OK or NG

OK •	GO TO 5.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK AIR CONTROL VALVE (POWER STEERING) OPERATION-I

- 1. Reconnect the ECM harness connector and IACV-AAC valve harness connector.
- 2. Disconnect the vacuum hose connected to the air control valve (Power steering) at the intake air duct.
- 3. Start engine and let it idle.
- 4. Check vacuum hose for vacuum existence.

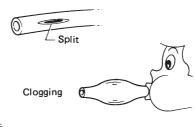



Vacuum does not exist or slightly exist.

OK ►	GO TO 6.
NG ▶	Replace air control valve (Power steering).

QG

Diagnostic Procedure (Cont'd)


QG

Diagnostic Procedure (Cont'd)

8 CHECK VACUUM HOSES AND TUBES1. Disconnect vacuum hoses between the air control vacuum

1. Disconnect vacuum hoses between the air control valve (Power steering) and vacuum port, air control valve (Power steering) and air duct.

2. Check hoses and tubes for cracks, clogging, improper connection or disconnection.

SEF109L

OK	or	NG
----	----	----

OK •	GO TO 9.
NG ►	Repair hoses or tubes.

9	CHECK IACV-AAC VALVE		
Refer to "Component Inspection", EC-425.			
	OK or NG		
OK	>	GO TO 11.	
NG	>	GO TO 10.	

10 REPLACE IACV-AAC VALVE

- 1. Replace IACV-AAC valve assembly.
- 2. Perform "Idle Air Volume Learning", EC-55.

Is the result CMPLT or INCMP?

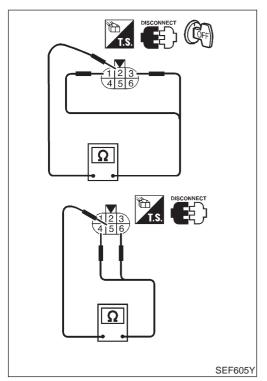
CMPLT or INCMP

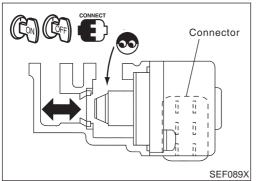
CMPLT •	•	INSPECTION END
INCMP -	•	Follow the construction of "Idle Air Volume Learning".

11 CHECK TARGET IDLE SPEED

- 1. Turn ignition switch "OFF".
- 2. Reconnect all harness connectors and vacuum hose.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Also warm up transmission to normal operating temperature.
- For A/T models with CONSULT-II, drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of "A/T" system indicates less than 0.9V.
- For A/T models without CONSULT-II and M/T models, drive vehicle for 10 minutes.
- 5. Stop vehicle with engine running.
- 6. Check target idle speed.

M/T: 700±50 rpm


A/T: 800±50 rpm (in "P" or "N" position)


OK ►	GO TO 12.
NG ►	Perform "Idle Air Volume Learning", EC-55.

QG

Diagnostic Procedure (Cont'd)

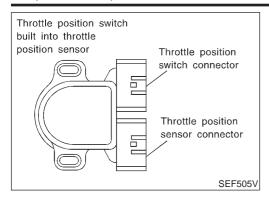
12	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Inspection IACV-AAC VALVE

NJEC1763

NJEC1763S01

- 1) Disconnect IACV-AAC valve harness connector.
- 2) Check IACV-AAC valve resistance.


Condition	Resistance
Terminal 2 and terminals 1, 3	- 20 - 24Ω [at 20°C (68°F)]
Terminal 5 and terminals 4, 6	

- 3) Reconnect IACV-AAC valve harness connector.
- Remove idle air adjusting unit assembly (IACV-AAC valve is built-in) from engine. (The IACV-AAC valve harness connector should remain connected.)
- 5) Turn ignition switch "ON" and "OFF", and ensure the IACV-AAC valve shaft smoothly moves forward and backward, according to the ignition switch position.

 If NG, replace the IACV-AAC valve.

Component Description

Component Description

A closed throttle position switch and wide open throttle position switch are built into the throttle position sensor unit. The wide open throttle position switch is used only for A/T control.

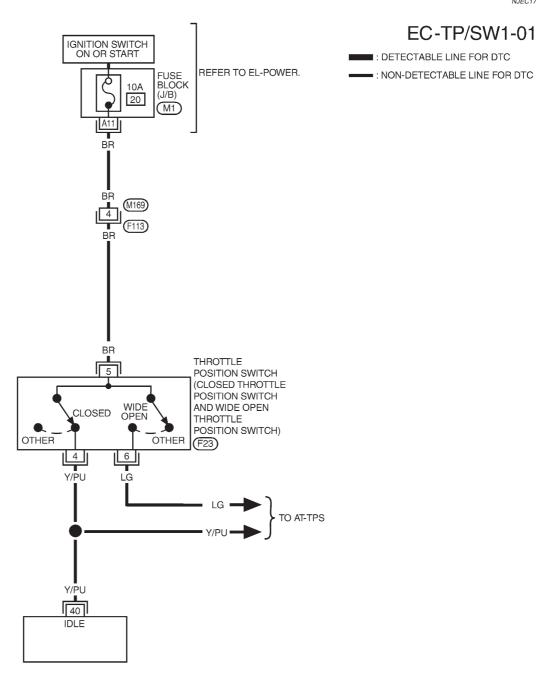
When the throttle valve is in the closed position, the closed throttle position switch sends a voltage signal to the ECM. The ECM only uses this signal to open or close the EVAP canister purge control valve when the throttle position sensor is malfunctioning.

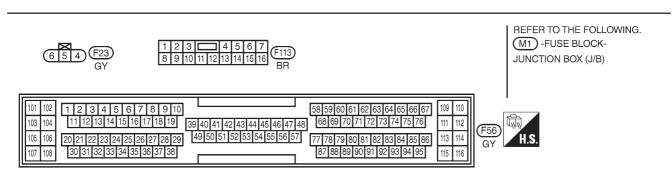
ECM Terminals and Reference Value

NJEC1765

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a grond other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
43 Y/PL	V/DII	Throttle position switch	[Ignition switch "ON"] ■ Accelerator pedal fully released	BATTERY VOLTAGE (11 - 14V)
	1/PU	(Closed position)	[Ignition switch "ON"] ● Accelerator pedal depressed	Approximately 0V

Wiring Diagram

Wiring Diagram

NJEC1766

YEC053A

Diagnostic Procedure

NJEC1767

1	INSPECTION START			
Do yo	Do you have CONSULT-II?			
	Yes or No			
Yes	>	GO TO 2.		
No	>	GO TO 3.		

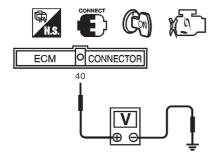
2 CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "A/T" and then select "DATA MONITOR" mode with CONSULT-II.
- 3. Check indication of "CLSD THL/P SW" under the following conditions. Measurement must be made with throttle position switch installed in vehicle.

Throttle valve conditions	CLSD THL/P SW
Completely closed	ON
Partially open or completely open	OFF

MTBL0355

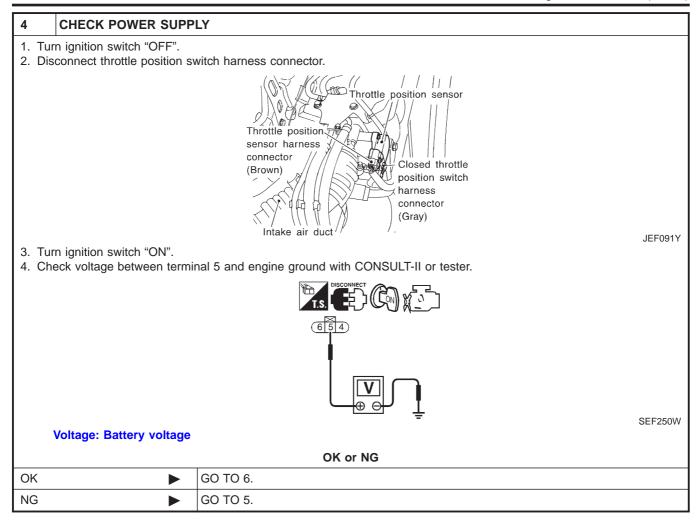

OK or NG

OK •	GO TO 10.
NG ▶	GO TO 4.

3 CHECK OVERALL FUNCTION

Without CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Check voltage between ECM terminal 40 (closed throttle position switch signal) and ground under the following conditions


Throttle valve conditions	Voltage
Completely closed	Battery Voltage
Partially open or compleately open	Approximately 0V

SEC583C

OK ▶	GO TO 11.
NG ▶	GO TO 4.

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M169, F113
- Harness for open or short between throttle position switch and fuse block.
- 10A fuse

Repair harness or connectors.

6 CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 40 and throttle position switch harness connector terminal 4. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
	OI.	140

OK ►	GO TO 8.
NG ►	GO TO 7.

QG

Diagnostic Procedure (Cont'd)

7 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between throttle position switch and ECM
- Harness for open or short between throttle position switch and TCM (Transmission Control Module)

Repair open circuit or short to ground or short to power in harness or connectors.

8 ADJUST THROTTLE POSITION SWITCH IDLE POSITION Perform Basic Inspection, EC-98. GO TO 9.

9	CHECK CLOSED THROTTLE POSITION SWITCH			
Refer	Refer to "Component Inspection", EC-431.			
	OK or NG			
OK (W	/ith CONSULT-II)	•	GO TO 10.	
OK (W	OK (Without CONSULT- GO TO 11.			
NG			Replace throttle position switch.	

10 CHECK THROTTLE POSITION SENSOR

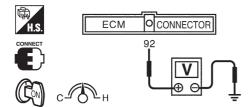
- (II) With CONSULT-II
- 1. Select "ENGINE" and then select "DATA MONITOR" mode with CONSULT-II.
- 2. Check voltage of "THRTL POS SEN" under the following conditins.

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	THRTL POS SEN
Completely closed (a)	0.15 - 0.85V
Partially open	Between (a) and (b)
Completely open (b)	3.5 - 4.7V

MTBL0230

OK or NG


OK •	GO TO 12.
NG ►	Replace throttle position sensor.

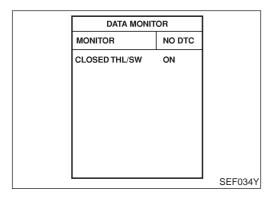
11 CHECK THROTTLE POSITION SENSOR

Without CONSULT-II

Check voltage between ECM terminal 92 (Throttle position sensor signal) and ground.

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage
Completely closed (a)	0.15 - 0.85V
Partially open	Between (a) and (b)
Completely open (b)	3.5 - 4.7V


YEC049A

OK •	GO TO 12.
NG ►	Replace throttle position sensor.

QG

Diagnostic Procedure (Cont'd)

12	CHECK INTERMITTENT INCIDENT			
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.				
	>	INSPECTION END		

Component Inspection CLOSED THROTTLE POSITION SWITCH

NJEC1768

NJEC1768S01

- (P) With CONSULT-II
- Turn ignition switch "ON".
- Select "DATA MONITOR" mode in A/T SECTION with CON-SULT-II.
- 3) Check indication of "CLOSED THL/SW" under the following conditions.

NOTE:

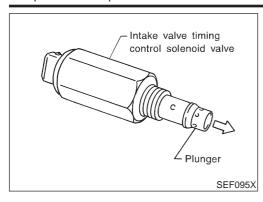
Measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	CLOSED THL/SW
Completely closed	ON
Partially open or completely open	OFF

- If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-98.
- 4) If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

⋈ Without CONSULT-II

- 1) Disconnect throttle position switch harness connector.
- 2) Check continuity between terminals 4 and 5 under the following conditions. Refer to wiring diagram.


NOTE:

Continuity measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

- If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-98.
- 3) If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

Component Description

Component Description

The valve timing control system is utilized to control intake valve opening and closing timing. Engine coolant temperature signals, engine speed and throttle position are used to determine intake valve timing.

The intake camshaft sprocket position is regulated by oil pressure controlled by the intake valve timing control.

When ECM sends ON signal to intake valve timing control solenoid valve, oil pressure is transmitted to camshaft sprocket. Then, intake side camshaft is advanced.

Operation

NJEC1770

Engine operating condition				Intake valve tim-	Intake valve	
Engine coolant temperature	Engine speed	B/FUEL SCHDL	Neutral switch	ing control sole- noid valve	opening and closing time	Valve overlap
20°C (68°F) - 70°C (158°F)	1,150 - 4,600 rpm	Above 3 msec	- OFF	ON	Advance	Increased
Above 70°C (158°F)		Above 7 msec				
Conditions other than those above				OFF	Normal	Normal

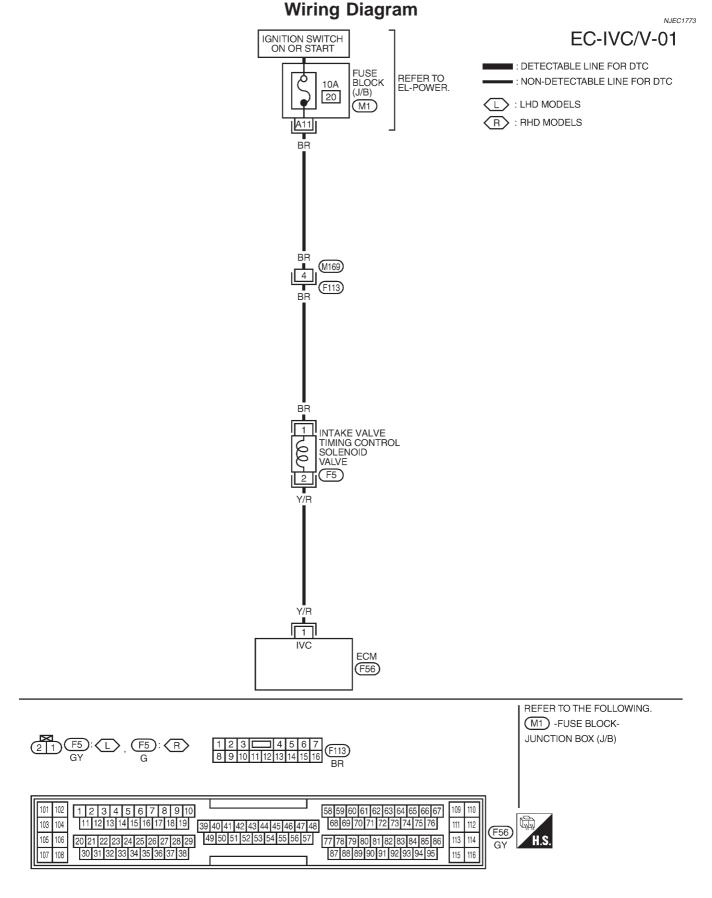
CONSULT-II Reference Value in Data Monitor Mode

NJEC1771

MONITOR ITEM	CONE	SPECIFICATION	
INT/V SOL-B1	Lift up vehicle and suitable gear	Idle	OFF
		Revving engine from 2,000 to 3,000 rpm	ON

ECM Terminals and Reference Value

NJEC1772


Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	Y/R I	Intake valve timing control solenoid valve	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)
			 [Engine is running] Warm-up condition Lift up vehicle and suitable gear position Rev engine from 2,000 to 3,000 rpm 	Approximately 0V

INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Yes or No

Diagnostic Procedure

NJEC1774

Yes	>	GO TO 2.
No		GO TO 3

INSPECTION START

Do you have CONSULT-II?

2 CHECK OVERALL FUNCTION

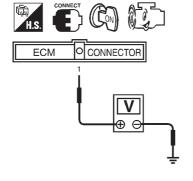
(P) With CONSULT-II

- 1. Start engine and warm it up to normal operation temperature.
- 2. Select "INT/V SOL-B1" in "DATA MONITOR" mode with CONSULT-II.
- 3. Lift-up the vehicle and simulate driving in a suitable gear position.
- 4. Check the "INT/V SOL-B1" signal under the following conditions.

DATA MONITOR		
MONITOR	NO DTC	
INT/V SOL-B1	ON	

Conditions	INT/V SOL-B1
At idle	OFF
Rev engine from 2,000 to 3,000 rpm at suitable gear position.	ON

SEF758Z


OK or NG

OK •	INSPECTION END
NG •	GO TO 4.

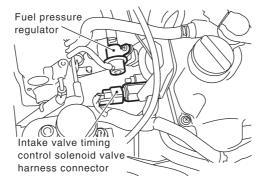
3 CHECK OVERALL FUNCTION

Without CONSULT-II

- 1. Start engine and warm it up to normal operation temperature.
- 2. Lift up the vehicle and simulate driving in a suitable gear position.
- 3. Check the voltage between ECM terminal 1 and ground under the following conditions.

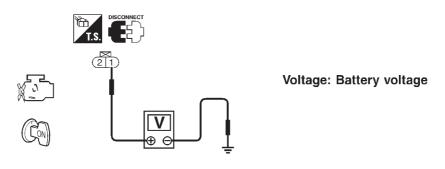
Conditions	Voltage
At idle	Battery voltage
Rev engine from 2,000 to 3,000 rpm at suitable gear position.	Approximately 0V

SEF757Z


OK or NG

OK ▶	INSPECTION END
NG ►	GO TO 4.

Diagnostic Procedure (Cont'd)


CHECK POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect intake valve timing control solenoid valve harness connector.

SEF149X

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 1 and engine ground with CONSULT-II or tester.

SEF619X

OK	or	NG
----	----	----

OK •	GO TO 6.
NG ►	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M169, F113
- 10A fuse
- Harness for open or short between valve timing control solenoid valve and fuse

Repair harness or connectors.

6 CHECK OUTPUT SIGNAL CIRCUIT

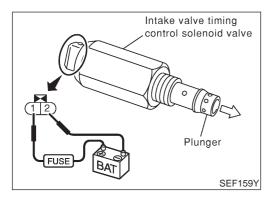
- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 1 and intake valve timing control solenoid valve harness connector terminal 2. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK ▶	GO TO 7.
NG ►	Repair open circuit or short to ground to short to power or connectors.


INTAKE VALVE TIMING CONTROL SOLENOID VALVE

QG

Diagnostic Procedure (Cont'd)

7 CHECK VALVE TIMING CONTROL SOLENOID VALVE			
Refer to "Component Inspection", EC-436.			
OK or NG			
OK ▶ GO TO 8.			
NG	•	Replace valve timing control solenoid valve.	

8	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.			
	► INSPECTION END		

Component Inspection

INTAKE VALVE TIMING CONTROL SOLENOID VALVE

- 1. Check oil passage visually for any metal debris.
- 2. Supply intake valve timing control solenoid valve terminals with battery voltage.
- 3. Make sure that inside plunger protrudes. If NG, replace intake valve timing control solenoid valve.

A/T COMMUNICATION LINE

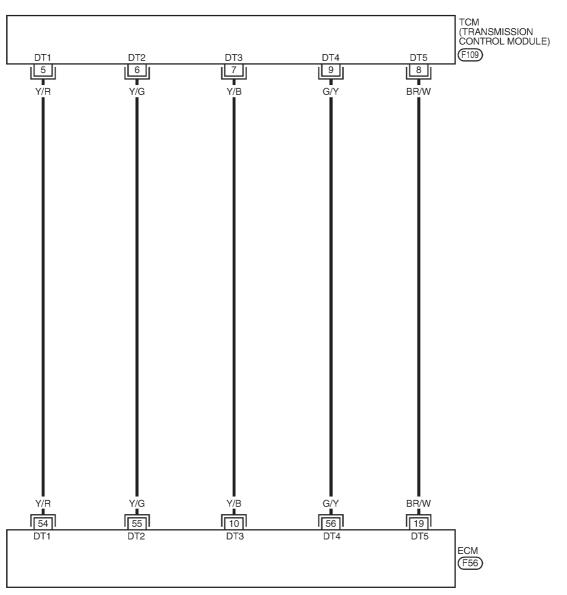
QG

System Description

System Description

These circuit lines are used to control the smooth shifting up and down of A/T during the hard acceleration/ deceleration.

Voltage signals are exchanged between ECM and TCM (Transmission Control Module).

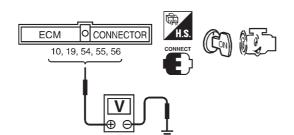


Wiring Diagram

NJEC1777

EC-ATCONT-01

ш	101 102 103 104	1 2 3 4 5 6 7 8 9 10 58 59 60 61 62 63 64 65 66 67 11 12 13 14 15 16 17 18 19 39 40 41 42 43 44 45 46 47 48 68 69 70 71 72 73 74 75 76	109 110 111 112	(F56)
Ш	105 106 107 108	20 21 22 23 24 25 26 27 28 29	113 114 115 116	GY H.S.


YEC994

Diagnostic Procedure

NJEC1778

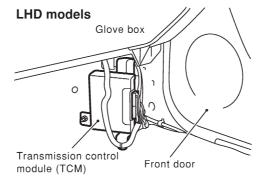
1 CHECK OVERALL FUNCTION

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check the voltage between ECM terminals 10, 19, 54, 55, 56 and ground.

Voltage should fluctuate between 0 to 5V.

SEF791Z

SEF116Y


YEC057A

OK or NG

OK •	•	INSPECTION END
NG	•	GO TO 2.

2 CHECK A/T CONTROL INPUT SIGNAL CIRCUIT FOR OPEN

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and TCM (Transmission Control Module) harness connector.

3. Check harness continuity between the following terminals.

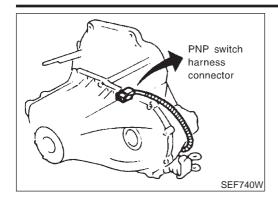
ECM	TCM
54	5
55	6
10	7
56	9
19	8

Refer to Wiring Diagram.

Continuity should exist.

OK	or	NG
UN	or	NG

OK •	GO TO 3.
NG ►	Repair harness or connectors.


A/T COMMUNICATION LINE

Diagnostic Procedure (Cont'd)

3	CHECK A/T CONTROL INPUT SIGNAL CIRCUIT FOR SHORT				
Ref	Check harness continuity between ECM terminals 10, 19, 54, 55, 56 and ground. Refer to Wiring Diagram. Continuity should not exist. Also check harness for short to power.				
	OK or NG				
OK	OK ▶ GO TO 4.				
NG	NG Repair short to ground or short to power in harness or connectos.				

4	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Description

Component Description

When the gear position is "P" (A/T models only) or "N", park/neutral position (PNP) switch is "ON".

ECM detects the park/neutral position when continuity with ground exists.

CONSULT-II Reference Value in Data Monitor Mode

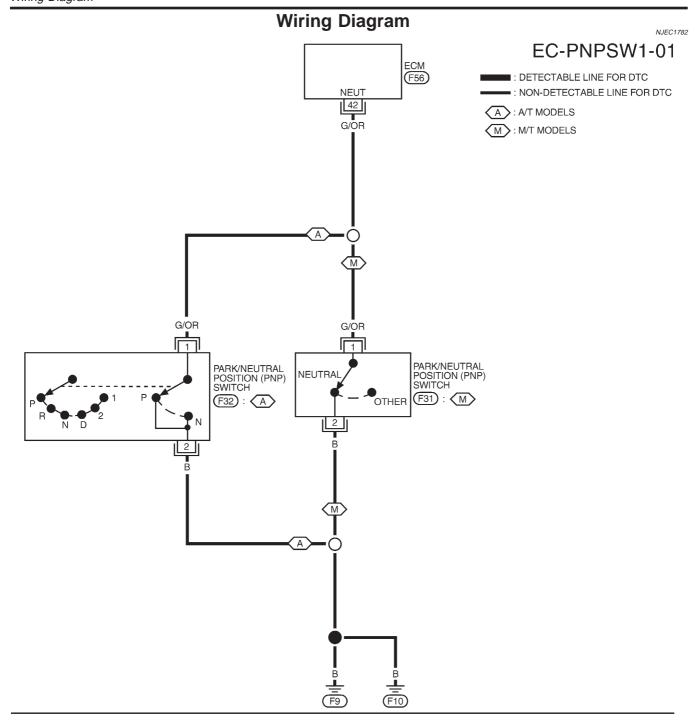
NJEC1780

Specification data are reference values.

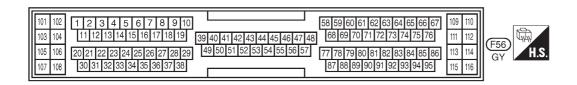
MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	• Ignition quitable ON	Shift lever: "P" or "N"	ON
F/N FOSI 3W	Ignition switch: ON	Except above	OFF

ECM Terminals and Reference Value

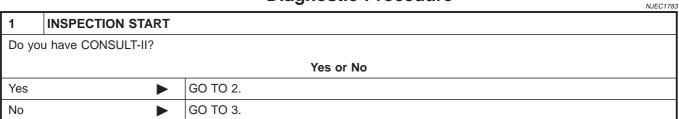
Specification data are reference values and are measured between each terminal and ground.

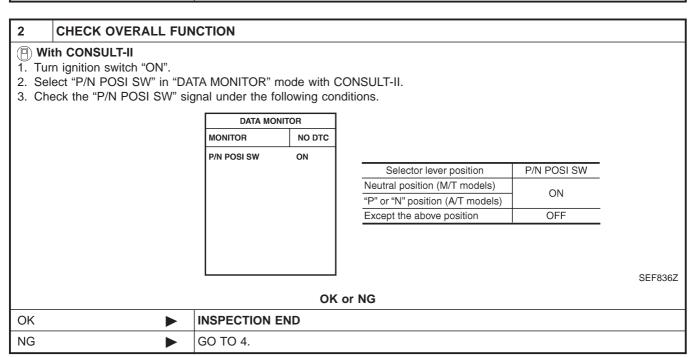

NJEC1781

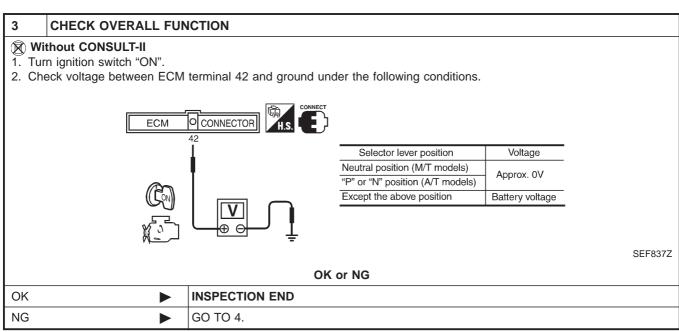
CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		PNP switch	[Ignition switch "ON"] ■ Gear position is "Neutral position" (M/T models) ■ Gear position is "N" or "P" (A/T models)	Approximately 0V
42	G/OR		[Ignition switch "ON"] ■ Except the above gear position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5V

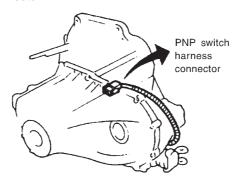






YEC995

Diagnostic Procedure



Diagnostic Procedure (Cont'd)

4 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect PNP switch harness connector.

SEF740W

Check harness continuity between PNP switch harness connector terminal 2 and body ground. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 6.
NG	•	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the harness for open or short between PNP switch and body ground.

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 42 and PNP switch harness connector terminal 1. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

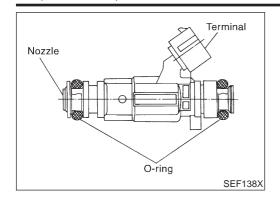
OK		GO TO 8.
NG	•	GO TO 7.

7 DETECT MALFUNCTIONING PART

NG

Check the harness for open or short between ECM and PNP switch.

Replace PNP switch.


Repair open circuit or short to ground or short to power in harness or connectors.

8 CHECK PNP SWITCH Refer to MT-21, "POSITION SWITCH CHECK" or AT-181, "PARK/NEUTRAL POSITION (PNP) SWITCH". OK or NG OK GO TO 9.

QG

Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT INCIDENT		
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Description

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

CONSULT-II Reference Value in Data Monitor Mode

NJEC0436

MONITOR ITEM	CONDITION		SPECIFICATION
INJ PULSE-B1	Engine: After warming upAir conditioner switch: OFF	Idle	2.0 - 3.5 msec
INJ FOLSE-B1	Shift lever: "N"No-load	2,000 rpm	1.5 - 3.5 msec
B/FUEL SCHDL	Engine: After warming upAir conditioner switch: OFF	Idle	1.5 - 3.0 msec
D/FUEL SUNDL	Shift lever: "N"No-load	2,000 rpm	1.2 - 3.0 msec

ECM Terminals and Reference Value

NJEC0437

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101	R/B	Injector No. 1	[Engine is running] ■ Warm-up condition ■ Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 SEF011W
103 105 107	Y/B G/B L/B	Injector No. 1 Injector No. 2 Injector No. 3 Injector No. 4	[Engine is running] ■ Warm-up condition ■ Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 SEF012W

Wiring Diagram NJEC0434 EC-INJECT-01 IGNITION SWITCH ON OR START : DETECTABLE LINE FOR DTC REFER TO EL-POWER. **FUSE** : NON-DETECTABLE LINE FOR DTC BLOCK (J/B) 10A 17 (M1)B/R (M169) B/R B/R B/R B/R INJECTOR No.3 (F13) INJECTOR INJECTOR INJECTOR No.1 No.2 No.4 (F7) (F16) G/B R/B L/B 107 Y/B G/B 105 103 INJ#1 INJ#2 INJ#3 INJ#4 ECM (F56) REFER TO THE FOLLOWING. (M1) -FUSE BLOCK-JUNCTION BOX (J/B) (F13), (F16)

39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 111 112

113 114

(F56)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38

103 104

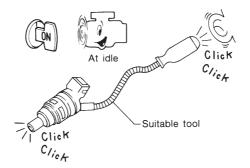
106

Diagnostic Procedure

NJEC0438

1 CHECK OVERALL FUNCTION

- With CONSULT-II
- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.


ACTIVE TES	Т
POWER BALANCE	
MONITOR	
ENG SPEED	XXX rpm
MAS A/F SE-B1	xxx v
IACV-AAC/V	XXX step

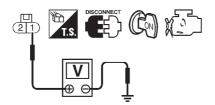
3. Make sure that each circuit produces a momentary engine speed drop.

SEF190Y

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

Clicking noise should be heard.


MEC703B

OK or NG

OK •	INSPECTION END
NG ►	GO TO 2.

2 CHECK POWER SUPPLY

- 1. Stop engine.
- 2. Disconnect injector harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF949X

OK or NG

OK	>	GO TO 4.
NG	•	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Harness connectors M169, F113
- Harness for open or short between injector and fuse
 - Repair harness or connectors.

4 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between injector harness connector terminal 2 and ECM terminals 101, 103, 105, 107. Refer to wiring diagram.

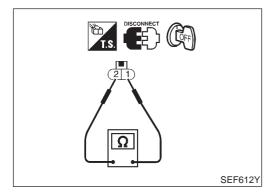
Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 6.
NG		GO TO 5.

5 DETECT MALFUNCTIONING PART


Check the harness for open or short between ECM and injector.

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK INJECTOR Refer to "Component Inspection", EC-450. OK or NG OK

	•	
NG		Replace injector

7	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

Component Inspection INJECTOR

NJEC0439

NJEC0439S01

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure. Resistance: 13.5 17.5 Ω [at 25°C (77°F)]

If NG, replace injector.

Component Description IGNITION COIL AND POWER TRANSISTOR

NJEC0542

NJEC0542S01

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns on and off the ignition coil primary circuit. This on-off operation induces the proper high voltage in the coil secondary circuit.

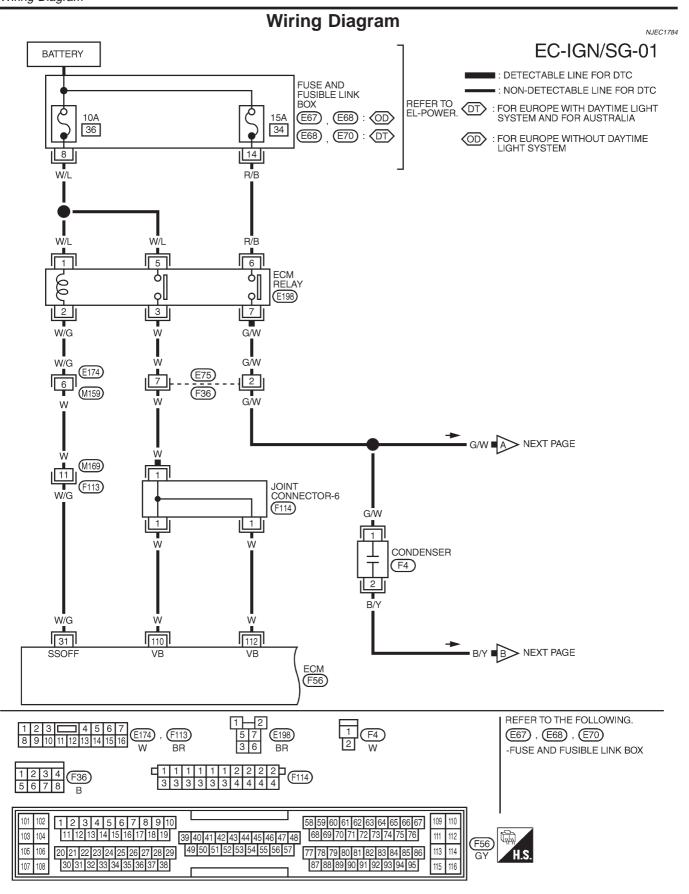
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0543

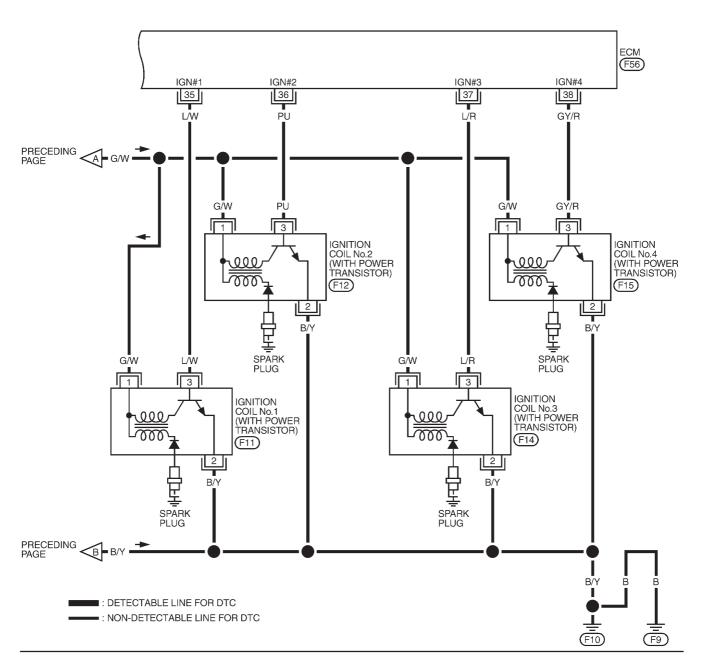
MONITOR ITEM	CONDITION	SPECIFICATION
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow ON$	$ON \to OFF \to ON$

ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and ground.

NJEC0544

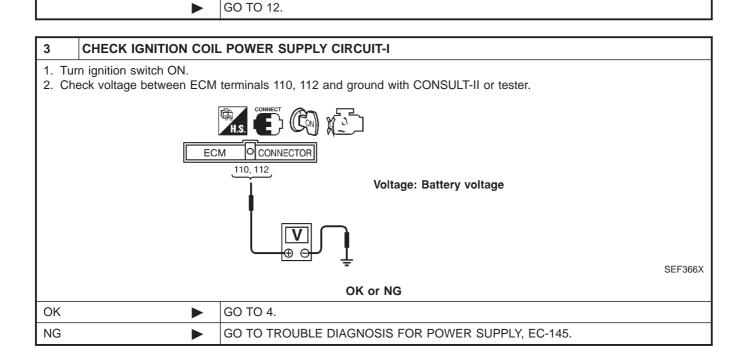
CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
35 36	L/W PU	Ignition signal (No. 1) Ignition signal (No. 2) Ignition signal (No. 3) Ignition signal (No. 4)	[Engine is running] ■ Warm-up condition ■ Idle speed	0 - 0.2V
37 38	L/R GY/R		[Engine is running] ● Engine speed is 2,000 rpm	0.2 - 0.4V

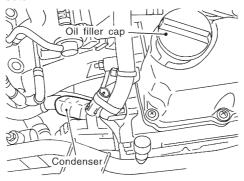
YEC997

EC-IGN/SG-02

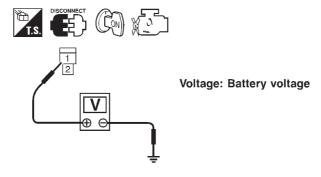


YEC998

Diagnostic Procedure


1	CHECK ENGINE S	STAR		-C0579
	Turn ignition switch "OFF", and restart engine. Is engine running?			
			Yes or No	
Yes (With CONSULT-II)		GO TO 2.	
Yes (Without CONSULT-	>	GO TO 12.	
No			GO TO 3.	

SEARCH FOR MALFUNCTIONING CIRCUIT With CONSULT-II Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II. Search for circuit which does not produce a momentary engine speed drop. ACTIVE TEST POWER BALANCE MONITOR ENG SPEED XXX rpm MAS A/F SE-B1 XXXV IACV-AAC/V XXX step SEF190Y


CHECK IGNITION COIL POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.

JEF121Y

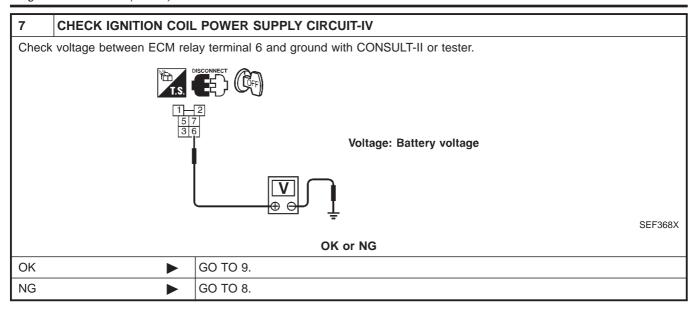
- 3. Turn ignition switch ON.
- 4. Check voltage between condenser terminal 1 and ground with CONSULT-II or tester.

SEF367X

OK or NG

OK ▶	GO TO 10.
NG ►	GO TO 5.

5 CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III


- 1. Turn ignition switch OFF.
- 2. Disconnect ECM relay. (For ECM relay location, refer to "Engine Control Component Parts Location".)
- 3. Check harness continuity between ECM relay terminal 7 and condenser terminal 1. Refer to Wiring Diagram.

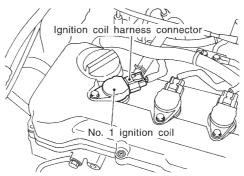
 Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 7.
NG		GO TO 6.

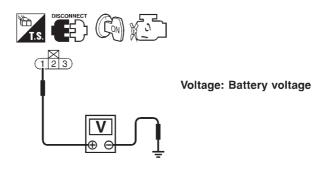
6 DETECT MALFUNCTIONING PART Check the harness for open or short between ECM relay and condenser.

8 DETECT MALFUNCTIONING PART Check the following. • 15A fuse • Harness for open and short between ECM relay and fuse Repair or replace harness or connectors.


9	CHECK ECM RELAY				
Refer to "Component Inspection", EC-458.					
OK or NG					
OK	OK ▶ GO TO 17.				
NG	•	Replace ECM relay.			

10	10 CHECK CONDENSER GROUND CIRCUIT				
 Turn ignition switch OFF. Check harness continuity between condenser terminal 2 and engine ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 					
	OK or NG				
OK	OK ▶ GO TO 11.				
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.			

11	11 CHECK CONDENSER			
Refer to "Component Inspection", EC-458.				
OK or NG				
OK	OK ▶ GO TO 12.			
NG	NG Replace condenser.			


12 CHECK IGNITION COIL POWER SUPPLY CIRCUIT-V

- 1. Turn ignition switch OFF.
- 2. Reconnect harness connectors disconnected.
- 3. Disconnect ignition coil harness connector.

JEF119Y

- 4. Turn ignition switch ON.
- 5. Check voltage between ignition coil terminal 1 and ground with CONSULT-II or tester.

SEF122Y

OK or NG

OK •	GO TO 14.
NG ►	GO TO 13.

13 DETECT MALFUNCTIONING PART

Check the following.

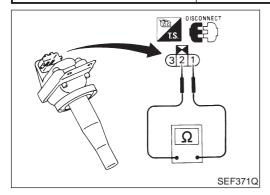
- Harness connector E75, F36 (If so equipped)
- Harness for open or short between ignition coil and ECM relay terminal 7
 - Repair or replace harness or connectors.

14 CHECK IGNITION COIL GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between ignition coil terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

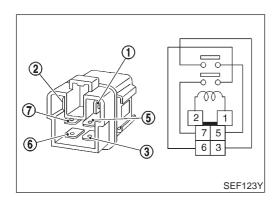

OK or NG

OK •	GO TO 15.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

15	CHECK IGNITION COIL OUTPUT SIGNAL CIRCUIT				
 Disconnect ECM harness connector. Check harness continuity between ECM terminals 35, 36, 37, 38 and ignition coil terminal 3. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 					
OK or NG					
OK	OK				
NG	NG Repair open circuit or short to ground or short to power in harness or connectors.				

16	16 CHECK IGNITION COIL WITH POWER TRANSISTOR				
Refer to "Component Inspection", EC-458.					
OK or NG					
OK	OK ▶ GO TO 17.				
NG	NG Replace ignition coil with power transistor.				

17	17 CHECK INTERMITTENT INCIDENT				
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.					
	► INSPECTION END				

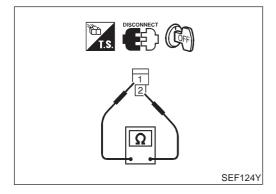


Component Inspection IGNITION COIL WITH POWER TRANSISTOR

- Disconnect ignition coil with power transistor harness connec-
- 2. Check ignition coil with power transistor for resistance as show in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]	
3 (+) - 2 (-)	Except 0 or ∞	
1 (+) - 3 (-)	- Except 0	
1 (+) - 2 (-)		

If NG, replace ignition coil with power transistor assembly.


ECM RELAY

- Apply 12V of direct current between ECM relay terminals 1 and
- Check continuity between ECM relay terminals 3 and 5, and 6 and 7.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

QG

If NG, replace ECM relay.

CONDENSER

NJEC0547S02

- 1. Disconnect condenser harness connector.
- 2. Check condenser continuity between terminals 1 and 2. Resistance: Above 1 $M\Omega$ at 25°C (77°F) If NG, replace condenser.

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0441

MONITOR ITEM	CONDITION	SPECIFICATION
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$	$OFF \to ON \to OFF$

ECM Terminals and Reference Value

NJEC0442

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
41	B/Y	/Y Start signal	[Ignition switch "ON"]	Approximately 0V
			[Ignition switch "START"]	9 - 12V

Wiring Diagram NJEC0440 EC-S/SIG-01 **BATTERY** : DETECTABLE LINE FOR DTC FUSE AND FUSIBLE LINK BOX : NON-DETECTABLE LINE FOR DTC REFER TO 40A : FOR EUROPE WITH DAYTIME LIGHT SYSTEM AND FOR EL-POWER. (DT) В (E71) : **(D)** AUSTRALIA (E67) : (DT) OD : FOR EUROPE WITHOUT DAYTIME LIGHT SYSTEM W/R IGNITION SWITCH (E114) OFF ST ACC -ON 6 B/Y B/Y FUSE BLOCK (J/B) 10A REFER TO EL-POWER. 21 (M2) (E104) B3 B/Y B/Y (M63) (F102) B/Y 41 STSW **ECM** (F56) REFER TO THE FOLLOWING. (M2), (E104) -FUSE BLOCK-JUNCTION BOX (J/B) (E67), (E71)-FUSE AND FUSIBLE LINK BOX 58 59 60 61 62 63 64 65 66 67

111

(F56)

68 69 70 71 72 73 74 75 76

77 78 79 80 81 82 83 84 85 86

87 88 89 90 91 92 93 94 95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57

1 2 3 4 5 6 7 8 9 10

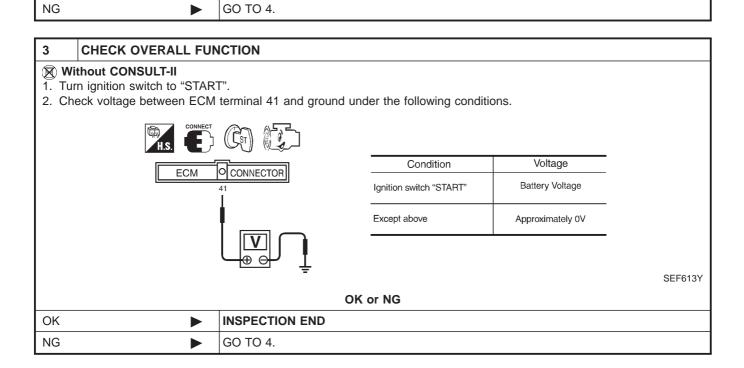
11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38

3 5 1

4 2 6


103 104

105 106

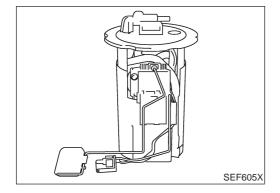
(E114)

Diagnostic Procedure

2 **CHECK OVERALL FUNCTION** (P) With CONSULT-II 1. Turn ignition switch "ON". 2. Check "START SIGNAL" in "DATA MONITOR" mode with CONSULT-II under the following conditions. DATA MONITOR MONITOR NO DTC START SIGNAL "START SIGNAL" Condition OFF Ignition switch "ON" Ignition switch "START" ON SEF227Y OK or NG **INSPECTION END** OK

4	DETECT MALFUNCTION	DNING PART	
Check the following. • Harness connectors M63, F102 • 10A fuse • Harness for open or short between ECM and ignition switch			
	OK or NG		
OK	•	GO TO 5.	
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

5	CHECK INTERMITTENT INCIDENT	
Perfori	orm "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.	
•		INSPECTION END


System Description

NJEC0444

			NJECU444
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Engine speed and cylinder number	Fuel pump control	Fuel pump relay
Ignition switch	Ignition signal and start signal		

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a 180° signal from the camshaft position sensor, it knows that the engine is rotating, and causes the pump to perform. If the 180° signal is not received when the ignition switch is on, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 1 second	
Engine running and cranking	Operates	
When engine is stopped (Signal is not sent from crankshaft position sensor and camshaft position sensor.)	Stops in 1.5 seconds	
Except as shown above	Stops	

Component Description

NJEC0501

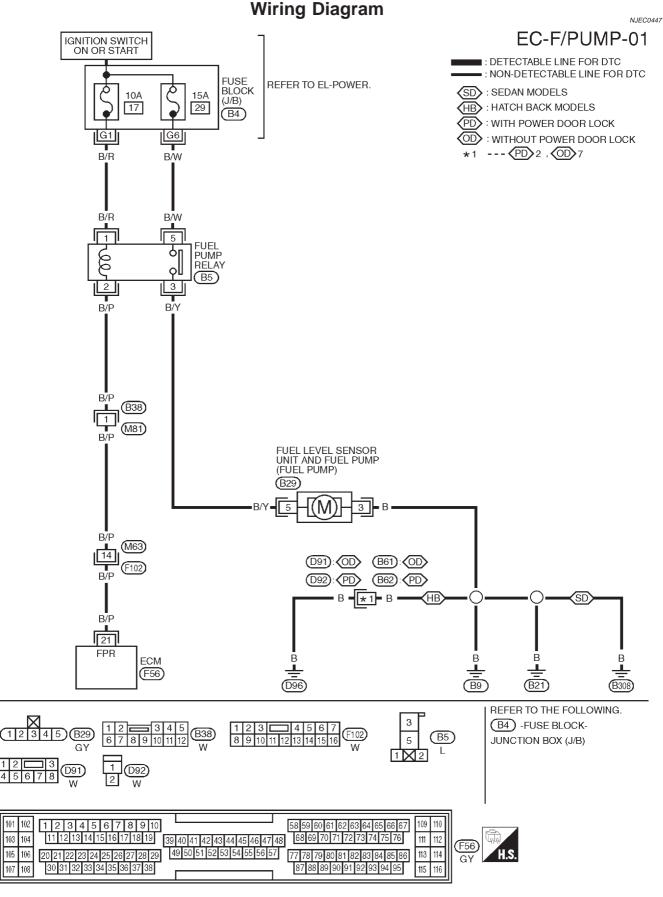
A turbine type design fuel pump is used in the fuel tank.

CONSULT-II Reference Value in Data Monitor Mode

NJEC0445

		NJEC0445
MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	 Ignition switch is turned to ON (Operates for 1 second) Engine running and cranking When engine is stopped (stops in 1.5 seconds) 	ON
	Except as shown above	OFF

ECM Terminals and Reference Value

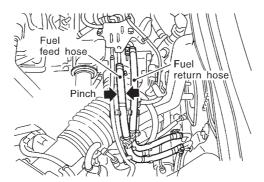

Specification data are reference values and are measured between each terminal and ground.

=NJEC0446

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	B/P Fuel pump relay		[Ignition switch "ON"] ● For 1 second after turning ignition switch "ON" [Engine is running]	0 - 1V
21		[Ignition switch "ON"] ■ More than 1 second after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	



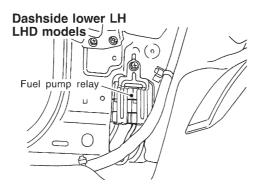
Diagnostic Procedure

NJEC0448

1 CHECK OVERALL FUNCTION

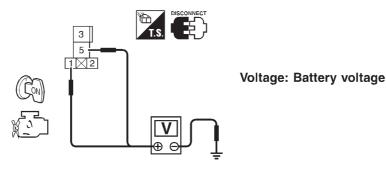
- 1. Turn ignition switch "ON".
- 2. Pinch fuel feed hose with fingers.

JEF133Y


Fuel pressure pulsation should be felt on the fuel feed hose for 1 second after ignition switch is turned "ON".

OK	or	NG
----	----	----

ОК	INSPECTION END
NG	GO TO 2.


2 CHECK POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel pump relay.

JEF134Y

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminals 1, 5 and ground with CONSULT-II or tester.

SEF607X

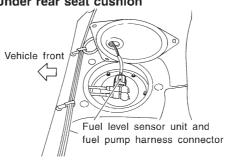
OK or NG

OK •	GO TO 4.
NG ►	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- 15A fuse
- Harness for open or short between fuse and fuel pump relay


Repair harness or connectors.

·

CHECK POWER GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.

Under rear seat cushion

JEF135Y

3. Check harness continuity between fuel level sensor unit and fuel pump harness connector terminal 3 and body ground, terminal 5 and fuel pump relay connector terminal 3. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between fuel pump and body ground
- Harness for open or short between fuel pump and fuel pump relay

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 21 and fuel pump relay connector terminal 2. Refer to wiring diagram.

Continuity should exist.

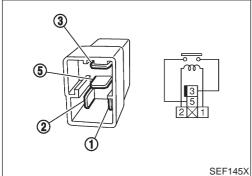
3. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 8.
NG ►	GO TO 7.

7 DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors B38, M81
- Harness connectors M63, F102
- Harness for open or short between ECM and fuel pump relay

NG Repair open circuit or short to ground or short to power in harness or connectors.

8	CHECK FUEL PUMP RELAY		
Refer to "Component Inspection", EC-469.			
OK or NG			
OK	OK ▶ GO TO 9.		
NG	•	Replace fuel pump relay.	

9	CHECK FUEL PUMP		
Refer to "Component Inspection", EC-469.			
OK or NG			
ОК	OK ▶ GO TO 10.		
NG	>	Replace fuel pump.	

10	CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END	

Under rear seat cushion <u> 5 4 3 2 1</u> Fuel level sensor unit and fuel pump harness connector

Component Inspection FUEL PUMP RELAY

NJEC0449

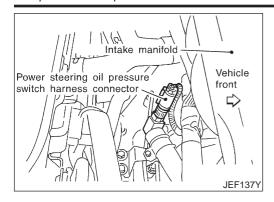
NJEC0449S01

Check continuity between terminals 3 and 5.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

If NG, replace relay.

FUEL PUMP


JEF136Y

- 1. Disconnect fuel level sensor unit and fuel pump harness con-
- 2. Check resistance between terminals 3 and 5.

Resistance: 0.2 - 5.0 Ω [at 25°C (77°F)]

If NG, replace fuel pump.

Component Description

Component Description

The power steering oil pressure switch is attached to the power steering high-pressure tube and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM adjusts the IACV-AAC valve to increase the idle speed and adjust for the increased load.

CONSULT-II Reference Value in Data Monitor Mode

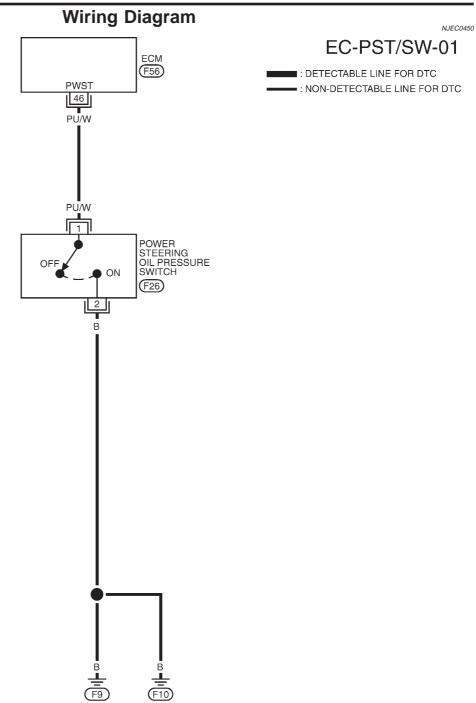
NJEC0452

Specification data are reference values.

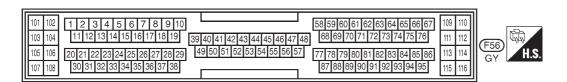
MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	 Engine: After warming up, idle the engine 	Steering wheel in neutral position (forward direction)	OFF
		The steering wheel is fully turned	ON

ECM Terminals and Reference Value

NJEC0453


Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
46 PU/\	DLIAM	Power steering oil pressure	[Engine is running] • Steering wheel is fully turned	Approximately 0V
	PU/VV	switch	[Engine is running] ■ Steering wheel is not turned	Approximately 5V

POWER STEERING OIL PRESSURE SWITCH

Diagnostic Procedure

=NJEC0454

1	INSPECTION START		
Do yo	Do you have CONSULT-II?		
	Yes or No		
Yes	•	GO TO 2.	
No	•	GO TO 3.	

CHECK OVERALL FUNCTION

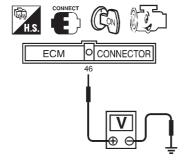
(I) With CONSULT-II

- Start engine.
 Check "PW/ST SIGNAL" in "DATA MONITOR" mode with CONSULT-II under the following conditions.

DATA MONITOR		
MONITOR	NO DTC	
PW/ST SIGNAL	OFF	

Conditions	PW/ST SIGNAL
Steering is in neutral position	OFF
Steering is turned	ON

SEF311Y


OK or NG

OK ▶	INSPECTION END
NG •	GO TO 4.

3 **CHECK OVERALL FUNCTION**

Without CONSULT-II

- 1. Start engine.
- 2. Check voltage between ECM terminal 46 and ground under the following conditions.

Condition	Voltage	
When steering wheel is turned quickly	Approximately 0V	
Except above	Approximately 5V	

SEF614Y

OK or NG

OK •	INSPECTION END	
NG ►	GO TO 4.	

POWER STEERING OIL PRESSURE SWITCH

QG

Diagnostic Procedure (Cont'd)

4 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect power steering oil pressure switch harness connector.
- 3. Check harness continuity between power steering oil pressure switch harness terminal 2 and engine ground. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK ▶ GO		GO TO 5.
NG Repair open circuit or short to groun		Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 46 and power steering oil pressure switch harness terminal 1. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK	>	GO TO 7.
NG	•	GO TO 6.

6 DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM and power steering oil pressure switch.

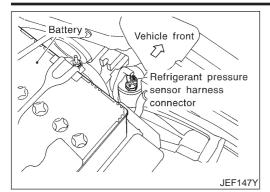
Repair open circuit or short to ground or short to power in harness or connectors.

7	CHECK POWER STEERING OIL PRESSURE SWITCH		
Refer to "Component Inspection", EC-473.			
	OK or NG		
OK	OK ▶ GO TO 8.		
NG	NG Replace power steering oil pressure switch.		

8	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

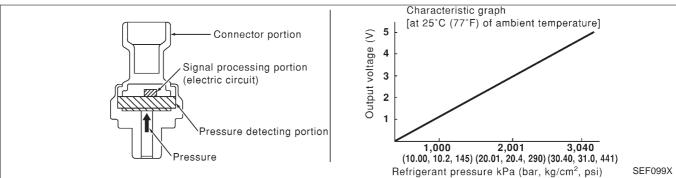
Component Inspection POWER STEERING OIL PRESSURE SWITCH

NJEC0455


NJEC0455S01

- Disconnect power steering oil pressure switch harness connector then start engine.
- 2. Check continuity between terminals 1 and 2. Refer to wiring diagram.

Conditions	Continuity
Steering wheel is being fully turned.	Yes
Steering wheel is not being turned.	No


POWER STEERING OIL PRESSURE SWITCH

If NG, replace power steering oil pressure switch.

Description

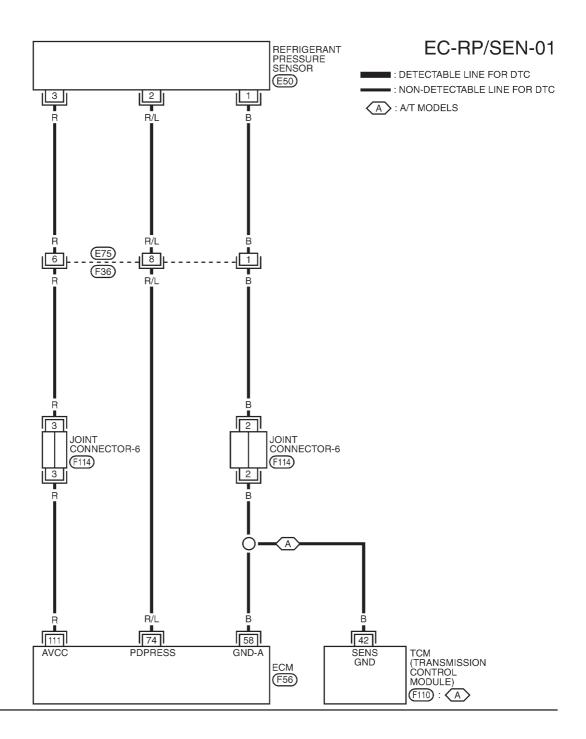
The refrigerant pressure sensor is installed at the liquid tank of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.

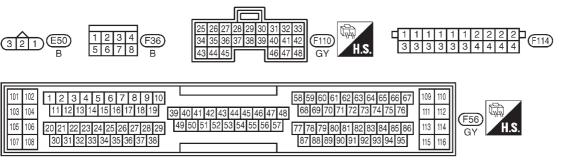
ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NJEC0581

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	58 B Sensor's ground [Engine is running] • Warm-up condition • Idle speed		Warm-up condition	Approximately 0V
74 R/L Refrigerant pressure sensor			 [Engine is running] ● Warm-up condition ● Both A/C switch and blower switch are "ON" (Compressor operates.) 	1.0 - 4.0V
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V

Wiring Diagram

NJEC0582

YEC003A

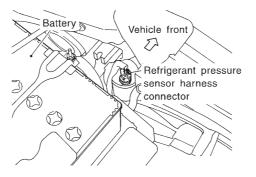
Diagnostic Procedure

NJEC0590

1 CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION

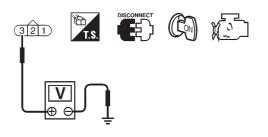
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn A/C switch and blower switch "ON".
- 3. Check voltage between ECM terminal 74 and ground with CONSULT-II or tester.

Voltage: 1.0 - 4.0V


SEF952XA

OK or NG

OK	>	INSPECTION END
NG	•	GO TO 2.


2 CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn A/C switch and blower switch "OFF".
- 2. Stop engine.
- 3. Disconnect refrigerant pressure sensor harness connector.

JEF147Y

- 4. Turn ignition switch "ON".
- 5. Check voltage between refrigerant pressure sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

SEF953X

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 3.

REFRIGERANT PRESSURE SENSOR

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Joint connector-6
- Harness for open or short between ECM and refrigerant pressure sensor

Repair harness or connectors.

4 CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between refrigerant pressure sensor terminal 1 and engine ground. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 6.
NG ►	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Joint connector-6
- Harness for open or short between ECM and refrigerant pressure sensor
- Harness for open or short between TCM (Transmission Control Module) and refrigerant pressure sensor

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 74 and refrigerant pressure sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 8.
NG ►	GO TO 7.

7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between ECM and refrigerant pressure sensor

Repair open circuit or short to ground or short to power in harness or connectors.

8 CHECK REFRIGERANT PRESSURE SENSOR Refer to HA-72, "Refrigerant pressure sensor". OK or NG OK Replace refrigerant pressure sensor.

REFRIGERANT PRESSURE SENSOR

QG

Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144.		
	► INSPECTION END		

CONSULT-II Reference Value in Data Monitor Mode

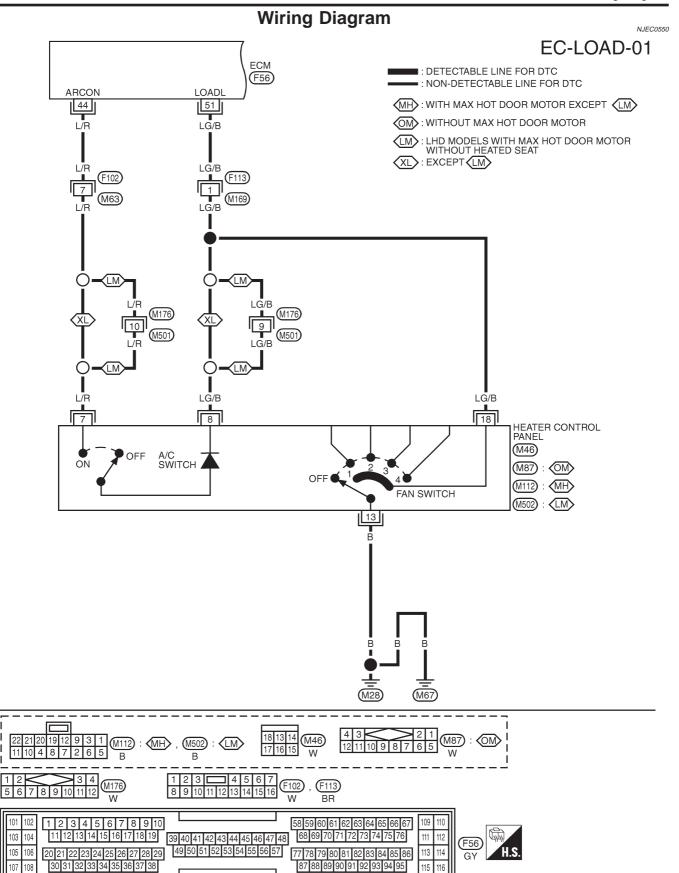
CONSULT-II Reference Value in Data Monitor Mode

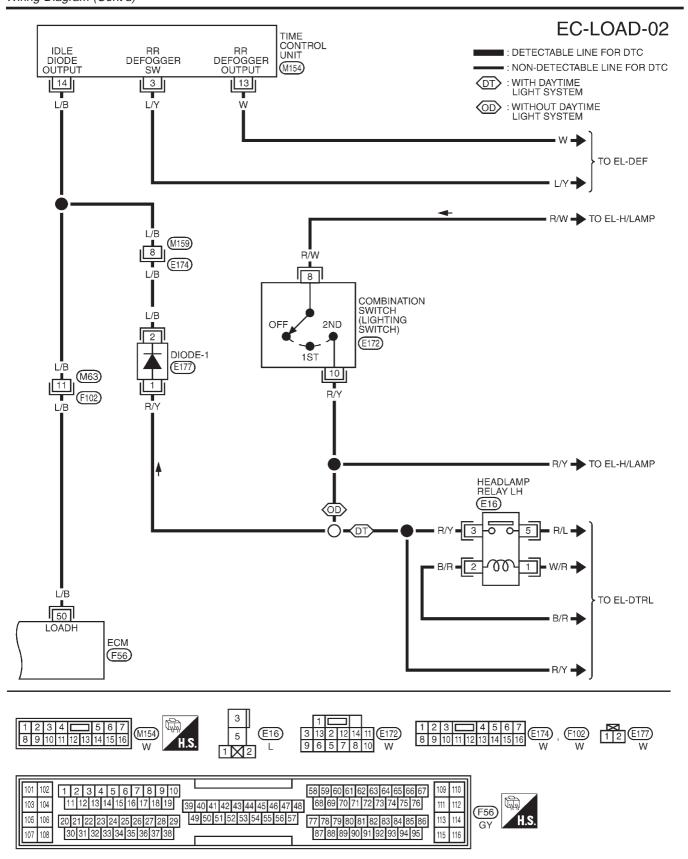
Specification data are reference values.

NJEC0548

MONITOR ITEM	CONDITION		SPECIFICATION
LOAD CICNAL	Ignition switch: ON	Rear window defogger is operating and/or lighting switch is on.	ON
LOAD SIGNAL		Rear window defogger is not operating and lighting switch is not on.	OFF
HEATER FAN SW	Ignition switch: ON	Heater fan motor is operating.	ON
HEATER FAIN SW		Heater fan motor is not operating.	OFF

ECM Terminals and Reference Value


NJEC0549


Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

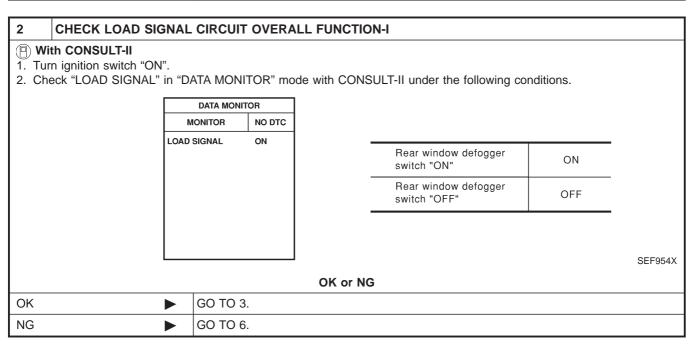
_				
TER- MINAL NO.	WIRE COLOR	ITEM	ITEM CONDITION	
50 L/B	L/D	Electric load signal	[Engine is running] ■ Rear window defogger is operating and/or lighting switch is on	BATTERY VOLTAGE (11 - 14V)
	L/B	(Load switch)	[Engine is running] ■ Rear window defogger is not operating and lighting switch is not on	Approximately 0V
51	LG/B	B Heater fan motor switch	[Engine is running] ● Heater fan motor is operating	Approximately 0V
			[Engine is running] ● Heater fan motor is not operating	Approximately 5V

YEC005A

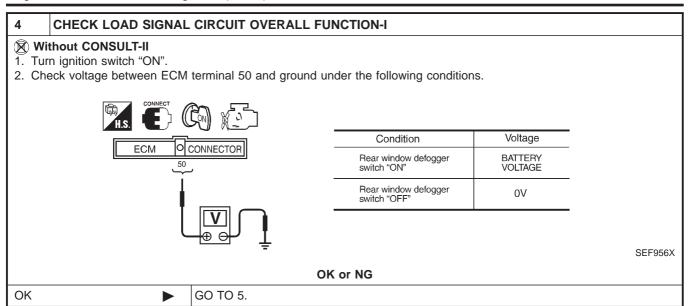
INSPECTION START

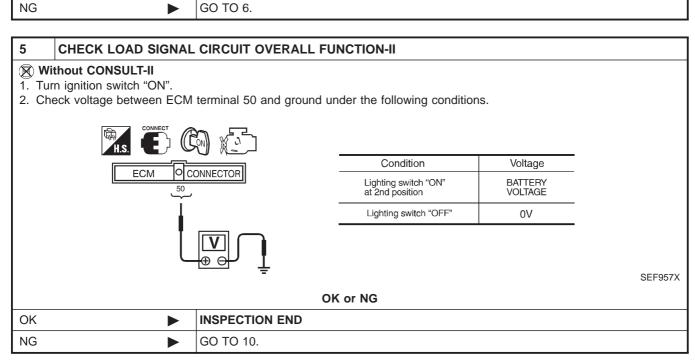
GO TO 2.

GO TO 4.


Do you have CONSULT-II?

Yes


No


Diagnostic Procedure — Load Signal —

NJEC0584 Yes or No

3 CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II (P) With CONSULT-II 1. Turn ignition switch "ON". 2. Check "LOAD SIGNAL" in "DATA MONITOR" mode with CONSULT-II under the following conditions. DATA MONITOR MONITOR NO DTC LOAD SIGNAL Lighting switch "ON" ON at 2nd position Lighting switch "OFF" OFF SEF955X OK or NG OK **INSPECTION END** NG GO TO 9.

6	CHECK REAR WINDOW	HECK REAR WINDOW DEFOGGER FUNCTION			
2. Tur	 Start engine. Turn "ON" the rear window defogger switch. Check the rear windshield. Is the rear windshield heated up? 				
	Yes or No				
Yes	Yes ► GO TO 7.				
No	No ▶ Refer to EL-138, "Rear Window Defogger".				

ELECTRICAL LOAD SIGNAL

QG

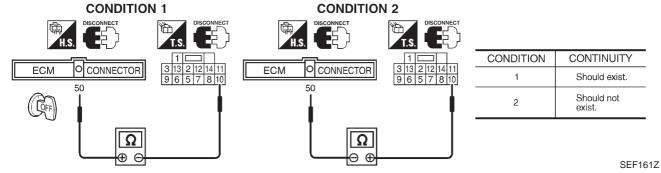
Diagnostic Procedure — Load Signal — (Cont'd)

7 CHECK REAR WINDOW DEFOGGER INPUT SIGNAL CIRCUIT 1. Disconnect ECM harness connector. 2. Disconnect time control unit harness connector. 3. Check harness continuity between ECM terminal 50 and time control unit harness connector terminal 14. Refer to wiring diagram. 4. Also check harness for short to ground and short to power. OK or NG OK Refer to EL-229, "TIME CONTROL UNIT".

8	DETECT MALFUNCTIONING PART			
• Har	Check the following. • Harness connectors M63, F102 • Harness open and short between ECM and time control unit connectors			
	Repair open circuit or short to ground or short to power in harness or connectors.			

GO TO 8.

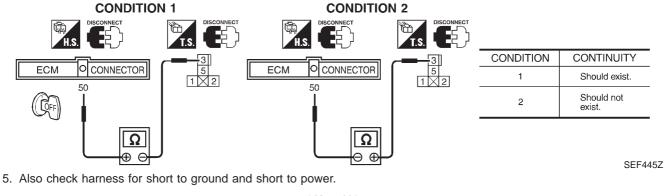
NG


9	CHECK HEADLAMP FU	INCTION			
2. Tur 3. Che	 Start engine. Turn the lighting switch "ON". Check that headlamps are illuminated. Do the headlamps illuminate in both "High" and "Low" positions? 				
	Yes or No				
Yes	Yes GO TO 11.				
No	>	Refer to EL-40, "HEADLAMP SYSTEM".			

10	CHECK HEADLAMP FUNCTION				
2. Tui	 Start engine. Turn the lighting switch "ON". Check that headlamps are illuminated. 				
OK or NG					
OK	OK				
NG	NG Refer to EL-40, "HEADLAMP SYSTEM".				

CHECK HEADLAMP INPUT SIGNAL CIRCUIT

Without Daytime Light system


- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- 3. Disconnect lighting switch connector.
- 4. Check harness continuity between ECM terminal 50 and lighting switch connector terminal 10 under the following conditions.

5. Also check harness for short to ground and short to power.

With Daytime Light system

- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- 3. Disconnect headlamp relay LH connector.
- 4. Check harness continuity between ECM terminal 50 and headlamp relay LH connector terminal 3 under the following

OK or NG

OK •	GO TO 13.
NG ►	GO TO 12.

12 **DETECT MALFUNCTIONING PART**

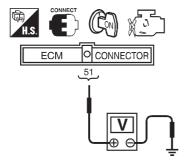
Check the following.

- Harness connectors M63, F102
- Harness connectors M159, F174
- Diode E177
- Harness for open and short between ECM and lighting switch connector
 - Repair open circuit or short to ground or short to power in harness or connectors.

13 **CHECK INTERMITTENT INCIDENT** Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-144. **INSPECTION END**

Diagnostic Procedure — Heater Control Panel (Fan Switch) -

Diagnostic Procedure — Heater Control Panel (Fan Switch) —


NJEC0585

CHECK CIRCUIT OVERALL FUNCTION

1. Start engine.

1

- 2. Heater fan motor switch "ON".
- 3. Check voltage between ECM terminal 51 and ground under the following conditions.

Condition	Voltage
Heater fan motor switch "ON"	0V
Heater fan motor switch "OFF"	Approximatly 5V

SEF620Y

OK or NG

OK ▶	INSPECTION END
NG ▶	GO TO 2.

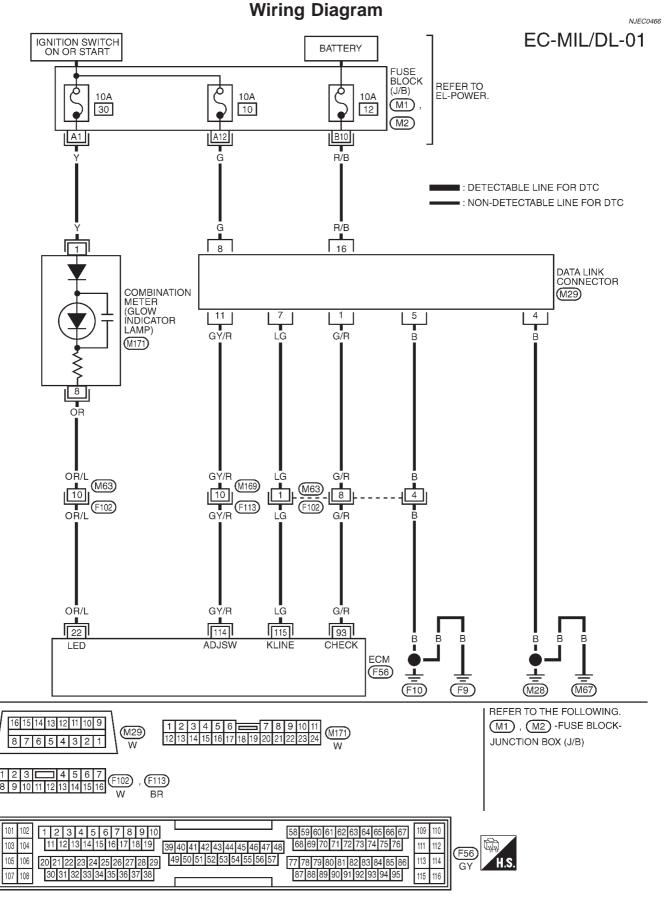
2 CHECK INPUT SIGNAL CIRCUIT

- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- 3. Disconnect heater control panel fan switch harness connector.
- 4. Check harness continuity between ECM terminal 51 and heater fan switch harness connector terminal 18. Refer to wiring diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG


OK •	Refer to HA-54, "BLOWER MOTOR".
NG ▶	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M169, F113
- Harness for open and short between ECM and heater fan motor switch

Repair open circuit or short to ground or short to power in harness or connectors.

YEC006A

SERVICE DATA AND SPECIFICATIONS (SDS)

QG

Fuel Pressure Regulator

	Fuel Pressure	Regulator	NJEC0467	
Fuel pressure at idling	Vacuum hose is connected	Approximately 235 (2.35, 2.4, 34)		
kPa (bar, kg/cm², psi)	Vacuum hose is disconnected	Approximately 294 (2.94, 3.0, 43)		
	Idle Speed and	Ignition Timing	NJEC0468	
Target idle speed* rpm		M/T: 700±50 A/T: 800±50		
Air conditioner: ON rpm		825 or more		
Ignition timing		M/T: 8±5° BTDC A/T: 10±5° BTDC		
Throttle position sensor idle position	on V	0.15 - 0.85		
Steering wheel: Kept in stra	s, heater fan & rear window defogger) aight-ahead position Mass Air Flow		NJEC0470	
Supply voltage (Heater) V		Battery voltage (11 - 14)		
Supply voltage (Sensor) V Output voltage V		Approximately 5 1.0 - 1.7*		
Mass air flow		1.0 - 4.0 at idle*		
(Using CONSULT-II or GST) g·m		5.0 - 10.0 at 2,500 rpm*		
: Engine is warmed up to norm	nal operating temperature and idling under no-l Intake Air Tem	oad. Derature Sensor	NJEC0480	
Tempera	ature °C (°F)	Resistance $k\Omega$		
2	20 (68)	2.1 - 2.9		
80	0 (176)	0.27 - 0.38		
	Engine Coolan	t Temperature Sensor	NJEC0471	
Tempera	ature °C (°F)	Resistance $k\Omega$		
2	20 (68)	2.1 - 2.9		
50	0 (122)	0.68 - 1.00		
90	0 (194)	0.236 - 0.260		
	Throttle Position	on Sensor	NJEC0477	
Throttle v	alve conditions	Voltage (V)		
Completely closed		0.15 - 0.85		
Completely open		3.5 - 4.7		
	Heated Oxyger	Sensor 1 Heater (Front)	NJEC0478	
Resistance [at 25°C (77°F)] Ω		2.3 - 4.3		
	Heated Oxyger	Sensor 2 Heater (Rear)	NJEC0483	
Resistance [at 25°C (77°F)] Ω		2.3 - 4.3	. 22.00	

SERVICE DATA AND SPECIFICATIONS (SDS)

EGR Volume Control Valve (Where Fitted	d)	_	
	EGR Volume	Control Valve (Where Fitted)	NJEC0560
Terminal No.		Resistance Ω [at 20°C (68°F)]	
1 - 2			
2 - 3		20 - 24	
4 - 5		20 - 24	
5 - 6			
	EGR Tempera	ature Sensor (Where Fitted)	NJEC0472
EGR temperature °C (°F)	Voltage V	Resistance MΩ	
0 (32)	4.56	0.62 - 1.05	
50 (122)	2.25	0.065 - 0.094	
100 (212)	0.59	0.011 - 0.015	
	EVAP Caniste	er Purge Volume Control Valve	NJEC048:
Resistance [at 20°C (68°F)] Ω		31 - 35	V3EC040
	IACV-AAC Va		NJEC0474
Terminal No.		Resistance Ω [at 20°C (68°F)]	1020047
1 - 2			
2 - 3			
4 - 5		20 - 24	
5 - 6			
	Injector	,	NJEC047
Resistance [at 25°C (77°F)] Ω		13.5 - 17.5	
	Ignition Coil	with Power Transistor	NJEC056:
Terminal No. (Polarity)		Resistance Ω [at 25°C (77°F)]	
3 (+) - 2 (-)		Except 0 or ∞	
1 (+) - 3 (-)		Except 0	
1 (+) - 2 (–)		елсері О	
	Condenser		NJEC058
Resistance [at 25°C (77°F)] MΩ		Above 1	
	Fuel Pump		NJEC0473
Resistance [at 25°C (77°F)] Ω		0.2 - 5.0	.5250476

SERVICE DATA AND SPECIFICATIONS (SDS)

QG

Crankshaft Position Sensor (POS)

Crankshaft Position Sensor (POS)

Refer to "Component Inspection", EC-277.

NJEC0558

Camshaft Position Sensor (PHASE)

Refer to "Component Inspection", EC-284.

NJEC0559

Alphabetical & P No. Index for DTC

ALPHABETICAL INDEX FOR DTC

NJEC0600

X: Applicable —: Not applicable

Items	D	DTC		Deference
(CONSULT-II screen terms)	CONSULT-II	ECM	- MI illumination	Reference page
ACCEL POS SENSOR	P0120	0403	Х	EC-577
BATTERY VOLTAGE	P1660	0502	_	EC-672
BRAKE SW	P0571	0807	Х	EC-597
COOLANT TEMP SEN	P0115	0103	Х	EC-572
CRANK POS SEN (TDC)	P0335	0407	Х	EC-587
ECM RLY	P1620	0902	Х	EC-666
ECM 2	P1607	0301	Х	EC-664
ECM 10	P1107	0802	Х	EC-604
ECM 12	P1603	0901	Х	EC-664
ECM 15	P1621	0903	_	EC-670
FUEL CUT SYSTEM2	P1202	1002	Х	EC-612
MASS AIR FLOW SEN	P0100	0102	Х	EC-566
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0505	_	_
OVER HEAT	P1217	0208	Х	EC-618
P1-CAM POS SEN	P1341	0701	Х	EC-652
P2-TDC PULSE SIG	P1337	0702	Х	EC-646
P3-PUMP COMM LINE	P1600	0703	Х	EC-658
P4-SPILL/V CIRC	P1251	0704	Х	EC-640
P5-PUMP C/MODULE	P1690	0705	Х	EC-674
P7·F/INJ TIMG FB	P1241	0707	Х	EC-634
P9-FUEL TEMP SEN	P1180	0402	Х	EC-606
VEHICLE SPEED SEN	P0500	0104	Х	EC-593

TROUBLE DIAGNOSIS — INDEX

Alphabetical & P No. Index for DTC (Cont'd)

P NO. INDEX FOR DTC

X: Applicable —: Not applicable

	I	χ. Αρ	piicable —. Not applicable
MI illumination		Items	Reference page
ECM		(CONSULT-II screen terms)	, 0
0505	_	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_
0102	Х	MASS AIR FLOW SEN	EC-566
0103	X	COOLANT TEMP SEN	EC-572
0403	X	ACCEL POS SENSOR	EC-577
0407	X	CRANK POS SEN (TDC)	EC-587
0104	X	VEHICLE SPEED SEN	EC-593
0807	X	BRAKE SW	EC-597
0802	Х	ECM 10	EC-604
0402	X	P9-FUEL TEMP SEN	EC-606
1002	Х	FUEL CUT SYSTEM2	EC-612
0208	Х	OVER HEAT	EC-618
0707	Х	P7·F/INJ TIMG FB	EC-634
0704	X	P4-SPILL/V CIRC	EC-640
0702	X	P2-TDC PULSE SIG	EC-646
0701	Х	P1-CAM POS SEN	EC-652
0703	Х	P3-PUMP COMM LINE	EC-658
0901	Х	ECM 12	EC-664
0301	Х	ECM 2	EC-664
0902	X	ECM RLY	EC-666
0903	_	ECM 15	EC-670
0502	_	BATTERY VOLTAGE	EC-672
0705	Х	P5-PUMP C/MODULE	EC-674
	0102 0103 0403 0407 0104 0807 0802 0402 1002 0208 0707 0704 0702 0701 0703 0901 0301 0902 0903 0502	MI illumination 0505 — 0102 X 0103 X 0403 X 0407 X 0104 X 0807 X 0802 X 0402 X 1002 X 0208 X 0707 X 0704 X 0702 X 0701 X 0703 X 0901 X 0902 X 0903 — 0502 —	Items

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The SRS system composition which is available to NISSAN MODEL N16 is as follows (The composition varies according to the destination and optional equipment.):

- For a frontal collision
 The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), front seat belt pre-tensioners, a diagnosis sensor unit, warning lamp, wiring harness and spiral cable.
- For a side collision
 The Supplemental Restraint System consists of front side air bag module (located in the outer side of front seat), side air bag (satellite) sensor, diagnosis sensor unit (one of components of air bags for a frontal collision), wiring harness, warning lamp (one of components of air bags for a frontal collision).

Information necessary to service the system safely is included in the RS section of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance should be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the RS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harness can be identified by yellow harness connector.

indication of a problem. Do not replace

make sure to ground the ECM mainframe.

FCM

parts because of a slight variation.

• When ECM is removed for inspection,

ECM

Engine Fuel & Emission Control System

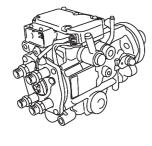
NJEC0602

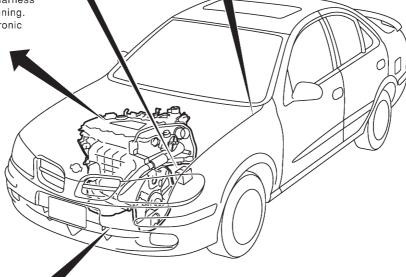
BATTERY

- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cable while engine is running.

WIRELESS EQUIPMENT

- Do not disassemble ECM.
 If a battery terminal is disconnected, the memory will return to the ECM value.
 The ECM will now start to self-control
 When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on its installation location.
 - The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an on its installation location.


 1) Keep the antenna as far as possible away from the ECM.


 2) Keep the antenna feeder line more than
 - 20 cm (7.9 in) away from the harness of electronic controls.

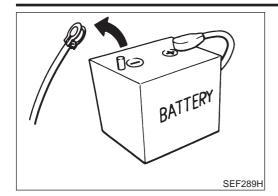
 Do not let them run parallel for a long
 - Do not let them run parallel for a long distance.
 - Adjust the antenna and feeder line so that the standing-wave ratio can be kept smaller.
 - 4) Be sure to ground the radio to vehicle body.

ELECTRONIC CONTROL FUEL INJECTION PUMP

- Do not disconnect pump harness connector with engine running.
- Do not disassemble electronic fuel injection pump.
 If NG, take proper action.

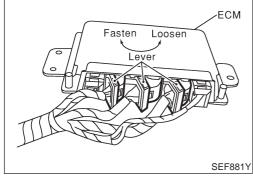
ENGINE CONTROL PARTS HANDLING

- Do not disassemble injection nozzle.
 If NG, replace injection nozzle.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the crankshaft position sensor (TDC).

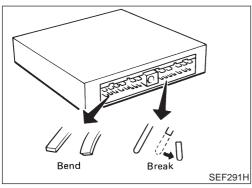

WHEN STARTING

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

ECM HARNESS HANDLING

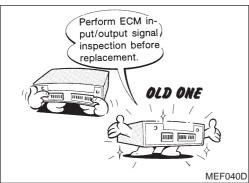

- Securely connect ECM harness connectors.
 - A poor connection can cause an extremely high (surge) voltage to develop in the circuit, thus resulting in damage to ICs.
- Keep ECM harness at least 10 cm (3.9 in) away from adjacent harnesses, to prevent an ECM system malfunction due to receiving external noise, degraded operation of ICs, etc.
- · Keep ECM parts and harnesses dry.
- Before removing parts, turn off ignition switch and then disconnect battery ground cable.

SEF433Z

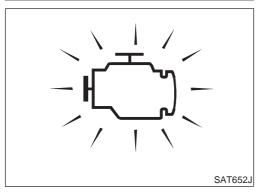


Precautions

 Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.

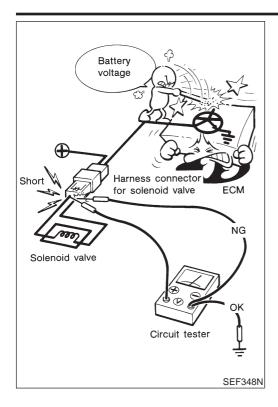


 When connecting ECM harness connectors, push in both sides of the connector until you hear a click. Maneuver the lever until you hear the three connectors on the inside click. Refer to the figure at left.



 When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.


 Before replacing ECM, perform Terminals and Reference Value inspection and make sure ECM functions properly. Refer to EC-554.

- If MI illuminates or blinks irregularly when engine is running, water may have accumulated in fuel filter. Drain water from fuel filter. If this does not correct the problem, perform specified trouble diagnostic procedures.
- After performing each TROUBLE DIAGNOSIS, perform "DTC Confirmation Procedure" or "Overall Function Check"

The DTC should not be displayed in the "DTC Confirmation Procedure" if the repair is completed. The "Overall Function Check" should be a good result if the repair is completed.

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.
- Install the break-out box between ECM and ECM harness connectors when measuring ECM input/output voltage.

Wiring Diagrams and Trouble Diagnosis

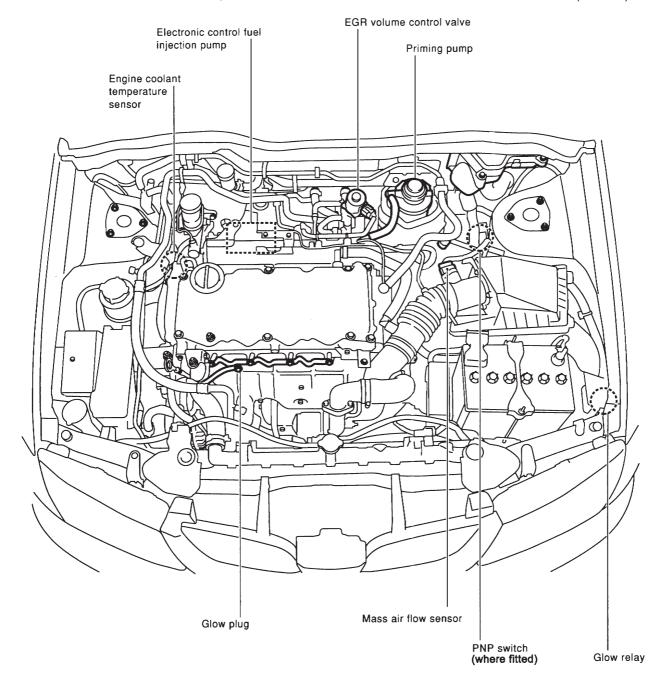
NJEC0604

When you read Wiring diagrams, refer to the following:

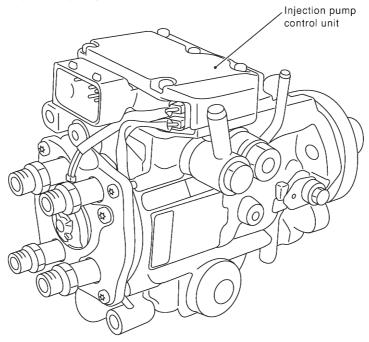
- GI-12, "HOW TO READ WIRING DIAGRAMS"
- EL-10, "POWER SUPPLY ROUTING" for power distribution circuit

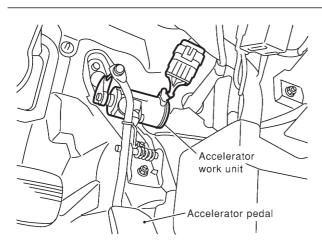
When you perform trouble diagnosis, refer to the following:

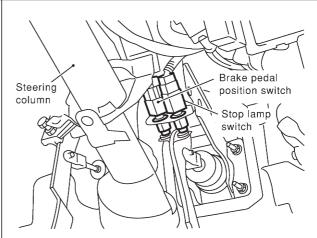
- GI-32, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
- GI-21, "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT"

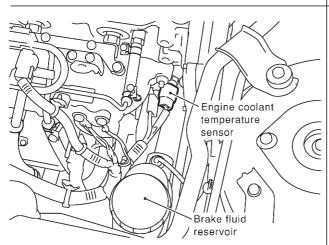

	Special Service Tools
Tool number Tool name	Description
KV111060S0 Removal/Installation tool kit for fuel injection pump	Sprocket holder KV11106060 a: 6 mm dia b: 80 mm (Face to face) b: 20 mm a: 6 mm (Face to face) b: 20 mm a: 6 mm (Face to face) b: 20 mm b: 20 mm A A A A B A B A B A B A B A B A B B
KV109E0010 Break-out box	Break Out Box
KV109E0050 Y-cable adapter	NT826

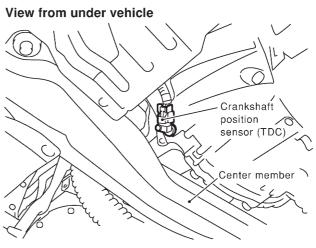
Engine Control Component Parts Location

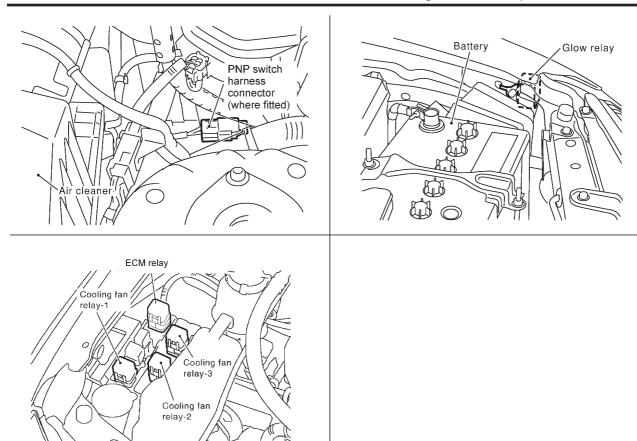

Engine Control Component Parts Location

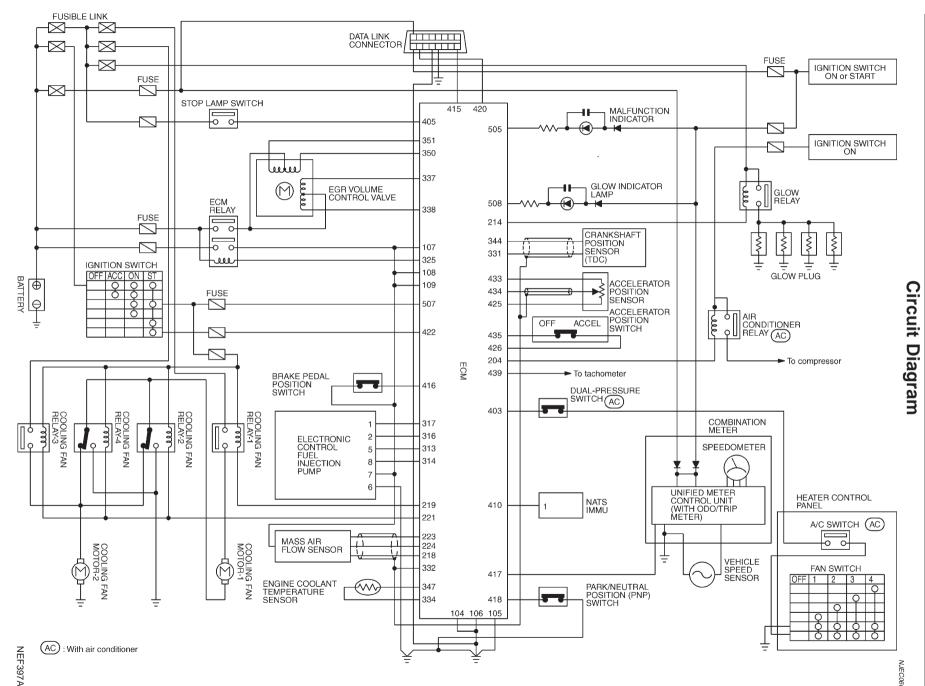

For more details of ECM location, refer to "ELECTRICAL UNIT LOCATION" in EL section (EL-319).


NJEC0607

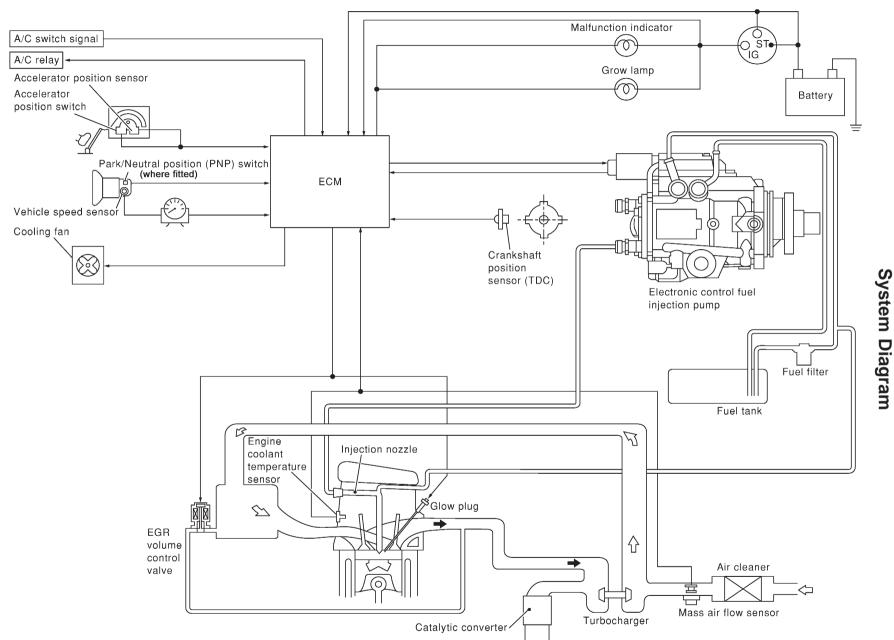



Electronic control fuel injection pump




SEF894Y

ENGINE AND EMISSION CONTROL OVERALL SYSTEM



Engine Control Component Parts Location (Cont'd)

EC-502

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

System Chart

System Chart NJEC0611 **ECM Function** Input (Sensor) Output (Actuator) • Electronic control fuel injection pump Electronic control fuel injection Fuel injection control Crankshaft position sensor (TDC) pump • Engine coolant temperature sensor Electronic control fuel injection • Accelerator position sensor Fuel injection timing control pump · Accelerator position switch Park/Neutral position (PNP) switch* Electronic control fuel injection Fuel cut control • Ignition switch pump Battery voltage • Vehicle speed sensor Glow control system Glow relay & glow lamp • Air conditioner switch On board diagnostic system MI (On the instrument panel) Mass air flow sensor • Stop lamp switch EGR volume control EGR volume control valve Cooling fan control Cooling fan relay Air conditioning cut control Air conditioner relay

^{*:} If so equipped

Fuel Injection Control System

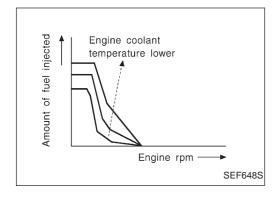
Fuel Injection Control System

DESCRIPTION

NJEC0612

System Description

Three types of fuel injection control are provided to accommodate engine operating conditions; normal control, idle control and start control. The ECM determines the appropriate fuel injection control. Under each control, the amount of fuel injected is compensated to improve engine performance.


Pulse signals are exchanged between ECM and electronic control fuel injection pump (control unit is built-in). The fuel injection pump control unit performs duty control on the spill valve (built into the fuel injection pump) according to the input signals to compensate the amount of fuel injected to the preset value.

Start Control Input/Output Signal Chart

NJEC0612S02

NJEC0612S0201

Sensor	Input Signal to ECM	ECM Function	Actuator	
Engine coolant temperature sensor	Engine coolant temperature	Fuel injection		
Crankshaft position sensor (TDC)	Engine speed	control (start injection pump	Electronic control fuel injection pump	
Ignition switch	Start signal	control)		

When the ECM receives a start signal from the ignition switch, the ECM adapts the fuel injection system for the start control. The amount of fuel injected at engine starting is a preset program value in the ECM. The program is determined by the engine speed and engine coolant temperature.

For better startability under cool engine conditions, the lower the coolant temperature becomes, the greater the amount of fuel injected. The ECM ends the start control when the engine speed reaches the specific value, and shifts the control to the normal or idle control.

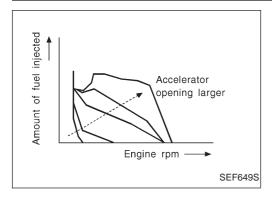
Idle Control Input/Output Signal Chart

NJEC0612S03

NJEC0612S0301

Sensor	Input Signal to ECM	ECM Function	Actuator	
Engine coolant temperature sensor	Engine coolant temperature			
Crankshaft position sensor (TDC)	Engine speed		Electronic control fuel injection pump	
Battery	Battery voltage	Fuel injection		
Accelerator position switch	Idle position	control (Idle control)		
Vehicle speed sensor	Vehicle speed			
Air conditioner switch	Air conditioner signal			

When the ECM determines that the engine speed is at idle, the fuel injection system is adapted for the idle control. The ECM regulates the amount of fuel injected corresponding to changes in load applied to the engine to keep engine speed constant. The ECM also provides the system with a fast idle control in response to the engine coolant temperature signal.



Fuel Injection Control System (Cont'd)

Normal Control Input/Output Signal Chart

NJEC0612S04

Sensor	Input Signal to ECM	ECM Function	Actuator
Crankshaft position sensor (TDC)	Engine speed	Fuel injection	Electronic control fuel
Accelerator position sensor	Accelerator position	control (Normal control)	injection pump

The amount of fuel injected under normal driving conditions is determined according to sensor signals. The crankshaft position sensor (TDC) detects engine speed and the accelerator position sensor detects accelerator position. These sensors send signals to the ECM.

The fuel injection data, predetermined by correlation between various engine speeds and accelerator positions, are stored in the ECM memory, forming a map. The ECM determines the optimal amount of fuel to be injected using the sensor signals in comparison with the map.

Maximum Amount Control Input/Output Signal Chart

NJEC0612S05

NJEC0612S0501

Sensor	Input Signal to ECM	ECM Function	Actuator	
Mass air flow sensor	Amount of intake air			
Engine coolnat temperature sensor	Engine coolant temperature	Fuel injection control (Maxi- mum amount control)	Electronic control fuel	
Crankshaft position sensor (TDC)	Engine speed		injection pump	
Accelerator position sensor	Accelerator position	55111151)		

The maximum injection amount is controlled to an optimum by the engine speed, intake air amount, engine coolant temperature, and accelerator opening in accordance with the driving conditions.

This prevents the oversupply of the injection amount caused by decreased air density at a high altitude or during a system failure.

Deceleration Control Input/Output Signal Chart

NJEC0612S06

NJEC0612S0601

Sensor	Input Signal to ECM	ECM Function	Actuator
Accelerator position switch	Accelerator position	Fuel injection control (Decel-	Electronic control fuel
Crankshaft position sensor (TDC)	Engine speed	eration control)	injection pump

The ECM sends a fuel cut signal to the electronic control fuel injection pump during deceleration for better fuel efficiency. The ECM determines the time of deceleration according to signals from the accelerator position switch and crankshaft position sensor (TDC).

Fuel Injection Timing Control System

DESCRIPTION

NJEC0613

The target fuel injection timing in accordance with the engine speed and the fuel injection amount are recorded as a map in the ECM beforehand. The ECM and the injection pump control unit exchange signals and perform feedback control for optimum injection timing in accordance with the map.

Air Conditioning Cut Control

Air Conditioning Cut Control

DESCRIPTION Input/Output Signal Chart

NJEC0614

NJEC0614S01

Sensor	Input Signal to ECM	ECM Function	Actuator	
Air conditioner switch	Air conditioner "ON" signal			
Accelerator position sensor	Accelerator valve opening angle	Air conditioner	Air conditioner relev	
Vehicle speed sensor	Vehicle speed	cut control	Air conditioner relay	
Engine coolant temperature sensor	Engine coolant temperature			

System Description

NJEC0614S02

This system improves acceleration when the air conditioner is used.

When the accelerator pedal is fully depressed, the air conditioner is turned off for a few seconds.

When engine coolant temperature becomes excessively high, the air conditioner is turned off. This continues until the engine coolant temperature returns to normal.

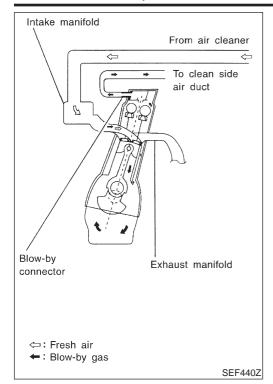
Fuel Cut Control (at no load & high engine speed)

DESCRIPTION Input/Output Signal Chart

NJEC0615

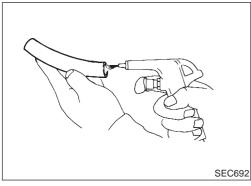
NJEC0615S01

Sensor	Input Signal to ECM	ECM Function	Actuator	
Vehicle speed sensor	Vehicle speed			
Accelerator position switch	Accelerator position	Fuel cut control	Electronic control fuel injection pump	
Crankshaft position sensor (TDC)	Engine speed		, ,	


If the engine speed is above 2,800 rpm with no load (for example, in neutral and engine speed over 2,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 1,500 rpm, then fuel cut is cancelled.

NOTE:

This function is different from deceleration control listed under "Fuel Injection Control System", EC-505.


YD

Crankcase Ventilation System

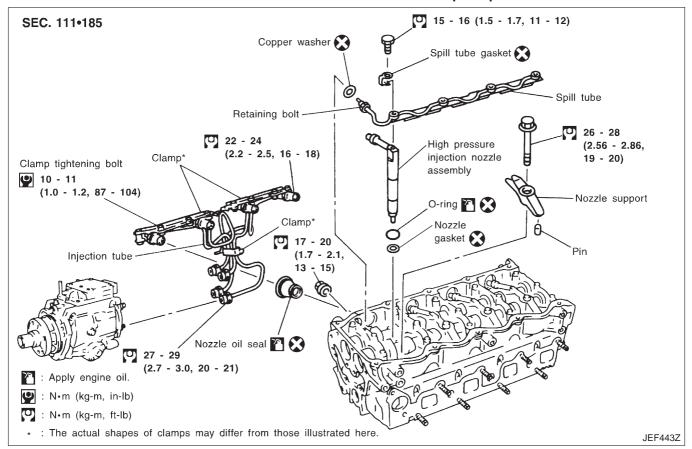
Crankcase Ventilation System DESCRIPTION

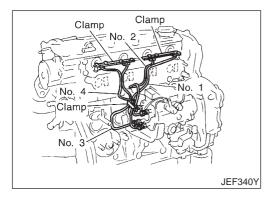
In this system, blow-by gas is sucked into the air duct after oil separation by oil separator in the rocker cover.

INSPECTION Ventilation Hose

NJEC0617

NJEC0617S01

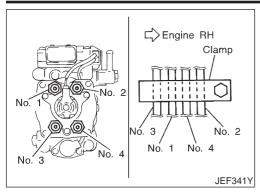

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

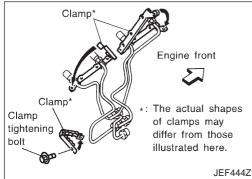

Injection Tube and Injection Nozzle REMOVAL AND INSTALLATION

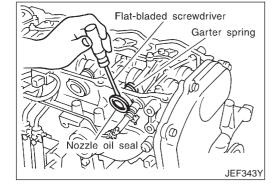
CAUTION:

NJEC0618

- Do not disassemble injection nozzle assembly. If NG, replace injection nozzle assembly.
- Plug flare nut with a cap or rag so that no dust enters the nozzle. Cover nozzle tip for protection of needle.




Injection Tube Removal


NJEC0618S01

NJEC0618S0101

- Mark the cylinder Nos. to the injection tubes, then disconnect them.
- Marking should be made at proper locations and by the proper method, so that they are not erased by fuel, etc.
- 2. Remove the clamps, then disconnect the tubes one by one.
- The intake manifold is removed for explanation in the figure.

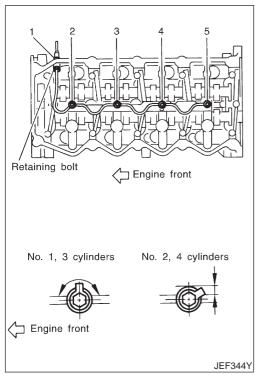
Installation

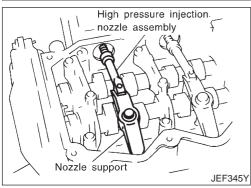
NJEC0618S0102

- Referring to the figure and the marking which were made for installation, connect the injection tubes to all the cylinders.
- Connect temporarily the tubes to the cylinder head side only by screwing 2 to 3 turns. Make sure that all tubes can be connected to the pump side also.
- 3. Then, tighten the flare nuts of the cylinder head side and pump side, starting from the opposite side from you.
- 4. Attach the injection tube clamp in the direction shown in the figure.
- 5. Insert tightening bolts of the clamp (4-tube type) from the rear to the front of the engine.

Injection Nozzle Oil Seal

NJEC0618S02


Removal


Using a tool such as a flat-bladed screwdriver, pry the flange of the seal, then remove it.

Installation

NJEC0618S02

- After the high-pressure injection nozzle assembly is installed, push the seal from the cylinder head side until it contacts the flange.
- 2. Make sure that the garter spring of the seal on the high-pressure injection nozzle assembly side is not falling.
- Replace the oil seal with new one when the high-pressure injection nozzle assembly is removed. (It is not necessary to replace the oil seal when only injection tubes are removed.)

Spill Tube Removal

NJEC0618S03

Loosen and remove the mounting bolts and flare nuts in the reverse order of the numbers in the figure.

• When the flare nuts are loosened, hold the head of hexagonal retaining bolts (head inside) using a wrench.

Installation

NJEC0618S0302

- 1. Tighten the flare nuts and mounting bolts in the numerical order shown in the figure.
- When the flare nuts are tightened, hold the head of the hexagonal retaining bolts (head inside) using a wrench.
- To prevent interference with the rocker cover, place the spill gasket joint within the range shown by the arrow, then tighten the mounting bolts. (Be especially careful about No. 2 and 4 cylinders.)
- After the spill tube is installed, check the airtightness of the spill tube.
- After the bolts are tightened, the joint of the spill tube gasket might be broken. However, this will not affect function.

High Pressure Injection Nozzle Assembly Removal

NJEC0618S04

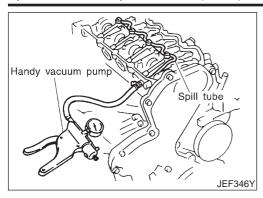
- Remove the nozzle support, then pull out the high-pressure injection nozzle assembly by turning it clockwise/ counterclockwise.
- Using a tool such as a flat-head screwdriver, remove the copper washer inside the cylinder head.

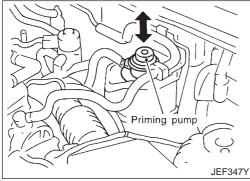
CAUTION:

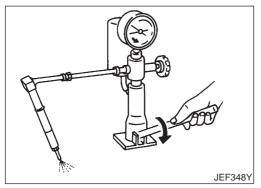
Do not disassemble the high-pressure injection nozzle.

Installation

NJEC0618S0402


- 1. Insert the nozzle gasket to the cylinder head hole.
- 2. Attach the O-ring to the mounting groove of the nozzle side, then insert it in the cylinder head.


TEST AND ADJUSTMENT


NJEC0619

WARNING:

When using nozzle tester, be careful not to allow diesel fuel sprayed from nozzle to contact your hands or body, and make sure your eyes are properly protected with goggles.

Inspection for Spill Tube Airtightness

Before the rocker cover is installed, perform the inspection as fol-

- 1. Connect the handy vacuum pump to the spill hose.
- Check that the airtightness is maintained after the negative pressure shown below is applied.

Standard:

-53.3 to -66.7 kPa (-533 to -667 mbar, -400 to -500 mmHg, -15.75 to -19.69 inHg)

Air Bleeding of Fuel Piping

After the repair, bleed air in the piping by pumping the priming pump up and down until it becomes heavy.

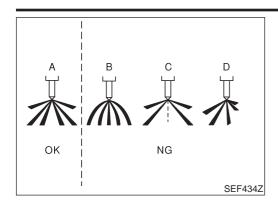
Injection Pressure Test

Install injection nozzle assembly to injection nozzle tester and bleed air from flare nut.

- Pump the tester handle slowly (one time per second) and watch the pressure gauge.
- Read the pressure gauge when the injection pressure just starts dropping.

Initial injection pressure:

New


21,476 - 22,457 kPa (214.7 - 224.5 bar, 219 - 229 kg/cm², 3,114 - 3,256 psi)

Limit

18,275 kPa (182.7 bar, 186 kg/cm², 2,650 psi)

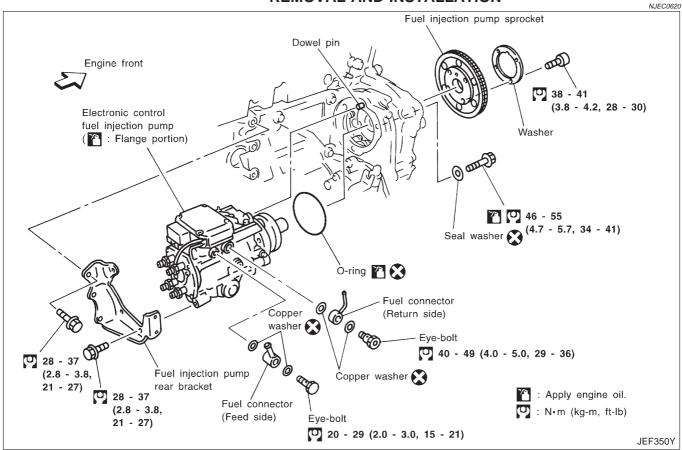
The injection nozzle assembly has a 2-stage pressure injection function. However, the judgement should be made at the first stage of the valve opening pressure.

Always check initial injection pressure using a new nozzle.

Spray Pattern Test

NJEC0619S05

1. Check spray pattern by pumping tester handle one full stroke per second.

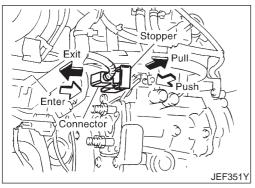

NG spray pattern:

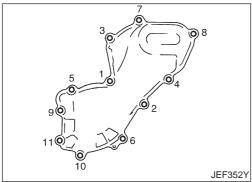
Does not inject straight and strong (B in the figure). Fuel drips (C in the figure).

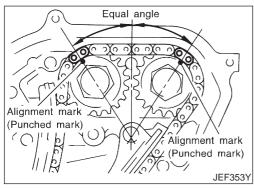
Does not inject evenly (D in the figure).

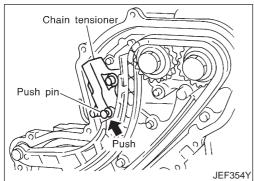
2. If the spray pattern is not correct, replace injection nozzle assembly.

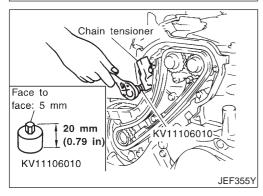
Electronic Control Fuel Injection Pump REMOVAL AND INSTALLATION




Removal


NJEC0620S01

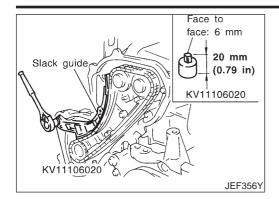

- 1. Remove the parts shown below.
- Engine hood
- Engine coolant (drain)
- Engine cover
- Heater pipe under intake manifold
- Injection tubes
- Right splash cover (with undercover)
- Right front wheel


Electronic Control Fuel Injection Pump (Cont'd)

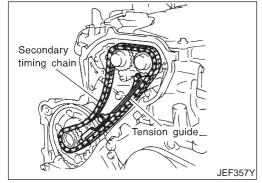
- 2. Disconnect the fuel hoses from the fuel injection pump.
- 3. Disconnect the harness connector from the fuel injection pump.
- Disconnect the connector by pulling the connector stopper fully.
- When the stopper is fully pulled, the connector will be disconnected together. For installation, push the connector half way first, then press the stopper until it locks, so that the connector is connected together.
- 4. Remove the fuel injection pump rear bracket.
- 5. Remove the front chain case.
- Move the power steering fluid reservoir tank from the bracket.
- Loosen and remove the mounting bolts in the reverse order of the numbers shown in the figure.
- As for bolts 6, 10, and 11, remove with rubber washer because there is not enough space for removing only the bolts.

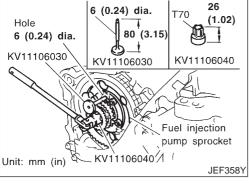
CAUTION:

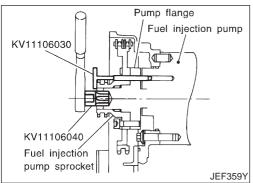
To prevent foreign objects from getting in the engine, cover the opening during the removal of the front chain case.

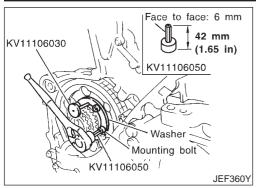

- 6. Adjust the No. 1 cylinder to the top dead center position.
- Turn the crankshaft pulley clockwise, then align the alignment mark (punched mark) of the camshaft sprocket to the position shown in the figure.
- There is no indicator on the crankshaft pulley.
- It is not necessary to mark the secondary timing chain for removal because it can be matched by the link color for installation. However, the alignment mark on the fuel injection pump sprocket is difficult to see; mark it if necessary.
- 7. Remove the chain tensioner.
- a. Push the plunger of the chain tensioner, then fix it with a tool such as a push pin.

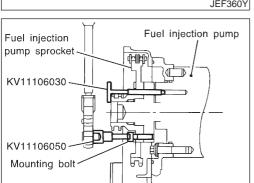
- b. Using the hexagon wrench (face to face: 5 mm) (SST), remove the mounting bolts, then remove the chain tensioner.
- A multi-purpose tool may also be used.


BASIC SERVICE PROCEDURE

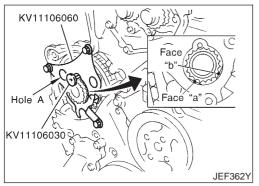

Electronic Control Fuel Injection Pump (Cont'd)

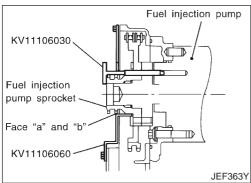

- 8. Remove the timing chain slack guide.
- Using the hexagon wrench (face to face: 6 mm, short-type) (SST), remove the mounting bolts, then remove the timing chain slack guide.

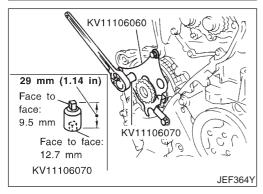

- Remove the timing chain tension guide.
- 10. Remove the secondary timing chain.
- Only the timing chain can be removed without removing the sprockets.



- 11. Fix the fuel injection pump sprocket.
- a. Insert the positioning stopper pin (SST) in the 6 mm (0.24 in) dia. hole of the fuel injection pump sprocket.
- b. Using the torx wrench (SST), turn the pump shaft gradually to adjust the hole position of the fuel injection pump sprocket.
- Insert the positioning stopper pin through the fuel injection pump body to fix the sprocket.




- Insert the positioning stopper pin until its flange contacts the fuel injection pump sprocket.
- d. Remove the torx wrench (SST).

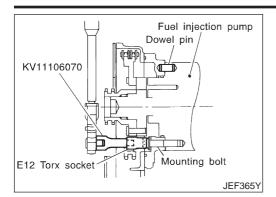


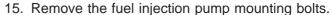
- 12. Using the hexagon wrench (face to face: 6 mm, long-type) (SST), remove the mounting bolts of the fuel injection pump sprocket.
- It is not necessary to remove the washer of the fuel injection pump sprocket.

- 13. Using the sprocket holder (SST), hold the fuel injection pump sprocket to prevent falling.
- When the sprocket holder is installed, if the positioning stopper pin interferes, pull out the stopper pin approximately 10 mm (0.39 in), then install it.
- After the sprocket holder is installed temporarily, insert the extension bar (SST) and Torx socket in the three holes A. After positioning the holes, tighten the holder mounting bolts. (Refer to the step 14 about the tool.)
- The length of the sprocket holder mounting bolts should be approximately 15 mm (0.59 in) (M6 thread length).
- Make sure that the a- and b-faces of the sprocket holder contact the bottom side of the sprocket 15 mm (0.59 in) (small diameter side).

CAUTION:

JEF361Y

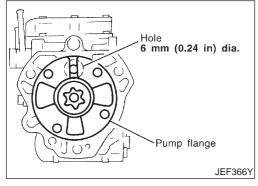

Do not remove the sprocket holder until the fuel injection pump is installed.


- After the sprocket holder is installed, pull out the positioning stopper pin (SST) from the fuel injection pump sprocket.
- 14. Using the extension bar [SST: whole length 43 mm (1.69 in)] and the Torx socket (Q6-E12: commercially available), remove the mounting bolts, them remove the fuel injection pump toward the rear of the engine.
- Even after all the mounting bolts are removed, the fuel injection pump is still held by a dowel pin.

CAUTION:

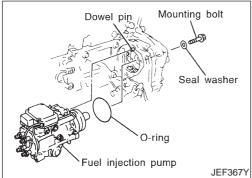
Do not disassemble or adjust the fuel injection pump.

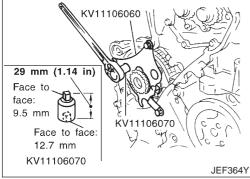
Electronic Control Fuel Injection Pump (Cont'd)



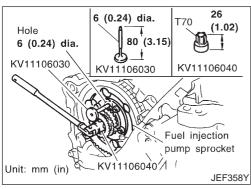
The seal washer of the mounting bolts cannot be reused.

CAUTION:

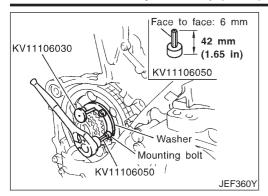

For removal, be careful not to drop the seal washer into the engine.


Installation

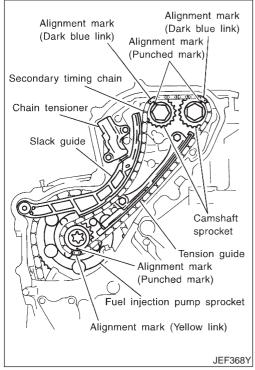
NJFC0620S02


- It is not necessary to adjust the injection timing by changing the installation angle which used to be performed with conventional fuel injection pumps. The installation position can be simply decided by the dowel pin and the mounting bolts.
- 1. Before the fuel injection pump is installed, check that the notch of its flange and the 6 mm (0.24 in) dia. hole on the body are aligned.

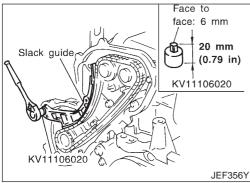
- 2. Insert the fuel injection pump to the mounting position from the rear of the engine.
- Adjust the fuel injection pump bracket position to the dowel pin, then install it.

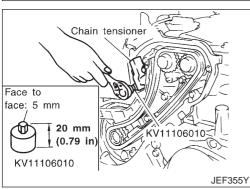


- 3. Using the extension bar (SST) and the Torx socket, tighten the mounting bolts of the fuel injection pump.
- Remove the sprocket holder (SST).



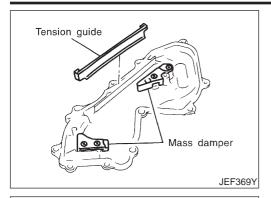
- 5. Using the torx wrench (SST), turn the pump shaft gradually to adjust the position of the flange. Then, insert the positioning stopper pin (SST) to the 6 mm (0.24 in) dia. hole of the fuel injection pump sprocket through the pump flange and the pump body.
- Remove the torx wrench (SST).


Electronic Control Fuel Injection Pump (Cont'd)

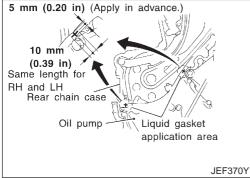

- 7. Using the hexagon wrench (face to face: 6 mm, long-type) (SST), tighten the sprocket mounting bolt.
- When the washer of the fuel injection pump sprocket is removed, install it with the marking "F" (front) facing the front of the engine.
- 8. Pull out the positioning stopper pin (SST).

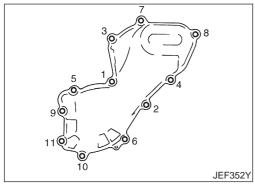
- 9. Install the secondary timing chain.
- Align the alignment marks of the sprockets and those of the chain, then install it.
- The figure shows the installation state and names of the secondary timing chain and other related parts.
- 10. Install timing chain tension guide.
- The upper installation bolt is longer than the lower.

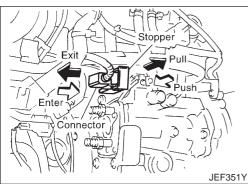
11. Using a hexagon wrench (face to face: 6 mm, short-type) (SST), install the timing chain slack guide.



- 12. Install the chain tensioner.
- a. Push the plunger of the chain tensioner, then hold it with a tool such as a push pin, and install it.
- b. Using a hexagon wrench (face to face: 5 mm) (SST), tighten the mounting bolts.
- Installation is possible by a multi-purpose tool also.
- c. Pull out the tool such as a push pin which holds the plunger.
- Make sure that the alignment marks of the sprockets and timing chain are aligned.


BASIC SERVICE PROCEDURE

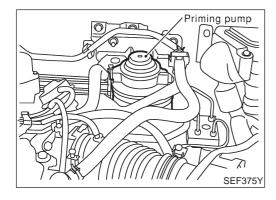

Electronic Control Fuel Injection Pump (Cont'd)


- 13. Install the front chain case.
- Install the tension guide to the back side of the front chain case.
- If the front chain case is tilted, the tension guide may fall off. Therefore, when installing the front chain case, hold it vertically.

- b. Apply Three Bond 1207C (KP510 00150) to both ends of the arch area of the oil pump (contact surface of rear chain case) as shown in the figure.
- c. Install the front chain case.
- Align the dowel pin of the oil pump case to the pin hole, then install it.
- Install bolts 6, 10, and 11 (shown in the figure) with the rubber washer to the front chain case.

- d. Tighten the mounting bolts in the numerical order shown in the figure.
- e. After all bolts are tightened, tighten the mounting bolts in the numerical order shown in the figure again.
- 14. Install the fuel injection pump rear bracket.
- Tighten all the bolts temporarily, then tighten them securely with the mounting face securely contacting the fuel injection pump and the pump bracket.

- 15. Connect the fuel injection pump harness connector.
- Insert the harness connector securely until the stopper locks.
- Push the connector half way first, then press the stopper until it locks, so that the connector is connected together.


- 16. Connect the fuel hoses.
- When the hoses are disconnected at the fuel gallery side, insert until the hoses contact the valve, then install the clamp securely.
- 17. Install other parts in the reverse order of removal.

Fuel Filter DESCRIPTION

NJEC0623

A water draining cock is on the lower side and a priming pump for bleeding air is on the upper side.

AIR BLEEDING

NJEC0624

- 1. After the repair, bleed air from the piping by pumping the priming pump up and down until it becomes heavy.
- 2. To start the engine, rotate the starter for a maximum of 30 seconds. To start the engine more quickly, crank the engine while pumping the priming pump (requires two workers).
- 3. If the engine does not start after rotating the starter for a maximum of 30 seconds, stop it once, and pump the priming pump again until it becomes heavy.
- 4. Rotate the starter again until the engine starts running.
- After the engine starts, let it idle for at least 1 minute to stabilize the behavior.
- When air is bled completely, the pumping of the priming pump suddenly becomes heavy. Stop the operation at that time
- If it is difficult to bleed air by the pumping of the priming pump (the pumping of the priming pump does not become heavy), disconnect the fuel supply hose between the fuel filter and the injection pump. Then, perform the operation described above, and make sure that fuel comes out. (Use a pan, etc. so as not to spill fuel. Do not let fuel get on engine and other parts.) After that, connect the hose, then bleed air again.
- Start engine and let it idle for at least one minute after performing air bleeding.

WATER DRAINING

NJEC062

- 1. Remove the fuel filter, filter bracket, protector assembly from the dash panel as follows.
- a. Remove the air cleaner case (upper), air duct assembly, and vacuum hose for brake booster (between the vacuum pump and vacuum pipe).

CAUTION:

After the duct is removed, cover the opening with gum tape, etc. to prevent foreign object from getting into the engine during the operation.

- b. Disconnect the water level warning sensor harness connector.
- c. Remove the mounting nuts on the dash panel, then remove the fuel filter, filter bracket, and protector assembly from the dash panel.
- It is not necessary to disconnect the fuel hose.
- Using a tool such as a pliers, loosen the water draining cock at the bottom of the water level warning sensor located under the fuel filter.

BASIC SERVICE PROCEDURE

Fuel Filter (Cont'd)

- 3. Install the fuel filter, filter bracket, and protector assembly temporarily. Then, drain the water by pumping the priming pump with the filter standing straight.
- Extend the drain hose if necessary.

Water amount when the MI lights up: $65 - 100 \text{ m}\ell$ (2.3 - 3.5 lmp fl oz)

CAUTION:

When the water is drained, the fuel is also drained. Use a pan, etc. to avoid fuel adherence to the rubber parts such as the engine mount insulator.

4. Tighten the water draining cock, then install the fuel filter, filter bracket, protector assembly in the reverse order of removal.

CAUTION:

Do not over-tighten the water draining cock. This will damage the cock thread, resulting in water or fuel leak.

- 5. Bleed air of the fuel filter. Refer to EC-520.
- Start engine and let it idle for at least one minute after performing air bleeding.

DTC and MI Detection Logic

DTC and MI Detection Logic

N.JEC0626

When a malfunction is detected, the malfunction (DTC) is stored in the ECM memory.

The MI will light up each time the ECM detects malfunction. For diagnostic items causing the MI to light up, refer to "TROUBLE DIAGNOSIS — INDEX", EC-492.

Diagnostic Trouble Code (DTC)

NJEC0627 NJEC0627S01

HOW TO READ DTC

The DTC can be read by the following methods.

Without CONSULT-II

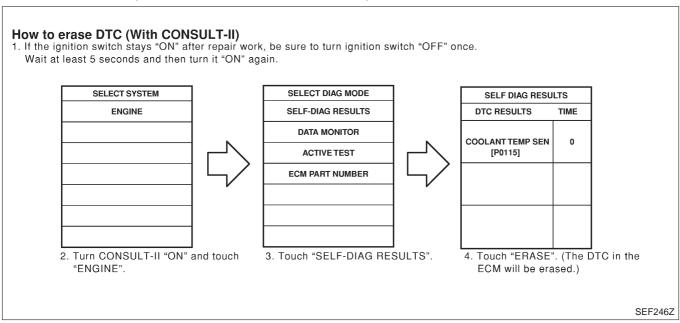
ECM displays the DTC by a set of four digit numbers with MI illumination in the diagnostic test mode II (Self-diagnostic results). Example: 0103, 0807, 1002, etc.

(P) With CONSULT-II

CONSULT-II displays the DTC in "SELF-DIAG RESULTS" mode. Examples: P0115, P0571, P1202, etc. These DTCs are prescribed by ISO15031-6.

(CONSULT-II also displays the malfunctioning component or system.)

 Output of the trouble code means that the indicated circuit has a malfunction. However, in the Mode II it does not indicate whether the malfunction is still occurring or occurred in the past and returned to normal.


CONSULT-II can identify them. Therefore, using CONSULT-II (if available) is recommended.

HOW TO ERASE DTC

How to Erase DTC (With CONSULT-II)

NJEC0627S02

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" (engine stopped) again.
- 2. Touch "ENGINE".
- 3. Touch "SELF-DIAG RESULTS".
- 4. Touch "ERASE". (The DTC in the ECM will be erased.)

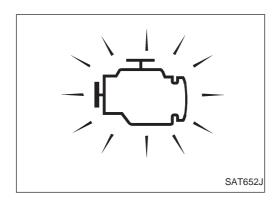
The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

How to Erase DTC (Without CONSULT-II)

N IECOGOZEGO

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" (engine stopped) again.
- 2. Change the diagnostic test mode from Mode II to Mode I by using the data link connector. (See EC-524.) The emission related diagnostic information in the ECM can be erased by changing the diagnostic test mode.
- If the battery is disconnected, the emission-related diagnostic information will be lost after approx. 24 hours.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION


Malfunction Indicator (MI)

 Erasing the emission-related diagnostic information using CONSULT-II is easier and quicker than switching the diagnostic test mode using the data link connector.

Malfunction Indicator (MI)

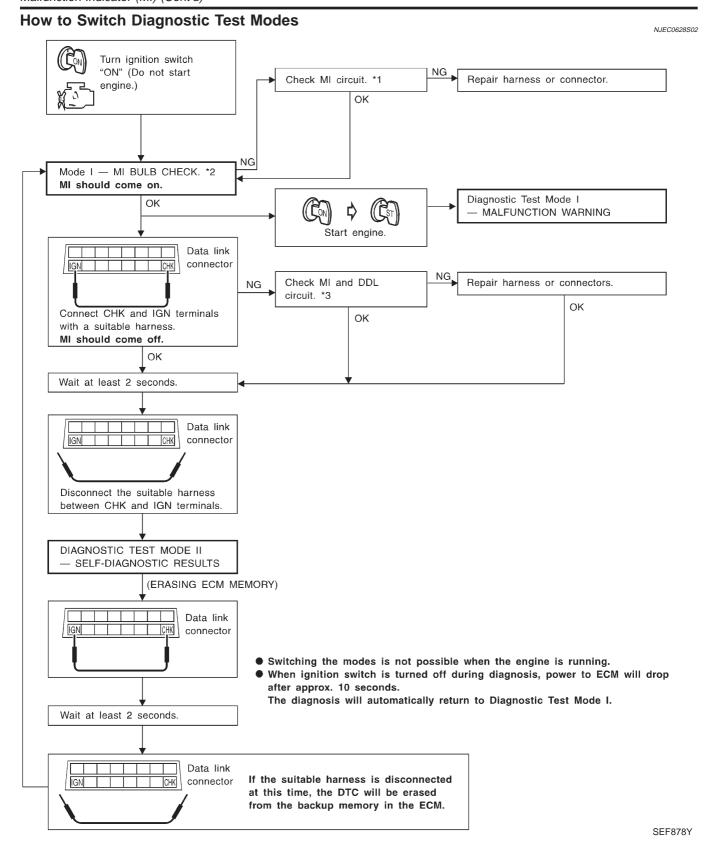
DESCRIPTION

NJEC0628

The MI is located on the instrument panel.

- 1. The MI will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the MI does not light up, refer to EL-107, "WARNING LAMPS" or see EC-701.
- 2. When the engine is started, the MI should go off.

 If the MI remains on, the on board diagnostic system has detected an engine system malfunction.


If MI illuminates or blinks irregularly after starting engine, water may have accumulated in fuel filter. Drain water from fuel filter. Refer to "WATER DRAINING", EC-520.

On Board Diagnostic System Function

NJEC0628S01

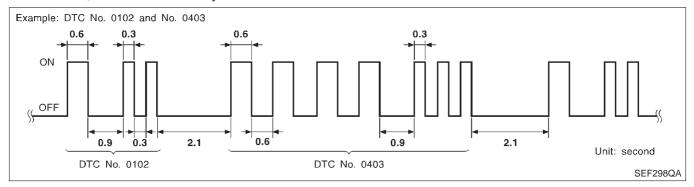
The on board diagnostic system has the following three functions.

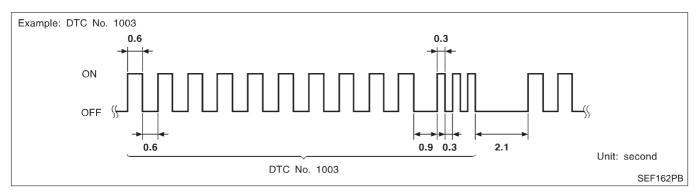
Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function
Mode I	Ignition switch in ON position Engine stopped	BULB CHECK	This function checks the MI bulb for damage (blown, open circuit, etc.). If the MI does not come on, check MI circuit. (See EC-701.)
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When ECM detects a malfunction, the MI will light up to inform the driver that a malfunction has been detected.
Mode II	Ignition switch in ON position Engine stopped	SELF-DIAGNOSTIC RESULTS	This function allows DTCs to be read.

Diagnostic Test Mode I — Bulb Check

In this mode, the MI on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to EL-107, "WARNING LAMPS" or see EC-701.

Diagnostic Test Mode I — Malfunction Warning


NJEC0628S04


MI	Condition	
ON When the malfunction is detected or the ECM's CPU is malfunctioning.		
OFF	No malfunction.	

Diagnostic Test Mode II — Self-diagnostic Results

N.JEC0628S05

In this mode, DTC is indicated by the number of blinks of the MI as shown below.

Long (0.6 second) blinking indicates the two LH digits of number and short (0.3 second) blinking indicates the two RH digits of number. For example, the MI blinks 10 times for 6 seconds (0.6 sec \times 10 times) and then it blinks three times for about 1 second (0.3 sec \times 3 times). This indicates the DTC "1003".

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC "0505" refers to no malfunction. (See TROUBLE DIAGNOSIS — INDEX, EC-492.)

How to Erase Diagnostic Test Mode II (Self-diagnostic results)

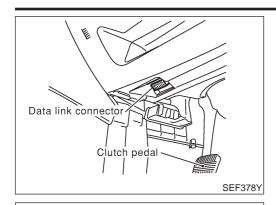
NJFC0628SI

The DTC can be erased from the backup memory in the ECM when the diagnostic test mode is changed from Diagnostic Test Mode II to Diagnostic Test Mode I. (Refer to "How to Switch Diagnostic Test Modes", EC-524.)

- If the battery terminal is disconnected, the DTC will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

Malfunction Indicator (MI) (Cont'd) Relationship Between MI, DTC, CONSULT-II and Driving Patterns This driving pattern does not satisfy NG Detection self-diagnostic condition. This driving pattern satisfies self-diagnostic condition. Driving Pattern RUN (ON) Engine (IGN) STOP (OFF) ON MI OFF ECM DTC DISPLAY -NO DISPLAY CONSULT-II SELF-DIAGNOSTIC DTC exists. **RESULTS SCREEN** DTC does not exist. 39 DATA MONITOR (AUTO TRIG) SCREEN COUNTER -SELF-DIAGNOSTIC

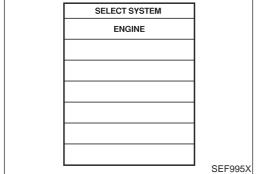
*1: When a malfunction is detected, MI will light up.


RESULTS SCREEN

- *2: When the same malfunction is detected in two consecutive driving patterns, MI will stay lit up.
- *3: MI will go off after vehicle is driven three times without any malfunctions.
- *4: When a malfunction is detected for the first time, the DTC will be stored in ECM.
- *5: The DTC will not be displayed any longer after vehicle is driven 40 times without the same malfunction. (The DTC still remain in ECM.)
- *6: Other screens except SELF-DIAG-NOSTIC RESULTS & DATA MONITOR (AUTO TRIG) cannot display the malfunction. DATA MONITOR (AUTO TRIG) can display the malfunction at the moment it is detected.

SEF879Y

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION



CONSULT-II CONSULT-II INSPECTION PROCEDURE

NJEC0629

NJEC0629S01

- 1. Turn ignition switch OFF.
- Connect CONSULT-II to data link connector. (Data link connector is located under the driver side dash panel.)

- 3. Turn ignition switch ON.
- 4. Touch "START".
- 5. Touch "ENGINE".
- 6. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

SELECT DIAG MODE	
SELF-DIAG RESULTS	
DATA MONITOR	
ACTIVE TEST	
ECM PART NUMBER	
	SEF320Y

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

=NJEC0629S02

	ltem			NOSTIC TEST I	MODE
				DATA MONI- TOR	ACTIVE TEST
		Engine coolant temperature sensor	X	Х	
"		Vehicle speed sensor	X	Х	
COMPONENT PARTS		Accelerator position sensor	X	Х	
/4 		Accelerator position switch	X	Х	
NEN	INPUT	Crankshaft position sensor (TDC)	X	Х	
MPO		Ignition switch (start signal)		Х	
8		Park/Neutral position (PNP) switch (where fitted)		Х	
CONTROL		Battery voltage	X	Х	
ΝO		Mass air flow sensor	X	Х	
		Stop lamp switch	X	Х	
ENGINE		Glow relay		Х	Х
ш	ОИТРИТ	EGR volume control valve		Х	Х
		Cooling fan relay	Х	Х	Х

X: Applicable

SELF-DIAGNOSTIC MODE

Regarding items detected in "SELF-DIAG RESULTS" mode, refer to "TROUBLE DIAGNOSIS — INDEX", EC-492.

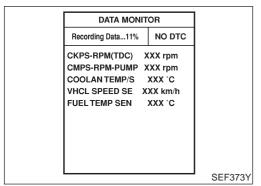
DATA MONITOR MODE

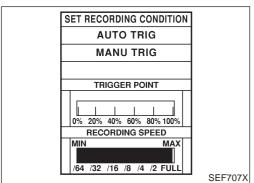
NJEC0629S04

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
CKPS-RPM (TDC) [rpm]	0	0	The engine speed computed from the crankshaft position sensor (TDC) signal is displayed.	
CMPS-RPM-PUMP [rpm]	0	0	The engine speed computed from the pulse signal sent from electronic control fuel injection pump is displayed.	
COOLAN TEMP/S [°C] or [°F]	0	0	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
VHCL SPEED SE [km/h] or [mph]	0	0	The vehicle speed computed from the vehicle speed sensor signal is displayed.	
FUEL TEMP SEN [°C] or [°F]	0	0	The fuel temperature (sent from electronic control fuel injection pump) is displayed.	
ACCEL POS SEN [V]	0	0	The accelerator position sensor signal voltage is displayed.	
OFF ACCEL SW [ON/OFF]	0	0	Indicates [ON/OFF] condition from the accelerator position switch signal.	

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

YD


CONSULT-II (Cont'd)


Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
SPILL/V [°CA]		0	 The control position of spill valve (sent from electronic control fuel injection pump) is displayed. 	
BATTERY VOLT [V]	0	0	The power supply voltage of ECM is displayed.	
P/N POSI SW*1 [ON/OFF] (where fitted)	0	0	Indicates [ON/OFF] condition from the park/neutral position switch signal.	
START SIGNAL [ON/OFF]	0	0	Indicates [ON/OFF] condition from the starter signal.	After starting the engine, [OFF] is displayed regardless of the starter signal.
BRAKE SW [ON/OFF]	0	0	Indicates [ON/OFF] condition from the stop lamp switch signal.	
BRAKE SW2 [ON/OFF]	0	0	Indicates [ON/OFF] condition from the brake pedal position switch signal.	
IGN SW [ON/OFF]	0	0	Indicates [ON/OFF] condition from ignition switch signal.	
MAS AIR/FL SE [V]	0	0	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
INT/A VOLUME [mg/]			The intake air volume computed from the mass air flow sensor signal is dis- played.	
F/CUT SIGNAL [ON/OFF]		0	The [ON/OFF] condition from deceleration fuel cut signal (sent from electronic control fuel injection pump) is displayed. OFFFuel is cut off. ONFuel is not cut off.	
GLOW RLY [ON/OFF]		0	The glow relay control condition (determined by ECM according to the input signal) is displayed.	
COOLING FAN [LOW/HI/OFF]		0	 Indicates the control condition of the cooling fans (determined by ECM according to the input signal). LOW Operates at low speed. HI Operates at high speed. OFF Stopped. 	
BARO SEN [kPa]	0	0	The barometric pressure (determined by the signal voltage from the baromet- ric pressure sensor built into the ECM) is displayed.	
EGR VOL CON/V [step]		0	 Indicates the EGR volume control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	

^{*1:} On models not equipped with park/neutral position (PNP) switch, "OFF" is always displayed regardless of gear shift position.

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE						
TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)			
COOLING FAN	 Ignition switch: ON Operate the cooling fan at "LOW", "HI" speed and turn "OFF" using CONSULT-II. 	Cooling fan moves at "LOW", "HI" speed and stops.	Harness and connectorCooling fan motorCooling fan relay			
EGR VOL CONT/V	Ignition switch: ON Change EGR volume control valve opening step using CONSULT-II.	EGR volume control valve makes an operating sound.	Harness and connector EGR volume control valve			
GLOW RLY	Ignition switch: ON (Engine stopped) Turn the glow relay "ON" and "OFF" using CONSULT-II and listen to operating sound.	Glow relay makes the operating sound.	Harness and connector Glow relay			

REAL TIME DIAGNOSIS IN DATA MONITOR MODE

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- 1) "AUTO TRIG" (Automatic trigger):
- The malfunction will be identified on the CONSULT-II screen in real time.

In other words, DTC will be displayed if the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at left, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

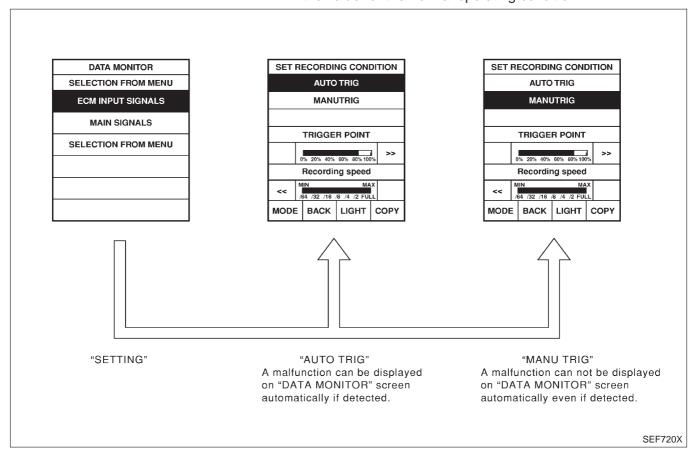
The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.

- 2) "MANU TRIG" (Manual trigger):
- DTC will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.
 DATA MONITOR can be performed continuously even though a malfunction is detected.

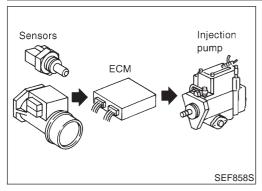
Use these triggers as follows:

- 1) "AUTO TRIG"
- While trying to detect the DTC by performing the "DTC Confirmation Procedure", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
- While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.

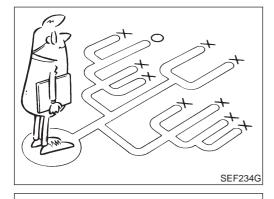
When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in


ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

CONSULT-II (Cont'd)


the "DTC Confirmation Procedure", the moment a malfunction is found the DTC will be displayed. Refer to GI-22, "Incident Simulation Tests".

- 2) "MANU TRIG"
- If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.



TROUBLE DIAGNOSIS — INTRODUCTION

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE..... Road conditions
HOW Operating conditions,
Weather conditions,
Symptoms

SEF907L

Introduction

The engine has an ECM to control major systems such as fuel injection control, fuel injection timing control, glow control system, etc. The ECM accepts input signals from sensors and instantly drives electronic control fuel injection pump. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT-II or a circuit tester connected should be performed. Follow the "Work Flow", EC-534.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on next page should be used.

Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

DIAGNOSTIC WORKSHEET

NJEC0630S0

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make troubleshooting faster and more accurate.

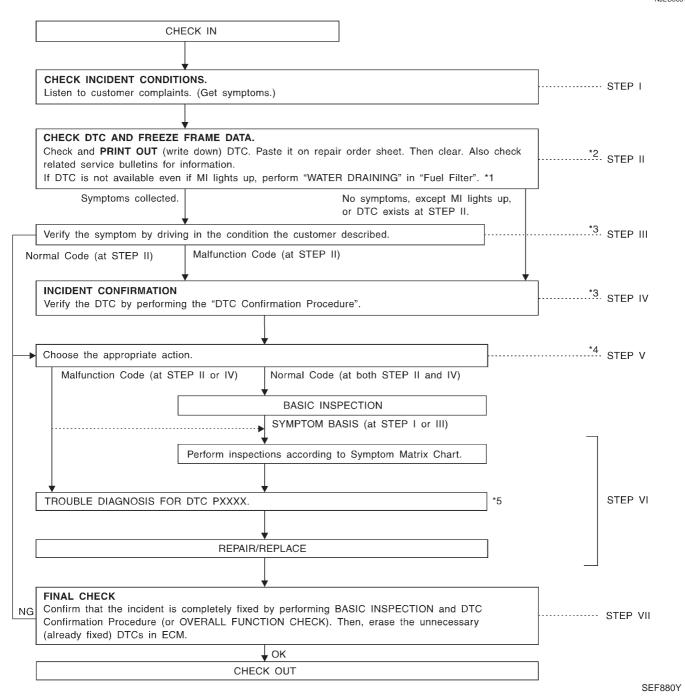
In general, each customer feels differently about a problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one shown below in order to organize all the information for troubleshooting.

TROUBLE DIAGNOSIS — INTRODUCTION

Worksheet Sample

NJEC0630S0101


Customer name MR/MS		Model & Year	VIN
Engine #		Trans.	Mileage
Incident Date		Manuf. Date	In Service Date
	☐ Startability	☐ Impossible to start ☐ No combus ☐ Partial combustion affected by th ☐ Partial combustion when engine ☐ Possible but hard to start ☐ Other	nrottle position is cool
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ H☐ Others [High idle □ Low idle]
	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock ☐ Others [☐ Lack of power]
	☐ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While dece	elerating
Incident occu	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night [☐ In the daytime
Frequency		☐ All the time ☐ Under certain cond	ditions
Weather cond	ditions	☐ Not affected	
	Weather	☐ Fine ☐ Raining ☐ Snowing	☐ Others []
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold Humid °F
Engine conditions		☐ Cold ☐ During warm-up ☐ Engine speed	After warm-up
Road conditions		☐ In town ☐ In suburbs ☐ Hig	nhway
Driving conditions		 Not affected At starting While idling While accelerating While decelerating While turni Vehicle speed	•
		0 10 20	30 40 50 60 MPH
Malfunction indicator		☐ Turned on ☐ Not turned on	

MTBL0533

Work Flow

N.JEC0631

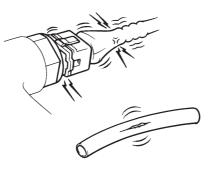
- *1 EC-520
- *2 If time data of "SELF-DIAG RESULTS" is other than "0", perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.
- *3 If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.
- *4 If the on board diagnostic system cannot be performed, check main power supply and ground circuit.
- Refer to "TROUBLE DIAGNOSIS FOR POWER SUPPLY", EC-560.
- *5 If malfunctioning part cannot be detected, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.

TROUBLE DIAGNOSIS — INTRODUCTION

	DESCRIPTION FOR WORK FLOW NJECO631S01
STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORKSHEET", EC-532.
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II) the DTC, then erase the DTC. Refer to EC-522. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559. Study the relationship between the cause, specified by DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. Refer to EC-541.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" is useful to verify the incident. Connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559. If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the DTC by driving in (or performing) the "DTC Confirmation Procedure". Check and read the DTC by using CONSULT-II. During the DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559. In case the "DTC Confirmation Procedure" is not available, perform the "Overall Function Check" instead. The DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "Overall Function Check" is the same as the DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the Basic Inspection, EC-536. Then perform inspections according to the Symptom Matrix Chart. Refer to EC-541.
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-554 or EC-551. The "Diagnostic Procedure" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to GI-24, "Circuit Inspection". Repair or replace the malfunction parts. If the malfunctioning part cannot be detected, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC Confirmation Procedure" and confirm the normal code (DTC P0000 or 0505) is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) DTC in ECM. (Refer to EC-522.)

N.JEC0632

Basic Inspection


Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;

- Headlamp switch is OFF,
- On vehicles equipped with daytime light systems, set lighting switch to the 1st position to light only small lamps.
- Air conditioner switch is OFF.
- Rear defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

1 INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related problem.
- 2. Check the current need for scheduled maintenance, especially for fuel filter and air cleaner filter. Refer to MA-4, "Periodic Maintenance".
- 3. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks, or improper connections
- Wiring for improper connections, pinches, or cuts

SEF142I

4. Start engine and warm it up to the normal operating temperature.

► GO TO 2.

2 PREPARATION FOR CHECKING IDLE SPEED

With CONSULT-II

Connect CONSULT-II to the data link connector.

⋈ Without CONSULT-II

Install diesel tacho tester to the vehicle.

■ GO TO 3.

YD

Basic Inspection (Cont'd)

CHECK IDLE SPEE	D			
th CONSULT-II ect "CKPS-RPM (TDC ad idle speed.)" in "DATA MONITO	OR" mode with (CONSULT	Г-II.
		DATA MON	IITOR	7
		MONITOR	NO DTC	
		CKPS-RPM (TDC)	XXX rpm	1
				SEF817Y
hout CONSULT-II				
±25 rpm				
		OK or	NG	
•	INSPECTION	END		
•	► GO TO 4.			
	th CONSULT-II ect "CKPS-RPM (TDC ad idle speed.	ect "CKPS·RPM (TDC)" in "DATA MONITO ad idle speed. chout CONSULT-II idle speed. ±25 rpm	Ch CONSULT-II ect "CKPS-RPM (TDC)" in "DATA MONITOR" mode with Condition in "DATA MONITOR" mode with Condition in "DATA MONITOR" CKPS-RPM (TDC) Chout CONSULT-II idle speed. ±25 rpm OK or I	th CONSULT-II ect "CKPS-RPM (TDC)" in "DATA MONITOR" mode with CONSULT ad idle speed. DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm Chout CONSULT-II idle speed. ±25 rpm OK or NG INSPECTION END

4	CHECK FOR INTAKE AIR LEAK			
Listen	Listen for an intake air leak after the mass air flow sensor.			
	OK or NG			
OK	•	GO TO 5.		
NG	•	Repair or replace.		

5	BLEED AIR FROM FUEL SYSTEM		
	 Stop engine. Use priming pump to bleed air from fuel system. Refer to "AIR BLEEDING", EC-520. 		
	•	GO TO 6.	

Basic Inspection (Cont'd)

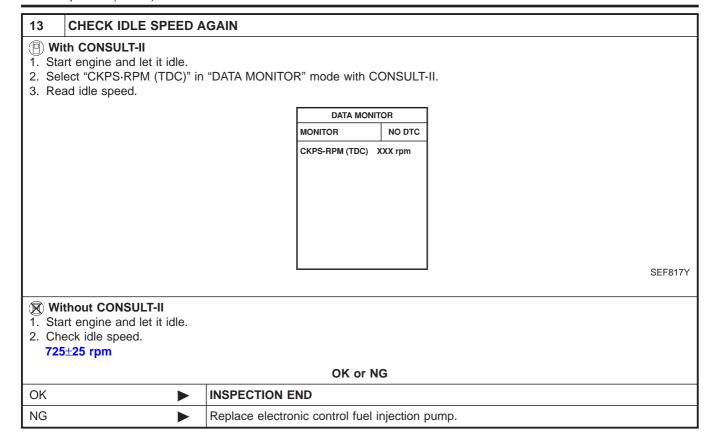
6 CHECK IDLE SPEED	AGAIN
 With CONSULT-II Start engine and let it idle. Select "CKPS-RPM (TDC)" ir Read idle speed. 	n "DATA MONITOR" mode with CONSULT-II.
	DATA MONITOR
	MONITOR NO DTC
	CKPS-RPM (TDC) XXX rpm
	SEF817Y
Without CONSULT-II 1. Start engine and let it idle. 2. Check idle speed. 725±25 rpm	
	OK or NG
OK •	INSPECTION END
NG •	GO TO 7.
7 DRIN WATER FROM F	UEL FILTER
Drain water from fuel filter. Refe	r to "WATER DRAINING", EC-520.
•	GO TO 8.
8 CHECK IDLE SPEED A	AGAIN
 With CONSULT-II Start engine and let it idle. Select "CKPS·RPM (TDC)" ir Read idle speed. 	n "DATA MONITOR" mode with CONSULT-II.
	DATA MONITOR
	MONITOR NO DTC
	CKPS-RPM (TDC) XXX rpm
	SEF817Y
	SLI 0171
Without CONSULT-II 1. Start engine and let it idle. 2. Check idle speed. 725±25 rpm	
	OK or NG
OK •	INSPECTION END
NG	CO TO 9

Basic Inspection (Cont'd)

9	CHECK AIR CLEANER FILTER		
Check air cleaner filter for clogging or braks.			
OK or NG			
OK	OK ▶ GO TO 10.		
NG	•	Replace air cleaner filter.	

10	CHECK FUEL INJECTION NOZZLE			
Check	Check fuel injection nozzle opening pressure. Refer to "Injection Pressure Test", EC-512.			
	OK or NG			
OK	OK ▶ GO TO 11.			
NG	•	Replace fuel injection nozzle assembly.		

11 **CHECK IDLE SPEED AGAIN** With CONSULT-II 1. Start engine and let it idle. 2. Select "CKPS-RPM (TDC)" in "DATA MONITOR" mode with CONSULT-II. 3. Read idle speed. DATA MONITOR NO DTC MONITOR CKPS-RPM (TDC) XXX rpm SEF817Y Without CONSULT-II 1. Start engine and let it idle. 2. Check idle speed. 725±25 rpm OK or NG OK **INSPECTION END**


12	CHECK COMPRESSION PRESSURE		
Check	Check compression pressure. Refer to EM-82, "MEASUREMENT OF COMPRESSION PRESSURE".		
	OK or NG		
OK	OK		
NG	•	Follow the instruction of "MEASUREMENT OF COMPRESSION PRESSURE".	

GO TO 12.

NG

YD

Basic Inspection (Cont'd)

Symptom Matrix Chart

Symptom Matrix Chart NJEC1257 **SYMPTOM** HARD/NO START/RESTART ENGINE STALL (EXCP. HA) HARD TO START WHEN ENGINE IS COLD SYSTEM — Basic engine HOH control system HARD TO START WHEN ENGINE IS HESITATION/SURGING/FLAT SPOT NO START (without first firing) Feature of symptom, Check point NO START (with first firing) WHEN DECELERATING POOR ACCELERATION KNOCK/DETONATION **DURING DRIVING** LACK OF POWER IDLE Reference page AT IDLE DLE Ξ Warranty symptom code AA ΑB AC AD ΑE AF Electronic control fuel injec-4 5 *1 4 4 4 4 4 4 5 4 tion pump mainframe 3 4 EC-509 *2 3 3 3 3 3 3 3 3 4 3 3 Injection nozzle Glow system 1 1 1 1 1 EC-677 Engine body 3 3 3 3 3 3 3 3 4 4 3 EM section *3 3 3 EC-686 EGR system 3 3 *4 Air cleaner and ducts MA section

^{1 - 5:} The numbers refer to the order of inspection.

^{*1:} Fuel injection system malfunction or fuel injection timing control system malfunction may be the cause.

^{*2:} Depends on open-valve pressure and spray pattern.

^{*3:} Caused mainly by insufficient compression pressure.

^{*4:} Symptom varies depending on off-position of air duct, etc.

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

YD

Symptom Matrix Chart (Cont'd)

					S	MPTC	OM						
SYSTEM — Basic engine control system	NG		TO IDLE	ENGINE COOLANT TEMPERATURE	CONSUMPTION	CONSUMPTION	CO CO LYCANG INAMEDIAGA	ABINORIMAL SIMIONE COLOR	(UNDER CHARGE)	inates.	CONSULT-II?		ck point
	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEAT/HIGH EN	EXCESSIVE FUEL C	EXCESSIVE OIL COI	BLACK SMOKE	WHITE SMOKE	DEAD BATTERY (UN	Malfunction indicator illuminates.	be detected by	Reference page	Feature of symptom, Check point
Warranty symptom code	AG	АН	AJ	AK	AL	AM	А	·P	НА	Ma	Can	Rej	Fe
Electronic control fuel injection pump mainframe	4	4	3		4		5	4		3	3	_	*1
Injection nozzle	3	3			3		4	3				EC-509	*2
Glow system								1		1		EC-677	
Engine body	3	3		3	3	3		3				EM section	*3
EGR system							3					EC-686	
Air cleaner and ducts							3				3	MA section	*4

^{1 - 5:} The numbers refer to the order of inspection. (continued on next page)

^{*1:} Fuel injection system malfunction or fuel injection timing control system malfunction may be the cause.

^{*2:} Depends on open-valve pressure and spray pattern.

^{*3:} Caused mainly by insufficient compression pressure.

^{*4:} Symptom varies depending on off-position of air duct, etc.

								SY	MPT	ОМ							
				HARD/NO START/RESTART	(EXCP. HA)			ENGINE STALL									
SYST	TEM — ENGINE CONTROL system	Malfunction	NO START (with first firing)	NO START (without first firing)	HARD TO START WHEN ENGINE IS COLD	HARD TO START WHEN ENGINE IS HOT	AT IDLE	DURING DRIVING	WHEN DECELERATING	HESITATION/SURGING/FLAT SPOT	KNOCK/DETONATION	LACK OF POWER	POOR ACCELERATION	HI IDLE	LOW IDLE	Reference page	Feature of symptom, Check point
Warra	anty symptom code			A	A			AB		AC	AD	А	Æ	А	.F	Refe	Fear
	Electronic control fuel injection	*a, *b		1		1	1	1	1	1	1	1	1	1	1		
ROL	pump circuit	*c, *d					'	'	'	ı						_	
JLNO	Mass air flow sensor circuit	*a, *c								1		1	1			EC-566	
Ц	made an new sensor enount	*b														20 000	
ENGINE CONTROL	Engine coolant temperature sensor circuit	*a, *b			1		1		1						1	EC-572	*1
	Vehicle speed sensor circuit	*a, *b											1			EC-593	

^{1 - 5:} The numbers refer to the order of inspection.

^{*}a: Open

^{*}b: Short

^{*}c: Ground short

^{*}d: Noise

^{*1:} Compensation according to engine coolant temperature does not function.

							SY	MPT	ОМ						
SYST	EM — ENGINE CONTROL system	Malfunction	ING		TO IDLE	NGINE COOLANT TEMPERATURE	CONSUMPTION	CONSUMPTION		ABINORIWAL SIMONE COLOR	NDER CHARGE)	ninates.	CONSULT-II?		ck point
			ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEAT/HIGH ENGINE	EXCESSIVE FUEL C	EXCESSIVE OIL CO	BLACK SMOKE	WHITE SMOKE	DEAD BATTERY (UNDER CHARGE)	Malfunction indicator illuminates.	Can be detected by CON	Reference page	Feature of symptom, Check point
Warra	anty symptom code		AG	АН	AJ	AK	AL	AM	Α	P	НА	Ma	Sa	Re	H Š
	Electronic control fuel injection pump	*a, *b	1				1			1		1	1		
ROL	circuit	*c, *d							1			'	ı'		
CONTROL	Mass air flow sensor circuit	*a, *c											1	EC-566	
	INICOS AN NOW SCHOOL CITCUIT	*b							1					20-300	
ENGINE	Engine coolant temperature sensor circuit	*a, *b	1	1		1						1	1	EC-572	*1
	Vehicle speed sensor circuit	*a, *b											1	EC-593	

^{1 - 5:} The numbers refer to the order of inspection.

^{*}a: Open

^{*}b: Short

^{*}c: Ground short

^{*}d: Noise

^{*1:} Compensation according to engine coolant temperature does not function.

								SY	MPT	ОМ							
				HARD/NO START/RESTART	(EXCP. HA)			ENGINE STALL									
SYST	EM — ENGINE CONTROL system	Malfunction	NO START (with first firing)	NO START (without first firing)	HARD TO START WHEN ENGINE IS COLD	HARD TO START WHEN ENGINE IS HOT	AT IDLE	DURING DRIVING	WHEN DECELERATING	HESITATION/SURGING/FLAT SPOT	KNOCK/DETONATION	LACK OF POWER	POOR ACCELERATION	HI IDLE	LOW IDLE	Reference page	Feature of symptom, Check point
Warra	anty symptom code	•		Α	A			AB		AC	AD	А	E	А	F	Ref	Fea
JO.	Fuel cut system line	*a, *c														EC-612	
NTR	i dei cut system inte	*b		1			1	1	1							LO-012	*2
00	Accelerator position sensor circuit	*a, *b								1		1	1			EC-577	
ENGINE CONTROL	Crankshaft position sensor (TDC) circuit	*a, *b			1	1	1	1	1	1	1	1	1			EC-587	

^{1 - 5:} The numbers refer to the order of inspection. (continued on next page)

^{*}a: Open

^{*}b: Short

^{*}c: Ground short

^{*}d: Noise

^{*2:} Engine runs on after turning ignition switch OFF.

							SY	MPT	ОМ						
SYST	EM — ENGINE CONTROL system	Malfunction	NG		TO IDLE	NGINE COOLANT TEMPERATURE	CONSUMPTION	CONSUMPTION		ABNORIVAL SIMONE COLOR	NDER CHARGE)	inates.	CONSULT-II?		ck point
			ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEAT/HIGH ENGINE	EXCESSIVE FUEL C	EXCESSIVE OIL COI	BLACK SMOKE	WHITE SMOKE	DEAD BATTERY (UNDER	Malfunction indicator illuminates.	Can be detected by CONS	Reference page	Feature of symptom, Check point
Warra	anty symptom code		AG	АН	AJ	AK	AL	АМ	А	P	НА	Mal	Car	Ref	Fea
7	Fuel cut system line	*a, *c										1	1	EC-612	
CONTROL	i dei cut system inie	*b												LO-012	*2
OO	Accelerator position sensor circuit	*a, *b										1	1	EC-577	
ENGINE	Crankshaft position sensor (TDC) circuit	*a, *b	1	1								1	1	EC-587	
Ш		*d													

^{1 - 5:} The numbers refer to the order of inspection.

^{*}a: Open

^{*}b: Short

^{*}c: Ground short

^{*}d: Noise

^{*2:} Engine runs on after turning ignition switch OFF.

								SY	MPT	ОМ							
				HARD/NO START/RESTART	(EXCP. HA)			ENGINE STALL									
SYST	SYSTEM — ENGINE CONTROL system		NO START (with first firing)	NO START (without first firing)	HARD TO START WHEN ENGINE IS COLD	HARD TO START WHEN ENGINE IS HOT	AT IDLE	DURING DRIVING	WHEN DECELERATING	HESITATION/SURGING/FLAT SPOT	KNOCK/DETONATION	LACK OF POWER	POOR ACCELERATION	HI IDLE	LOW IDLE	Reference page	Feature of symptom, Check point
Warra	anty symptom code			А	A			AB	l	AC	AD	А	Æ	А	νF	Refe	Fea
	Start signal circuit	*a, *b	1	1	1	1										EC-693	*3
OF		*a, *c			1	1	1		1						1	EC-577	
ENGINE CONTROL	circuit	*b								1		1	1			LO-311	*4
00	Ignition switch circuit	*a		1			1	1	1							EC-560	
GINE GINE	ignition switch choult	*b														LC-300	*5
Ш	Power supply for FCM circuit	*a		1			1	1	1							EC-560	
	Power supply for ECM circuit	*b															

^{1 - 5:} The numbers refer to the order of inspection.

- *a: Open
- *b: Short
- *c: Ground short
- *d: Noise
- *3: Start control does not function.
- *4: Accelerator position sensor NG signal is output.
- *5: Engine does not stop.

							SY	MPT	ОМ						
SYST	TEM — ENGINE CONTROL system	Malfunction	NG		TO IDLE	ENGINE COOLANT TEMPERATURE	CONSUMPTION	NSUMPTION		ABINORIMAL SIMONE COLOR	DER CHARGE)	inates.	CONSULT-II?		ok point
			ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEAT/HIGH EN	EXCESSIVE FUEL CO	EXCESSIVE OIL CONSUMPTION	BLACK SMOKE	WHITE SMOKE	DEAD BATTERY (UNDER CHARGE)	Malfunction indicator illuminates.	Can be detected by CONS	Reference page	Feature of symptom, Check point
Warra	anty symptom code		AG	АН	AJ	AK	AL	AM	Α	P	НА	Ma	Ca	Re	H B
	Start signal circuit	*a, *b												EC-693	*3
J J		*a, *c												EC-577	
N T R	Accelerator position switch (Idle) circuit Ignition switch circuit	*b										1	1	LO-511	*4
00	Ignition switch circuit	*a												EC-560	
GINE	Igrillion Switch Circuit	*b												EC-500	*5
Ž Ш	Power supply for ECM circuit	*a										1	1	EC-560	
	Power supply for ECM circuit	*b										'		EC-200	

^{1 - 5:} The numbers refer to the order of inspection.

^{*}a: Open

^{*}b: Short

^{*}c: Ground short

^{*}d: Noise

^{*3:} Start control does not function.

^{*4:} Accelerator position sensor NG signal is output.

^{*5:} Engine does not stop.

								SY	MPT	ОМ							
				HARD/NO	(EXCP. HA)			ENGINE STALL									
SYST	FEM — ENGINE CONTROL system	Malfunction	NO START (with first firing)	NO START (without first firing)	HARD TO START WHEN ENGINE IS COLD	HARD TO START WHEN ENGINE IS HOT	AT IDLE	DURING DRIVING	WHEN DECELERATING	HESITATION/SURGING/FLAT SPOT	KNOCK/DETONATION	LACK OF POWER	POOR ACCELERATION	HI IDLE	LOW IDLE	Reference page	Feature of symptom, Check point
Warra	anty symptom code			Α	A			AB		AC	AD	А	Æ	А	F	Ref	Fea
	ECD valume control value circuit	*a, *b														EC-686	
	EGR volume control valve circuit	*c								1		1	1			EC-000	*6
	Olava aslava siasvit	*a	1	1	1	1										FO 077	*7
_	Glow relay circuit	*b														EC-677	*8
TRO		*a		1			1	1	1							F0 000	
CON	ECM relay (Self-shutoff) circuit	*b														EC-666	*9
ENGINE CONTROL	ECM, Connector circuit	*a, *b	2	2	2	2	2	2	2	2	2	2	2	2	2	EC-664, 604	
ī	Air conditioner relay circuit	*a														FC 700	*10
	Air conditioner relay circuit	*b											1			EC-700	*11
	Air conditioner quit-tiit	*a, *c														FO 700	*11
	Air conditioner switch circuit	*b														EC-700	*12

^{1 - 5:} The numbers refer to the order of inspection. (continued on next page)

- *a: Open
- *b: Short
- *c: Ground short
- *d: Noise
- *6: Does not stop operating.
- *7: Glow lamp does not turn on.
- *8: Glow lamp does not turn off.
- *9: Ground short makes engine unable to stop.
- *10: Air conditioner does not operate.
- *11: Air conditioner does not stop operating.
- *12: Air conditioner does not work.

							SY	MPT	ОМ						
SYST	FEM — ENGINE CONTROL system	Malfunction	NG		TO IDLE	OVERHEAT/HIGH ENGINE COOLANT TEMPERATURE	ONSUMPTION	NSUMPTION	CO CO LANGO LANGO CINGA	ABNORIMAL SIMONE COLOR	IDER CHARGE)	inates.	SULT-11?		ck point
			ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEAT/HIGH EN	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BLACK SMOKE	WHITE SMOKE	DEAD BATTERY (UNDER CHARGE)	Malfunction indicator illuminates.	Can be detected by CONSULT-II?	Reference page	Feature of symptom, Check point
Warra	anty symptom code		AG	АН	AJ	AK	AL	AM	А	P	НА	Mal	Car	Ref	Fea
	CCD values control value circuit	*a, *b												FC 696	
	EGR volume control valve circuit	*c							1					EC-686	*6
	Class rates sizes it	*a								1				FO 677	*7
پ	Glow relay circuit	*b												EC-677	*8
TRO	COM valou (Calf abutaff) sireuit	*a												FC 666	
OS	ECM relay (Self-shutoff) circuit	*b												EC-666	*9
ENGINE CONTROL	ECM, Connector circuit	*a, *b	2	2	2	2	2	2	2	2	2	2	2	EC-664, 604	
ⅲ	Air conditioner relay circuit	*a												EC-700	*10
	All conditioner relay circuit	*b												EC-700	*11
		*a, *c												EC 700	*11
	Air conditioner switch circuit	*b												EC-700	*12

^{1 - 5:} The numbers refer to the order of inspection.

^{*}a: Open

^{*}b: Short

^{*}c: Ground short

^{*}d: Noise

^{*6:} Does not stop operating.

^{*7:} Glow lamp does not turn on.

^{*8:} Glow lamp does not turn off.

^{*9:} Ground short makes engine unable to stop.

^{*10:} Air conditioner does not operate.

^{*11:} Air conditioner does not stop operating.

^{*12:} Air conditioner does not work.

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
- * Specification data may not be directly related to their components signals/values/operations.

MONITOR ITEM	CON	DITION	SPECIFICATION
CKPS-RPM (TDC)	Tachometer: Connect		
CMPS-RPM- PUMP	Run engine and compare tachor value.	neter indication with the CONSULT-II	Almost the same speed as the CONSULT-II value.
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)
VHCL SPEED SE	Turn drive wheels and compare CONSULT-II value	speedometer indication with the	Almost the same speed as the CONSULT-II value
FUEL TEMP SEN	Engine: After warming up		More than 40°C (104°F)
ACCEL DOC CEN	Ignition switch: ON	Accelerator pedal: fully released	0.30 - 0.50V
ACCEL POS SEN	(Engine stopped)	Accelerator pedal: fully depressed	3.0 - 4.3V
OFF 400FL 6W	Ignition switch: ON	Accelerator pedal: fully released	ON
OFF ACCEL SW	(Engine stopped)	Accelerator pedal: slightly open	OFF
SPILL/V	Engine: After warming up, idle th	e engine.	Approx. 12 - 13°CA
BATTERY VOLT	Ignition switch: ON (Engine stop)	ped)	11 - 14V
P/N POSI SW*1	a lamition quitable ON	Shift lever: Neutral position	ON
(where fitted)	Ignition switch: ON	Except above	OFF
START SIGNAL	ullet Ignition switch: ON $ o$ START $ o$	ON	$OFF \to ON \to OFF$
IGN SW	• Ignition switch: $ON \rightarrow OFF$		$ON \to OFF$
BRAKE SW	Ignition switch: ON	Brake pedal: depressed	ON
BRARE SW	Igrillion switch. On	Brake pedal: released	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: depressed	ON
BRARE 3W2	Igrillion switch. On	Brake pedal: released	OFF
MAS AIR/FL SE	 Engine: After warming up Air conditioner switch: OFF Shift lever: Neutral position No-load 	Idle	1.5 - 2.0V
INT/A VOLUME	Engine: After warming up, idle th	ne engine.	150 - 450 mg/st
F/CUT SIGNAL	Engine: After warming up	Idle	ON
GLOW RLY	Refer to EC-677.		
	When cooling fan is stopped.		OFF
COOLING FAN	When cooling fans operate at lov	w speed.	LOW
	When cooling fans operate at high	gh speed.	HIGH

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

YD

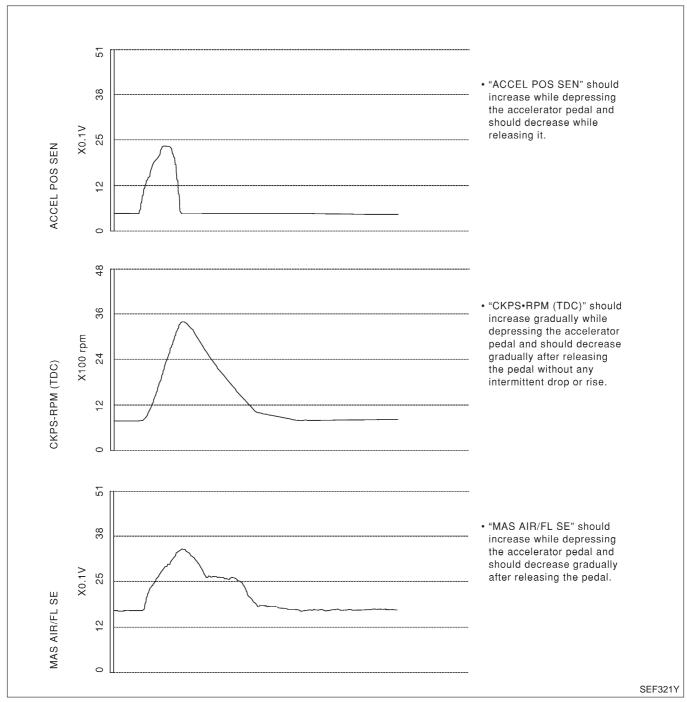
CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONE	DITION	SPECIFICATION
BARO SEN	• Ignition switch: ON		Altitude Approx. 0 m (0 ft): Approx. 100.62 kPa (1.0062 bar, 1.026 kg/cm², 14.59 psi) Approx. 1,000 m (3,281 ft): Approx. 88.95 kPa (0.8895 bar, 0.907 kg/cm², 12.90 psi) Approx. 1,500 m (4,922 ft): Approx. 83.16 kPa (0.8316 bar, 0.848 kg/cm², 12.06 psi) Approx. 2,000 m (6,562 ft): Approx. 78.36 kPa (0.7836 bar, 0.799 kg/cm², 11.36 psi)
	Engine: After warming up Air conditioner switch: "OFF"	After one minute at idle	More than 10 steps
EGR VOL CON/V	Shift lever: Neutral position No-load	Revving engine from idle to 3,200 rpm	0 steps

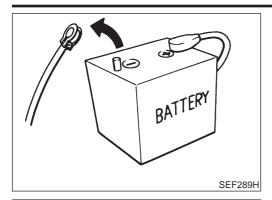
^{*1:} On models not equipped with park/neutral position (PNP) switch, "OFF" is always displayed regardless of gear shift position.

Major Sensor Reference Graph in Data Monitor Mode

Major Sensor Reference Graph in Data Monitor Mode


The following are the major sensor reference graphs in "DATA MONITOR" mode.

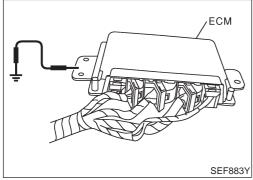
=NJEC0635


ACCEL POS SEN, "CKPS-RPM (TDC)", "MAS AIR/FL SE"

I IEC0635501

Below is the data for "ACCEL POS SEN", "CKPS-RPM (TDC)" and "MAS AIR/FL SE" when revving engine quickly up to 3,000 rpm under no load after warming up engine to the normal operating temperature. Each value is for reference, the exact value may vary.

ECM Terminals and Reference Value

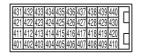


ECM Terminals and Reference Value PREPARATION

NJEC0636 NJEC0636S01

ECM is locating beside of blower unit.

- Remove the ECM bracket fixing.
- 2. Remove ECM harness protector.
- Disconnect negative battery terminal.


- Connect a break out box (SST) between the ECM and ECM harness connectors.
- Use extreme care not to touch 2 pins at one time.
- Data is for comparison and may not be exact.
- Be sure ECM unit is properly grounded before checking.

ECM HARNESS CONNECTOR TERMINAL LAYOUT

SEF435Z

ECM INSPECTION TABLE

Remarks: Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage and Pulse Signal)
104 105 106	B B B	ECM ground	[Engine is running] • Idle speed	Approximately 0V
107 108 109	R R R	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage and Pulse Signal)
			[Engine is running] ● Air conditioner switch is "OFF"	BATTERY VOLTAGE (11 - 14V)
204			 [Engine is running] ● Both air conditioner switch and blower fan switch are "ON" (Compressor is operating) 	Approximately 0.1V
214	W/B	Glow relay	Refer to "Glow Control System", EC-677.	
218	В	Sensors' ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
040	1.0/D		[Engine is running] ■ Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
219	LG/R	Cooling fan relay (Low)	[Engine is running] ■ Cooling fan is operating	Approximately 0.1V
221	LG/B	Cooling fan relay (High)	[Engine is running]● Cooling fan is not operating● Cooling fan is operating at low speed	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] ■ Cooling fan is operating at high speed	Approximately 0.1V
223	W	Mass air flow sensor power supply	[Ignition switch "ON"]	Approximately 5V
224	R	Mass air flow sensor	[Engine is running] ■ Warm-up condition ■ Idle speed	1.5 - 2.0V
313	L/W	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.1V
314	L/R	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.4V
316	PU	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V
317	Р	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V
325	G	ECM relay (Self-shutoff)	[Ignition switch "ON"] [Ignition switch "OFF"] ● For a few seconds after turning ignition switch "OFF"	Approximately 0.25V
			[Ignition switch "OFF"] ● A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
331	OR	Crankshaft position sensor (TDC) ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
334	B/R	Engine coolant temperature sensor ground [Ignition switch "ON"] Approximately 0V		Approximately 0V

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage and Pulse Signal)	
337 338 350 351	W/L PU/W GY OR/B	EGR volume control valve	[Engine is running] ■ Warm-up condition ■ Idle speed	0.1 - 14V (Voltage signals of each ECM terminals differ according to the control position of EGR volume control valve.)	
244	Crankshaft		[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V (V) 20 10 0	
344	W	sor (TDC)	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	Approximately 0V (V) 20 10 5 ms SEF334Y	
347	L/B	ture sensor [Engine is running] Output voltage		Approximately 0 - 4.8V Output voltage varies with engine coolant temperature	
			[Engine is running] • Air conditioner switch is "OFF"	BATTERY VOLTAGE (11 - 14V)	
403	R/L	Air conditioner switch	[Engine is running] ■ Both air conditioner switch and blower fan switch are "ON" (Compressor is operating)	Approximately 0.1V	
405	R/G	G Stop lamp switch	[Ignition switch "ON"] ● Brake pedal fully released	Approximately 0V	
405	K/G		[Ignition switch "ON"] ● Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)	
44.0	V/D	Y/B Brake pedal position switch	[Ignition switch "ON"] ● Brake pedal fully released	BATTERY VOLTAGE (11 - 14V)	
416	Y/B		[Ignition switch "ON"] ● Brake pedal depressed	Approximately 0V	

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

YD

				ale and Nelerence value (Cent a)	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage and Pulse Signal)	
				0 - Approximately 8V	
			 [Engine is running] Lift up the vehicle In 1st gear position Vehicle speed is 10 km/h (6 MPH) 	(V) 10 5 0 	
417	PU/R	Vehicle speed sensor		SEF891Y	
			 [Engine is running] Lift up the vehicle In 2nd gear position Vehicle speed is 30 km/h (19 MPH) 	Approximately 6V (V) 10 5 0 SEF892Y	
44.0	Park/N	Park/Neutral position	[Ignition switch "ON"] ■ Gear position is "Neutral"	Approximately 0V	
418	G/OR	switch (where fitted)	[Ignition switch "ON"] ■ Except the above gear position	BATTERY VOLTAGE (11 - 14V)	
			[Ignition switch "ON"]	Approximately 0V	
422	B/Y	Start signal	[Ignition switch "START"]	BATTERY VOLTAGE (11 - 14V)	
425	P/B	Accelerator position sensor ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V	
426	BR/R	Accelerator position switch (Idle) ground	[Ignition switch "ON"]	Approximately 0V	
433	G/Y	Accelerator position sensor power supply	[Ignition switch "ON"]	Approximately 5V	
404	W	Accelerator position sen-	[Ignition switch "ON"] ■ Accelerator pedal fully released	0.30 - 0.50V	
434	VV	sor	[Ignition switch "ON"] ■ Accelerator pedal fully depressed	3.0 - 4.3V	
A2E	W/C	Accelerator position	[Ignition switch "ON"] ■ Accelerator pedal fully released	Approximately 0V	
435	W/G		switch (Idle)	[Ignition switch "ON"] ■ Accelerator pedal depressed	BATTERY VOLTAGE (11 - 14V)

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

YD

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage and Pulse Signal)
100		Tachometer	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 4.8V (V) 10 5 0 20 ms SEF325Y
439	L/OR		[Engine is running] ■ Warm-up condition ■ Engine speed is 2,000 rpm	Approximately 4.6V (V) 10 5 0 20 ms SEF326Y
505	OR/L	Malfunction indicator	[Ignition switch "ON"] [Engine is running]	Approximately 1V BATTERY VOLTAGE
			Idle speed [Ignition switch "OFF"]	(11 - 14V) 0V
507	7 W/R Ignition switch		[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
	OR		[Ignition switch "ON"] • Glow lamp is "ON"	Approximately 1V
508		OR Glow lamp	[Ignition switch "ON"] ● Glow lamp is "OFF"	BATTERY VOLTAGE (11 - 14V)

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

Description

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on DTC visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

COMMON I/I REPORT SITUATIONS

NJEC0637S01

STEP in Work Flow	Situation
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0".
III	The symptom described by the customer does not recur.
IV	DTC does not appear during the DTC Confirmation Procedure.
VI	The Diagnostic Procedure for XXXX does not indicate the problem area.

Diagnostic Procedure

N IECO638

1	INSPECTION START		
Erase	Erase DTCs. Refer to "HOW TO ERASE DTC", EC-522.		
	▶ GO TO 2.		

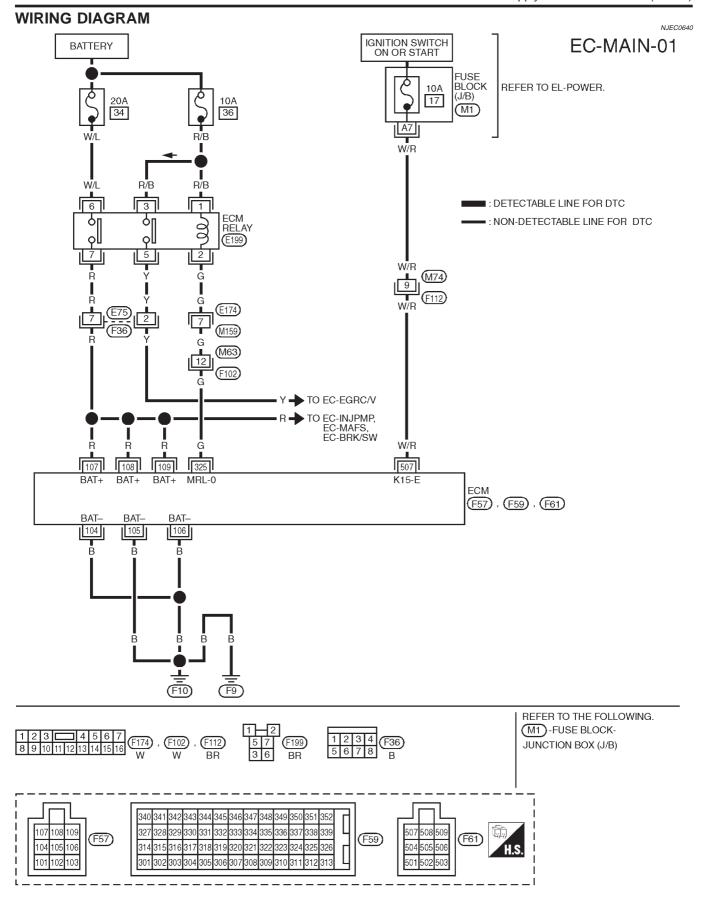
2	CHECK GROUND TERMINALS			
	Check ground terminals for corroding or loose connection. Refer to GI-22, "GROUND INSPECTION".			
	OK or NG			
OK	OK ▶ GO TO 3.			
NG	•	Repair or replace.		

3	SEARCH FOR ELECTRICAL INCIDENT			
Perfor	Perform GI-22, "Incident Simulation Tests".			
	OK or NG			
OK	OK INSPECTION END			
NG	>	Repair or replace.		

Main Power Supply and Ground Circuit

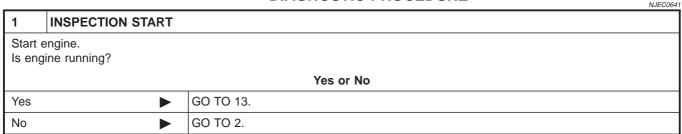
Main Power Supply and Ground Circuit

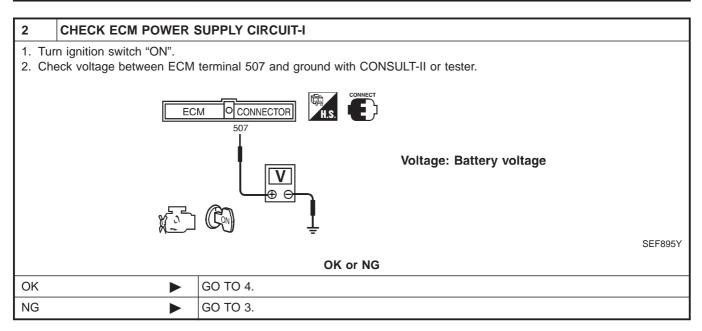
ECM TERMINALS AND REFERENCE VALUE


Remarks: Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA(DC Voltage)
104 105 106	B B B	ECM ground	[Engine is running] ● Idle speed	Approximately 0V
107 108 109	R R R	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
325	G	ECM relay (Self-shutoff)	[Ignition switch "ON"] [Ignition switch "OFF"] ● For a few seconds after turning ignition switch "OFF"	Approximatley 0.25V
			[Ignition switch "OFF"] ● A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "OFF"]	OV
507	W/R	Ignition switch	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)


Main Power Supply and Ground Circuit (Cont'd)



Main Power Supply and Ground Circuit (Cont'd)

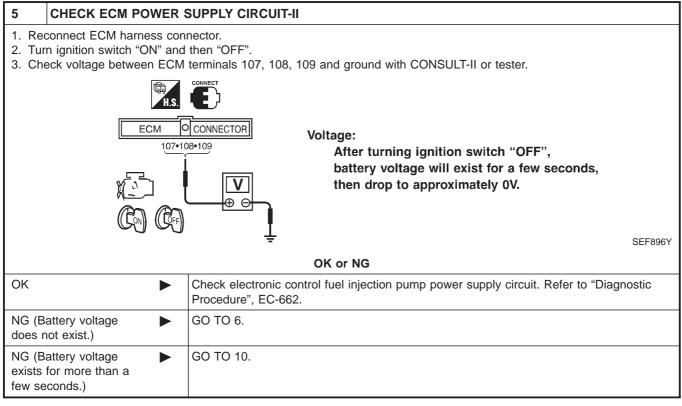
DIAGNOSTIC PROCEDURE

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M74, F112
- Fuse block (J/B) connector M1
- 10A fuse
- Harness for open or short between ECM and fuse
 - Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT


- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals 104, 105, 106 and engine ground. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 5.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

Main Power Supply and Ground Circuit (Cont'd)

7 DETECT MALFUNCTIONING PART Check the following. • 20A fuse • 10A fuse • Harness for open or short between ECM relay and battery Repair open circuit or short to ground or short to power in harness or connectors.

Main Power Supply and Ground Circuit (Cont'd)

8 CHECK OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 325 and ECM relay terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK	>	GO TO 10.
NG		GO TO 9.

9 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E174, M159
- Harness connectors M63, F102
- Harness for open or short between ECM and ECM relay

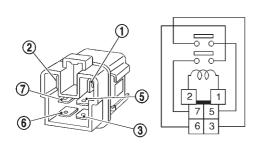
Repair open circuit or short to ground or short to power in harness or connectors.

10 CHECK ECM POWER SUPPLY CIRCUIT-IV

- 1. Check harness continuity between ECM terminals 107, 108, 109 and ECM relay terminal 7. Refer to Wiring Diagram. Continuity should exist.
- 2. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 12.
NG ►	GO TO 11.


11 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between ECM and ECM relay
 - Repair open circuit or short to ground or short to power in harness or connectors.

12 CHECK ECM RELAY

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between ECM relay terminals 3 and 5, 7 and 6.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

SEF296X

OK or NG

OK ►	GO TO 16.
NG ►	Replace ECM relay.

Main Power Supply and Ground Circuit (Cont'd)

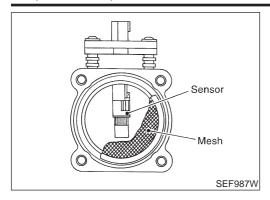
13 **CHECK ECM POWER SUPPLY CIRCUIT-V**

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM relay. (For ECM relay location, refer to "Engine Control Component Parts Location".)
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminals 107, 108, 109 and ECM relay terminal 7. Refer to Wiring Diagram. Continuity should exist.
- 5. Also check harness for short to ground and short to power.

OK or NG

OK	>	GO TO 15.
NG	>	GO TO 14.

14 **DETECT MALFUNCTIONING PART**


Check the following.

- Harness connectors E75, F36
- Harness for open or short between ECM and ECM relay

Repair open circuit or short to ground or short to power in harness or connectors.

15 CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between ECM terminals 104, 105, 106 and engine ground. Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK GO TO 16. NG Repair open circuit or short to ground or short to power in harness or connectors.

16	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.		
	► INSPECTION END		

Component Description

The mass air flow sensor (MAFS) is placed in the stream of intake air. It measures the intake air flow rate by measuring a part of the entire intake air flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0643

MONITOR ITEM	CONE	SPECIFICATION	
MAS AIR/FL SE	 Engine: After warming up Air conditioner switch: "OFF" Shift lever: Neutral position No-load 	ldle	1.5 - 2.0V

ECM Terminals and Reference Value

NJEC0644

Specification data are reference values, and are measured between each terminal and ground.

CALITION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
218	В	Sensor's ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
223	W	Mass air flow sensor power supply	[Ignition switch "ON"]	Approximately 5V
224	R	Mass air flow sensor	[Engine is running] ■ Warm-up condition ■ Idle speed	1.5 - 2.0V

On Board Diagnosis Logic

NJEC0645

DTC	Malfunction is detected when	Check Items (Possible Cause)
P0100 0102	An excessively high or low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor

DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

DTC Confirmation Procedure

(P) WITH CONSULT-II

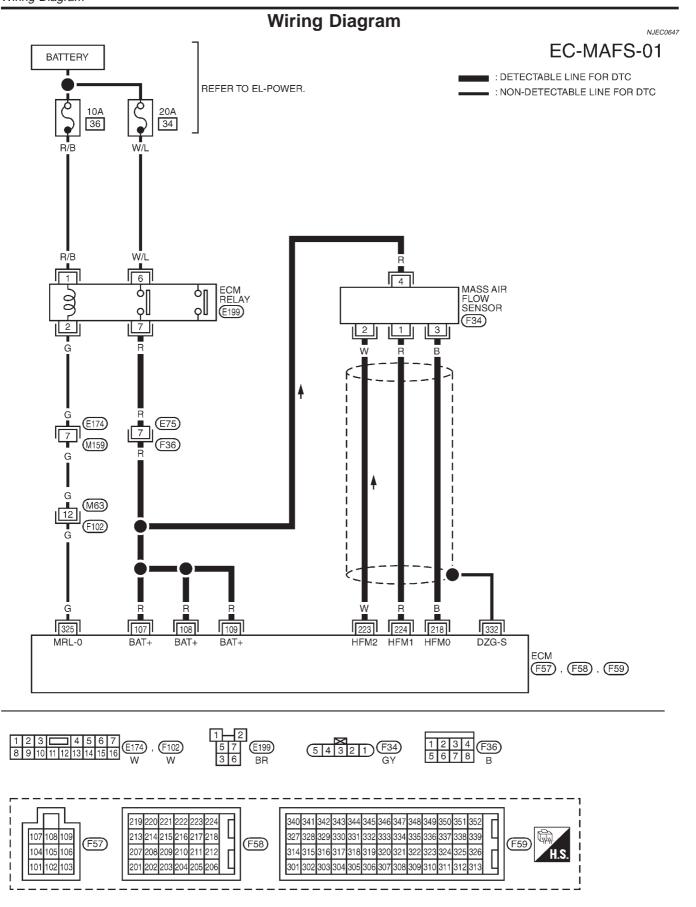
NJEC0646

- 1) Turn ignition switch "ON", and wait at least 6 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 3 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-569.

N WITHOUT CONSULT-II

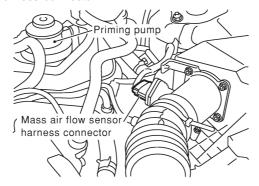
NJEC0646S02

- 1) Turn ignition switch "ON", and wait at least 6 seconds.
- Start engine and wait at least 3 seconds.


DTC P0100 MASS AIR FLOW SEN

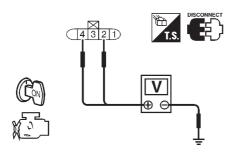
DTC Confirmation Procedure (Cont'd)

- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-569.


YEC010A

Diagnostic Procedure

NJEC0648


1 CHECK MAFS POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect mass air flow sensor harness connector.

SEF884Y

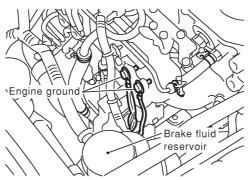
- 3. Turn ignition switch "ON".
- 4. Check voltage between mass air flow sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5
4	Battery voltage

SEF297X

OK or NG

OK ▶	GO TO 3.
NG ►	GO TO 2.


2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between mass air flow sensor and ECM
- Harness for open or short between mass air flow sensor and ECM relay
 - Repair open circuit or short to ground or short to power in harness or connector.

3 CHECK MAFS GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

SEF380Y

- 3. Check harness continuity between mass air flow sensor terminal 3 and engine ground. Refer to Wiring Diagram.

 Continuity should exist.
- 4. Also check harness for short to ground and short to power.

0	K	or	NG	

OK •	GO TO 5.
NG ▶	GO TO 4.

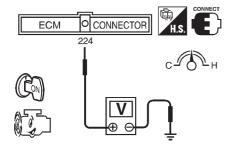
4	DETECT MALFUNCTIONING PART		
Check	Check harness for open or short between mass air flow sensor and ECM.		
	► Repair open circuit or short to ground or short to power in harness or connectors.		

5 CHECK MAFS INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between mass air flow sensor terminal 1 and ECM terminal 224. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK ▶	GO TO 6.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.


DTC P0100 MASS AIR FLOW SEN

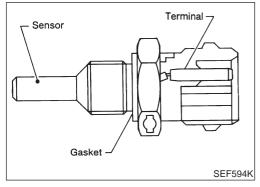
Diagnostic Procedure (Cont'd)

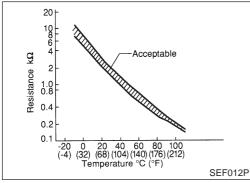
6 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 224 (Mass air flow sensor signal) and ground.

Condition	Voltage V		
Ignition switch "ON" (Engine stopped.)	Approx. 1.0		
Idle (Engine is warmed-up to normal operating temperature.)	1.5 - 2.0		
Idle to about 4,000 rpm*	1.5 - 2.0 to Approx. 4.0		

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.


SEF441Z


4. If the voltage is out of specification, disconnect MAFS harness connector and connect it again. Then repeat above check.

OK or NG

NG Replace mass air flow sensor.	l	OK	GO TO 7.
		NG	Replace mass air flow sensor.

7	CHECK INTERMITTENT INCIDENT					
Refer	fer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.					
	>	INSPECTION END				

Description

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant tempera- ture °C (°F)	Voltage* (V)	Resistance (kΩ)
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.3	0.68 - 1.00
90 (194)	1.0	0.236 - 0.260

^{*:} These data are reference values and measured between ECM terminal 347 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NJEC0650

DTC	Malfunction is detected when	Check Items (Possible Cause)		
P0115 0103	An excessively high or low voltage from the sensor is entered to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Engine coolant temperature sensor		

DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

DTC Confirmation Procedure

(P) WITH CONSULT-II

NJEC0651

NJEC0651S01

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-575.

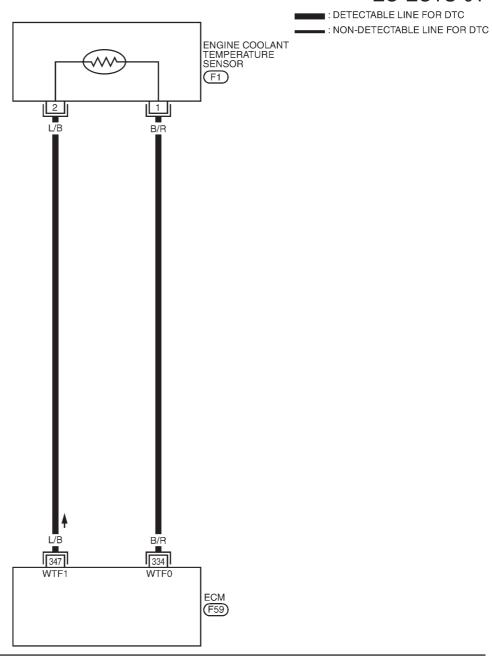
N WITHOUT CONSULT-II

N.IEC:0651S02

- 1) Turn ignition switch "ON" and wait at least 5 seconds.
- 2) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".

DTC P0115 COOLANT TEMP SEN

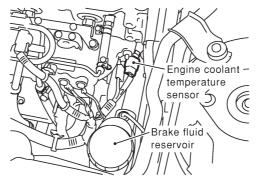
DTC Confirmation Procedure (Cont'd)


- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-575.

Wiring Diagram

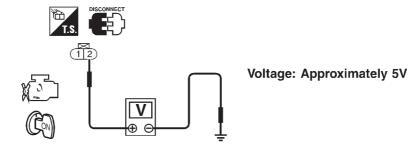
NJEC0652

EC-ECTS-01


32 31	0 341 7 328 4 315	329 316	330 317	331 318	332 319	333 320	334 321	335 322	336 323	337 324	338 325	339 326	(F59)	H.S.
-	1 302	_	_	-	-		_	_	_	_		-		11.3.

Diagnostic Procedure

NJEC0653


1 CHECK ECTS POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect engine coolant temperature sensor harness connector.

SEF382Y

- 3. Turn ignition switch "ON".
- 4. Check voltage between ECTS terminal 2 and ground with CONSULT-II or tester.

SEF401Y

OK	or	NG
----	----	----

OK •	GO TO 2.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.

2 CHECK ECTS GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between ECTS terminal 1 and engine ground. Refer to Wiring Diagram.

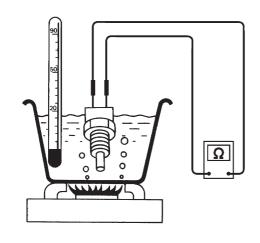
Continuity should exist.

3. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

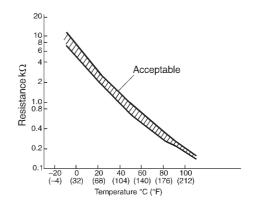
	OK		GO TO 4.
ı	NG		GO TO 3.

3 DETECT MALFUNCTIONING PART


Check the following harness for open or short between ECM and engine coolant temperature sensor.

Repair open circuit or short to ground or short to power in harness or connectors.

SEF304X


4 CHECK ENGINE COOLANT TEMPERATURE SENSOR

- 1. Remove engine coolant temperature sensor from the engine.
- 2. Check resistance between ECTS terminals 1 and 2 as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

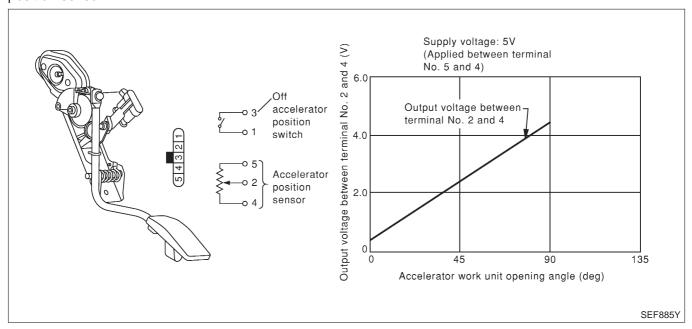
OK or NG

OK ►	GO TO 5.
NG ►	Replace engine coolant temperature sensor.

5 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.

► INSPECTION END



Description

J.IEC0679

The accelerator work unit is installed on the upper end of the accelerator pedal assembly. The accelerator position sensor and accelerator position switch are built into the accelerator work unit. The sensor detects the accelerator position and sends a signal to the ECM. The ECM uses the signal to determine the amount of fuel to be injected.

The accelerator position switch detects Off-accelerator switch signal and send these signals to the ECM. The ECM will then determine engine idle conditions. These signals are also used for diagnosing the accelerator position sensor.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0680

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL POS SEN • Ignition switch: ON		Accelerator pedal: released	0.30 - 0.50V
ACCEL POS SEN	(Engine stopped)	Accelerator pedal: depressed	3.0 - 4.3V
OFF ACCEL SW	Ignition switch: ON	Accelerator pedal: fully released	ON
OFF ACCEL SW	(Engine stopped)	Accelerator pedal: slightly open	OFF

ECM Terminals and Reference Value

NJEC0681

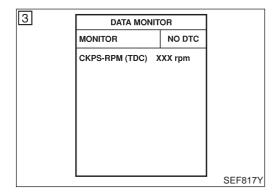
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA(DC Voltage)
425	P/B	Accelerator position sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
426	BR/R	Accelerator position switch (Idle) ground	[Ignition switch "ON"]	Approximately 0V
433	G/Y	Accelerator position sensor power supply	[Ignition switch "ON"]	Approximately 5V

DTC P0120 ACCEL POS SENSOR


ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA(DC Voltage)
424			[Ignition switch "ON"] • Accelerator pedal fully released	0.30 - 0.50V
434 W	Accelerator position sensor	[Ignition switch "ON"] ■ Accelerator pedal fully depressed	3.0 - 4.3V	
425	Accelerator position switch	[Ignition switch "ON"] ■ Accelerator pedal fully released	Approximately 0V	
435 W/G	(Idle)	[Ignition switch "ON"] ● Accelerator pedal depressed	BATTERY VOLTAGE (11 - 14V)	

On Board Diagnosis Logic

NJEC0682

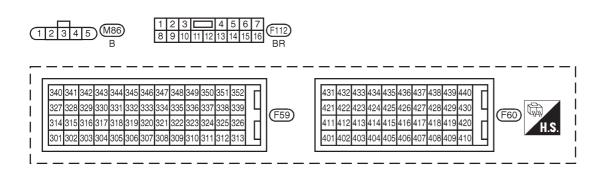
DTC	Malfunction is detected when	Check Items (Possible Cause)
P0120 0403	The relation between sensor and switch signals is not in the nomal range during the specified accelerator positions.	 Harness or connectors (The sensor circuit is open or shorted.) Accelerator position sensor Accelerator position switch

DTC Confirmation Procedure

NJEC0683 NJEC0683S01

(A) WITH CONSULT-II

1) Turn ignition switch "ON".


- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Depress and release fully accelerator pedal slowly.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-580.

WITHOUT CONSULT-II

NJEC0683S02

- 1) Turn ignition switch "ON".
- 2) Depress and release fully accelerator pedal slowly.
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-580.

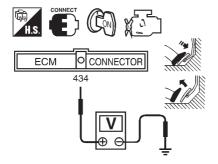
Wiring Diagram NJEC0684 EC-APS-01 (F59), (F60) LGS-E1 LGS-10 PWG12 PWG11 DZG-S PWG10 433 G/Y 434 332 435 426 425 : DETECTABLE LINE FOR DTC W/G BR/R P/B W : NON-DETECTABLE LINE FOR DTC BR/R 12 BR/R (F112) (M74) - 15 BR/R W/G G/Y W P/B 4 ACCELERATOR UNIT RELEASED (M86) DEPRESSED ACCELERATOR POSITION SWITCH ACCELERATOR POSITION SENSOR

Diagnostic Procedure

NJEC0685

1 CHECK ACCELERATOR POSITION SENSOR FUNCTION

- (P) With CONSULT-II
- 1. Turn ignition switch "ON".
- 2. Select "ACCEL POS SEN" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check "ACCEL POS SEN" signal under the following conditions.


DATA MONITOR		
MONITOR	NO DTC	
ACCEL POS SEN	XXX V	

Conditions	ACCEL POS SEN
Accelerator pedal fully released	0.30 - 0.50V
Accelerator pedal fully depressed	3.0 - 4.3V
	3.0 - 4.3V

SEF436Z

Without CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Check voltage between ECM terminal 434 and ground under the following conditions.

Conditions	Voltage
Accelerator pedal fully released	0.30 - 0.50V
Accelerator pedal fully depressed	3.0 - 4.3V

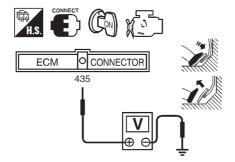
SEF437Z

OK ►	GO TO 2.
NG ▶	GO TO 3.

2 CHECK ACCELERATOR POSITION SWITCH FUNCTION

(I) With CONSULT-II

- 1. Select "OFF ACCEL SW" in "DATA MONITOR" mode with CONSULT-II.
- 2. Check "OFF ACCEL SW" signal under the following conditions.

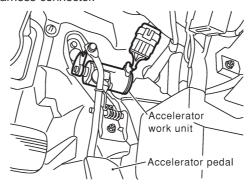

DATA MONITOR		
MONITOR	NO DTC	
OFF ACCEL SW	ON	

Conditions	OFF ACCEL SW
Accelerator pedal fully released	ON
Accelerator pedal depressed	OFF
depressed	

SEF910Y

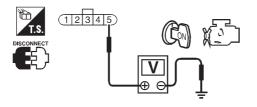
Without CONSULT-II

Check voltage between ECM terminal 435 and ground under the following conditions.


Conditions	Voltage (ECM terminal 435)
Accelerator pedal fully released	Approx. 0V
Accelerator pedal depressed	Battery voltage
•	

SEF911Y

OK ▶	GO TO 16.
NG ▶	GO TO 11.


3 CHECK ACCELERATOR POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect accelerator work unit harness connector.

SEF886Y

- 3. Turn ignition switch "ON".
- 4. Check voltage between accelerator work unit terminal 5 and ground with CONSULT-II or tester.

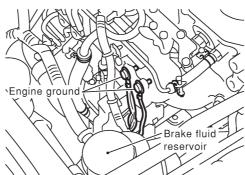
Voltage: Approximately 5V

SEF897Y

OK or NG

OK >	GO TO 5.
NG •	GO TO 4.

4 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors F112, M74
- Harness for open or short between ECM and accelerator work unit
 - Repair harness or connectors.

DTC P0120 ACCEL POS SENSOR

5 CHECK ACCELERATOR POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screw.

SEF380Y

- 3. Check harness continuity between accelerator work unit terminal 4 and engine ground. Refer to Wiring Diagram.

 Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

	OK		GO TO 7.
ı	NG		GO TO 6.

6 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F112, M74 or F103, M64
- · Harness for open or short between ECM and accelerator work unit

Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK ACCELERATOR POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 434 and accelerator work unit terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 9.
NG		GO TO 8.

8 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F112, M74
- Harness for open or short between ECM and accelerator work unit
 - Repair open circuit or short to ground or short to power in harness or connectors.

9 CHECK ACCELERATOR POSITION SENSOR

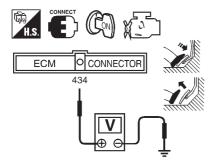
(P) With CONSULT-II

- 1. Reconnect all disconnected harness connectors.
- 2. Turn ignition switch "ON".
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Check the indication of "ACCEL POS SEN" under the following conditions.

DATA MONITOR		
MONITOR	NO DTC	
ACCEL POS SEN	XXX V	

Conditions	ACCEL POS SEN
Accelerator pedal fully released	0.30 - 0.50V
Accelerator pedal fully depressed	3.0 - 4.3V

SEF436Z

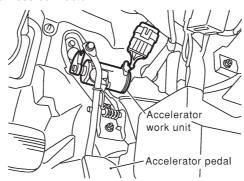

OK or NG

OK ►	GO TO 16.
NG •	Replace accelerator pedal assembly.

10 CHECK ACCELERATOR POSITION SENSOR

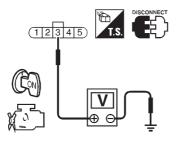
Without CONSULT-II

- 1. Reconnect all disconnected harness connectors.
- 2. Turn ignition switch "ON".
- 3. Check voltage between ECM terminal 434 and ground under the following conditions.


Conditions	Voltage
Accelerator pedal fully released	0.30 - 0.50V
Accelerator pedal fully depressed	3.0 - 4.3V

SEF437Z

OK •	GO TO 16.
NG ►	Replace accelerator pedal assembly.


11 CHECK ACCELERATOR POSITION SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect accelerator work unit harness connector.

SEF886Y

- 3. Turn ignition switch "ON".
- 4. Check voltage between accelerator work unit terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF912Y

OK or NG

OK •	GO TO 13.
NG ►	GO TO 12.

12 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M74, F112
- Harness for open or short between accelerator work unit and ECM
 - Repair harness or connectors.

13 CHECK ACCELERATOR POSITION SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between accelerator work unit terminal 1 and ECM terminal 426. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 15.
NG •	GO TO 14.

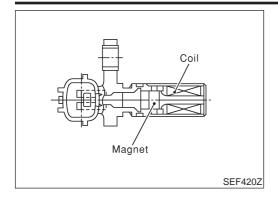
14 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M74, F112
- Harness for open or short between ECM and accelerator work unit
 - Repair open circuit or short to ground or short to power in harness or connectors.

15 CHECK ACCELERATOR POSITION SWITCH

Check continuity between accelerator position switch terminals 1 and 3 under the following conditions.


Between terminals 1 and 3

Conditions	Continuity
Accelerator pedal fully released	Should exist.
Accelerator pedal depressed	Should not exist.

SEF913Y

OK ▶	GO TO 16.
NG ▶	Replace accelerator pedal assembly.

16	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.				
	► INSPECTION END				

Description

The crankshaft position sensor (TDC) monitors engine speed by means of signals from the sensing plate (with three protrusions) installed to the crankshaft pulley. The datum signal output is detected at ATDC 10° and sent to the ECM. The sensor signal is used for fuel injection control and fuel injection timing control.

CONSULT-II Reference Value in Data Monitor Mode

NJEC0687

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
CKPS·RPM (TDC)	■ Run engine and compare tachometer indication with the (C)N-	Almost the same speed as the CONSULT-II value.

ECM Terminals and Reference Value

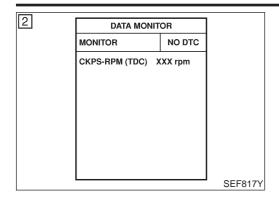
Specification data are reference values and are measured between each terminal and ground.

NJEC0688

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			•	<u> </u>
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA(DC Voltage and Pulse Signal)
331	OR	Crankshaft position sensor (TDC) ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
		Cronkahoft position con	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V (V) 20 10 5 ms SEF333Y
344	W	Crankshaft position sensor (TDC)	 [Engine is running] Warm-up condition Engine speed is 2,000 rpm 	Approximately 0V (V) 20 10 0 SEF334Y


On Board Diagnosis Logic

NJEC0689

		NJEC0689
DTC	Malfunction is detected when	Check Items (Possible Cause)
P0335 0407	An improper signal from the sensor is sent to ECM during engine running and cranking.	 Harness or connectors (The sensor circuit is open.) Crankshaft position sensor (TDC)

DTC P0335 CRANK POS SEN (TDC)

DTC Confirmation Procedure

DTC Confirmation Procedure

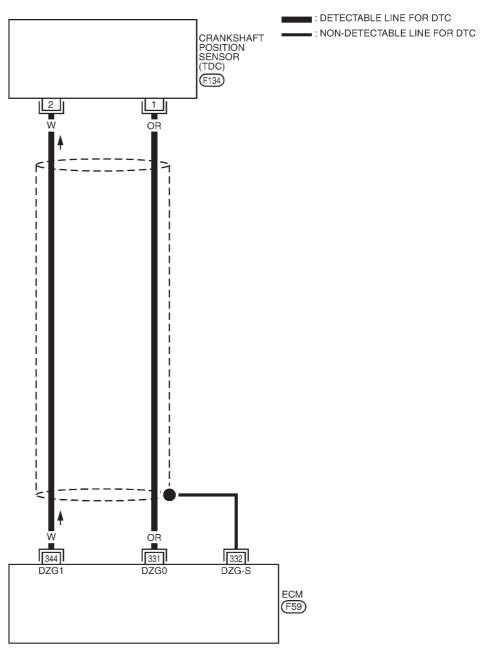
NJEC0690

Before performing the following procedure, confirm that battery voltage is more than 10V.

(I) WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Crank engine for at least 1 second.
- 3) Start engine and run it for at least 2 seconds at idle speed.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-590.

WITHOUT CONSULT-II


NJEC0690S02

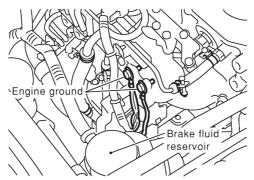
- 1) Crank engine for at least 1 second.
- 2) Start engine and run it for at least 2 seconds at idle speed.
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-590.

Wiring Diagram

NJEC0691

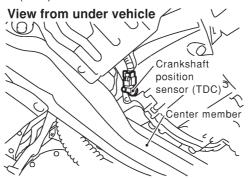
EC-CKPS-01

ı															1	
ı	340	341	342	343	344	345	346	347	348	349	350	351	352	Г		
ı	327	328	329	330	331	332	333	334	335	336	337	338	339	4	(F59)	爾
ı	314	315	316	317	318	319	320	321	322	323	324	325	326	ΙН	[F39]	H.S.
ı	301	302	303	304	305	306	307	308	309	310	311	312	313	L		
ı															1	



Diagnostic Procedure

NJEC0692


1 CHECK CRANKSHAFT POSITION SENSOR (TDC) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

SEF380Y

3. Disconnect crankshaft position sensor (TDC) harness connector and ECM harness connector.

SEF387Y

4. Check harness continuity between ECM terminal 331 and crankshaft position sensor (TDC) terminal 1. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

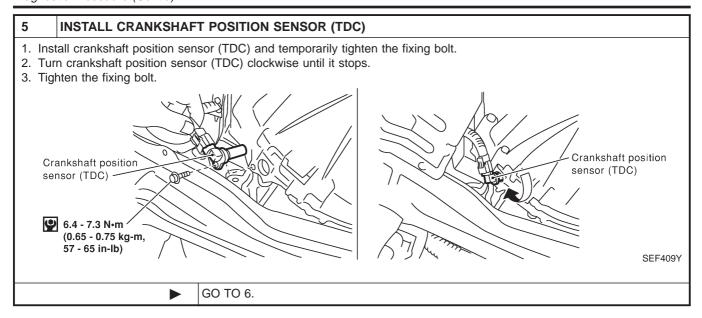
OK or NG

OK •	GO TO 2.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

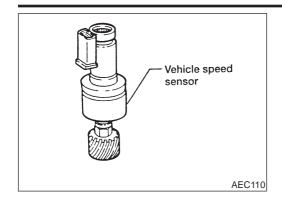

2 CHECK CRANKSHAFT POSITION SENSOR (TDC) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between crankshaft position sensor (TDC) terminal 2 and ECM terminal 344. Refer to Wiring Diagram.

Continuity should exist.


2. Also check harness for short to ground and short to power.

OK		GO TO 3.
NG		Repair open circuit or short to ground or short to power in harness or connectors.



Diagnostic Procedure (Cont'd)

6 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559. INSPECTION END

Description

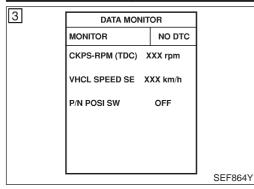
The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM.

ECM Terminals and Reference Value

NJEC0655

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage and Pulse Signal)
			 [Engine is running] Lift up the vehicle. In 1st gear position Vehicle speed is 10 km/h (6 MPH) 	Approximately 8V (V) 10 5 0
417	PU/R	Vehicle speed sensor	 [Engine is running] Lift up the vehicle. In 2nd gear position Vehicle speed is 30 km/h (19 MPH) 	Approximately 6V (V) 10 5 0 SEF892Y

On Board Diagnosis Logic

NJEC0656

DTC	Malfunction is detected when	Check Items (Possible Cause)
P0500 0104	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connector (The vehicle speed sensor circuit is open or shorted.) Vehicle speed sensor

Overall Function Check

Use this procedure to check the overall function of the vehicle speed sensor circuit. During this check, a DTC might not be confirmed.

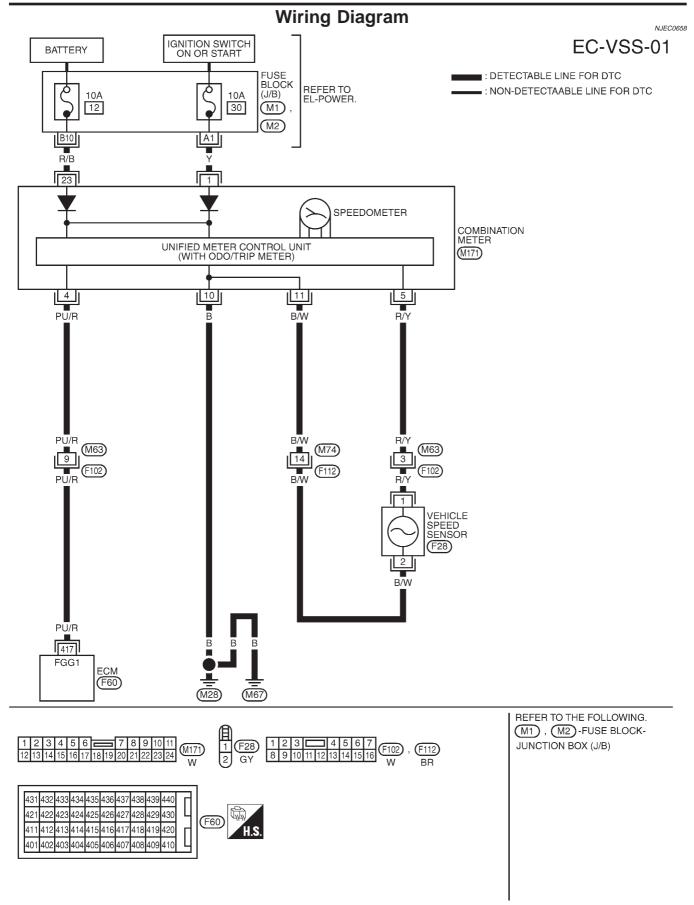
(I) WITH CONSULT-II

NJEC0657S01

- 1) Lift up the vehicle.
- Start engine.
- Read vehicle speed sensor signal in "DATA MONITOR" mode with CONSULT-II.

The vehicle speed on CONSULT-II should be able to

exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.


4) If NG, go to "Diagnostic Procedure", EC-596.

WITHOUT CONSULT-II

NJEC0657S02

- 1) Lift up the vehicle.
- 2) Start engine.
- 3) Read the voltage signal for the vehicle speed sensor with an oscilloscope. Refer to "ECM Terminals and Reference Value", EC-593.
- 4) Verify that the oscilloscope screen shows the signal wave as shown at "ECM Terminals and Reference Value", EC-593.
- 5) If NG, go to "Diagnostic Procedure", EC-596.

DTC P0500 VEHICLE SPEED SEN

Diagnostic Procedure

NJEC0659

1 CHECK VEHICLE SPEED SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and combination meter harness connector.
- Check harness continuity between ECM terminal 417 and combination meter terminal 4. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 3.
NG >	GO TO 2.

2 DETECT MALFUNCTIONING PART

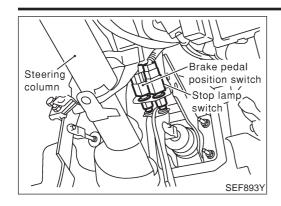
Check the following.

- Harness connectors M63, F102
- Harness for open or short between ECM and combination meter

Repair open circuit or short to ground or short to power in harness or connectors.

3	CHECK SPEEDOMETER FUNCTION					
Make sure that speedometer functions properly.						
	OK or NG					
OK	OK ▶ GO TO 5.					
NG	•	GO TO 4.				

4 CHECK SPEEDOMETER CIRCUIT FOR OPEN AND SHORT


Check the following.

- Harness connectors M63, F102
- Harness for open or short between vehicle speed sensor and engine ground
- Harness for open or short between combination meter and vehicle speed sensor

OK or NG

OK		Check vehicle speed sensor and combination meter. Refer to EL section.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559. INSPECTION END

Description

The stop lamp switch is installed to brake pedal bracket. The switch senses brake pedal position and sends an ON-OFF signal to the ECM. The ECM uses the signal to control the fuel injection control system.

ECM Terminals and Reference Value

NJEC0739

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
405	05 R/G Stop lamp switch	[Ignition switch "ON"] ● Brake pedal fully released	Approximately 0V	
405		Stop lamp switch	[Ignition switch "ON"] ● Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)
44.6	Y/B	Brake pedal position	[Ignition switch "ON"] ● Brake pedal fully released	BATTERY VOLTAGE (11 - 14V)
416			[Ignition switch "ON"] ● Brake pedal depressed	Approximately 0V

On Board Diagnosis Logic

NJEC0740

DTC	Malfunction is detected when	Check Items (Possible Cause)	
P1571 0807	An irregular voltage signal from the switch is sent to ECM.	 Harness or connectors (The stop lamp switch circuit is open or shorted.) Stop lamp switch 	

DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

DTC Confirmation Procedure

NJEC0741

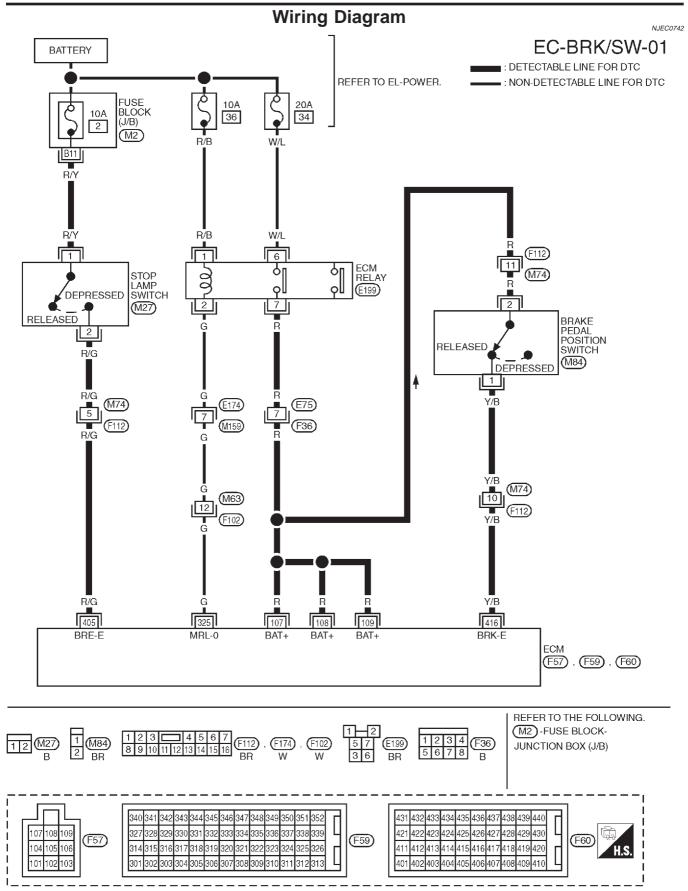
(I) WITH CONSULT-II

NJEC0741S01

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Depress and release brake pedal more than 10 times.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-600.

N WITHOUT CONSULT-II

NJEC0741S02


- 1) Turn ignition switch "ON".
- 2) Depress and release brake pedal more than 10 times.

DTC P0571 BRAKE SW

DTC Confirmation Procedure (Cont'd)

- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-600.

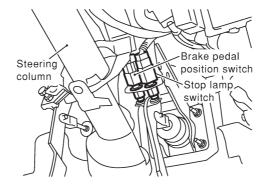
Diagnostic Procedure

NJEC0743

1 CHECK STOP LAMP SWITCH CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Check the stop lamp when depressing and releasing the stop lamp switch.

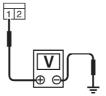
Stop lamp switch	Stop lamp	
Fully released	Not illuminated	
Depressed	Illuminated	


MTBL0443

OK or NG

OK		GO TO 4.
NG	•	GO TO 2.

2 CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT


1. Disconnect stop lamp switch harness connector.

SEF893Y

2. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF435Y

OK or NG

OK •	•	GO TO 4.
NG	•	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M2
- 10A fuse
- Harness for open and short between stop lamp switch and fuse
 - Repair open circuit or short to ground or short to power in harness or connectors.

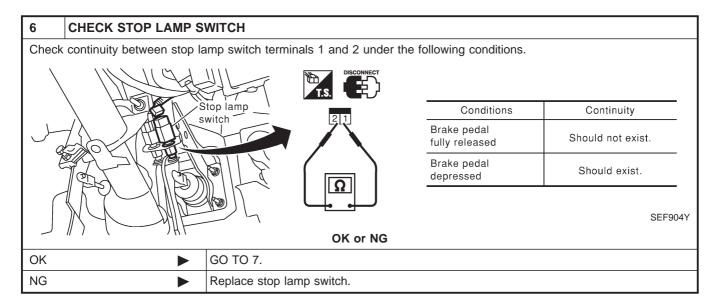
4 CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Disconnect stop lamp switch harness connector.

SEF893Y

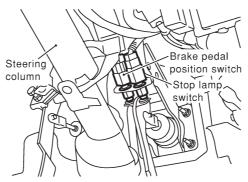
- Check harness continuity between ECM terminal 405 and stop lamp switch terminal 2. Refer to Wiring Diagram.
 Continuity should exist.
- 5. Also check harness for short to ground and short to power.

OK or NG

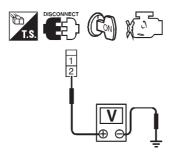

OK		GO TO 6.
NG	•	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors M74, F112
- · Harness for open or short between ECM and stop lamp switch

Repair open circuit or short to ground or short to power in harness or connectors.


7 CHECK BRAKE PEDAL POSITION SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect brake pedal position switch harness connector.

SEF893Y

- 3. Turn ignition switch "ON".
- 4. Check voltage between brake pedal position switch terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF905Y

OK or NG

OK ►	GO TO 9.
NG ▶	GO TO 8.

8 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M74, F112
- Harness connector E75, F36
- Harness for open and short between brake pedal position switch and ECM relay
- Harness for open and short between brake pedal position switch and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

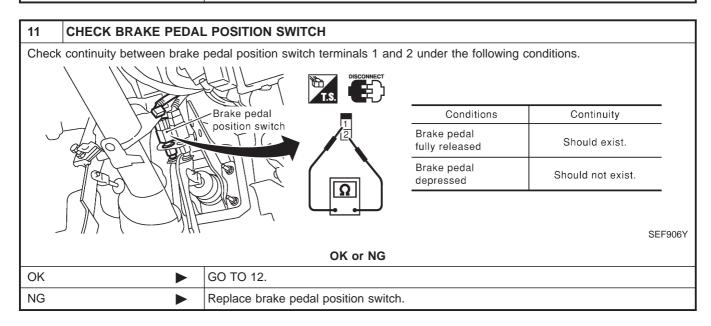
9 CHECK BRAKE PEDAL POSITION SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 416 and brake pedal position switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

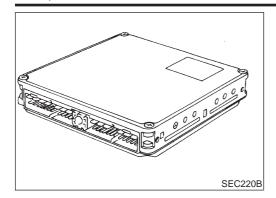
4. Also check harness for short to ground and short to power.

OK ►	GO TO 11.
NG ▶	GO TO 10.


DTC P0571 BRAKE SW

10 DETECT MALFUNCTIONING PART

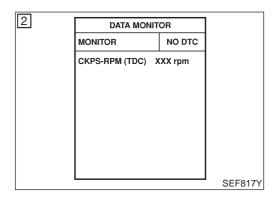
Check the following.


- Harness connectors M74, F112
- Harness for open or short between ECM and brake pedal position switch

Repair open circuit or short to ground or short to power in harness or connectors.

12	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.			
	► INSPECTION END			

Description


Description

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The unit controls the engine.

On Board Diagnosis Logic

NJEC0735

DTC	Malfunction is detected when	Check Items (Possible Cause)
P1107 0802	An excessively high or low voltage from the absolute pressure sensor (built-into ECM) is sent to ECM.	ECM (ECCS-D control module)

DTC Confirmation Procedure

NJEC0736 NJEC0736S01

(I) WITH CONSULT-II

1) Turn ignition switch "ON".

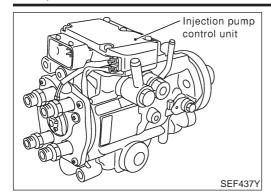
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 2 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-605.

N WITHOUT CONSULT-II

NJEC0736S02

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Start engine and wait at least 2 seconds.
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-605.

Diagnostic Procedure


Diagnostic Procedure

NJEC0737

			NJEC0737		
1	INSPECTION START				
1. Tui 2. Se 3. Tou 4. Pe	With CONSULT-II 1. Turn ignition switch "ON". 2. Select "SELF DIAG RESULTS" mode with CONSULT-II. 3. Touch "ERASE". 4. Perform "DTC Confirmation Procedure", EC-604, again. 5. Is the DTC P1107 displayed again?				
1. Tui 2. Era 3. Pe 4. Pe	Without CONSULT-II 1. Turn ignition switch "ON". 2. Erase the Diagnostic Test Mode II (Self-diagnostic results) memory. 3. Perform "DTC Confirmation Procedure", EC-604, again. 4. Perform "Diagnostic Test Mode II (Self-diagnostic results)". 5. Is the DTC 0802 displayed again?				
	Yes or No				
Yes	Yes Replace ECM.				

INSPECTION END

No

Description SYSTEM DESCRIPTION

NJEC0672

NJEC0672S01

The ECM and the electronic control fuel injection pump control unit (abbreviated as the injection pump control unit) perform the real time communication (signal exchange).

The ECM transmits the signals of the target fuel injection amount, target fuel injection timing, and engine speed, etc., and receives the signals of the pump speed and fuel temperature, etc. from the injection pump control unit.

By those signals, the injection pump controls the optimum fuel injection amount and injection timing of the spill valve and timing control valve.

Injection pump control unit has an on board diagnostic system, which detects malfunctions related to sensors or actuators built-into electronic control fuel injection pump. These malfunction information are transferred through the line (circuit) from injection pump control unit to ECM.

FUEL INJECTION AMOUNT CONTROL

JJFC0672S02

In accordance with the target fuel injection amount signal from the ECM, the injection amount is controlled by controlling the spill valve in the injection pump and by changing the needle opening time.

FUEL INJECTION TIMING CONTROL

NJEC0672S03

Based on the target fuel injection timing signal from the ECM, the injection timing is controlled in accordance with the timer spring by performing the duty control of the timing control valve in the injection pump and by adjusting the pressure of the timer piston high pressure chamber.

FUEL TEMPERATURE SENSOR

N.IEC0672S0

The sensor detects the fuel temperature in the injection pump and calibrates the injection amount change by the fuel temperature.

CAMSHAFT POSITION SENSOR

NJEC0672

The sensor detects the passing of the protrusion on the sensor wheel in the injection pump by the semiconductor magnetic resistance element sensor. The camshaft position sensor synchronizes with the cam ring, and detects the actual advance amount. The injection pump control unit measures the injection pump revolution by the signal of the camshaft position sensor.

CONSULT-II Reference Value in Data Monitor Mode

Remarks: Specification data are reference values.

NJEC0673

MONITOR ITEM	CONE	SPECIFICATION	
FUEL TEMP SEN	Engine: After warming up	More than 40°C (104°F)	
SPILL/V	Engine: After warming up, idle the	Approx. 12 - 13°CA	
INT/A VOLUME	Engine: After warming up, idle the	Approx. 150 - 450 mg/st	
F/CUT SIGNAL	Engine: After warming up	Idle	ON

DTC P1180 P9-FUEL TEMP SEN

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONDITION	SPECIFICATION
BARO SEN	• Ignition switch: ON	Altitude Approx. 0 m (0 ft): Approx. 100.62 kPa (1.0062 bar, 1.026 kg/cm², 14.59 psi) Approx. 1,000 m (3,281 ft): Approx. 88.95 kPa (0.8895 bar, 0.907 kg/cm², 12.90 psi) Approx. 1,500 m (4,922 ft): Approx. 83.16 kPa (0.8316 bar, 0.848 kg/cm², 12.06 psi) Approx. 2,000 m (6,562 ft): Approx. 78.36 kPa (0.7836 bar, 0.799 kg/cm², 11.36 psi)

ECM Terminals and Reference Value

NJEC0674

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
313	313 L/W Electronic control fuel injection pump		[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.1V
314			[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.4V
316	PU	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V
317	Р	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V

On Board Diagnosis Logic

NJEC0675

DTC	Malfunction is detected when	Check Items (Possible cause)
P1180 0402	An improper voltage signal from fuel temperature sensor (Built-into electronic control fuel injection pump) is sent to injection pump control unit.	Harness or connectors (Electronic control fuel injection pump circuit is open or shorted.) Electronic control fuel injection pump

DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

DTC Confirmation Procedure

(A) WITH CONSULT-II

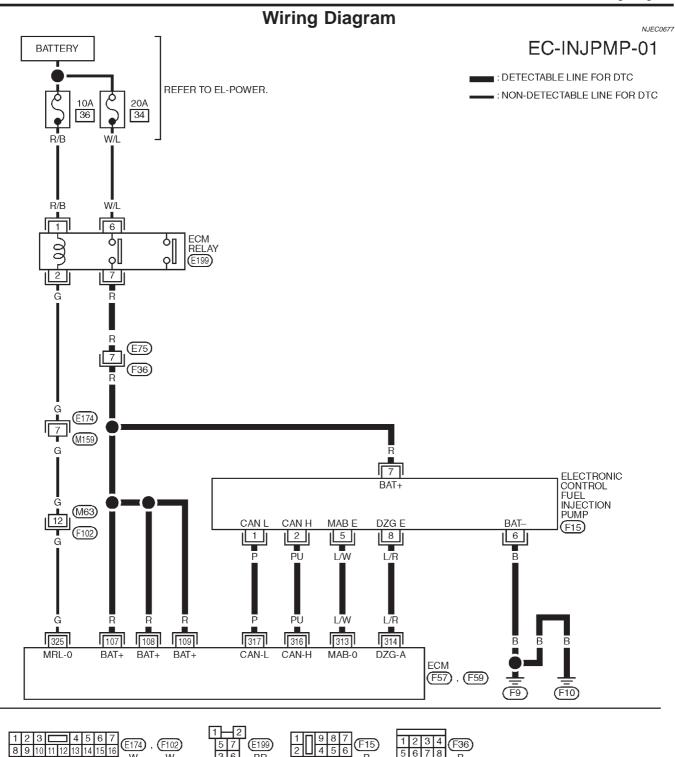
NJEC0676 NJEC0676S01

1) Turn ignition switch "ON" and wait at least 2 seconds.

- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-610.

N WITHOUT CONSULT-II

1) Turn ignition switch "ON" and wait at least 2 seconds.


NJEC0676S02

DTC P1180 P9-FUEL TEMP SEN

DTC Confirmation Procedure (Cont'd)

- Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-610.

YEC016A

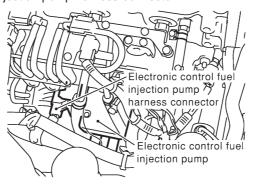
(F59)

327 328 329 330 331 332 333 334 335 336 337 338 339

107 108 109

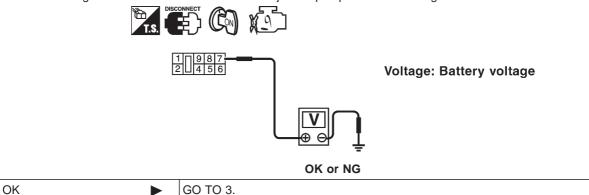
104 105 106

(F57)



Diagnostic Procedure

NJEC0678


1 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect electronic control fuel injection pump harness connector.

SEF390Y

- 3. Turn ignition switch "ON".
- 4. Check voltage between electronic control fuel injection pump terminal 7 and ground.

YEC058A

2 DETECT MALFUNCTIONING PART

Check the following.

NG

- Harness connectors E75, F36
- Harness for open or short between electronic control fuel injection pump and ECM

GO TO 2.

- Harness for open or short between electronic control fuel injection pump and ECM relay
 - Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electronic control fuel injection pump terminal 6 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK	>	GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1180 P9-FUEL TEMP SEN

Diagnostic Procedure (Cont'd)

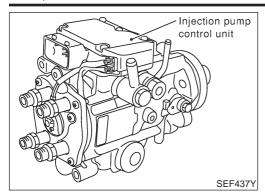
4 CHECK COMMUNICATION LINE FOR OPEN AND SHORT

1. Check continuity between the following terminals. Refer to Wiring Diagram.

Electronic control fuel injection pump	ECM
1	317
2	316
5	313
8	314

MTBL0462

Continuity should exist.


2. Also check harness for short to ground and short to power.

0	1/	or	NI	-
.,	n	Or	N	(-

OK		GO TO 5.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

5	5 CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.				
	OK or NG				
OK	OK Replace electronic control fuel injection pump.				
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.			

Description SYSTEM DESCRIPTION

NJEC0753

NJEC0753S01

The ECM and the electronic control fuel injection pump control unit (abbreviated as the injection pump control unit) perform the real time communication (signal exchange).

The ECM transmits the signals of the target fuel injection amount, target fuel injection timing, and engine speed, etc., and receives the signals of the pump speed and fuel temperature, etc. from the injection pump control unit.

By those signals, the injection pump controls the optimum fuel injection amount and injection timing of the spill valve and timing control valve.

Injection pump control unit has an on board diagnostic system, which detects malfunctions related to sensors or actuators built-into electronic control fuel injection pump. These malfunction information are transferred through the line (circuit) from injection pump control unit to ECM.

FUEL INJECTION AMOUNT CONTROL

JJEC0753S02

In accordance with the target fuel injection amount signal from the ECM, the injection amount is controlled by controlling the spill valve in the injection pump and by changing the needle opening time.

FUEL INJECTION TIMING CONTROL

IJEC0753S03

Based on the target fuel injection timing signal from the ECM, the injection timing is controlled in accordance with the timer spring by performing the duty control of the timing control valve in the injection pump and by adjusting the pressure of the timer piston high pressure chamber.

FUEL TEMPERATURE SENSOR

N.IEC0753S0

The sensor detects the fuel temperature in the injection pump and calibrates the injection amount change by the fuel temperature.

CAM RING POSITION SENSOR

JEC0753S

The sensor detects the passing of the protrusion on the sensor wheel in the injection pump by the semiconductor magnetic resistance element sensor. The cam ring position sensor synchronizes with the cam ring, and detects the actual advance amount. The injection pump control unit measures the injection pump revolution by the signal of the cam ring position sensor.

CONSULT-II Reference Value in Data Monitor Mode

Remarks: Specification data are reference values.

NJEC0754

MONITOR ITEM	CONE	SPECIFICATION
FUEL TEMP SEN	Engine: After warming up	More than 40°C (104°F)
SPILL/V	Engine: After warming up, idle the	Approx. 12 - 13°CA
INT/A VOLUME	Engine: After warming up, idle the	Approx. 150 - 450 mg/st
F/CUT SIGNAL	Engine: After warming up	ON

DTC P1202 FUEL CUT SYSTEM2

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONDITION	SPECIFICATION
BARO SEN	• Ignition switch: ON	Altitude Approx. 0 m (0 ft): Approx. 100.62 kPa (1.0062 bar, 1.026 kg/cm², 14.59 psi) Approx. 1,000 m (3,281 ft): Approx. 88.95 kPa (0.8895 bar, 0.907 kg/cm², 12.90 psi) Approx. 1,500 m (4,922 ft): Approx. 83.16 kPa (0.8316 bar, 0.848 kg/cm², 12.06 psi) Approx. 2,000 m (6,562 ft): Approx. 78.36 kPa (0.7836 bar, 0.799 kg/cm², 11.36 psi)

ECM Terminals and Reference Value

NJEC0755

Specification data are reference values and are measured between each terminal and ground.

CAUTION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
313	L/W	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.1V
314	L/R	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.4V
316	PU	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V
317	Р	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V

On Board Diagnosis Logic

NJEC0756

DTC	Malfunction is detected when	Check Items (Possible cause)
P1202 1002	Fuel cut control system does not function properly.	Harness or connectors (Electronic control fuel circuit is open or shorted.) Electronic control fuel

DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

DTC Confirmation Procedure

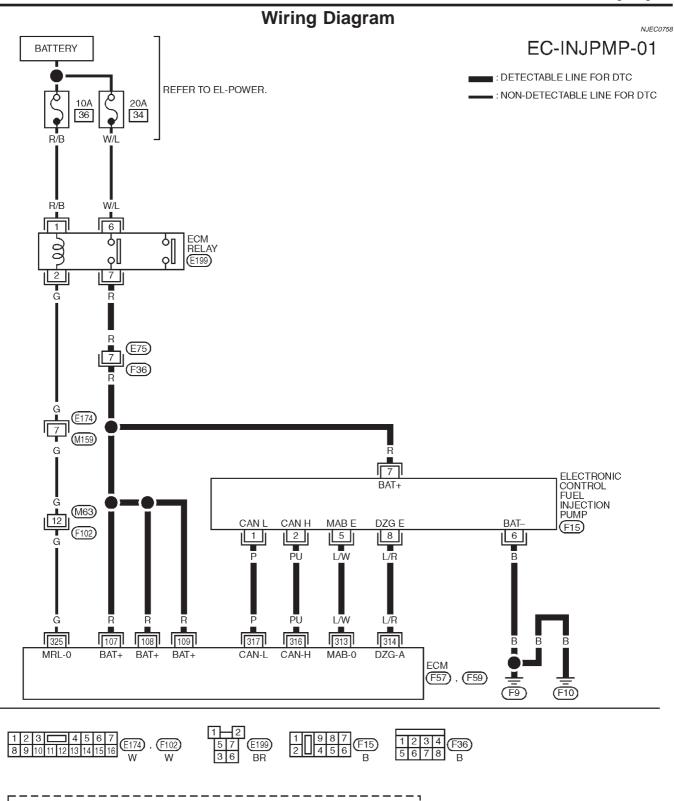
(P) WITH CONSULT-II

NJEC0757 NJEC0757S01

1) Turn ignition switch "ON" and wait at least 2 seconds.

- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 2) Select DATA MONITOR Hode with CONSOLI-II.
- Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 4) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-616.

DTC P1202 FUEL CUT SYSTEM2



DTC Confirmation Procedure (Cont'd)

WITHOUT CONSULT-II

N IECO757S02

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-616.

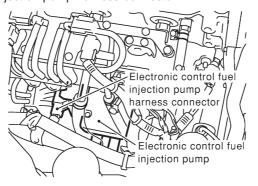
(F59)

327 328 329 330 331 332 333 334 335 336 337 338 339

107 108 109

104 105 106

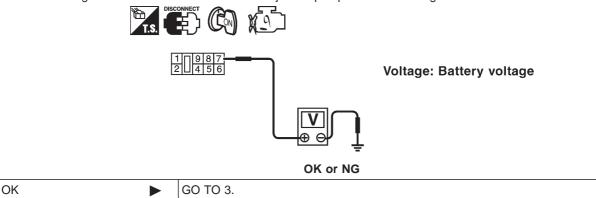
(F57)



Diagnostic Procedure

NJEC0759

1 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP POWER SUPPLY CIRCUIT


- 1. Turn ignition switch "OFF".
- 2. Disconnect electronic control fuel injection pump harness connector.

SEF390Y

YEC058A

- 3. Turn ignition switch "ON".
- 4. Check voltage between electronic control fuel injection pump terminal 7 and ground.

2 DETECT MALFUNCTIONING PART

Check the following.

NG

- Harness connectors E75, F36
- Harness for open or short between electronic control fuel injection pump and ECM

GO TO 2.

- Harness for open or short between electronic control fuel injection pump and ECM relay
 - Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electronic control fuel injection pump terminal 6 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1202 FUEL CUT SYSTEM2

Diagnostic Procedure (Cont'd)

4 CHECK COMMUNICATION LINE FOR OPEN AND SHORT

1. Check continuity between the following terminals. Refer to Wiring Diagram.

Electronic control fuel injection pump	ECM
1	317
2	316
5	313
8	314

MTBL0462

Continuity should exist.

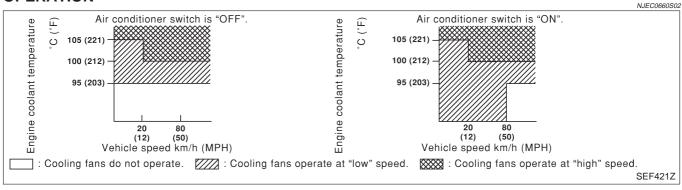
2. Also check harness for short to ground and short to power.

О	Κ	or	N	G
---	---	----	---	---

OK •	GO TO 5.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.				
	OK or NG				
OK	OK Replace electronic control fuel injection pump.				
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.			

Description


SYSTEM DESCRIPTION

NJEC0660 NJEC0660S01

Sensor	Input signal to ECM	ECM function	Actuator
Vehicle speed sensor	Vehicle speed		Cooling fan relay
Engine coolant temperature sensor	Engine coolant temperature	Cooling fan control	
Air conditioner switch	Air conditioner "ON" signal		

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF].

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0661

MONITOR ITEM	CONDITION		SPECIFICATION
AIR COND SIG	Engine: After warming up, idle the engine	Air conditioner switch: OFF	OFF
		Air conditioner switch: ON (Compressor operates.)	ON
	When cooling fan is stopped.		OFF
COOLING FAN	When cooling fans operate at low speed.		LOW
	When cooling fans operate at high speed.		HIGH

ECM Terminals and Reference Value

NJEC0662

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA(DC Voltage)
219 LG/R C	LC/D		[Engine is running] ■ Cooling fans are not operating	BATTERY VOLTAGE (11 - 14V)
	Cooling fan relay (Low)	[Engine is running] ■ Cooling fans are operating	Approximately 0.1V	

DTC P1217 OVER HEAT

ECM Terminals and Reference Value (Cont'd)

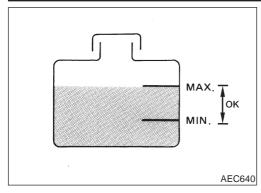
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA(DC Voltage)
221 LG/B Cooling fan relay (High)	[Engine is running]Cooling fans are not operatingCooling fans are operating at low speed	BATTERY VOLTAGE (11 - 14V)		
			[Engine is running] ■ Cooling fans are operating at high speed	Approximately 0.1V

On Board Diagnosis Logic

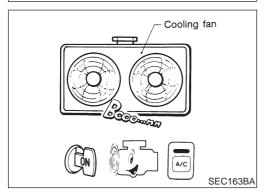
NJEC0663

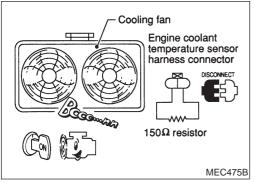
This diagnosis continuously monitors the engine coolant temperature.

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise.


When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

DTC	Malfunction is detected when	Check Items (Possible Cause)
P1217 0208	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. 	 Harness or connectors (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat Engine coolant temperature sensor For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-633.


CAUTION:


When a malfunction is indicated, be sure to replace the coolant following the procedure in the LC-43, "Changing Engine Coolant". Also, replace the engine oil.

- 1) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-22, "Engine Coolant Mixture Ratio".
- 2) After refilling coolant, run engine to ensure that no water-flow noise is emitted.

ACTIVE TES		
COOLING FAN	OFF	
MONITOR		
COOLAN TEMP/S	XXX °C	
		SEF111X
		SEFIIIA

Overall Function Check

NJEC0664

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around the cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(P) WITH CONSULT-II

NJEC0664S01

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-622.
- 2) Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-622.
- 3) Turn ignition switch "ON".
- 4) Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II and make sure that cooling fans operate when touching "HIGH" or "LOW".

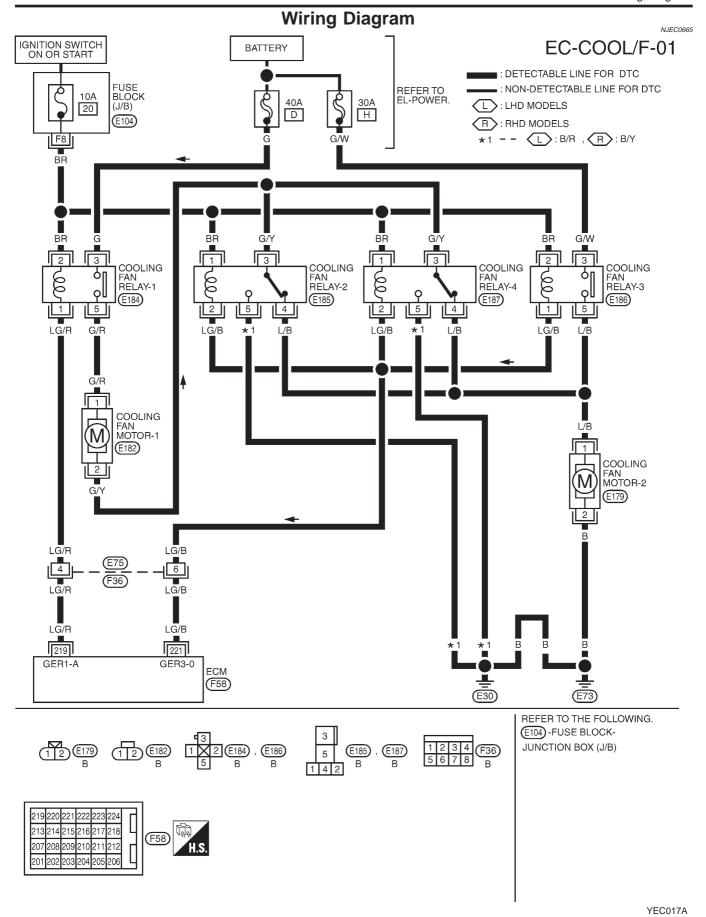
If NG, go to "Diagnostic Procedure", EC-622.

M WITHOUT CONSULT-II

N.IEC0664S02

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-622.
- Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure". EC-622.
- Start engine.

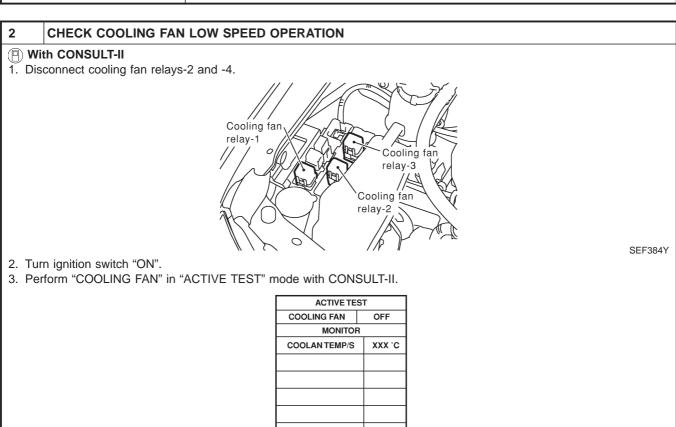
Be careful not to overheat engine.


- 4) Set temperature control lever to full cold position.
- 5) Turn air conditioner switch "ON".
- 6) Turn blower fan switch "ON".
- 7) Run engine at idle for a few minutes with air conditioner operating.

Be careful not to overheat engine.

- 8) Make sure that cooling fans operate at low speed.
- 9) Turn ignition switch "OFF".
- 10) Turn air conditioner switch and blower fan switch "OFF".
- Disconnect engine coolant temperature sensor harness connector.
- 12) Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- 13) Start engine and make sure that cooling fans operate at higher speed than low speed.

Be careful not to overheat engine.


14) If NG, go to "Diagnostic Procedure", EC-622.

SEF646X

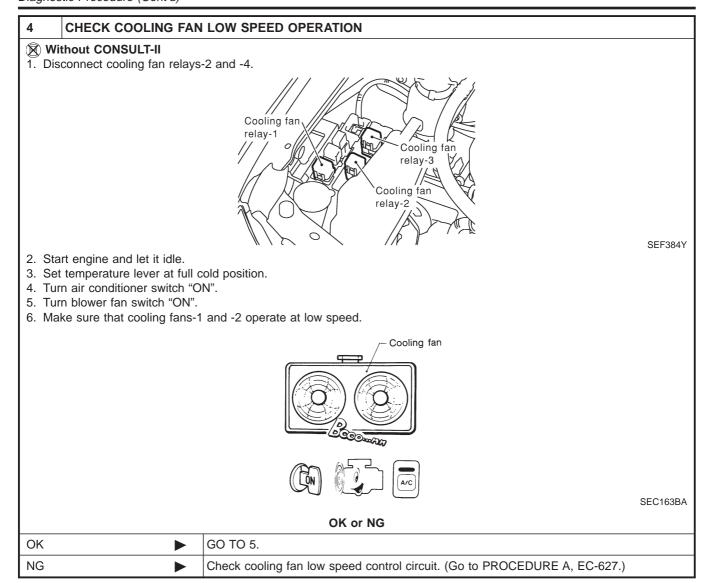
Diagnostic Procedure

4. Make sure that cooling fans-1 and -2 operate at low speed.

OK ►	GO TO 3.
NG ►	Check cooling fan low speed control circuit. (Go to PROCEDURE A, EC-627.)

DTC P1217 OVER HEAT

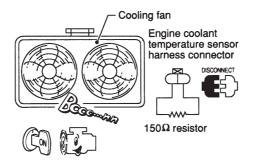
3	CHECK	COOLING	FAN HIGH	SPEED	OPERATION
3	CHECK	COOLING	FAIN HIGH	SPEED	OFERALION


- With CONSULT-II1. Turn ignition switch "OFF".
- 2. Reconnect cooling fan relays-2 and -4.
- 3. Turn ignition switch "ON".
- 4. Perform "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-II.

ACTIVE TEST				
COOLING FAN	OFF			
MONITOR				
COOLAN TEMP/S	XXX °C			

SEF111X

5. Make sure that cooling fans-1 and -2 operate at high speed.


OK •	•	GO TO 6.
NG •	•	Check cooling fan high speed control circuit. (Go to PROCEDURE B, EC-630.)

5 CHECK COOLING FAN HIGH SPEED OPERATION

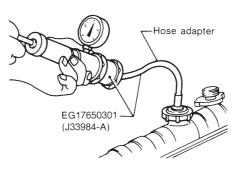
Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Reconnect cooling fan relays-2 and -4.
- 3. Turn air conditioner switch and blower fan switch "OFF".
- 4. Disconnect engine coolant temperature sensor harness connector.
- 5. Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- 6. Restart engine and make sure that cooling fans-1 and -2 operate at high speed.

MEC475B

OK or NG

OK •	GO TO 6.
NG ►	Check cooling fan high speed control circuit. (Go to PROCEDURE B, EC-630.)


6 CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.

Testing pressure: 157 kPa (1.57 bar, 1.6 kg/cm², 23 psi)

CAUTION:

Higher than the specified pressure may cause radiator damage.

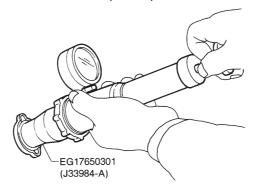
SLC754A

Pressure should not drop.

OK or NG

OK •	GO TO 8.
NG •	GO TO 7.

7 DETECT MALFUNCTIONING PART


Check the following for leak.

- Hose
- Radiator
- Water pump (Refer to LC-38, "Water Pump".)

Repair or replace.

8 CHECK RADIATOR CAP

Apply pressure to cap with a tester and check radiator cap relief pressure.

SLC755A

Radiator cap relief pressure:

59 - 98 kPa (0.59 - 0.98 bar, 0.6 - 1.0 kg/cm², 9 - 14 psi)

OK or NG

OK		GO TO 9.
NG		Replace radiator cap.

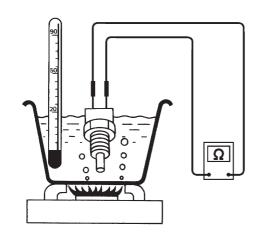
9 CHECK THERMOSTAT

- 1. Remove thermostat.
- 2. Check valve seating condition at normal room temperatures. **It should seat tightly.**
- 3. Check valve opening temperature and valve lift.

SLC343

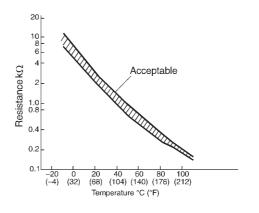
Valve opening temperature: 82°C (180°F) [standard]

Valve lift:


More than 8.6 mm/95°C (0.339 in/203°F)

4. Check if valve is closed at 5°C (9°F) below valve opening temperature. For details, refer to LC-40, "Thermostat".

OK •	GO TO 10.
NG ►	Replace thermostat.


10 CHECK ENGINE COOLANT TEMPERATURE SENSOR

- 1. Remove engine coolant temperature sensor.
- 2. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

SEF304X

OK or NG

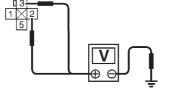
OK ▶	GO TO 11.
NG ►	Replace engine coolant temperature sensor.

11 CHECK MAIN 12 CAUSES

If the cause cannot be isolated, go to "MAIN 12 CAUSES OF OVERHEATING", EC-633.

▶ INSPECTION END

PROCEDURE A


NJEC0666S05

CHECK COOLING FAN POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan relay-1.
- 3. Turn ignition switch "ON".
- 4. Check voltage between cooling fan relay-1 terminals 2, 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

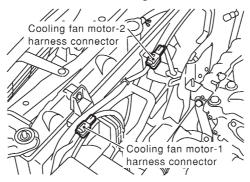
SEF899Y

OK ►	GO TO 3.
NG ▶	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E104
- 10A fuse


3

- 40A fusible link
- · Harness for open or short between cooling fan relay-1 and fuse
- Harness for open or short between cooling fan relay-1 and battery

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK COOLING FAN GROUND CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.

SEF385Y

3. Check harness continuity between cooling fan relay-1 terminal 5 and cooling fan motor-1 terminal 1, cooling fan motor-2 terminal 2 and body ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK COOLING FAN GROUND CIRCUIT FOR OPEN AND SHORT-II

1. Check harness continuity between cooling fan motor-1 terminal 2 and cooling fan motor-2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

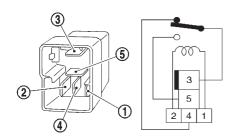
2. Also check harness for short to ground and short to power.

OK or NG

- 1		*****
	OK •	GO TO 7.
	NG ►	GO TO 5.

5 CHECK COOLING FAN GROUND CIRCUIT FOR OPEN AND SHORT-III

- 1. Disconnect cooling fan relays-2, 4.
- 2. Check harness continuity between cooling fan motor-1 terminal 2 and cooling fan relays-2, 4 terminal 3, cooling fan relays-2, 4 terminal 4 and cooling fan motor-2 terminal 1. Refer to Wiring Diagram.


Continuity should exist.

3. Also check harness for short to ground and short to power.

OK ►	GO TO 6.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

CHECK COOLING FAN RELAY-2, 4

Check continuity between cooling fan relays-2, 4 terminals 3 and 4, 3 and 5 under the following conditions.

Conditions	Continuity			
Conditions	terminals 3 and 4	terminals 3 and 5		
12V direct current supply between terminals 1 and 2	No	Yes		
No current supply	Yes	No		

SEF900Y

OK or NG

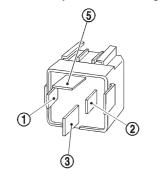
OK •	GO TO 11.
NG ►	Replace cooling fan relay.

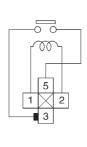
7 CHECK COOLING FAN OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 219 and cooling fan relay-1 terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 9.
NG ►	GO TO 8.

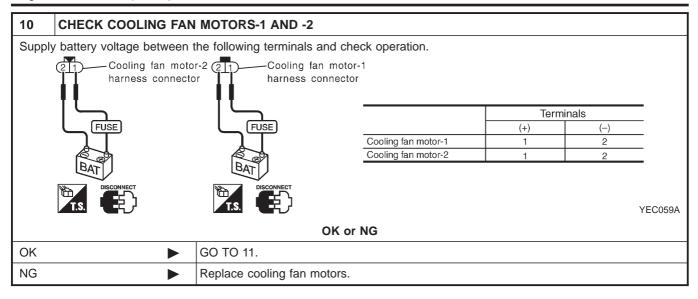

8 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors E75, F36
- Harness for open or short between cooling fan relay-1 and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

9 CHECK COOLING FAN RELAY-1

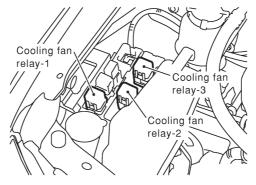
Check continuity between cooling fan relay-1 terminals 3 and 5 under the following conditions.



Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

SEF901Y

OK ▶	GO TO 10.
NG ►	Replace cooling fan relay.


11 CHECK INTERMITTENT INCIDENT Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559. INSPECTION END

PROCEDURE B

NJEC0666S06

CHECK COOLING FAN POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan relays-2, 3 and 4.

SEF384Y

- 3. Turn ignition switch "ON".
- 4. Check voltage between cooling fan relays-2, 4 terminals 1 and ground, cooling fan relay-3 terminals 2, 3 and ground with CONSULT-II or tester.

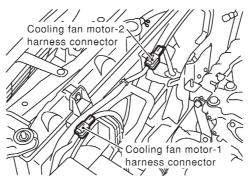
Voltage: Battery voltage

SEF903Y

OK •	GO TO 3.
NG •	GO TO 2.

DTC P1217 OVER HEAT

2 DETECT MALFUNCTIONING PART


Check the following.

- 30A fusible link
- 10A fuse
- Harness for open or short between cooling fan relays-2, 3, 4 and fuse
- · Harness for open or short between cooling fan relay-3 and fusible link

Repair harness or connectors.

3 CHECK COOLING FAN GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-2 harness connector.

SFF385Y

3. Check harness continuity between cooling fan relays-2, 4 terminal 5 and body ground, cooling fan relay-3 terminal 5 and cooling fan motor-2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK COOLING FAN OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 221 and cooling fan relays-2, 4 terminal 2, cooling fan relay-3 terminal 1. Refer to Wiring Diagram.

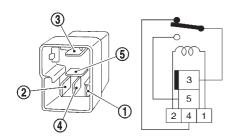
Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.	
NG ►	GO TO 5.	

5 DETECT MALFUNCTIONING PART

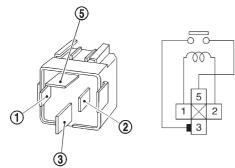

Check the following.

- Harness connectors E75, F36
- Harness for open or short between cooling fan relays-2, 3, 4 and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

Check continuity between cooling fan relay-2, -3 terminals 3 and 4, 3 and 5 under the following conditions.

Conditions	Continuity		
Conditions	terminals 3 and 4	terminals 3 and 5	
12V direct current supply between terminals 1 and 2	No	Yes	
No current supply	Yes	No	


SEF900Y

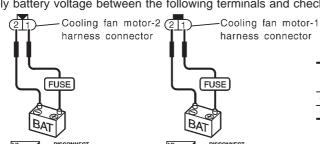
OK or NG

OK •	GO TO 7.
NG ►	Replace cooling fan relays.

CHECK COOLING FAN RELAY-3

Check continuity between cooling fan relay-3 terminals 3 and 5 under the following conditions.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No


SEF901Y

OK or NG

OK ►	GO TO 8.
NG ►	Replace cooling fan relay.

CHECK COOLING FAN MOTORS

Supply battery voltage between the following terminals and check operation.

	Terminals	
	(+)	(-)
Cooling fan motor-1	1	2
Cooling fan motor-2	1	2

YEC059A

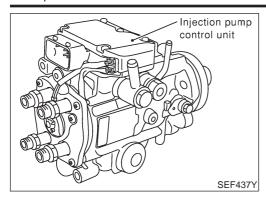
OK ►	GO TO 9.
NG ▶	Replace cooling fan motors.

9	CHECK INTERMITTENT INCIDENT				
1. Per	1. Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.				
► INSPECTION END					

Main 12 Causes of Overheating

NJEC0667

Engine	Step	Inspection item	Equipment	Condition	Reference page
OFF	1	Blocked radiator Blocked radiator grille Blocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See MA-20, "RECOM- MENDED FLUIDS AND LUBRICANTS".
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See LC-17, "Changing Engine Coolant".
	4	Radiator cap	Pressure tester	78 - 98 kPa (0.78 - 0.98 bar, 0.8 - 1.0 kg/cm ² , 11 - 14 psi)	See LC-37, "System Check".
ON*2	5	Coolant leaks	Visual	No leaks	See LC-37, "System Check".
ON*2	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See LC-40, "Thermostat" and "Radiator".
ON*1	7	Cooling fan	CONSULT-II	Operating	See Trouble Diagnosis for DTC P1217, EC-618.
OFF	8	Combustion gas leak	Color checker chemi- cal tester 4 Gas ana- lyzer	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See LC-43, "Changing Engine Coolant".
OFF*4	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See LC-43, "REFILLING ENGINE COOLANT".
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1mm (0.004 in) Maximum distortion (warping)	See EM-121, "Inspection".
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See EM-143, "Inspection".


^{*1:} Turn the ignition switch ON.

For more information, refer to LC-46, "OVERHEATING CAUSE ANALYSIS".

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

Description SYSTEM DESCRIPTION

NJEC0727

NJEC0727S01

The ECM and the electronic control fuel injection pump control unit (abbreviated as the injection pump control unit) perform the real time communication (signal exchange).

The ECM transmits the signals of the target fuel injection amount, target fuel injection timing, and engine speed, etc., and receives the signals of the pump speed and fuel temperature, etc. from the injection pump control unit.

By those signals, the injection pump controls the optimum fuel injection amount and injection timing of the spill valve and timing control valve.

Injection pump control unit has an on board diagnostic system, which detects malfunctions related to sensors or actuators built-into electronic control fuel injection pump. These malfunction information are transferred through the line (circuit) from injection pump control unit to ECM.

FUEL INJECTION AMOUNT CONTROL

JJFC0727S02

In accordance with the target fuel injection amount signal from the ECM, the injection amount is controlled by controlling the spill valve in the injection pump and by changing the needle opening time.

FUEL INJECTION TIMING CONTROL

NJEC0727S03

Based on the target fuel injection timing signal from the ECM, the injection timing is controlled in accordance with the timer spring by performing the duty control of the timing control valve in the injection pump and by adjusting the pressure of the timer piston high pressure chamber.

FUEL TEMPERATURE SENSOR

N.IEC0727S0

The sensor detects the fuel temperature in the injection pump and calibrates the injection amount change by the fuel temperature.

CAM RING POSITION SENSOR

JEC0727S

The sensor detects the passing of the protrusion on the sensor wheel in the injection pump by the semiconductor magnetic resistance element sensor. The cam ring position sensor synchronizes with the cam ring, and detects the actual advance amount. The injection pump control unit measures the injection pump revolution by the signal of the cam ring position sensor.

CONSULT-II Reference Value in Data Monitor Mode

Remarks: Specification data are reference values.

NJEC0728

MONITOR ITEM	CONDITION		SPECIFICATION
FUEL TEMP SEN	Engine: After warming up		More than 40°C (104°F)
SPILL/V	Engine: After warming up, idle the	Approx. 12 - 13°CA	
INT/A VOLUME	Engine: After warming up, idle the engine.		Approx. 150 - 450 mg/st
F/CUT SIGNAL	Engine: After warming up Idle		ON

DTC P1241 P7-F/INJ TIMG FB

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONDITION	SPECIFICATION
BARO SEN	• Ignition switch: ON	Altitude Approx. 0 m (0 ft): Approx. 100.62 kPa (1.0062 bar, 1.026 kg/cm², 14.59 psi) Approx. 1,000 m (3,281 ft): Approx. 88.95 kPa (0.8895 bar, 0.907 kg/cm², 12.90 psi) Approx. 1,500 m (4,922 ft): Approx. 83.16 kPa (0.8316 bar, 0.848 kg/cm², 12.06 psi) Approx. 2,000 m (6,562 ft): Approx. 78.36 kPa (0.7836 bar, 0.799 kg/cm², 11.36 psi)

ECM Terminals and Reference Value

NJEC0729

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
313	L/W	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.1V
314	L/R	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.4V
316	PU	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V
317	Р	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V

On Board Diagnosis Logic

NJEC0730

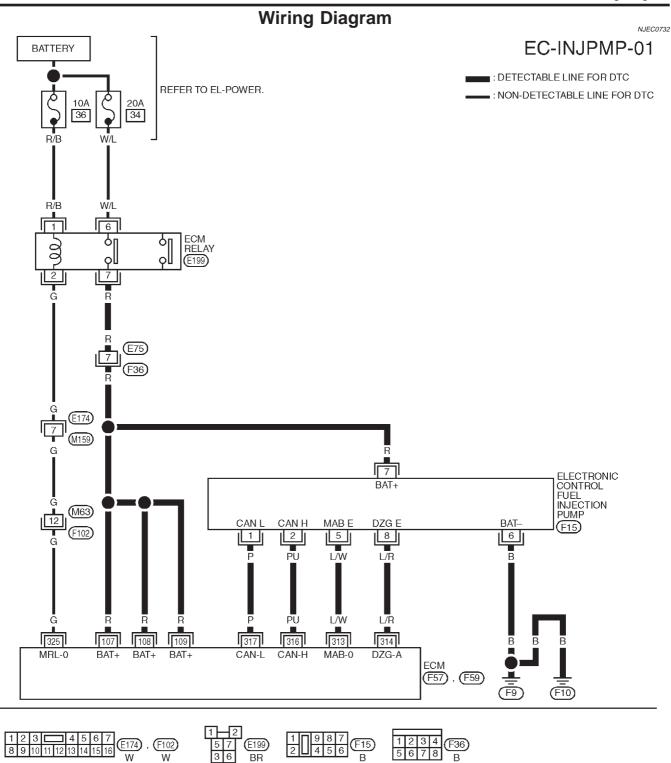
DTC	Malfunction is detected when	Check Items (Possible cause)
P1241 0707	Fuel injection timing control system does not function properly.	 Harness or connectors (Electronic control fuel injection pump circuit is open or shorted.) Electronic control fuel injection pump Improper fuel quality

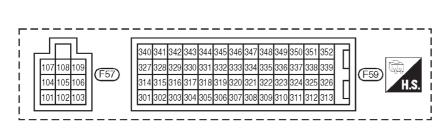
DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

DTC Confirmation Procedure

(R) WITH CONSULT-II

NJEC0731 NJEC0731S01


- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- Keep engine speed at more than 2,000 rpm for at least 10 seconds.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-638.



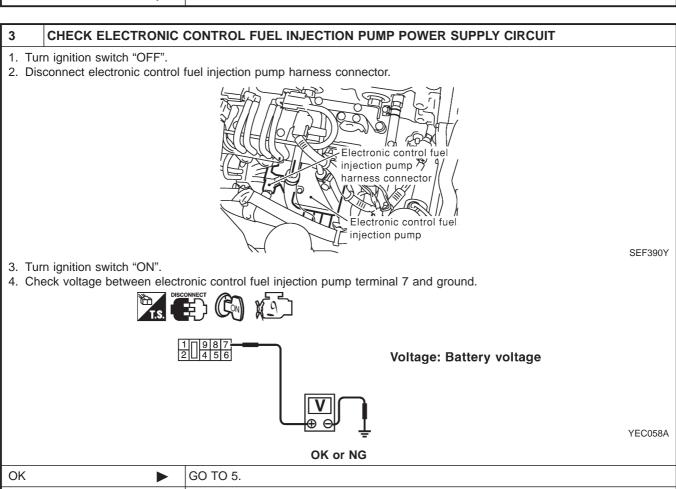
N WITHOUT CONSULT-II

N IEC0731S02

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 3) Keep engine speed at more than 2,000 rpm for at least 10 seconds.
- 4) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 5) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 6) If DTC is detected, go to "Diagnostic Procedure", EC-638.

YEC016A

NJEC0733


Diagnostic Procedure

		9
1	INSPECTION START	

Turn ignition switch "OFF".
 Perform "AIR BREEDING", EC-520, and "WATER DRAINING", EC-520.

► GO TO 2.

2	PERFORM DTC CONFIRMATION PROCEDURE AGAIN			
Perfor	Perform "DTC Confirmation Procedure", EC-635 again.			
	OK or NG			
ОК	>	INSPECTION END		

4 DETECT MALFUNCTIONING PART

Check the following.

NG

- Harness connectors E75, F36
- Harness for open or short between electronic control fuel injection pump and ECM

GO TO 4.

- Harness for open or short between electronic control fuel injection pump and ECM relay
 - Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1241 P7-F/INJ TIMG FB

Diagnostic Procedure (Cont'd)

CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP GROUND CIRCUIT FOR OPEN AND SHORT

1. Turn ignition switch "OFF".

2. Check harness continuity between electronic control fuel injection pump terminal 6 and ground. Refer to Wiring Dia-

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

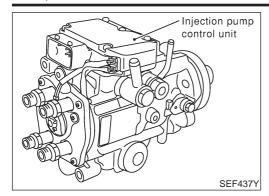
	OK J		GO TO 6.
1	NG J		Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK COMMUNICATION LINE FOR OPEN AND SHORT

1. Check continuity between the following terminals. Refer to Wiring Diagram.

Electronic control fuel injection pump	ECM
1	317
2	316
5	313
8	314

MTBL0462


Continuity should exist.

2. Also check harness for short to ground and short to power.

OK		GO TO 7.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

7	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.		
	OK or NG		
OK	OK Replace electronic control fuel injection pump.		
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

Description

Description SYSTEM DESCRIPTION

NJEC0714

NJEC0714S01

The ECM and the electronic control fuel injection pump control unit (abbreviated as the injection pump control unit) perform the real time communication (signal exchange).

The ECM transmits the signals of the target fuel injection amount, target fuel injection timing, and engine speed, etc., and receives the signals of the pump speed and fuel temperature, etc. from the injection pump control unit.

By those signals, the injection pump controls the optimum fuel injection amount and injection timing of the spill valve and timing control valve.

Injection pump control unit has an on board diagnostic system, which detects malfunctions related to sensors or actuators built-into electronic control fuel injection pump. These malfunction information are transferred through the line (circuit) from injection pump control unit to ECM.

FUEL INJECTION AMOUNT CONTROL

JJFC0714S02

In accordance with the target fuel injection amount signal from the ECM, the injection amount is controlled by controlling the spill valve in the injection pump and by changing the needle opening time.

FUEL INJECTION TIMING CONTROL

NJEC0714S03

Based on the target fuel injection timing signal from the ECM, the injection timing is controlled in accordance with the timer spring by performing the duty control of the timing control valve in the injection pump and by adjusting the pressure of the timer piston high pressure chamber.

FUEL TEMPERATURE SENSOR

N.IFC0714S0

The sensor detects the fuel temperature in the injection pump and calibrates the injection amount change by the fuel temperature.

CAM RING POSITION SENSOR

JEC0714S

The sensor detects the passing of the protrusion on the sensor wheel in the injection pump by the semiconductor magnetic resistance element sensor. The cam ring position sensor synchronizes with the cam ring, and detects the actual advance amount. The injection pump control unit measures the injection pump revolution by the signal of the cam ring position sensor.

CONSULT-II Reference Value in Data Monitor Mode

Remarks: Specification data are reference values.

NJEC0715

MONITOR ITEM	CONE	SPECIFICATION
FUEL TEMP SEN	Engine: After warming up	More than 40°C (104°F)
SPILL/V	Engine: After warming up, idle the	Approx. 12 - 13°CA
INT/A VOLUME	Engine: After warming up, idle the	Approx. 150 - 450 mg/st
F/CUT SIGNAL	Engine: After warming up	ON

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONDITION	SPECIFICATION
BARO SEN	• Ignition switch: ON	Altitude Approx. 0 m (0 ft): Approx. 100.62 kPa (1.0062 bar, 1.026 kg/cm², 14.59 psi) Approx. 1,000 m (3,281 ft): Approx. 88.95 kPa (0.8895 bar, 0.907 kg/cm², 12.90 psi) Approx. 1,500 m (4,922 ft): Approx. 83.16 kPa (0.8316 bar, 0.848 kg/cm², 12.06 psi) Approx. 2,000 m (6,562 ft): Approx. 78.36 kPa (0.7836 bar, 0.799 kg/cm², 11.36 psi)

ECM Terminals and Reference Value

NJEC0716

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
313	L/W	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.1V
314	L/R	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.4V
316	PU	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V
317	Р	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V

On Board Diagnosis Logic

NJEC0717

DTC	Malfunction is detected when	Check Items (Possible cause)
P1251 0704	Spill valve (Built-into electronic control fuel injection pump) does not function properly.	Harness or connectors (Electronic control fuel injection pump circuit is open or shorted.) Electronic control fuel injection pump

DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

DTC Confirmation Procedure

NJEC0718

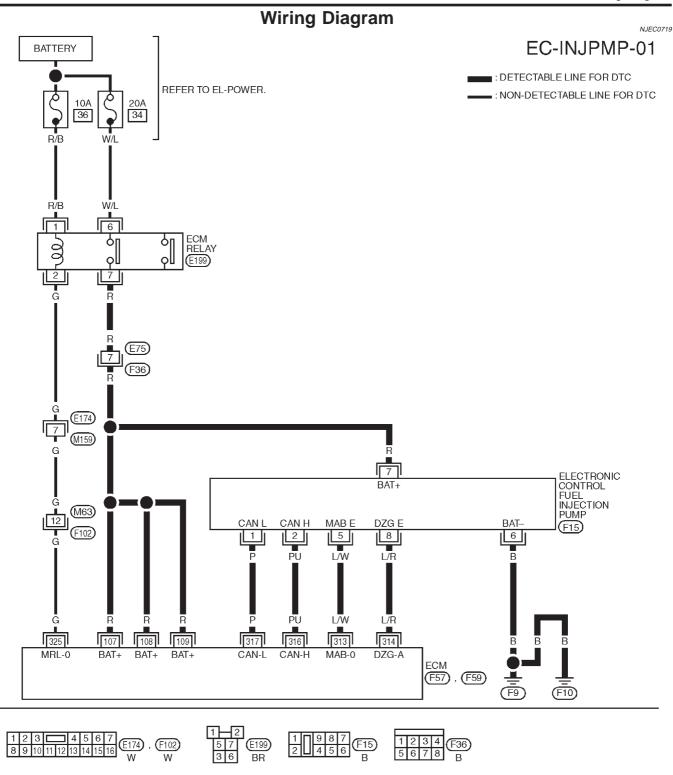
NJEC0718S01

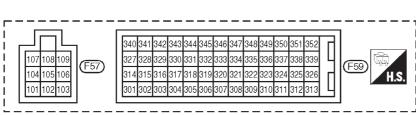
(P) WITH CONSULT-II

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-644.

N WITHOUT CONSULT-II

NJEC0718S02

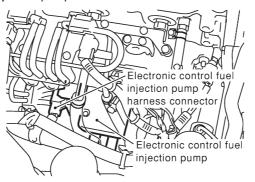

1) Turn ignition switch "ON" and wait at least 2 seconds.


DTC P1251 P4-SPILL/V CIRC

DTC Confirmation Procedure (Cont'd)

- 2) Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-644.

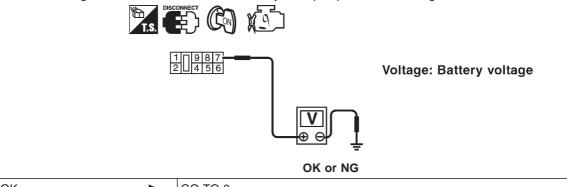
YEC016A



Diagnostic Procedure

NJEC0720

1 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP POWER SUPPLY CIRCUIT


- 1. Turn ignition switch "OFF".
- 2. Disconnect electronic control fuel injection pump harness connector.

SEF390Y

YEC058A

- 3. Turn ignition switch "ON".
- 4. Check voltage between electronic control fuel injection pump terminal 7 and ground.

OK		GO TO 3.
NG		GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connector E75, F36
- Harness for open or short between electronic control fuel injection pump and ECM
- Harness for open or short between electronic control fuel injection pump and ECM relay
 - Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electronic control fuel injection pump terminal 6 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK	>	GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1251 P4-SPILL/V CIRC

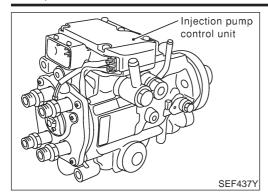
4 CHECK COMMUNICATION LINE FOR OPEN AND SHORT

1. Check continuity between the following terminals. Refer to Wiring Diagram.

Electronic control fuel injection pump	ECM
1	317
2	316
5	313
8	314

MTBL0462

Continuity should exist.


2. Also check harness for short to ground and short to power.

_				_
О	Κ	or	Ν	G

OK •	GO TO 5.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.		
	OK or NG		
OK	OK Replace electronic control fuel injection pump.		
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

Description SYSTEM DESCRIPTION

NJEC0700

NJEC0700S01

The ECM and the electronic control fuel injection pump control unit (abbreviated as the injection pump control unit) perform the real time communication (signal exchange).

The ECM transmits the signals of the target fuel injection amount, target fuel injection timing, and engine speed, etc., and receives the signals of the pump speed and fuel temperature, etc. from the injection pump control unit.

By those signals, the injection pump controls the optimum fuel injection amount and injection timing of the spill valve and timing control valve.

Injection pump control unit has an on board diagnostic system, which detects malfunctions related to sensors or actuators built-into electronic control fuel injection pump. These malfunction information are transferred through the line (circuit) from injection pump control unit to ECM.

FUEL INJECTION AMOUNT CONTROL

JJEC0700S02

In accordance with the target fuel injection amount signal from the ECM, the injection amount is controlled by controlling the spill valve in the injection pump and by changing the needle opening time.

FUEL INJECTION TIMING CONTROL

JEC0700S03

Based on the target fuel injection timing signal from the ECM, the injection timing is controlled in accordance with the timer spring by performing the duty control of the timing control valve in the injection pump and by adjusting the pressure of the timer piston high pressure chamber.

FUEL TEMPERATURE SENSOR

N.IECO700S0

The sensor detects the fuel temperature in the injection pump and calibrates the injection amount change by the fuel temperature.

CAM RING POSITION SENSOR

JEC0700S

The sensor detects the passing of the protrusion on the sensor wheel in the injection pump by the semiconductor magnetic resistance element sensor. The cam ring position sensor synchronizes with the cam ring, and detects the actual advance amount. The injection pump control unit measures the injection pump revolution by the signal of the cam ring position sensor.

CONSULT-II Reference Value in Data Monitor Mode

Remarks: Specification data are reference values.

NJEC0701

MONITOR ITEM	CONDITION		SPECIFICATION
FUEL TEMP SEN	Engine: After warming up		More than 40°C (104°F)
SPILL/V	Engine: After warming up, idle the engine.		Approx. 12 - 13°CA
INT/A VOLUME	Engine: After warming up, idle the engine.		Approx. 150 - 450 mg/st
F/CUT SIGNAL	Engine: After warming up	Idle	ON

DTC P1337 P2-DTC PULSE SIG

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONDITION	SPECIFICATION
BARO SEN	• Ignition switch: ON	Altitude Approx. 0 m (0 ft): Approx. 100.62 kPa (1.0062 bar, 1.026 kg/cm², 14.59 psi) Approx. 1,000 m (3,281 ft): Approx. 88.95 kPa (0.8895 bar, 0.907 kg/cm², 12.90 psi) Approx. 1,500 m (4,922 ft): Approx. 83.16 kPa (0.8316 bar, 0.848 kg/cm², 12.06 psi) Approx. 2,000 m (6,562 ft): Approx. 78.36 kPa (0.7836 bar, 0.799 kg/cm², 11.36 psi)

ECM Terminals and Reference Value

NJEC0702

Specification data are reference values and are measured between each terminal and ground.

CAUTION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
313	L/W	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.1V
314	L/R	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.4V
316	PU	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V
317	Р	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V

On Board Diagnosis Logic

NJEC0703

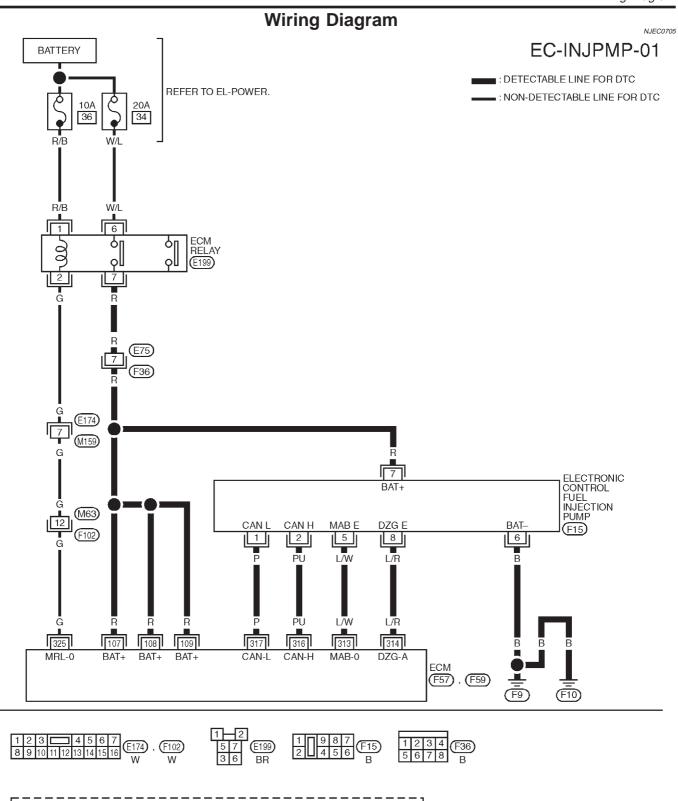
DTC Malfunction is detected when		Check Items (Possible cause)
P1337 0702	Injection pump control unit input signal [Crank- shaft position sensor (TDC) signal] processing function is malfunctioning.	Harness or connectors (Electronic control fuel injection pump circuit is open or shorted.) Electronic control fuel injection pump

DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

DTC Confirmation Procedure

(P) WITH CONSULT-II

NJEC0704 NJEC0704S01


- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- If DTC P0335 is detected, go to "Diagnostic procedure", EC-590.
 If DTC P1337 is detected, go to "Diagnostic Procedure", EC-650.

N WITHOUT CONSULT-II

NJEC0704S02

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC P0335 is detected, go to "Diagnostic Procedure", EC-590. If DTC P1337 is detected, go to "Diagnostic Procedure", EC-650.

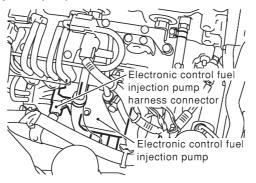
(F59)

327 328 329 330 331 332 333 334 335 336 337 338 339

107 108 109

104 105 106

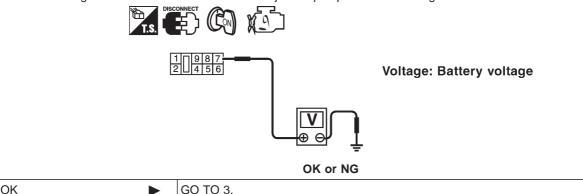
(F57)



Diagnostic Procedure

NJEC0706

1 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP POWER SUPPLY CIRCUIT


- 1. Turn ignition switch "OFF".
- 2. Disconnect electronic control fuel injection pump harness connector.

SEF390Y

YEC058A

- 3. Turn ignition switch "ON".
- 4. Check voltage between electronic control fuel injection pump terminal 7 and ground.

OK ▶	GO TO 3.
NG ▶	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between electronic control fuel injection pump and ECM
- Harness for open or short between electronic control fuel injection pump and ECM relay
 - Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electronic control fuel injection pump terminal 6 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK	>	GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1337 P2-DTC PULSE SIG

Diagnostic Procedure (Cont'd)

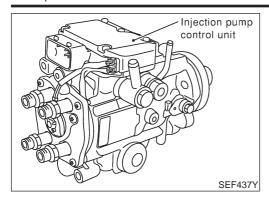
4 CHECK COMMUNICATION LINE FOR OPEN AND SHORT

1. Check continuity between the following terminals. Refer to Wiring Diagram.

Electronic control fuel injection pump	ECM
1	317
2	316
5	313
8	314

MTBL0462

Continuity should exist.


2. Also check harness for short to ground and short to power.

0	K	or	N	G

OK		GO TO 5.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.		
OK or NG		
OK	OK Replace electronic control fuel injection pump.	
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

Description SYSTEM DESCRIPTION

NJEC0693

NJEC0693S01

The ECM and the electronic control fuel injection pump control unit (abbreviated as the injection pump control unit) perform the real time communication (signal exchange).

The ECM transmits the signals of the target fuel injection amount, target fuel injection timing, and engine speed, etc., and receives the signals of the pump speed and fuel temperature, etc. from the injection pump control unit.

By those signals, the injection pump controls the optimum fuel injection amount and injection timing of the spill valve and timing control valve.

Injection pump control unit has an on board diagnostic system, which detects malfunctions related to sensors or actuators built-into electronic control fuel injection pump. These malfunction information are transferred through the line (circuit) from injection pump control unit to ECM.

FUEL INJECTION AMOUNT CONTROL

JJFC0693S02

In accordance with the target fuel injection amount signal from the ECM, the injection amount is controlled by controlling the spill valve in the injection pump and by changing the needle opening time.

FUEL INJECTION TIMING CONTROL

NJEC0693S0.

Based on the target fuel injection timing signal from the ECM, the injection timing is controlled in accordance with the timer spring by performing the duty control of the timing control valve in the injection pump and by adjusting the pressure of the timer piston high pressure chamber.

FUEL TEMPERATURE SENSOR

N.IEC0693S0

The sensor detects the fuel temperature in the injection pump and calibrates the injection amount change by the fuel temperature.

CAM RING POSITION SENSOR

JEC0693

The sensor detects the passing of the protrusion on the sensor wheel in the injection pump by the semiconductor magnetic resistance element sensor. The cam ring position sensor synchronizes with the cam ring, and detects the actual advance amount. The injection pump control unit measures the injection pump revolution by the signal of the cam ring position sensor.

CONSULT-II Reference Value in Data Monitor Mode

Remarks: Specification data are reference values.

NJEC0694

MONITOR ITEM	CONDITION		SPECIFICATION
FUEL TEMP SEN	Engine: After warming up		More than 40°C (104°F)
SPILL/V	Engine: After warming up, idle the engine.		Approx. 12 - 13°CA
INT/A VOLUME	Engine: After warming up, idle the engine.		Approx. 150 - 450 mg/st
F/CUT SIGNAL	Engine: After warming up Idle		ON

DTC P1341 P1-CAM POS SEN

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONDITION	SPECIFICATION
BARO SEN	• Ignition switch: ON	Altitude Approx. 0 m (0 ft): Approx. 100.62 kPa (1.0062 bar, 1.026 kg/cm², 14.59 psi) Approx. 1,000 m (3,281 ft): Approx. 88.95 kPa (0.8895 bar, 0.907 kg/cm², 12.90 psi) Approx. 1,500 m (4,922 ft): Approx. 83.16 kPa (0.8316 bar, 0.848 kg/cm², 12.06 psi) Approx. 2,000 m (6,562 ft): Approx. 78.36 kPa (0.7836 bar, 0.799 kg/cm², 11.36 psi)

ECM Terminals and Reference Value

NJEC0695

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
313	L/W	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.1V
314	L/R	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.4V
316	PU	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V
317	Р	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V

On Board Diagnosis Logic

NJEC0696

DTC	Malfunction is detected when	Check Items (Possible cause)
P1341 0701	An improper voltage signal from cam position sensor (Built-into electronic control fuel injection pump) is sent to injection pump control unit.	Harness or connectors (Electronic control fuel injection pump circuit is open or shorted.) Electronic control fuel injection pump

DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

DTC Confirmation Procedure

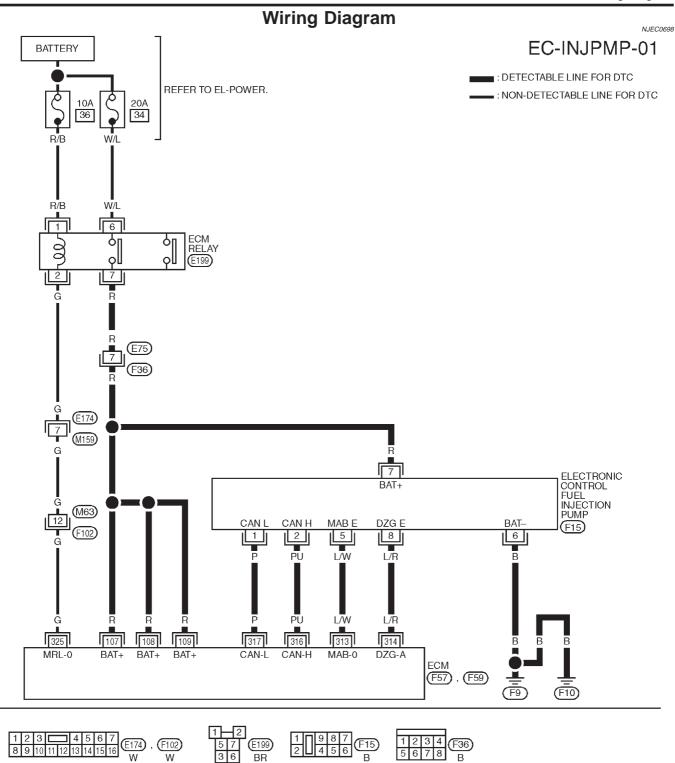
® WITH CONSULT-II

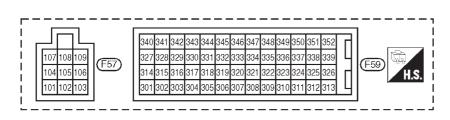
NJEC0697 NJEC0697S01

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-656.

WITHOUT CONSULT-II

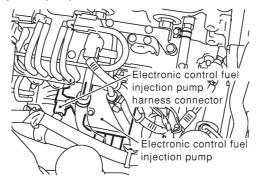
NJEC0697S02


1) Turn ignition switch "ON" and wait at least 2 seconds.


DTC P1341 P1-CAM POS SEN

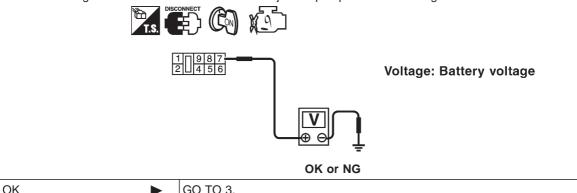
DTC Confirmation Procedure (Cont'd)

- Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-656.



Diagnostic Procedure

NJEC0699


1 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect electronic control fuel injection pump harness connector.

SEF390Y

- 3. Turn ignition switch "ON".
- 4. Check voltage between electronic control fuel injection pump terminal 7 and ground.

YEC058A

OK	>	GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between electronic control fuel injection pump and ECM
- Harness for open or short between electronic control fuel injection pump and ECM relay
 - Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electronic control fuel injection pump terminal 6 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1341 P1-CAM POS SEN

Diagnostic Procedure (Cont'd)

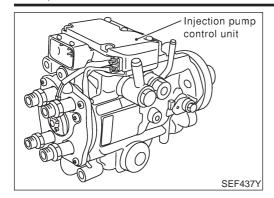
4 CHECK COMMUNICATION LINE FOR OPEN AND SHORT

1. Check continuity between the following terminals. Refer to Wiring Diagram.

Electronic control fuel injection pump	ECM
1	317
2	316
5	313
8	314

MTBL0462

Continuity should exist.


2. Also check harness for short to ground and short to power.

0	1/	or	NI	-
.,	n	Or	N	(-

OK •	GO TO 5.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK INTERMITTENT	INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.		
	OK or NG		
OK	OK Replace electronic control fuel injection pump.		
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

Description SYSTEM DESCRIPTION

NJEC0707

NJEC0707S01

The ECM and the electronic control fuel injection pump control unit (abbreviated as the injection pump control unit) perform the real time communication (signal exchange).

The ECM transmits the signals of the target fuel injection amount, target fuel injection timing, and engine speed, etc., and receives the signals of the pump speed and fuel temperature, etc. from the injection pump control unit.

By those signals, the injection pump controls the optimum fuel injection amount and injection timing of the spill valve and timing control valve.

Injection pump control unit has an on board diagnostic system, which detects malfunctions related to sensors or actuators built-into electronic control fuel injection pump. These malfunction information are transferred through the line (circuit) from injection pump control unit to ECM.

FUEL INJECTION AMOUNT CONTROL

JJEC0707S02

In accordance with the target fuel injection amount signal from the ECM, the injection amount is controlled by controlling the spill valve in the injection pump and by changing the needle opening time.

FUEL INJECTION TIMING CONTROL

IJEC0707S03

Based on the target fuel injection timing signal from the ECM, the injection timing is controlled in accordance with the timer spring by performing the duty control of the timing control valve in the injection pump and by adjusting the pressure of the timer piston high pressure chamber.

FUEL TEMPERATURE SENSOR

N.IEC0707S0

The sensor detects the fuel temperature in the injection pump and calibrates the injection amount change by the fuel temperature.

CAM RING POSITION SENSOR

JEC0707

The sensor detects the passing of the protrusion on the sensor wheel in the injection pump by the semiconductor magnetic resistance element sensor. The cam ring position sensor synchronizes with the cam ring, and detects the actual advance amount. The injection pump control unit measures the injection pump revolution by the signal of the cam ring position sensor.

CONSULT-II Reference Value in Data Monitor Mode

Remarks: Specification data are reference values.

NJEC0708

MONITOR ITEM	CONDITION		SPECIFICATION
FUEL TEMP SEN	Engine: After warming up		More than 40°C (104°F)
SPILL/V	Engine: After warming up		Approx. 12 - 13°CA
INT/A VOLUME	Engine: After warming up, idle the engine.		Approx. 150 - 450 mg/st
F/CUT SIGNAL	Engine: After warming up Idle		ON

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONDITION	SPECIFICATION
BARO SEN	• Ignition switch: ON	Altitude Approx. 0 m (0 ft): Approx. 100.62 kPa (1.0062 bar, 1.026 kg/cm², 14.59 psi) Approx. 1,000 m (3,281 ft): Approx. 88.95 kPa (0.8895 bar, 0.907 kg/cm², 12.90 psi) Approx. 1,500 m (4,922 ft): Approx. 83.16 kPa (0.8316 bar, 0.848 kg/cm², 12.06 psi) Approx. 2,000 m (6,562 ft): Approx. 78.36 kPa (0.7836 bar, 0.799 kg/cm², 11.36 psi)

ECM Terminals and Reference Value

NJEC0709

Specification data are reference values and are measured between each terminal and ground.

CAUTION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
313	L/W	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.1V
314	L/R	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.4V
316	PU	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V
317	Р	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V

On Board Diagnosis Logic

NJEC0710

DTC	Malfunction is detected when	Check Items (Possible cause)
P1600 0703	Injection pump control unit receives incorrect voltage signal from ECM continuously.	Harness or connectors (Electronic control fuel injection pump circuit is open or shorted.) Electronic control fuel injection pump

DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

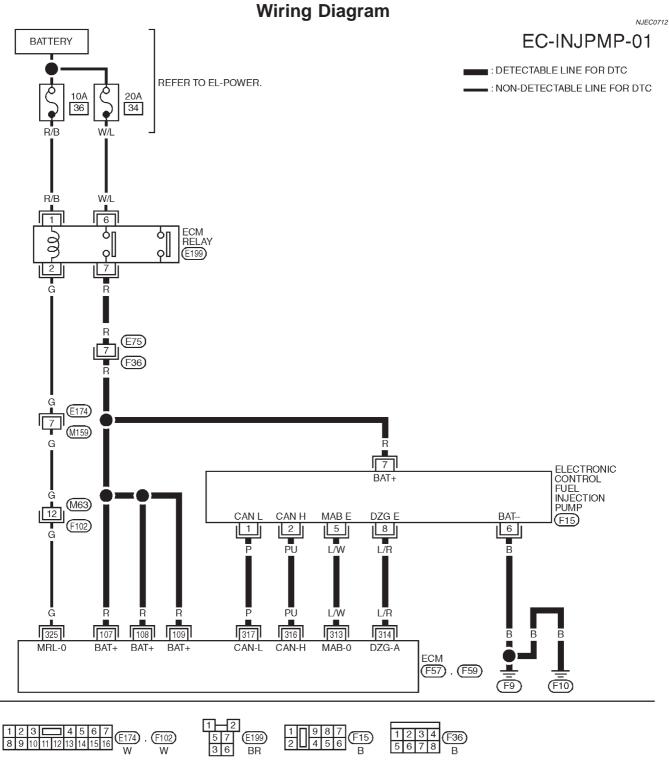
DTC Confirmation Procedure

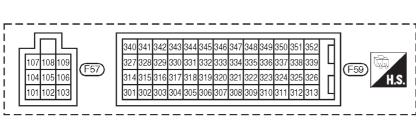
(A) WITH CONSULT-II

NJEC0711 NJEC0711S01

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-662.

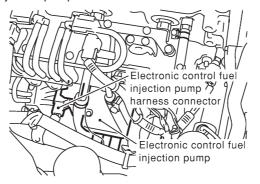
WITHOUT CONSULT-II


NJEC0711S02


1) Turn ignition switch "ON" and wait at least 2 seconds.

DTC Confirmation Procedure (Cont'd)

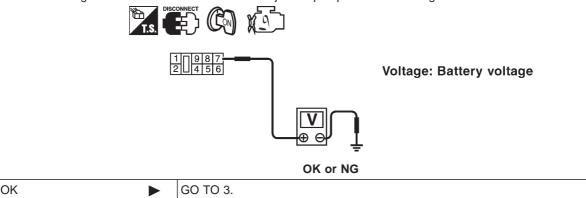
- Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-662.



Diagnostic Procedure

NJEC0713

1 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP POWER SUPPLY CIRCUIT


- 1. Turn ignition switch "OFF".
- 2. Disconnect electronic control fuel injection pump harness connector.

SEF390Y

YEC058A

- 3. Turn ignition switch "ON".
- 4. Check voltage between electronic control fuel injection pump terminal 7 and ground.

OK •	GO TO 3.
NG ▶	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between electronic control fuel injection pump and ECM
- Harness for open or short between electronic control fuel injection pump and ECM relay
 - Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK ELECTRONIC CONTROL FUEL INJECTION PUMP GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electronic control fuel injection pump terminal 6 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK	or	NG

OK	>	GO TO 4.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

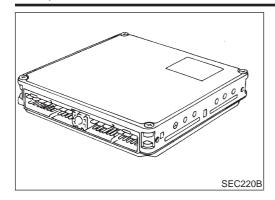
4 CHECK COMMUNICATION LINE FOR OPEN AND SHORT

1. Check continuity between the following terminals. Refer to Wiring Diagram.

Electronic control fuel injection pump	ECM
1	317
2	316
5	313
8	314

MTBL0462

Continuity should exist.

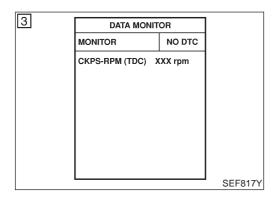

2. Also check harness for short to ground and short to power.

_				_
О	Κ	0 "	NI	G
	n	or	IV	١,

OK •	GO TO 5.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.			
	OK or NG		
OK	OK Replace electronic control fuel injection pump.		
NG	NG Repair open circuit or short to ground or short to power in harness or connectors.		

Description


Description

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The unit controls the engine.

On Board Diagnosis Logic

NJEC0669

DTC	Malfunction is detected when	Check Items (Possible Cause)
P1603 0901	ECM calculation function is malfunctioning.	ECM (ECCS-D control module)
P1607 0301		

DTC Confirmation Procedure

NJEC0670 NJEC0670S01

(P) WITH CONSULT-II

1) Turn ignition switch "ON".

- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 2 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-665.

N WITHOUT CONSULT-II

NJEC0670S02

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Start engine and wait at least 2 seconds.
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-665.

DTC P1603 ECM 12, DTC P1607 ECM 2

Diagnostic Procedure

Diagnostic Procedure

	g	NJEC067	
1	INSPECTION START		
1. Tu 2. Se 3. To 4. Pe	ith CONSULT-II Im ignition switch "ON". Elect "SELF DIAG RESULTS" mode with CONSULT-II. uch "ERASE". Erform "DTC Confirmation Procedure", EC-664, again. the DTC P1603 or P1607 displayed again?		
1. Tu 2. Era 3. Pe 4. Pe	Without CONSULT-II 1. Turn ignition switch "ON". 2. Erase the Diagnostic Test Mode II (Self-diagnostic results) memory. 3. Perform "DTC Confirmation Procedure", EC-664, again. 4. Perform "Diagnostic Test Mode II (Self-diagnostic results)". 5. Is the DTC 0301 or 0901 displayed again?		
	Yes or No		

Replace ECM.

INSPECTION END

Yes

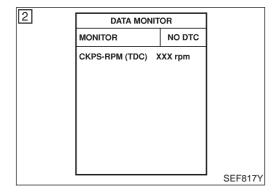
No

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NJEC0744

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

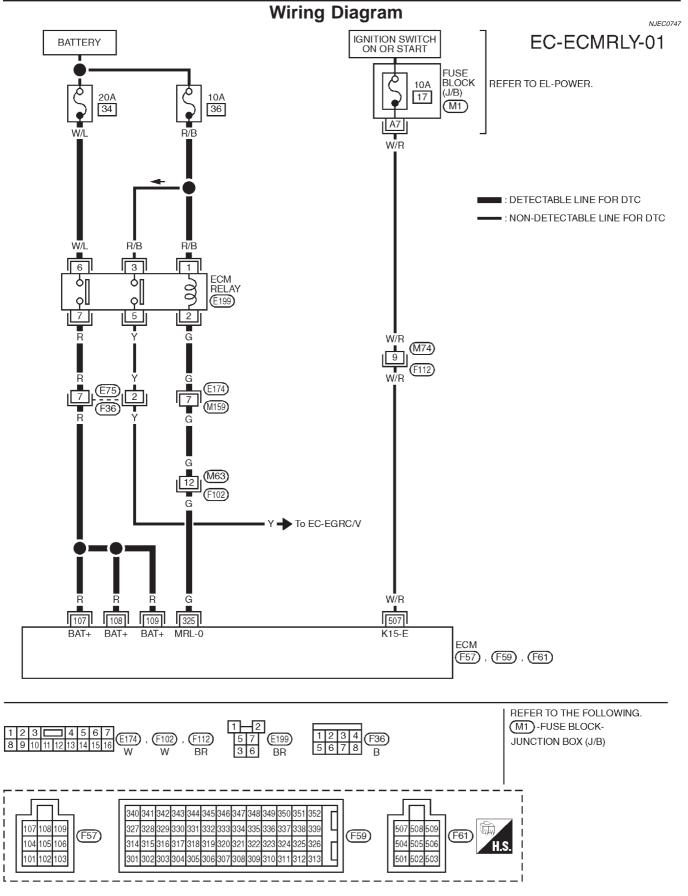
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA(DC Voltage)
107 108 109	R R R	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
325	G	ECM relay (Self-shutoff)	[Ignition switch "ON"] [Ignition switch "OFF"] ● For a few seconds after turning ignition switch "OFF"	0 - 1V
			[Ignition switch "OFF"] ● A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "OFF"]	OV
507 W/R		1 9 1 1 1	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NJEC0745

DTC	Malfunction is detected when	Check Items (Possible Cause)
P1620 0902	An irregular voltage signal from the ECM relay is sent to ECM.	Harness or connectors (ECM relay circuit is open or shorted.) ECM relay

DTC Confirmation Procedure

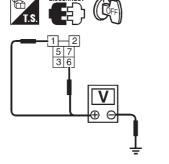

NJEC0746 NJEC0746S01

- (I) WITH CONSULT-II
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Turn ignition switch "OFF", wait at least 20 seconds and then turn "ON".
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-668.

N WITHOUT CONSULT-II

NJEC0746S02

- 1) Turn ignition switch "ON".
- 2) Turn ignition switch "OFF", wait at least 20 seconds and then turn "ON".
- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-668.



Diagnostic Procedure

NJEC0748

1 CHECK ECM POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM relay. (For ECM relay location, refer to "Engine Control Component Parts Location".)
- 3. Check voltage between ECM terminals 1, 6 and ground with CONSULT-II or tester.

Voltage: Battery Voltage

SEF399Y

0	K	or	N	G

OK	>	GO TO 3.
NG		GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- 1. 20A fuse
- 2. 10A fuse
- 3. Harness for open and short between ECM relay and battery

Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK ECM INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals 107, 108, 109 and ECM relay terminal 7. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 5.
NG		GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- 1. Harness connectors E75, F36
- 2. Harness for open and short between ECM and ECM relay

Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK ECM OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

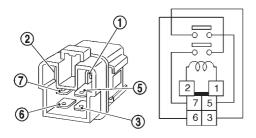
- Check harness continuity between ECM terminal 325 and ECM relay terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 2. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 7.
NG •	GO TO 6.

6 DETECT MALFUNCTIONING PART

Check the following.


7

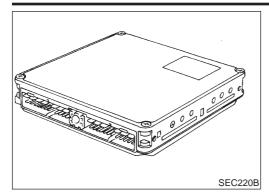
- 1. Harness connectors E174, M159
- 2. Harness connectors M63, F102
- 3. Harness for open and short between ECM and ECM relay

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK ECM RELAY

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between ECM relay terminals 3 and 5, 6 and 7.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

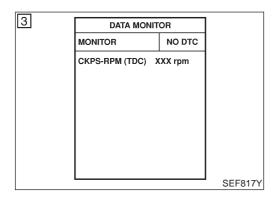

SEF296X

OK or NG

OK •	GO TO 8.
NG ►	Replace ECM relay.

8	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.		
	► INSPECTION END		

Description


Description

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The unit controls the engine.

On Board Diagnosis Logic

NJEC0750

DTC	Malfunction is detected when	Check Items (Possible Cause)
P1621 0903	ECM input signal processing function is malfunctioning.	ECM (ECCS-D control module)

DTC Confirmation Procedure

NJEC0751 NJEC0751S01

(I) WITH CONSULT-II

1) Turn ignition switch "ON".

- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Turn ignition switch "OFF", wait at least 20 seconds and then turn "ON".
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-671.

WITHOUT CONSULT-II

NJEC0751S02

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Turn ignition switch "OFF", wait at least 20 seconds and then turn "ON".
- 3) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-671.

Diagnostic Procedure

	9	NJEC0752		
1	INSPECTION START			
	th CONSULT-II			
2. Se	 Turn ignition switch "ON". Select "SELF DIAG RESULTS" mode with CONSULT-II. 			
	3. Touch "ERASE". 4. Perform "DTC Confirmation Procedure", EC-670, again.			
5. Is t	he DTC P1621 displayed again?			
	thout CONSULT-II rn ignition switch "ON".			
2. Era	ase the Diagnostic Test Mode II (Self-diagnostic results) memory.			
	rform "DTC Confirmation Procedure", EC-670, again. rform "Diagnostic Test Mode II (Self-diagnostic results)".			
5. Is t	he DTC 0903 displayed again?			
l	Yes or No			

Replace ECM.

INSPECTION END

Yes

No

On Board Diagnosis Logic

The ECM checks if battery voltage is within the tolerance range for the engine control system.

N.JEC1258

DTC	Malfunction is detected when	Check Items (Possible Cause)
P1660 0502	An abnormally high or low voltage from the battery is sent to ECM.	Incorrect jump startingBatteryAlternatorECM

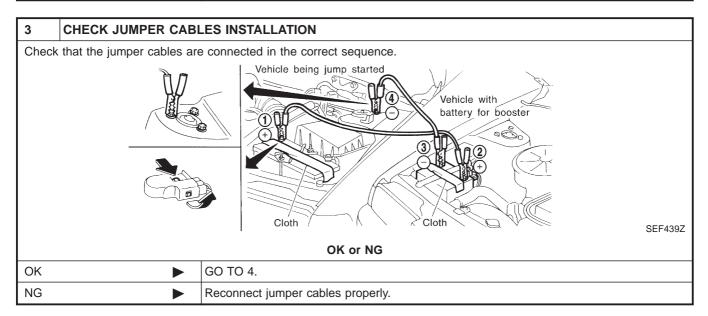
DTC Confirmation Procedure

NJEC1259

(P) With CONSULT-II

- 1) Check the following.
- Jumper cables are connected for jump starting.
- Battery or alternator has been replaced.
 If the result is "Yes" for one item or more, skip the following steps and go to "Diagnostic Procedure", EC-672.
- 2) Check that the positive battery terminal is connected to battery properly. If NG, reconnect it properly.
- 3) Check that the alternator functions properly. Refer to SC-26, "Trouble Diagnosis".
- 4) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 5) Wait one minute.
- 6) If DTC is detected, go to "Diagnostic Procedure", EC-672. If DTC is not detected, go to next step.
- 7) Start engine and wait one minute at idle.
- 8) If DTC is detected, go to "Diagnostic Procedure", EC-672.

⋈ Without CONSULT-II

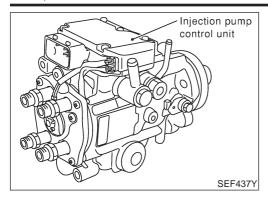

- 1) Check the following.
- Jumper cables are connected for jump starting.
- Battery or alternator has been replaced.
 If the result is "Yes" for one item or more, skip the following steps and go to "Diagnostic Procedure", EC-672.
- 2) Check that the positive battery terminal is connected to battery properly. If NG, reconnect it properly.
- 3) Check that the alternator functions properly. Refer to SC-26, "Trouble Diagnosis".
- 4) Turn ignition switch "ON" and wait one minute.
- 5) Turn ignition switch "OFF", wait 5 seconds and then turn "ON".
- 6) Perform "Diagnostic Test Mode II (Self-diagnostic result)" with ECM.
- 7) If DTC is detected, go to "Diagnostic Procedure", EC-672. If DTC is not detected, go to next step.
- 8) Start engine and wait one minute at idle.
- 9) Turn ignition switch "OFF", wait 5 seconds and then turn "ON".
- 10) Perform "Diagnostic Test Mode II (Self-diagnostic result)" with ECM.
- 11) If DTC is detected, go to "Diagnostic Procedure", EC-672.

Diagnostic Procedure

NJEC1260

1	INSPECTION START		
Are jumper cables connected for the jump starting?			
	Yes or No		
Yes	>	GO TO 3.	
No	>	GO TO 2.	

2	CHECK BATTERY AND ALTERNATOR		
	Check that the proper type of battery and alternator is installed. Refer to SC-34, "Battery" and SC-35, "Alternator".		
	OK or NG		
OK	•	GO TO 5.	
NG	>	Replace with a proper one.	



4	CHECK BATTERY FOR	BOOSTER
Check that the battery for the booster is a 12V battery.		
OK or NG		
OK	•	GO TO 5.
NG	•	Change the vehicle for booster.

5	PERFORM DTC CONFI	RMATION PROCEDURE AGAIN	
Perfor	Perform "DTC Confirmation Procedure", EC-672, again.		
	OK or NG		
OK	>	GO TO 6.	
NG	>	Replace ECM.	

6	CHECK ELECTRICAL F	PARTS DAMAGE
Check the following for damage. • Wiring harness and harness connectors for burn • Fuses for short OK or NG		
OK INSPECTION END		
NG	•	Repair or replace malfunctioning part.

Description SYSTEM DESCRIPTION

NJEC0721

NJEC0721S01

The ECM and the electronic control fuel injection pump control unit (abbreviated as the injection pump control unit) perform the real time communication (signal exchange).

The ECM transmits the signals of the target fuel injection amount, target fuel injection timing, and engine speed, etc., and receives the signals of the pump speed and fuel temperature, etc. from the injection pump control unit.

By those signals, the injection pump controls the optimum fuel injection amount and injection timing of the spill valve and timing control valve.

Injection pump control unit has an on board diagnostic system, which detects malfunctions related to sensors or actuators built-into electronic control fuel injection pump. These malfunction information are transferred through the line (circuit) from injection pump control unit to ECM.

FUEL INJECTION AMOUNT CONTROL

JJFC0721S02

In accordance with the target fuel injection amount signal from the ECM, the injection amount is controlled by controlling the spill valve in the injection pump and by changing the needle opening time.

FUEL INJECTION TIMING CONTROL

JEC0721S03

Based on the target fuel injection timing signal from the ECM, the injection timing is controlled in accordance with the timer spring by performing the duty control of the timing control valve in the injection pump and by adjusting the pressure of the timer piston high pressure chamber.

FUEL TEMPERATURE SENSOR

N.IFC0721S0

The sensor detects the fuel temperature in the injection pump and calibrates the injection amount change by the fuel temperature.

CAM RING POSITION SENSOR

IJEC0721

The sensor detects the passing of the protrusion on the sensor wheel in the injection pump by the semiconductor magnetic resistance element sensor. The cam ring position sensor synchronizes with the cam ring, and detects the actual advance amount. The injection pump control unit measures the injection pump revolution by the signal of the cam ring position sensor.

CONSULT-II Reference Value in Data Monitor Mode

Remarks: Specification data are reference values.

NJEC0722

MONITOR ITEM	CONDITION		SPECIFICATION
FUEL TEMP SEN	Engine: After warming up	More than 40°C (104°F)	
SPILL/V	Engine: After warming up, idle the engine.		Approx. 12 - 13°CA
INT/A VOLUME	Engine: After warming up, idle the engine.		Approx. 150 - 450 mg/st
F/CUT SIGNAL	Engine: After warming up		ON

DTC P1690 P5-PUMP C/MODULE

CONSULT-II Reference Value in Data Monitor Mode (Cont'd,

MONITOR ITEM	CONDITION	SPECIFICATION
BARO SEN	• Ignition switch: ON	Altitude Approx. 0 m (0 ft): Approx. 100.62 kPa (1.0062 bar, 1.026 kg/cm², 14.59 psi) Approx. 1,000 m (3,218 ft): Approx. 88.95 kPa (0.8895 bar, 0.907 kg/cm², 12.90 psi) Approx. 1,500 m (4,922 ft): Approx. 83.16 kPa (0.8316 bar, 0.848 kg/cm², 12.06 psi) Approx. 2,000 m (6,562 ft): Approx. 78.36 kPa (0.7836 bar, 0.799 kg/cm², 11.36 psi)

ECM Terminals and Reference Value

NJEC0723

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
313	L/W	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.1V
314	L/R	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0.4V
316	PU	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V
317	Р	Electronic control fuel injection pump	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 2.5V

On Board Diagnosis Logic

NJEC0724

DTC	Malfunction is detected when	Check Items (Possible cause)
P1690 0705	Injection pump control unit does not function properly.	Electronic control fuel injection pump

DATA MONITOR MONITOR NO DTC CKPS-RPM (TDC) XXX rpm SEF817Y

DTC Confirmation Procedure

NJEC0725

NJEC0725S01

(P) WITH CONSULT-II

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-676.

N WITHOUT CONSULT-II

NJEC0725S02

1) Turn ignition switch "ON" and wait at least 2 seconds.

DTC Confirmation Procedure (Cont'd)

- Start engine and run it for at least 2 seconds at idle speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If DTC is detected, go to "Diagnostic Procedure", EC-676.

Diagnostic Procedure

NJEC0726 **INSPECTION START** (P) With CONSULT-II 1. Turn ignition switch "ON". 2. Select "SELF DIAG RESULTS" mode with CONSULT-II. 3. Touch "ERASE". 4. Perform "DTC Confirmation Procedure", EC-675, again. 5. Is the DTC P1690 displayed again? Without CONSULT-II 1. Turn ignition switch "ON". 2. Erase the Diagnostic Test Mode II (Self-diagnostic results) memory. 3. Perform "DTC Confirmation Procedure", EC-675, again. 4. Perform "Diagnostic Test Mode II (Self-diagnostic results)". 5. Is the DTC 0705 displayed again? Yes or No Yes Replace electronic control fuel injection pump. **INSPECTION END** No

Description SYSTEM DESCRIPTION

NJEC0760

NJEC0760S01

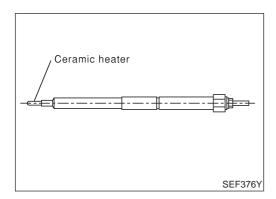
Sensor	Input Signal to ECM	ECM Func- tion	Actuator
Crankshaft position sensor (TDC)	Engine speed	Glow lamp, Glow relay Control Glow plugs	
Engine coolant tempera- ture sensor	Engine coolant temperature		↓ Glow plugs

When engine coolant temperature is more than approximately 75°C (167°F), the glow relay turns off.

When coolant temperature is lower than approximately 75°C (167°F):

Ignition switch ON

After ignition switch has turned to ON, the glow relay turns ON for a certain period of time in relation to engine coolant temperature, allowing current to flow through glow plug.


Cranking

The glow relay turns ON, allowing current to flow through glow plug.

Starting

After engine has started, current continues to flow through glow plug (after-glow mode) for a certain period in relation to engine coolant temperature.

The glow indicator lamp turns ON for a certain period of time in relation to engine cooalnt temperature at the time glow relay is turned ON.

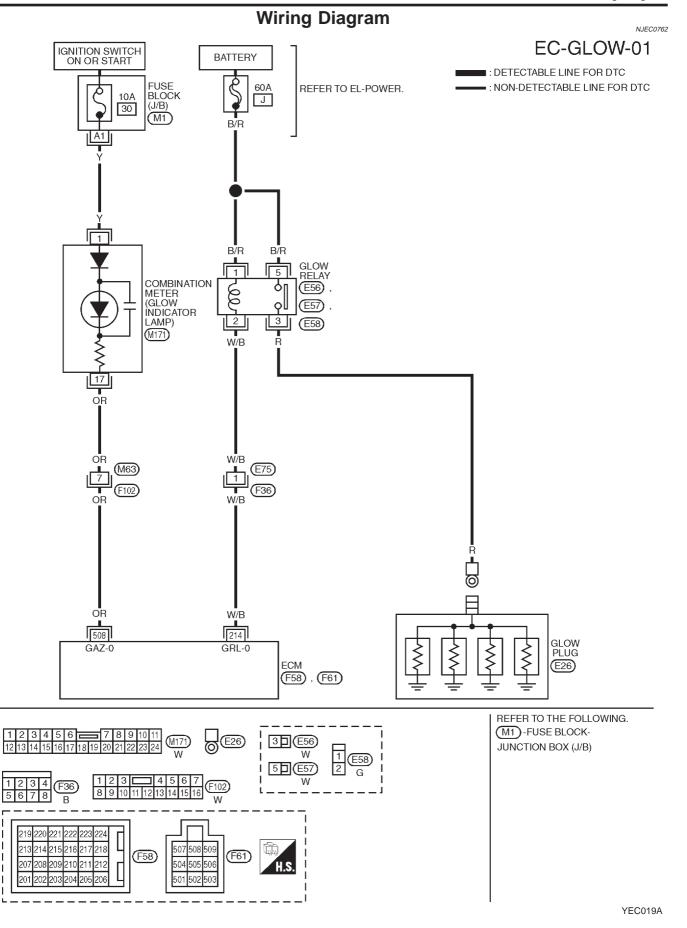
COMPONENT DESCRIPTION Glow Plug

NJEC0760S02

N.JEC0760S020

The glow plug is provided with a ceramic heating element to obtain a high-temperature resistance. It glows in response to a signal sent from the ECM, allowing current to flow through the glow plug via the glow relay.

ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and ground.

NJEC0761

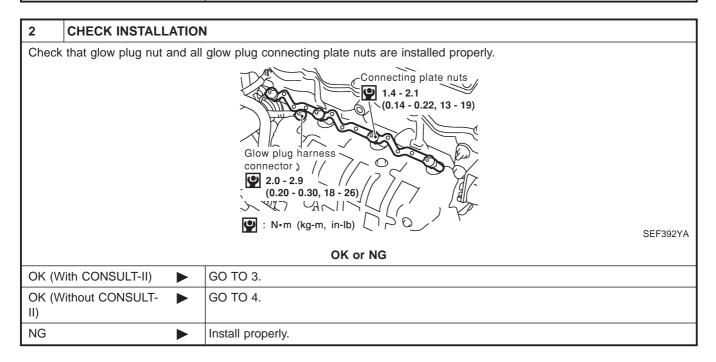
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
214	W/B	Glow relay	Refer to "SYSTEM DESCRIPTION", EC-677.	
508	OR		[Ignition switch "ON"] ■ Glow indicator lamp is "ON"	Approximately 1V
			[Ignition switch "ON"] ■ Glow indicator lamp is "OFF"	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

1 INSPECTION START


Check fuel level, fuel supplying system, starter motor, etc.

OK or NG

OK

OK

Correct.

3 CHECK GLOW INDICATOR LAMP OPERATION

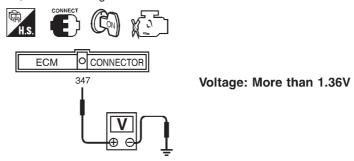
With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 3. Confirm that "COOLAN TEMP/S" indicates below 75°C (167°F). If it indicates above 75°C (167°F), cool down engine.

DATA MONITOR		
MONITOR	NO DTC	
COOLAN TEMP/S	XXX °C	

SEF013Y

- 4. Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 5. Make sure that glow indicator lamp is turned "ON" for 1.5 seconds or more after turning ignition switch "ON", and then turned "OFF".


0	Κ	or	NG

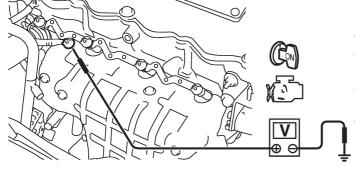
OK ▶	GO TO 5.
NG ▶	GO TO 6.

4 CHECK GLOW INDICATOR LAMP OPERATION

Without CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Confirm that the voltage between ECM terminal 347 (Engine coolant temperature sensor signal) and ground is above 1.36V. If it is below 1.36V, cool down engine.

SEF442Z

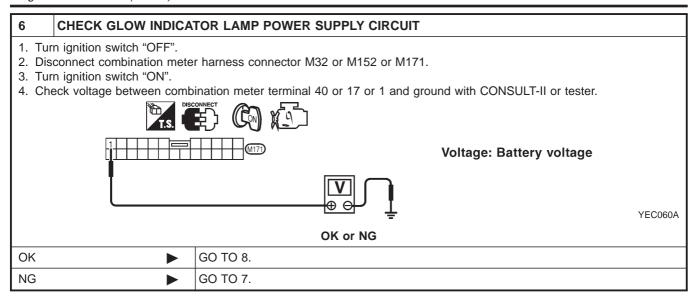

- 3. Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4. Make sure that glow indicator lamp is turned "ON" for 1.5 seconds or more after turning ignition switch "ON", and then turned "OFF".

OK	or	N	G
----	----	---	---

OK •	GO TO 5.
NG •	GO TO 6.

5 CHECK GLOW CONTROL SYSTEM OVERALL FUNCTION

- 1. Turn ignition switch "OFF".
- 2. Set voltmeter probe between glow plug and engine body.
- 3. Turn ignition switch "ON".
- 4. Check the voltage between glow plug and engine body under the following conditions.



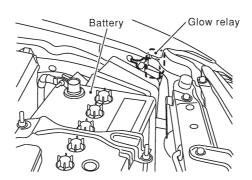
Conditions	Voltage	
For 20 seconds after turning ignition switch "ON"	Battery voltage	
More than 20 seconds after turning ignition switch "ON"	Approx. 0V	

SEF431Y

OK or NG

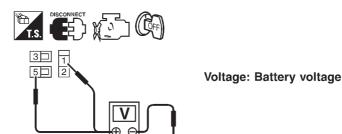
OK ►	INSPECTION END
NG •	GO TO 11.

7	DETECT MALFUNCTIONING PART		
Check	Check the following.		
1. Fus	1. Fuse block (J/B) connector M1		
2. 10/	2. 10A fuse		
3. Harness for open or short between combination meter and fuse			
	Repair open circuit or short to ground or short to power in harness or connectors.		


8	CHECK GLOW INDIC	ATOR LAMP OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
1. Tur	1. Turn ignition switch "OFF".		
2. Dis	connect ECM harness c	nnector.	
3. Dis	connect combination me	er harness connector M171.	
4. Ch	4. Check harness continuity between ECM terminal 508 and combination meter terminal 17. Refer to Wiring Diagram.		
	Continuity should exist.		
5. Also	5. Also check harness for short to ground and short to power.		
OK or NG			
OK	•	GO TO 10.	
NG	>	GO TO 9.	

9	DETECT MALFUNCTIONING PART		
1. Ha	Check the following. 1. Harness connectors M63, F102 2. Harness for open or short between combination meter and ECM		
	>	Repair open circuit or short to ground or short to power in harness or connectors.	

10	0 CHECK COMBINATION METER		
Check combination meter and glow indicator lamp. Refer to EL-89, "Meter and Gauges".			
	OK or NG		
OK	>	GO TO 18.	
NG	>	Repair or replace combination meter or glow indicator lamp.	


11 CHECK GLOW RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect glow relay.

3. Check voltage between glow relay terminals 1, 5 and ground with CONSULT-II or tester.

SEF391Y

SEF420Y

OK or NG

OK •	GO TO 13.
NG ▶	GO TO 12.

12 DETECT MALFUNCTIONING PART

Check the following.

- 60A fusible link
- Harness for open or short between glow relay and battery
 - Repair harness or connectors.

13 CHECK GLOW RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 214 and glow relay terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK of No		
	OK ►	GO TO 15.
	NG ►	GO TO 14.

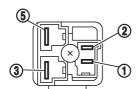
14 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, F36
- Harness for open or short between glow relay and ECM
 - ▶ Repair open circuit or short to ground or short to power in harness or connectors.

15 CHECK HARNESS CONTINUITY BETWEEN GLOW RELAY AND GLOW PLUG FOR OPEN AND SHORT

- 1. Disconnect glow plug harness connector.
- 2. Check harness continuity between glow relay terminal 3 and glow plug harness connector. Refer to Wiring Diagram.


 Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

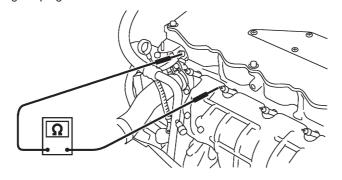
OK	•	GO TO 16.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

16 CHECK GLOW RELAY

Check continuity between glow relay terminals 3 and 5 under the following conditions.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

Operation takes less than 1 second.


SEF433Y

OK or NG

OK •	GO TO 17.
NG ►	Replace glow relay.

17 CHECK GLOW PLUG

- 1. Remove glow plug connecting plate.
- 2. Check glow plug resistance.

Resistance: Approximately 0.8Ω [at 25°C (77°F)]

SEF434Y

NOTE:

- Do not bump glow plug heating element. If it is bumped, replace glow plug with a new one.
- If glow plug is dropped from a height of 10 cm (3.94 in) or higher, replace with a new one.
- If glow plug installation hole is contaminated with carbon, remove it with a reamer or suitable tool.
- Hand-tighten glow plug by turning it two or three times, then tighten using a tool to specified torque.

: 17.7 - 22.5 N·m (1.8 - 2.3 kg-m, 13 - 16 ft-lb)

OK or NG

OK •	GO TO 18.
NG ►	Replace glow plug.

GLOW CONTROL SYSTEM

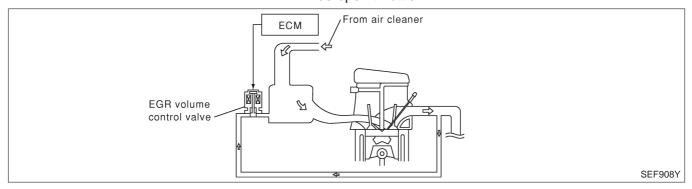
YD

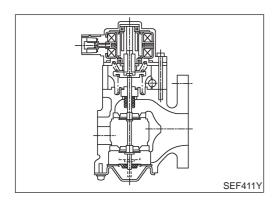
Diagnostic Procedure (Cont'd)

18	CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.		
► INSPECTION END		

Description SYSTEM DESCRIPTION

NJEC0764


NJEC0764S01


Sensor	Input Signal to ECM	ECM Function	Actuator
Electronic controlled fuel injection pump	Fuel injection signal		
Crankshaft position sensor (TDC)	Engine speed		
Vehicle speed sensor	Vehicle speed		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal	EGR volume con-	EGR volume control valve
Accelerator position sensor	Accelerator position		
Mass air flow sensor	Amount of intake air		
Air conditioner switch	Air conditioner operation		
Electrical load	Electrical load signal		

This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions.

The EGR volume control valve remains close under the following conditions.

- Engine stopped
- Engine starting
- Low engine coolant temperature
- Excessively high engine coolant temperature
- High engine speed
- Wide open throttle

COMPONENT DESCRIPTION EGR Volume Control Valve

NJEC0764S02

The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

EGR VOLUME CONTROL SYSTEM

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

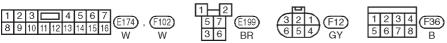
NJEC0765

MONITOR ITEM	CONDITION		SPECIFICATION
EGR VOL CON/V	Engine: After warming upAir conditioner switch: "OFF"	After one minute at idle	More than 10 step
	Shift lever: Neutral position	Revving engine up to 3,200 rpm	0 step

ECM Terminals and Reference Value

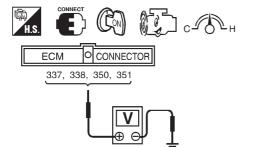
NJEC0766

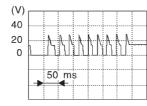
Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA(DC Voltage)
337 338 350 351	W/L PU/W GY OR/B	EGR volume control valve	[Engine is running] • Warm-up condition • Idle speed	0.1 - 14V (Voltage signals of each ECM terminals differ according to the control position of EGR volume control valve.)


YEC020A

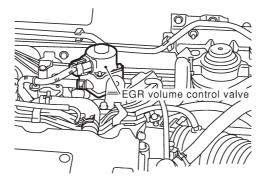

Diagnostic Procedure

NJEC0768

1 CHECK EGR VOLUME CONTROL SYSTEM OVERALL FUNCTION

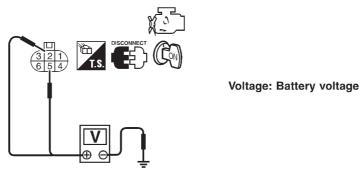
- 1. Turn ignition switch "OFF".
- 2. Set the oscilloscope probe between ECM terminals 337, 338, 350, 351 and ground.
- 3. Start engine and let it idle.
- 4. Check the oscilloscope screen when revving engine up to 3,200 rpm and return to idle.

The pulse signal as shown left should appear.


SEF247Z

OK or NG

OK •	>	INSPECTION END
NG	•	GO TO 2.


2 CHECK EGR VOLUME CONTROL VALVE POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch "OFF".
- 2. Disconnect EGR volume control valve harness connector.

SEF388Y

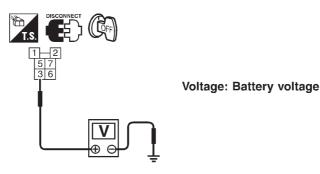
- 3. Turn ignition switch "ON".
- 4. Check voltage between EGR volume control valve terminals 2, 5 and ground with CONSULT-II or tester.

SEF412Y

OK •	GO TO 7.
NG ►	GO TO 3.

3 CHECK EGR VOLUME CONTROL VALVE POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM relay. (For ECM relay location, refer to "Engine Control Component Parts Location".)
- 3. Check harness continuity between ECM relay terminal 5 and EGR volume control valve terminals 2 and 5. Refer to Wiring Diagram.


Continuity should exist.

OK or NG

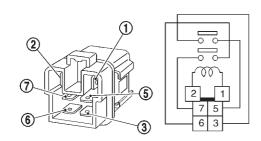
OK •	GO TO 4.
NG >	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK EGR VOLUME CONTROL VALVE POWER SUPPLY CIRCUIT-III

Check voltage between ECM relay terminal 3 and ground with CONSULT-II or tester.

OK or NG

OK	>	GO TO 6.
NG	•	GO TO 5.


5 DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Harness for open or short between ECM relay and battery
 - Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK ECM RELAY

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between ECM relay terminals 3 and 5, 6 and 7.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

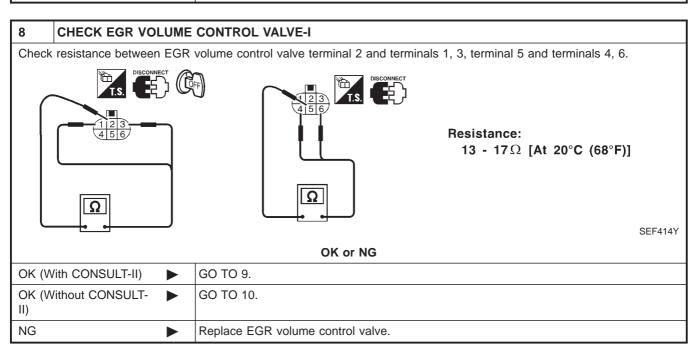
SEF296X

SEF413Y

OK •	GO TO 7.
NG ►	Replace ECM relay.

7 CHECK EGR VOLUME CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals and EGR volume control valve terminals as follows. Refer to Wiring Diagram.

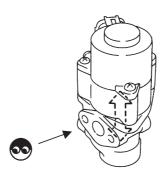

ECM terminal	EGR volume control valve
337	6
338	4
350	1
351	3

MTBL0463

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK •	GO TO 8.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.



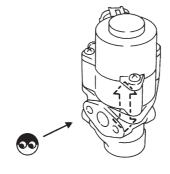
9 CHECK EGR VOLUME CONTROL VALVE-II

(P) With CONSULT-II

- 1. Remove EGR volume control valve.
- 2. Reconnect ECM harness connector and EGR volume control valve harness connector.
- 3. Turn ignition switch "ON".
- 4. Perform "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 5. Check that EGR volume control valve shaft moves smoothy forward and backward according to the valve opening steps.

ACTIVE TEST				
EGR VOL CONT/V	20 step			
MONITOR	1			
CKPS-RPM (TDC)	XXX rpm			

SEF819Y


()K	or	NG

OK •	GO TO 11.
NG ►	Replace EGR volume control valve.

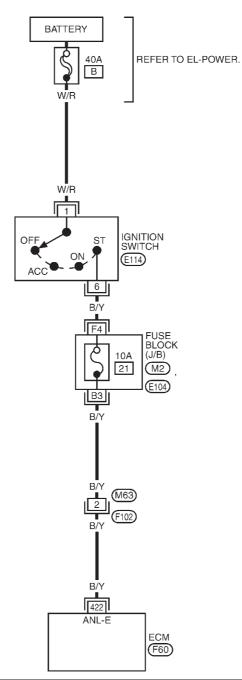
10 CHECK EGR VOLUME CONTROL VALVE-II

Without CONSULT-II

- 1. Remove EGR volume control valve.
- 2. Reconnect ECM harness connector and EGR volume control valve harness connector.
- 3. Turn ignition switch "ON" and "OFF".
- 4. Check that EGR volume control valve shaft moves smoothly forward and backward according to the ignition switch position.

SEF560W

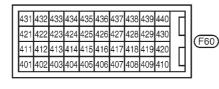
OK or NG


OK ►	GO TO 11.
NG ►	Replace EGR volume control valve.

11	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.			
	► INSPECTION END			

Wiring Diagram

NJEC0769


EC-S/SIG-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

REFER TO THE FOLLOWING.

M2 , €104 -FUSE BLOCKJUNCTION BOX (J/B)

YEC021A

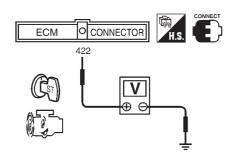
Diagnostic Procedure

NJEC0770

1 CHECK START SIGNAL OVERALL FUNCTION

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Check "START SIGNAL" in "DATA MONITOR" mode with CONSULT-II under the following conditions.


DATA MONITOR				
MONITORING	NO FAIL			
START SIGNAL	OFF			
CLSD TH/P SW	ON			
AIR COND SIG	OFF			
P/N POSI SW	ON			

Condition	"START SIGNAL"	
Ignition switch "ON"	OFF	
Ignition switch "START"	ON	

SEF604X

(R) Without CONSULT-II

Check voltage between ECM terminal 422 and ground under the following conditions.

Condition	Voltage	
Ignition switch "START"	Battery voltage	
Other positions	Approximately 0V	

SEF909Y

OK or NG

OK		INSPECTION END
NG		GO TO 2.

2 CHECK START SIGNAL INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and ignition switch harness connector.
- 3. Check harness continuity between ECM terminal 422 and ignition switch terminal 6. Refer to Wiring Diagram.

 Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

51. 51. 115				
OK •	GO TO 4.			
NG •	GO TO 3.			

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M63, F102
- 10A fuse
- Fuse block (J/B) connectors M2, E104
- Harness for open or short between ECM and ignition switch
 - Repair open circuit or short to ground or short to power in harness or connectors.

START SIGNAL

Diagnostic Procedure (Cont'd)

4	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.				
	► INSPECTION END				

PARK/NEUTRAL POSITION (PNP) SWITCH (WHERE FITTED)

Description

Description

11500704

When the gear position is in "Neutral", neutral position is "ON". ECM detects the position because the continuity of the line (the "ON" signal) exists.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NJEC0782

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	• Ignition switch: ON	Shift lever: Neutral	ON
F/N FO31 3W	Ignition switch: ON	Except above	OFF

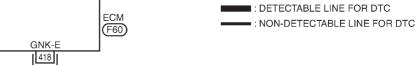
On models not equipped with park/neutral position (PNP) switch, "OFF" is always displayed regardless of gear shift position.

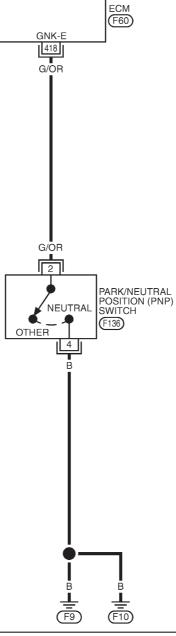
ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NJEC0783

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
440	G/OR	Park/Neutral position	[Ignition switch "ON"] ■ Gear position is "Neutral"	Approximately 0V
418			[Ignition switch "ON"] ■ Except the above gear position	BATTERY VOLTAGE (11 - 14V)

Wiring Diagram

NJEC0784

EC-PNP/SW-01

	_	422 412	423 413	424 414	425 415	426 416	427 417	428 418	429 419	420		F60	H.S
l	401		_	_	_	_		408	_	_	Ц		11.5

NJEC0785

Diagnostic Procedure

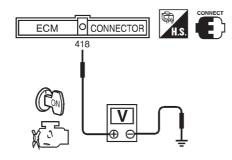
1

Diagnostic Procedure

(I) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "P/N POSI SW" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check "P/N POSI SW" signal under the following conditions.

CHECK OVERALL FUNCTION


DATA MONITOR									
MONITOR	NO DTC								
P/N POSI SW	ON								

Shift lever position	P/N POSI SW
Neutral position	ON
Except the above position	OFF

SEF049Y

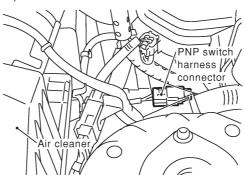
Without CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Check voltage between ECM terminal 418 and ground under the following conditions.

Condition (Gear position)	Voltage V
Neutral position	Approx. 0V
Except the above position	Battery voltage

SEF914Y

OK ▶	INSPECTION END
NG ▶	GO TO 2.


PARK/NEUTRAL POSITION (PNP) SWITCH (WHERE FITTED)

Diagnostic Procedure (Cont'd)

2 CHECK PNP SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect park/neutral position (PNP) switch harness connector.

SEF393Y

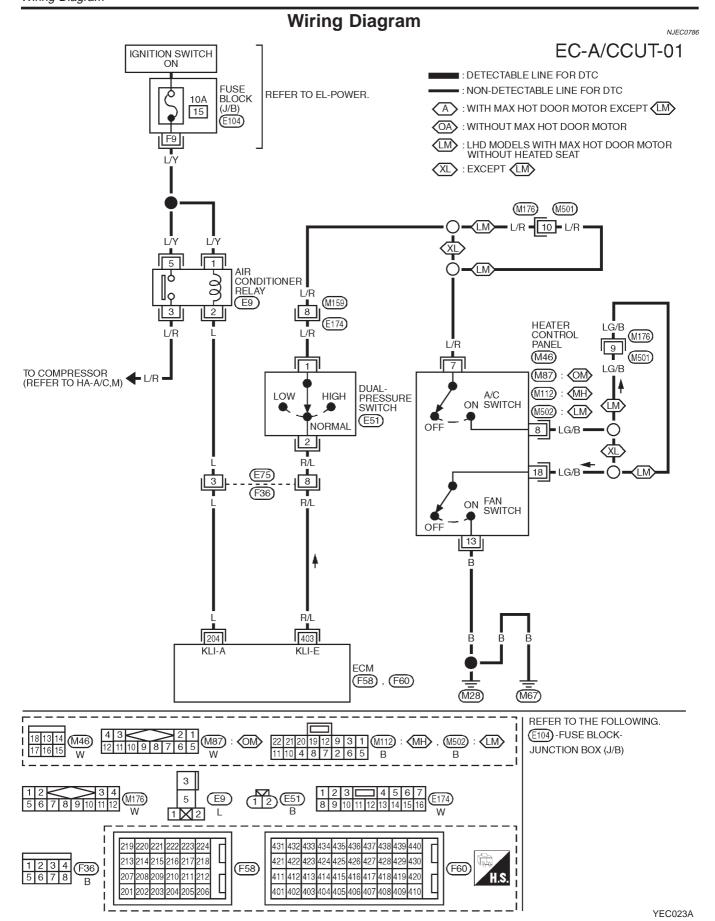
- 3. Check harness continuity between PNP switch terminal 4 and body ground. Refer to Wiring Diagram.

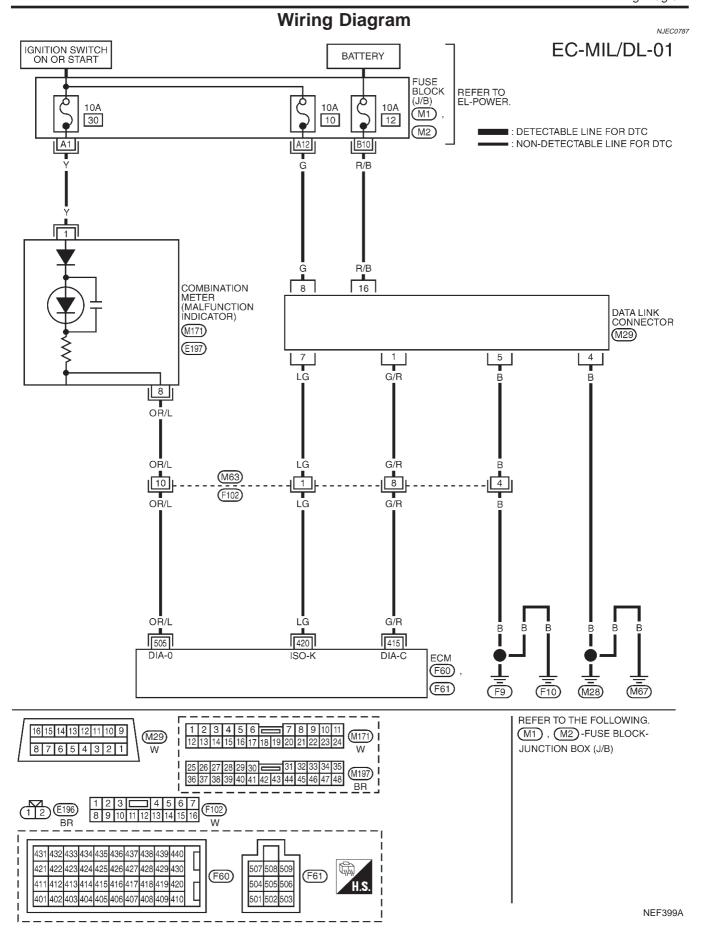
 Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK J	GO TO 3.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT


- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 418 and PNP switch terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.


OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

4	4 CHECK PARK/NEUTRAL POSITION (PNP) SWITCH					
Refer to MT-21, "Position Switch Check".						
	OK or NG					
OK	OK ▶ GO TO 5.					
NG	NG Replace park/neutral position (PNP) switch.					

5	CHECK INTERMITTENT INCIDENT					
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-559.					
	► INSPECTION END					

General Specifications

	Genera	I Specific	ations	NJEC0788 Unit: rpm	
Engine		YD22DDT			
Idle speed		725±25			
Maximum engine speed		4,900			
	Injectio	n Nozzle	Unit: kPa (bar,	NJEC0790 kg/cm², psi)	
Latter Late attended and a second	New		21,476 - 22,457 (214.7 - 224.5, 219 - 229, 3,1	14 - 3,256)	
Initial injection pressure	Limit		18,275 (182.7, 186, 2,650)	86, 2,650)	
	Engine	Coolant	Temperature Sensor	NJEC0791	
Temperature °C (°F)			Resistance $k\Omega$		
20 (68)			2.1 - 2.9		
50 (122)			0.68 - 1.00		
90 (194)			0.236 - 0.260		
	Cranks	haft Posi	tion Sensor (TDC)	NJEC0792	
Resistance [at 20°C (68°F)] Ω			495 - 605		
	Glow P	lug		NJEC0793	
Resistance [at 25°C (77°F)] Ω			0.8		
	Accele	rator Pos	ition Sensor	NJEC0794	
Throttle valve conditions		Resista	ance between terminals 2 and 4 k Ω [at 25°C (77	′°F)]	
Completely closed			0.9 - 1.3		
Partially open			0.9 - 2.1		
Completely open			1.7 - 2.1		
	EGR V	olume Co	ntrol Valve	NJEC0795	
Resistance [at 25°C (77°F)] Ω			13 - 17		