## FRONT AXLE

## 2. Front Axle

## A: GENERAL

- The inboard end of each axle shaft is connected to the transmission via a constant velocity joint (shudder-less freering tripod joint: SFJ) which is flexible in the axial directions while the outboard end is connected via a bell joint (BJ) to the wheel hub which is supported by a taper roller bearing located inside the axle housing. The BJ features a large operating angle. Both the constant velocity joints (SFJ and BJ) ensure smooth, regular rotation of the drive wheels with minimum vibration.
- The bearing is a preloaded, non-adjustable tapered roller unit bearing.

Each hub is fitted in the axle housing via the tapered roller bearing.

- The BJ's spindle is splined to the hub and is secured with an axle nut clinched to it.
- The disc rotor is an external mounting type. It is secured to the disc wheel using hub bolts to facilitate maintenance of the disc rotor.

1) 3.0 $\ell$ ENGINE MODEL

- The hubs are induction-hardened.
- The axle nuts are given chromate treatment (olive drab treatment).
- The bearings are specially designed for the $3.0 \ell$ engine model.

2) $2.5 \ell$ ENGINE MODEL

- The hubs are same as those used in the previous model.
- The axle nuts are zinc-plated.
- The bearings are same as those used in the previous model.


B4H2192A
(1) Bell joint (BJ)
(5) Axle nut
(9) Baffle plate
(2) Axle housing
(6) Hub
(10) Hub bolt
(3) Tone wheel
(7) Oil seal
(4) Bearing
(8) Brake backing plate

## B: FRONT DRIVE SHAFT

- A shudder-less freering tripod joint (SFJ) is used on the differential side of each front drive shaft. The SFJ can be disassembled for maintenance. It provides a maximum operating angle of $25^{\circ}$ and can be moved in the axial directions.
- A bell joint (BJ) is used on the wheel side of each front drive shaft.

The BJ's maximum operating angle is $47.5^{\circ}$.

(1) Shudder-less freering tripod joint (SFJ)
(2) Bell joint (BJ)

B4H2193B

(3) Transmission side
(4) Wheel side

