AUTOMATIC TRANSAXLE SYSTEM

PRECAUTION

NOTICE:

- Perform the RESET MEMORY (AT initialization) when replacing the automatic transaxle assembly, engine assembly or ECM (See page AX-15).
- Perform the REGISTRATION (VIN registration) when replacing the ECM (See page ES-19).

HINT:

RESET MEMORY can not be completed by only disconnecting the battery cable.

1. PRECAUTION FOR DISCONNECTING THE BATTERY CABLE

NOTICE:

When disconnecting the negative (-) battery terminal, initialize the following systems after the terminal is reconnected.

System Name	See procedure
Power Window Control System	IN-29
Sliding Roof System	111-29

2. EXPRESSION OF IGNITION SWITCH

The type of ignition switch used on this model differs according to the specifications of the vehicle. The expressions listed in the table below are used in this section.

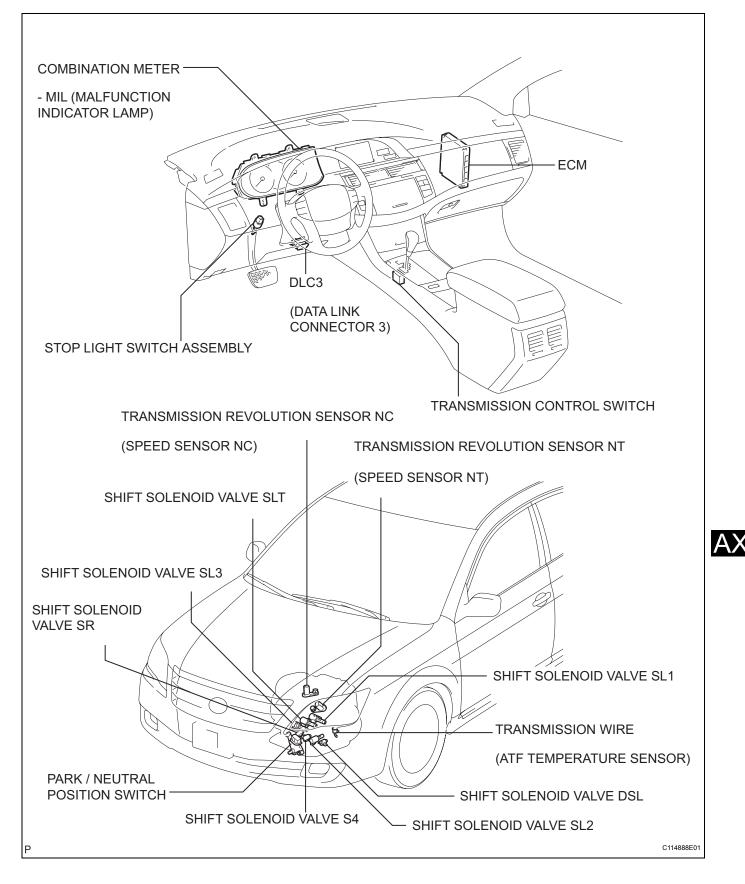
Switch Type Expression	Ignition Switch (Position)	Engine Switch (Condition)
Ignition switch off	LOCK	Off
Ignition switch on (IG)	ON	On (IG)
Ignition switch on (ACC)	ACC	On (ACC)
Engine start	START	Start

Н

AX

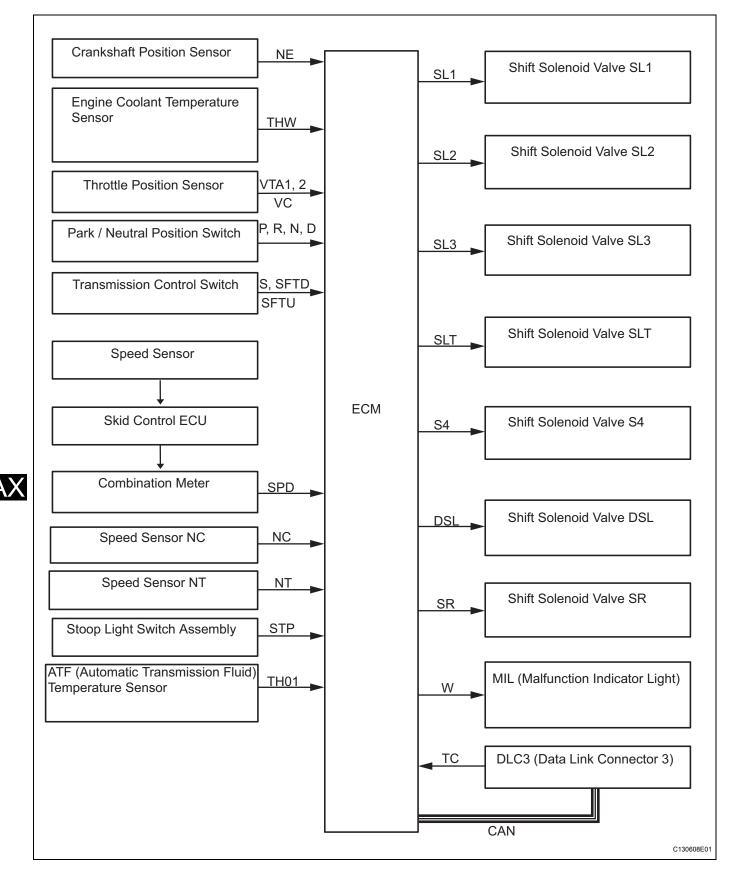
E116900E03

- The automatic transaxle is composed of highly 3. precision-finished parts which need careful inspection before reassembly. Even a small nick could cause fluid leakage or affect the performance. The instructions here are organized so that you work on only one component group at a time. This will help avoid confusion caused by similar-looking parts of different sub-assemblies being on your workbench at the same time. The component groups are inspected and repaired from the converter housing side. Complete the inspection, repair and reassembly before proceeding to the next component group as much as possible. If a defect is found in a certain component group during reassembly, inspect and repair this group immediately. If a component group cannot be assembled because some parts are being ordered, be sure to keep all parts of the group in a separate container while proceeding with disassembly, inspection, repair and reassembly of other component groups. Recommended: ATF WS
- 4. All disassembled parts should be washed clean and any fluid passages and holes should be blown through with compressed air.
- 5. Dry all parts with compressed air. Never use a shop rag or a piece of cloth to dry them.
- 6. When using compressed air, always aim away from yourself to prevent accidentally spraying ATF or kerosene in your face.
- 7. Only recommended automatic transaxle fluid or kerosene should be used for cleaning.
- 8. After cleaning, the parts should be arranged in the correct order for efficient inspection, repair, and reassembly.
- 9. When disassembling a valve body, be sure to match each valve together with the corresponding spring.
- 10. New discs for the brakes and clutches that are to be used for replacement must be soaked in ATF for at least 15 minutes before reassembly.
- 11. All oil seal rings, clutch discs, clutch plates, rotating parts, and sliding surfaces should be coated with ATF prior to reassembly.
- 12. All gaskets and rubber O-rings should be replaced with new ones.
- 13. Do not apply adhesive cements to gaskets and similar parts.
- 14. Make sure that the ends of a snap ring are not aligned with one of the cutouts and are installed in the groove correctly.
- 15. When replacing a worn bushing, the sub-assembly containing the bushing must also be replaced.


- 16. Check thrust bearings and races for wear or damage. Replace them as necessary.
- 17. When working with FIPG material, you must observe the following:
 - Using a razor blade and a gasket scraper, remove all the old packing (FIPG) material from the gasket surface.
 - Thoroughly clean all components to remove any loose material.
 - Clean both sealing surfaces with a non-residue solvent.
 - Parts must be reassembled within 10 minutes of application. Otherwise, the packing (FIPG) material must be removed and reapplied.

DEFINITION OF TERMS

Term	Definition	
Monitor description	Description of what the ECM monitors and how it detects malfunctions (monitoring purpose and its details).	
Related DTCs	Diagnostic code	
Typical enabling condition	Preconditions that allow the ECM to detect malfunctions. With all preconditions satisfied, the ECM sets the DTC when the monitored value(s) exceeds the malfunction threshold(s).	
Sequence of operation	The priority order that is applied to monitoring, if multiple sensors and components are used to detect the malfunction. While another sensor is being monitored, the next sensor or component will not be monitored until the previous monitoring has concluded.	
Required sensor/components	The sensors and components that are used by the ECM to detect malfunctions.	
Frequency of operation	The number of times that the ECM checks for malfunctions per driving cycle. "Once per driving cycle" means that the ECM detects malfunction only one time during a single driving cycle. "Continuous" means that the ECM detects malfunction every time when enabling condition is met.	
Duration	The minimum time that the ECM must sense a continuous deviation in the monitored value(s) before setting a DTC. This timing begins after the "typical enabling conditions" are met.	
Malfunction thresholds	Beyond this value, the ECM will conclude that there is a malfunction and set a DTC.	
MIL operation	MIL illumination timing after a defect is detected. "Immediately" means that the ECM illuminates MIL the instant the ECM determines that there is a malfunction. "2 driving cycle" means that the ECM illuminates MIL if the same malfunction is detected again in the 2nd driving cycle.	
Component operating range	Normal operation range of sensors and solenoids under normal driving conditions. Use these ranges as a reference. They cannot be used to judge if a sensor or solenoid is defective or not.	



PARTS LOCATION

SYSTEM DIAGRAM

The configuration of the electronic control system in the U151E automatic transaxles is as shown in the following chart.

1. SYSTEM DESCRIPTION

(a) The ECT (Electronic controlled automatic transmission/transaxle) is an automatic transmission/transaxle that electronically controls shift timing using the ECM. The ECM detects electrical signals that indicate engine and driving conditions, and controls the shift point, based on driver habits and road conditions. As a result, fuel efficiency and power transmission performance are improved.

Shift shock has been reduced by controlling the engine and transmission simultaneously.

In addition, the ECT has features such as follows:

- Diagnostic function.
- Fail-safe function when a malfunction occurs.

HOW TO PROCEED WITH TROUBLESHOOTING

HINT: The intelligent tester can be used at steps 3, 4, 6, and 9.

	1	Vehicle Brought to Workshop		
	NEXT			
	2	Customer Problem Analysis		
	NEXT			
	3	Connect the OBD II scan tool or	intelligent	tester to DLC3
	NEXT	NEXT		
	4	Check and Clear DTCs and Freeze Frame Data		
			HINT: (See page /	AX-26).
	NEXT			
	5	Visual Inspection		
X	NEXT			
	6	Setting the Check Mode Diagnos	sis	
			HINT: (See page /	AX-27).
	NEXT			
	7	Problem Symptom Confirmation		
			HINT: (See page /	4X-9).
			\square	Symptom does not occur: Go to step 8
			\square	Symptom occurs: Go to step 9

8	Symptom Simulation		
L		HINT: (See page IN-36).	
9	DTC Check		
		HINT: (See page AX-26). DTC is not output: Go to step 10 DTC is output: Go to step 17	
10	Basic Inspection		
		HINT: (See page AX-120, AX-126 and AX-169). NG Go to step 19	
ОК			
11	Mechanical System Test		
		HINT: (See page AX-11). NG Go to step 16	AX
ОК	7		
12	Hydraulic Test		
		HINT: (See page AX-13).	
ОК	\supset	NG Go to step 16	
13	Manual Shifting Test		
·	•	HINT: (See page AX-15).	
ОК	-	NG Go to step 15	

14	Problem Symptoms Table Chapter 1	
	HINT: (See page AX-18).	
	NG Go to step 18	
ОК		
15	Problem Symptoms Table Chapter 2	
	HINT: (See page AX-18).	
NEXT	Ţ	
16	Part Inspection	
	Go to step 19	
17	DTC Chart	
	HINT: (See page AX-32).	
NEXT	ラ	
18	Circuit Inspection	
19	Repair or Replace	
NEXT	ラ	
20	Confirmation Test	
	<u></u>	
End		

ROAD TEST

1. PROBLEM SYMPTOM CONFIRMATION

- (a) Based on the result of the customer problem analysis, try to reproduce the symptoms. If the problem is that the transaxle does not shift up, shift down, or the shift point is too high or too low, conduct the following road test referring to the automatic shift schedule and simulate the problem symptoms.
- 2. ROAD TEST

NOTICE:

Perform the test at the ATF (Automatic Transmission Fluid) temperature 50 to 80°C (122 to 176°F) in the normal operation.

(a) D position test:

Shift into the D position and fully depress the accelerator pedal and check the following points.

(1) Check up-shift operation.

Check that $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 4$ and $4 \rightarrow 5$ th upshifts take place, and that the shift points conform to the automatic shift schedule (See page SS-20).

HINT:

5th Gear Up-shift Prohibition Control

- Engine coolant temperature is 68°C (154°F) or less and vehicle speed is at 70 km/h (43 mph) or less.
- ATF temperature is -2°C (28°F) or less.
- 4th Gear Up-shift Prohibition Control
- Engine coolant temperature is 65°C (149°F) or less and vehicle speed is at 55 km/h (34 mph) or less.

5th and 4th Gear Lock-up Prohibition Control

- Brake pedal is depressed.
- Accelerator pedal is released.
- Engine coolant temperature is 60°C (140°F) or less.
- (2) Check for shift shock and slip. Check for shock and slip at the $1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 4$ and $4 \rightarrow 5$ th up-shifts.
- (3) Check for abnormal noise and vibration.
 Check for abnormal noise and vibration when up-shifting from 1 → 2, 2 → 3, 3 → 4, and 4 → 5 while driving with the shift lever in the D position, and also check while driving in the lock-up condition.

HINT:

The check for the cause of abnormal noise and vibration must be done thoroughly as it could also be due to loss of balance in the differential, torque converter clutch, etc.

- (4) Check kick-down operation.
 - Check vehicle speeds when the 2nd to 1st, 3rd to 2nd, 4th to 3rd, and 5th to 4th kick-downs take place while driving with the shift lever in the D position. Confirm that each speed is within the applicable vehicle speed range indicated in the automatic shift schedule (See page SS-20).
- (5) Check abnormal shock and slip at kick-down.
- (6) Check the lock-up mechanism.
 - Drive in D position (5th gear), at a steady speed (lock-up ON).
 - Lightly depress the accelerator pedal and check that the engine speed does not change abruptly.

HINT:

- There is no lock-up in the 1st and 2nd gear.
- 4th lock-up operates while uphill-downhill is active in the D position.
- If there is a big jump in engine speed, there is no lock-up.
- (b) S position test

Shift to the S position, depress the accelerator pedal and check the following points:

(1) Check shift operation.

- While driving in the D position and 5th gear, shift into the S position and back to the D position. Check that the gear change 5 → 4 down-shift and 4 → 5 up-shift can be performed.
- With the shift lever in the S position (with the vehicle stopped), shift into the "+" position to check that the shift position on the combination meter changes as follows : 1 → 2, 2 → 3, 3 → 4 and 4 → 5.
- While driving in the 4(S) position and 4th gear (at a vehicle speed of about 40 to 50km/h (25 to 31 mph)), shift into the "-" position and check if the 3rd gear down-shift occurs and the engine brake performs properly.
- While driving in the 3(S) position and 3rd gear (at a vehicle speed of about 30 to 40 km/h (19 to 25 mph)), shift into the "-" position and check if the 2nd gear down-shift occurs and the engine brake performs properly.
- While driving in the 2(S) position and 2nd gear (at a vehicle speed of about 20 to 30 km/ h (12 to 19 mph)), shift into the "-" position and check if the 1st gear down-shift occurs and the engine brake performs properly.
 HINT:

Manual shift (S position) prohibition control

• Down-shifting causes engine overrun.

- Down-shifting is required continuously. (Down-shifting to 1st gear may not be performed.)
- (c) R position test: Shift into the R position and fully depress the accelerator pedal and check for slipping.
 CAUTION:

Before conducting this test ensure that the test area is free from people and obstruction.

(d) P position test:

Stop the vehicle on a grade (more the 5°) and after shifting into the P position, release the parking brake. Then, check that the parking lock pawl holds the vehicle in place.

- (e) Uphill/downhill control function test:
 - (1) Check that the gear does not up-shift to the 4th or 5th gear while the vehicle is driving uphill.
 - (2) Check that the gear automatically down-shifts from the 5th to 4th or from the 4th to 3rd gear when brake is applied while the vehicle is driving downhill.

MECHANICAL SYSTEM TESTS

1. PERFORM MECHANICAL SYSTEM TESTS

- (a) Measure the stall speed. The object of this test is to check the overall performance of the transaxle and engine by measuring the stall speeds in the D position. NOTICE:
 - Driving test should be done on a paved road (a nonskid road).
 - Perform the test at the normal operating ATF (Automatic Transmission Fluid) temperature 50 to 80°C (122 to 176°F).
 - Do not continuously run this test for longer than 10 seconds.
 - To ensure safety, do this test in a wide, clear level area which provides good traction.
 - The stall test should always be carried out in pairs. One technician should observe the conditions of wheels or wheel stoppers outside the vehicle while the other is doing the test.
 - (1) Chock the 4 wheels.
 - (2) Connect an OBD II scan tool or intelligent tester to the DLC3.
 - (3) Fully apply the parking brake.
 - (4) Keep your left foot pressed firmly on the brake pedal.
 - (5) Start the engine.
 - (6) Shift into the D position. Press all the way down on the accelerator pedal with your right foot.
 - (7) Quickly read the stall speed at this time. **Stall speed:**

2,250 +- 150 rpm

Problem Possible cause (a) Stall engine speed is low in D position • Engine power output may be insufficient (a) Stall engine speed is low in D position • Stator one-way clutch not operating properly HINT: If the value is less than the specified value by 600 rpm or more, the torque converter could be faulty. (b) Stall engine speed is high in D position • Line pressure is too low • U/D (Underdrive) brake slipping • U/D (Underdrive) one-way clutch is not operating properly • No.1 one-way clutch not operating properly • Improper fluid level

(b) Measure the time lag.

- (1) When the shift lever is shifted while the engine is idling, there will be a certain time lapse or lag before the shock can be felt. This is used for checking the condition of the clutch and brake. **NOTICE:**
 - Perform the test at the normal operating ATF (Automatic Transmission Fluid) temperature: 50 to 80°C (122 to 176°F).

Evaluation:

- Be sure to allow 1 minute interval between tests.
- Perform the test three times, and measure the time lags. Calculate the average value of the three time lags.
- (2) Connect an OBD II scan tool or intelligent tester to the DLC3.
- (3) Fully apply the parking brake.
- (4) Start and warm up the engine and check idle speed.

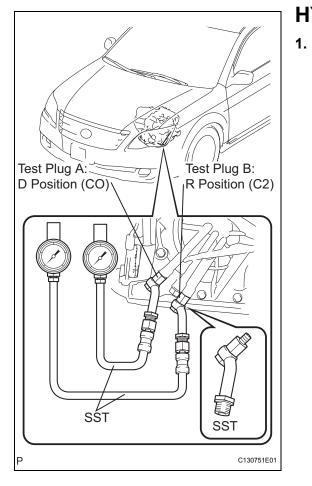
Idle speed:

approx. 700 rpm (In N position and A/C OFF)

(5) Shift the lever from N to D position. Using a stop watch, measure the time from when the lever is shifted until the shock is felt.

Time lag:

$N \rightarrow D$ less than 1.2 seconds


- (6) In the same way, measure the time lag for N \rightarrow R.
 - Time lag:

$N \rightarrow R$ less than 1.5 seconds

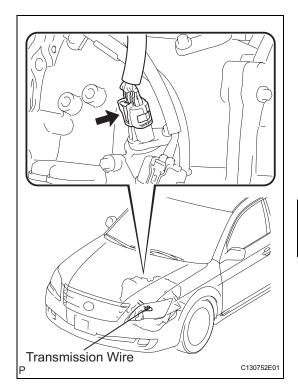
Evaluation (If $N \rightarrow D$ or $N \rightarrow R$ time lag is longer than the specified):

Problem	Possible cause
$N\toD$ time lag is longer	 Line pressure is too low Forward clutch worn No.1 one-way clutch is not operating properly U/D (Underdrive) one-way clutch is not operating U/D (Underdrive) brake worn
$N \rightarrow R$ time lag is longer	 Line pressure is too low Reverse clutch worn 1st and reverse brake worn U/D (Underdrive) brake worn

HYDRAULIC TEST

- PERFORM HYDRAULIC TEST
 - (a) Measure the line pressure. **NOTICE:**
 - Perform the test at the normal operating ATF (Automatic Transmission Fluid) temperature: 50 to 80°C (122 to 176°F).
 - The line pressure test should always be carried out in pairs. One technician should observe the conditions of wheels or wheel stoppers outside the vehicle while the other is performing the test.
 - Be careful to prevent SST hose from interfering with the exhaust pipe.
 - This Check must be conducted after checking and adjusting engine.
 - Perform under condition that A/C is OFF.
 - When conducting stall test, do not continue more than 10 seconds.
 - (1) Warm up the ATF (Automatic Transmission Fluid).
 - (2) Lift the vehicle up.
 - (3) Remove the engine under cover.
 - (4) Connect intelligent tester to DLC3.
 - (5) Remove the test plug A on the transaxle case front left side and install the SST.
 - SST 09992-00095 (09992-00231, 09992-00271)

NOTICE:


There is a difference in installation point between D position and R position.

- (6) Start the engine.
- (7) Using intelligent tester, shift to D position and hold 3rd gear by active test, and measure the line pressure in idling.

Specified line pressure:

Condition	D position kPa (kgf / cm ² , psi)
Idling	372 to 412 kPa
Idling	(3.8 to 4.2 kgf/cm ² , 54 to 60 psi)

(8) Turn the ignition switch off.

(9) Disconnect the connector of the transmission wire.

HINT:

Disconnect the connector only when performing the D position stall test.

- (10)Start the engine.
- (11)Firmly depress the brake pedal, shift to the D position, depress the accelerator pedal all the way down and check the line pressure while the stall test is performed.

Specified line pressure:

Condition	R position kPa (kgf / cm ² , psi)
Stall test	931 to 1,031 kPa
	(9.5 to 10.5 kgf/cm ² , 135 to 150 psi)

- (12)Turn the ignition switch off.
- (13)Remove the SST, install the test plug A.
- (14)Remove the test plug B, install the SST and start engine.

SST 09992-00095 (09992-00231, 09992-00271)

(15)Connect the transmission wire connector, depress the brake pedal firmly, shift to the R position and check that the line pressure while the engine is idling and during the stall test. **Specified line pressure:**

Condition	R position kPa (kgf / cm ² , psi)	
Idling	672 to 742 kPa (6.9 to 7.6 kgf/cm ² , 97 to 108 psi)	
Stall test	1,768 to 1,968 kPa (18.0 to 20.1 kgf/cm ² , 256 to 285 psi)	

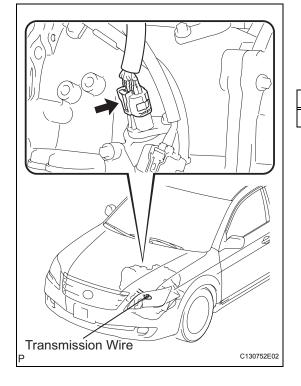
(16)Remove the SST, install the test plug B. (17)Clear the DTC.

Evaluation:

Problem	Possible cause
Measured values are higher than specified in all positions	Shift solenoid valve (SLT) defectiveRegulator valve defective
Measured values are lower than specified in all positions	 Shift solenoid valve (SLT) defective Regulator valve defective Oil pump defective U/D (Underdrive) direct clutch defective
Pressure is low in the D position only	D position circuit fluid leakForward clutch defective
Pressure is low in the R position only	 R position circuit fluid leak Reverse clutch defective 1st and reverse brake defective

MANUAL SHIFTING TEST

1. PERFORM MANUAL SHIFTING TEST HINT:


- With this test, it can be determined whether the trouble occurs in the electrical circuit or is a mechanical problem in the transaxle.
- If any abnormalities are found in the following test, the problem is in the transaxle itself.
- (a) Disconnect the connector of the transmission wire.
- (b) Drive with the transmission wire disconnected. Shifting the shift lever to the D position to check whether the shifting condition changes the table below.

Shift Position	Shifting Condition
D	No Shift (Not Change)

HINT:

When driving with the transmission wire disconnected, the shift lever position is in D, the gear position is held in 4th. However, when the shift position is in R or P, the operation is same as usual.

- (c) Connect the connector of the transmission wire.
- (d) Clear the DTC.

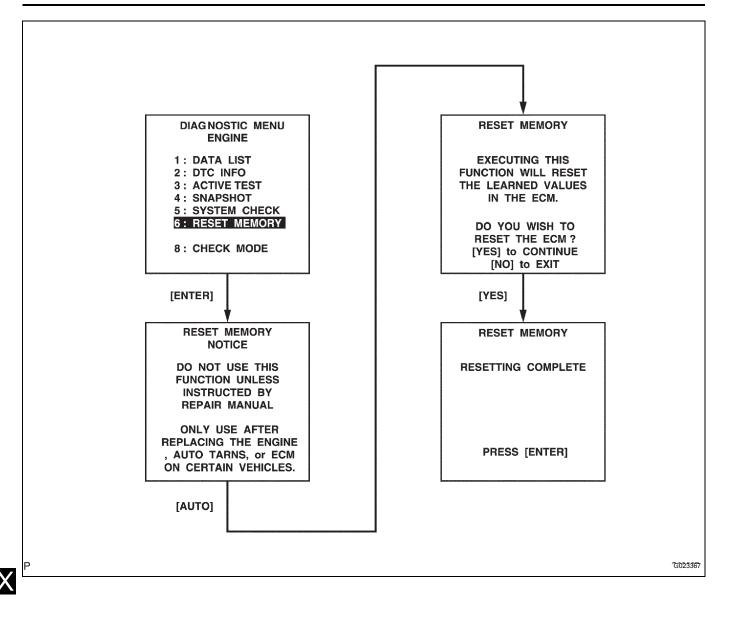
INITIALIZATION

- 1. RESET MEMORY NOTICE:
 - Perform the RESET MEMORY (AT initialization) when replacing the automatic transaxle assembly, engine assembly or ECM.
 - The RESET MEMORY can be performed only with the Intelligent tester.

HINT:

The ECM memorizes the condition that the ECT controls the automatic transaxle assembly and engine assembly according to those characteristics. Therefore, when the automatic transaxle assembly, engine assembly, or ECM has been replaced, it is necessary to reset the memory so that the ECM can memorize the new information. Reset procedure is as follows.

- (a) Turn the engine switch off.
- (b) Connect the intelligent tester to the DLC3.
- (c) Turn the ignition switch on (IG) and push the intelligent tester main switch on.
- (d) Select the item "DIAGNOSIS / ENHANCED OBD II".
- (e) Perform the reset memory procedure from the ENGINE menu.


CAUTION:

After performing the RESET MEMORY, be sure to perform the ROAD TEST (See page AX-9) described earlier.

HINT:

The ECM is learned by performing the ROAD TEST. (1) Tester menu flow:

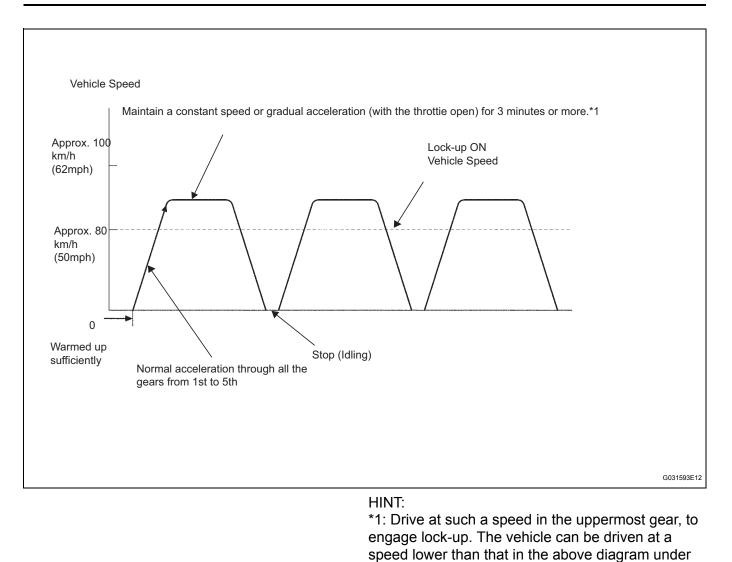
MONITOR DRIVE PATTERN

1. MONITOR DRIVE PATTERN FOR ECT TEST

 (a) Perform this drive pattern as one method to simulate the detection conditions of the ECT malfunctions. (The DTCs may not be detected due the actual driving conditions. And some codes may not be detected through this drive pattern.) HINT:

Preparation for driving

- Warm up the engine sufficiently. (Engine coolant temperature is 60°C (140°F) or higher)
- Drive the vehicle when the atmospheric temperature is -10°C (14°F) or higher. (Malfunction is not detected when the atmospheric temperature is less than -10°C (14°F))


Driving note

- Drive the vehicle through all gears. Stop → 1st → 2nd → 3rd → 4th → 5th → 5th (lock-up ON).
- Perform engine brake test in the S position. While driving in the 5(S) position and 5th gear lock-up, shift into the "-" position and down-shift from 5th to 4th, 4th to 3rd, 3rd to 2nd, 2nd to 1st. Check that the engine brake performs properly whenever down-shift takes place.
- Repeat the above driving pattern three times or more.

NOTICE:

- The monitor status can be checked using the OBD II scan tool or intelligent tester. When using the intelligent tester, monitor status can be found in the "ENHANCED OBD II / DATA LIST" or under "CARB OBD II".
- In the event that the drive pattern must be interrupted (possibly due to traffic conditions or other factors), the drive pattern can be resumed and, in most cases, the monitor can be completed.
- Perform this drive pattern on a level road as much as possible and strictly observe the posted speed limits and traffic laws while driving.

AX

the lock-up condition. **NOTICE:**

If necessary to drive the vehicle for approximately 30 minutes to detect DTC P0711 (ATF temperature sensor malfunction).

PROBLEM SYMPTOMS TABLE

HINT:

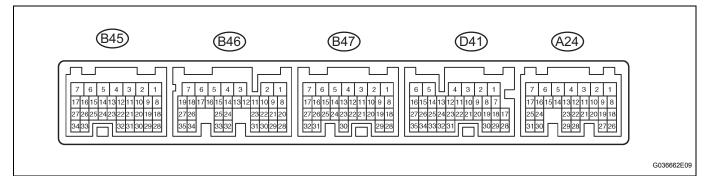
- If a normal code is displayed during the diagnostic trouble code check although the trouble still occurs, check the electrical circuits for each symptom in the order given in the charts on the following pages and proceed to the page given for troubleshooting.
- The Matrix Chart is divided into 2 chapters.
- When the circuit on which mark *1 is attached is a malfunction, DTC could be output.

Refer to the table below when the trouble cause is considered to be electrical the instruction "Proceed to next circuit inspection shown on matrix chart" is given in the flow chart of each circuit, proceed to the circuit with the next highest number in the table to continue the check. If the trouble still occurs even though there are no abnormalities in any of the other circuits, check and replace the ECM.

1. Chapter 1: Electronic Circuit Matrix Chart

Symptom	Suspected area	See page
No down-shift (A particular gear, from 1st to 4th gear, is not down-shifted)	ECM	IN-31
	1. Park/neutral position switch circuit *1	AX-36
No down-shift (5th -> 4th)	2. Shift solenoid valve (S4) circuit *1	AX-102
	3. ECM	IN-31
No up-shift (A particular gear, from 1st to 4th gear, is not up-shifted)	ECM	IN-31
	1. Park/neutral position switch circuit *1	AX-36
No up-shift (4th -> 5th)	2. Shift solenoid valve (S4) circuit *1	AX-102
	3. ECM	IN-31
	1. Stop light switch circuit *1	AX-56
No lock-up	2. Engine coolant temp. sensor circuit *1	ES-60
	3. ECM	IN-31
No lock-up off	ECM	IN-31
	1. Throttle position sensor circuit *1	ES-60
Shift point too high or too low	2. ECM	IN-31
Lin shift to The form Atle while ensine is cald	1. Engine coolant temp. sensor circuit *1	ES-60
Up-shift to 5th from 4th while engine is cold	2. ECM	IN-31
No gear change by shifting into "+" or "-" while the	1. Transmission control switch circuit	AX-115
shifting lever is in the S position	2. ECM	IN-31
	1. Shift solenoid valve (SL1) circuit *1	AX-69
Harsh engagement (N -> D)	2. ECM	IN-31
Harsh engagement (Lock-up)	ECM	IN-31
Harsh engagement (Any driving position)	ECM	IN-31
Poor acceleration	ECM	IN-31
No kick-down	ECM	IN-31
Engine stalls when starting off or stopping	ECM	IN-31
	1. Park/neutral position switch circuit *1	AX-36
Malfunction in shifting	2. Transmission control switch circuit	AX-115
	3. ECM	IN-31

2. Chapter 2: On-Vehicle Repair and Off-Vehicle Repair


Symptom	Suspected area	See pag
Vehicle does not move in any forward position and in	1. Valve body assembly	AX-136
reverse positions	2. U/D brake (B3)	AX-182
	3. Torque converter clutch	AX-175
	1. Valve body assembly	AX-136
Vehicle does not move in R position	2. Reverse clutch (C2)	AX-182
	3. 1st and reverse brake (B2)	AX-182
No up-shift (1st -> 2nd)	1. Valve body assembly	AX-136
	2. 2nd and O/D brake (B1)	AX-182
No up-shift (2nd -> 3rd)	1. Valve body assembly	AX-136
	2. Direct and O/D clutch (C0)	AX-182
No up-shift (3rd -> 4th)	1. Valve body assembly	AX-136
· · · ·	2. 2nd and O/D brake (B1)	AX-182
	1. Shift solenoid valve (S4)	AX-73
No up-shift (4th -> 5th)	2. Valve body assembly	AX-136
	3. U/D clutch (C3)	AX-182
No down-shift (5th -> 4th)	1. Shift solenoid (S4)	AX-73
	2. Valve body assembly	AX-136
No down-shift (4th -> 3rd)	Valve body assembly	AX-136
No down-shift (3rd -> 2nd)	Valve body assembly	AX-136
No down-shift (2nd -> 1st)	Valve body assembly	AX-136
	1. Shift solenoid valve (DSL)	AX-59
No lock-up or No lock-up off	2. Valve body assembly	AX-136
	3. Torque converter clutch	AX-175
	1. Shift solenoid valve (SL1)	AX-65
	2. Valve body assembly	AX-136
Hereb engagement $(N > D)$	3. C1 accumulator	AX-182
Harsh engagement (N -> D)	4. Forward clutch (C1)	AX-182
	5. One-way clutch No.1 (F1)	AX-182
	6. U/D one-way clutch (F2)	AX-182
	1.Shift solenoid valve (SL2)	AX-81
Harsh engagement (Lock-up)	2. Valve body assembly	AX-136
	3. Torque converter clutch	AX-175
	1. Valve body assembly	AX-136
	2. C2 accumulator	AX-182
Harsh engagement (N -> R)	3. Reverse clutch (C2)	AX-182
	4. 1st and reverse brake (B2)	AX-182
	1. Shift solenoid valve (SLT)	AX-108
Harsh engagement (1st -> 2nd -> 3rd -> 4th -> 5th)	2. Valve body assembly	AX-136
	1. Valve body assembly	AX-136
Harsh engagement (1st -> 2nd)	2. 2nd and O/D brake (B1)	AX-182
	1. Valve body assembly	AX-136
Harsh engagement (2nd -> 3rd)	2. C0 accumulator	AX-182
,	3. Direct and O/D clutch (C0)	AX-182
	1. Valve body assembly	AX-136
Harsh engagement (3rd -> 4th)	2. 2nd and O/D brake (B1)	AX-182
	1. Valve body assembly	AX-136
Harsh engagement (4th -> 5th)	2. C3 accumulator	AX-182
	3. U/D clutch (B3)	AX-182

		See page
larah anggagamant (Eth > 4th)	1. Valve body assembly	AX-136
Harsh engagement (5th -> 4th)	2. B3 accumulator	AX-182
	1. Valve body assembly	AX-136
	2. Oil strainer	AX-136
	3. Direct and O/D clutch (C0)	AX-182
	4. Forward clutch (C1)	AX-182
Nin or shudder (Ferward and reverses After warm un)	5. U/D clutch (C3)	AX-182
Slip or shudder (Forward and reverse: After warm-up)	6. 2nd and brake (B1)	AX-182
	7. U/D brake (B3)	AX-182
	8. One-way clutch No.1 (F1)	AX-182
	9. U/D one-way clutch (F2)	AX-182
	10. Torque converter clutch	AX-175
Slip or shudder (Particular position: Just after engine starts)	Torque converter clutch	AX-175
	1. Reverse clutch (C2)	AX-182
Slip or shudder (R position)	2. 1st and reverse brake (B2)	AX-182
	1. Forward clutch (C1)	AX-182
Slip or shudder (1st)	2. One-way clutch No.1 (F1)	AX-182
	3. U/D one-way clutch (F2)	AX-182
Slip or shudder (2nd)	2nd and O/D brake (B1)	AX-182
Slip or shudder (3rd)	Direct and O/D clutch (C0)	AX-182
Slip or shudder (4th)	2nd and O/D brake (B1)	AX-182
Slip or shudder (5th)	U/D clutch (C3)	AX-182
Shift position too high or too low	Shift solenoid valve (SLT)	AX-108
No engine braking (1st +- 4th: D position)	U/D brake (B3)	AX-182
le opaine broking (1et: L (1) position)	1. Valve body assembly	AX-136
No engine braking (1st: L (1) position)	2. 1st and reverse brake (B2)	AX-182
No engine braking (2nd: 2 position)	1. Valve body assembly	AX-136
	2. 2nd and O/D brake (B1)	AX-182
No engine braking (3rd: 3 position)	U/D brake (B3)	AX-182
No kick-down	Valve body assembly	AX-136
Poor acceleration (All positions)	1. Shift solenoid valve (SLT)	AX-108
	2. Torque converter clutch	AX-175
Poor acceleration (5th)	1. U/D clutch (C3)	AX-182
	2. U/D planetary gear unit	AX-182
Engine stalls when starting off or stopping	1. Shift solenoid valve DSL)	AX-59
	2. Torque converter clutch	AX-175

AX

TERMINALS OF ECM

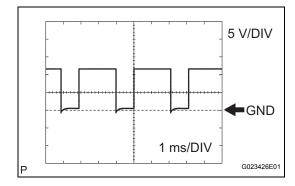
1. ECM

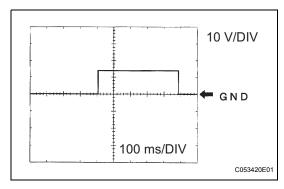
HINT:

Each ECM terminal's standard voltage is shown in the table below.

In the table, first follow the information under "Condition". Look under "Symbols (Terminal No.)" for the terminals to inspected. The standard voltage between the terminals is shown under "Specific Condition".

Use the illustration above as a reference for the ECM terminals.

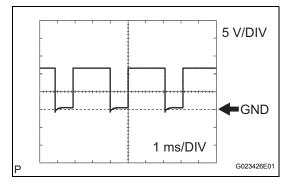

*1: w/ Smart Key System


*2: w/o Smart Key System

Symbols (Terminals No.)	Wiring Color	Terminal Description	Condition	Specified Condition
D (D41-21) - E1 (B47-1)	W - BR	D shift position switch signal	Ignition switch on (IG) and shift lever D and S position	10 to 14 V
1	1	↑ (Ignition switch on (IG) and shift lever except D and S position	Below 1 V
R (D41-11) - E1 (B47-1)	P - BR	R shift position switch signal	Ignition switch on (IG) and shift lever R position	10 to 14 V
\uparrow	\uparrow	↑ (Ignition switch on (IG) and shift lever except R position	Below 1 V
SPD (D41-8) - E1 (B47-1)	GR - BR	Speed signal	Vehicle speed 20 km/h (12mph)	Pulse generation (See waveform 8)
STP (A24-15) - E1 (B47-1)	W - BR	Stop light switch signal	Brake pedal is depressed	7.5 to 14 V
\uparrow	\uparrow	\uparrow	Brake pedal is released	Below 1.5 V
SFTD (D41-5) - E1 (B47-1)	W - BR	Down shift switch signal	Ignition switch on (IG) and shift lever S position	10 to 14 V
1	1	↑ (Ignition switch on (IG) and shift lever "-" position (Down shift)	Below 1 V
SFTU (D41-6) - E1 (B47-1)	R - BR	Up shift switch signal	Ignition switch on (IG) and shift lever S position	10 to 14 V
1	1	↑ (Ignition switch on (IG) and shift lever "+" position (Up shift)	Below 1 V
S (D41-20) - E1 (B47-1)	L - BR	S shift position switch signal	Ignition switch on (IG) and shift lever S position	10 to 14 V
1	1	↑ (Ignition switch on (IG) and shift lever except S position	Below 1 V
P (D41-23) - E1 (B47-1)	G-W - BR	Park position switch signal	Ignition switch on (IG) and shift lever P position	10 to 14 V
1	1	↑ (Ignition switch on (IG) and shift lever except P position	Below 1 V

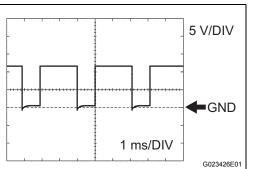
Symbols (Terminals No.)	Wiring Color	Terminal Description	Condition	Specified Condition
N (D41-22) - E1 (B47-1)	O - BR	Neutral position switch signal	Ignition switch on (IG) and shift lever N position	10 to 14 V
↑	↑ (↑	Ignition switch on (IG) and shift lever except N position	Below 1 V
STAR (B46-8) - E1 (B47-1)	B-W* ¹ - BR W-R* ² - BR	Park neutral switch signal	Ignition switch on (IG) and shift lever P and N position	Below 1 V
↑	1	↑	Ignition switch on (IG) and shift lever except P and N position	10 to 14 V
DSL (B46-11) - E1 (B47-1)	G-R - BR	DSL solenoid signal	Vehicle speed 65 km/h (40mph), lock-up (ON to OFF)	Pulse generation (See waveform 2)
SR (B46-9) - E1 (B47-1)	L-B - BR	SR solenoid signal	Ignition switch on (IG)	Below 1 V
\uparrow	\uparrow	\uparrow	3rd, 4th or 5th gear	10 to 14 V
↑	\uparrow	\uparrow	1st or 2nd gear	Below 1 V
S4 (B46-10) - E1 (B47-1)	W-L - BR	S4 solenoid signal	Ignition switch on (IG)	Below 1 V
\uparrow	\uparrow	\uparrow	5th gear	10 to 14 V
\uparrow	\uparrow	\uparrow	Except 5th gear	Below 1 V
SL3+ (B46-17) - SL3- (B46-16)	W - B-W	SL3 solenoid signal	Engine idle speed	Pulse generation (See waveform 3)
SL2+ (B46-15) - SL2- (B46-14)	Y-L	SL2 solenoid signal	Engine idle speed	Pulse generation (See waveform 4)
SL1+ (B46-19) - SL1- (B46-18)	G - P	SL1 solenoid signal	Engine idle speed	Pulse generation (See waveform 5)
NC+ (B46-34) - NC- (B46-26)	L-B - G-R	Speed sensor (NC) signal	Vehicle speed 30 km/h (19mph): (3rd gear) Engine speed 1,400 rpm	Pulse generation (See waveform 6)
NT+ (B46-35) - NT- (B46-27)	W-L - L	Speed sensor (NT) signal	Vehicle speed 20 km/h (12mph)	Pulse generation (See waveform 7)
SLT+ (B46-13) - SLT- (B46-12)	R - G	SLT solenoid signal	Engine idle speed	Pulse generation (See waveform 1)
THO1 (B46-24) - E2 (B45-28)	W-R - W	ATF temperature sensor signal	ATF temperature: 115°C (239°F) or more	Below 1.5 V

(a) Waveform 1 Reference:


Reference.	
Terminal	SLT+ - SLT-
Tool setting	5 V/DIV, 1ms/DIV
Vehicle condition	Engine idle speed

(b) Waveform 2 Reference:

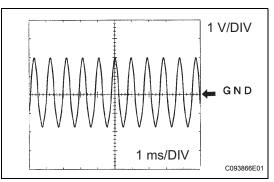
Terminal	DSL - E1
Tool setting	10 V/DIV, 100ms/DIV
Vehicle condition	Vehicle speed 65 km/h (40 mph), lock-up (ON to OFF)


Ρ

AX

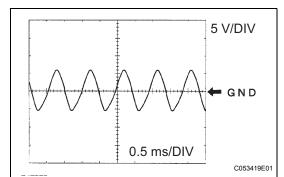
(c) Waveform 3 Reference:

Reference:	
Terminal	SL3+ - SL3-
Tool setting	5 V/DIV, 1ms/DIV
Vehicle condition	Engine idle speed


(d) Waveform 4 Reference:

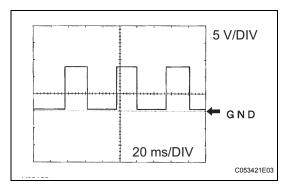
Terminal	SL2+ - SL2-
Tool setting	5 V/DIV, 1ms/DIV
Vehicle condition	Engine idle speed

P 5 V/DIV


(e) Waveform 5

Reference.	
Terminal	SL1+ - SL1-
Tool setting	5 V/DIV, 1ms/DIV
Vehicle condition	Engine idle speed

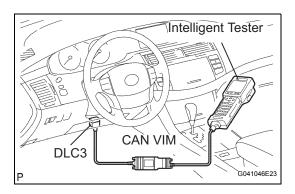
(f) Waveform 6 Reference:


Terminal	NC+ - NC-
Tool setting	1 V/DIV, 1ms/DIV
Vehicle condition	Vehicle speed 30 km/h (19 mph): (3rd gear) Engine speed 1.400 rpm

(g) Waveform 7 Reference:

Terminal	NT+ - NT-
Tool setting	5 V/DIV, 0.5ms/DIV
Vehicle condition	Vehicle speed 20 km/h (12 mph)

(h) Waveform 8 Reference:


Terminal	SPD - E1
Tool setting	5 V/DIV, 20ms/DIV
Vehicle condition	Vehicle speed 20 km/h (12 mph)

HINT:

Depending on the vehicle, the output waveform voltage, influenced by optionally installed systems, may become 5V.

DIAGNOSIS SYSTEM

ECM memory.

- 1. DESCRIPTION
 - (a) When troubleshooting OBD II vehicles, the only difference from the usual troubleshooting procedure is to connect an OBD II scan tool complying with SAE J1987 or a intelligent tester to the vehicle, and read off various data output from the vehicle's ECM.
 - (b) OBD II regulations require that the vehicle's onboard computer illuminate the Malfunction Indicator Lamp (MIL) on the instrument panel when the computer detects a malfunction in the computer itself or in the drive system components which affect the vehicle emissions. In addition to illuminating the MIL when a malfunction is detected, the applicable DTCs prescribed by SAE J2012 are recorded in the ECM memory (See page AX-32).
 If the malfunction does not occur in 3 consecutive trips, the MIL goes off but the DTCs remain in the
 - (c) To check the DTCs, connect the OBD II scan tool or intelligent tester to the DLC3 of the vehicle. The OBD II scan tool or intelligent tester also enables you to erase the DTCs and check freeze frame data and various forms of engine data (For operating instructions, see the instruction book).
 - (d) The DTCs include SAE controlled codes and Manufacturer controlled codes. SAE controlled codes must be set as prescribed by the SAE, while Manufacturer controlled codes can be set freely by a manufacturer within the prescribed limits (See page AX-32).
 - (e) The diagnosis system operates in "normal mode" during the normal vehicle use. In normal mode, "2trip detection logic" is used to ensure accurate detection of malfunction. "Check mode" is also available to technicians as an option. In check mode, "1-trip detection logic" is used for simulating malfunction symptoms and increasing the system's ability to detect malfunctions, including intermittent malfunction.
 - (f) *2 trip detection logic: When a malfunction is first detected, the malfunction is temporarily stored in the ECM memory (1st trip). IF the ignition switch is turned off and then turned on (IG) again, and same malfunction is detected again, the MIL will illuminate.

- (g) The ECM records vehicle and driving condition information as freeze frame data the moment a DTC is stored. When troubleshooting, freeze frame data can be helpful in determining whether the vehicle was running or stopped, whether the engine was warmed up or not, whether the air/fuel ratio was lean or rich, as well as other data recorded at the time of a malfunction.
- (h) The intelligent tester displays freeze frame data recorded at five different points: 1) 3 times before the DTC is set, 2) once when the DTC is set, and 3) once after the DTC is set. The data can be used to simulate the vehicle's condition around the time of the malfunction. The data may be helpful in determining the cause of a malfunction. It may also be helpful in determining whether a DTC is being caused by a temporary malfunction.

2. INSPECT THE DLC3

 (a) The vehicle's ECM uses ISO 15765-4for communication. The terminal arrangement of the DLC3 complies with SAE J1962 and matches the ISO 15765-14format.

Symbol	Terminal No.	Name	Reference Terminal	Result	Condition	
SIL	7	Bus "+" line	5 - Signal ground	Pulse generation	During transmission	
CG	4	Chassis ground	Body ground	Below 1 Ω	Always	
SG	5	Signal ground	Body ground	Below 1 Ω	Always	
BAT	16	Battery positive	Body ground	11 to 14 V	Always	
CANH	6	HIGH-level CAN bus line	CANL	54 to 69 Ω	IG switch OFF	
CANH	6	HIGH-level CAN bus line	Battery positive	1 M Ω or higher	IG switch OFF	
CANH	6	HIGH-level CAN bus lineCG	CG	1 k Ω or higher	IG switch OFF	
CANL	14	LOW-level CAN bus line	Battery positive	1 M Ω or higher	IG switch OFF	
CANL	14	LOW-level CAN bus line	CG	1 k Ω or higher	IG switch OFF	

Terminals of DLC 3

DLC3

10111213141516

D1

6

7

8

DTC set point

★

A092901E15

A082779E62

0.5 sec. 0.5 sec. 0.5 sec.

★

★

1 2 3 4 5

9

★ : Freeze frame data recorded point

HINT:

If your display shows UNABLE TO CONNECT TO VEHICLE when you have connected the cable of the OBD II scan tool or intelligent tester to the DLC3, turned the ignition switch on (IG) and operated the scan tool, there is a problem on the vehicle side or tool side.

- If the communication is normal when the tool is connected to another vehicle, inspect the DLC3 on the original vehicle.
- If the communication is still impossible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

3. CHECK BATTERY VOLTAGE

(a) Measure the battery voltage. **Battery voltage:**

11 to 14 V

If voltage is below 11 V, replace the battery before proceeding.

4. CHECK MIL

(a) Check that the MIL illuminates when turning the ignition switch on (IG).
 HINT:

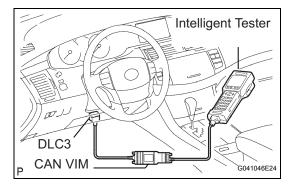
If the MIL does not light up, troubleshoot the combination meter.

(b) When the engine is started, the MIL should go off. If the lamp remains on, it means that the diagnosis system has detected a malfunction or abnormality in the system.

DTC CHECK / CLEAR

1. DTC CHECK (NORMAL MODE) NOTICE:

When the diagnostic system is switched from the normal mode to the check mode, all the DTCs and freeze frame data recorded in the normal mode will be erased. So before switching modes, always check the DTCs and freeze frame data, and note them down.


DTCs which are stored in the ECM can be displayed with the intelligent tester or generic OBD II scan tool. These scan tools can display pending DTCs and current DTCs. Some DTC aren't stored if the ECM doesn't detect a malfunction during consecutive driving. However, the detected malfunction during once driving is stored as pending DTC.

- (a) Checking DTCs using the OBD II scan tool or intelligent tester.
 - Connect the intelligent tester to the Controller Area Network Vehicle Interface Module (CAN VIM). Then connect the CAN VIM to the Data Link Connector 3 (DLC3).
 - (2) Turn the ignition switch on (IG).
 - (3) Enter the following menus: DIÁGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES (or PENDING CODE).
 - (4) Use the OBD II scan tool or intelligent tester to check the DTCs and freeze frame data and note them down (For operating instructions, see the OBD II scan tool's instruction book).
 NOTICE:

When simulating symptoms with an OBD II scan tool (excluding intelligent tester) to check the DTCs, use the normal mode. For codes on the DTCs chart which are subject to "2 trip detection logic",

Turn the engine switch off after the symptom is simulated once. Then repeat the simulation process again. When the problem has been simulated twice, the MIL illuminates and the DTCs are recorded in the ECM.

- 2. DTC CLEAR
 - (a) Connect the intelligent tester to the CAN VIM. Then connect the CAN VIM to the DLC3.
 - (b) Turn the ignition switch on (IG).
 - (c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CLEAR CODES and press YES.

CHECK MODE PROCEDURE

HINT:

Check mode has a higher sensitivity to malfunctions and can detect malfunction that normal mode cannot detect. Check mode can also detect all the malfunctions that normal mode can detect. In check mode, DTCs are detected with 1-trip detection logic.

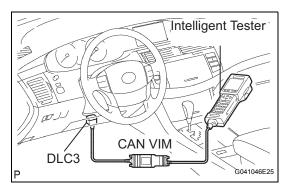
1. DTC CHECK (CHECK MODE)

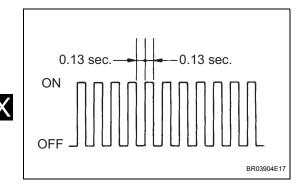
HINT:

Intelligent tester only: Compared to the normal mode, the check mode is more sensitive for detecting malfunctions. Furthermore, the same diagnostic items which are detected in the normal mode can also be detected in the check mode.

(a) Procedure for Check Mode using the intelligent tester.

(1) Check the initial conditions.


- Battery positive voltage 11 V or more
- Throttle valve fully closed
- Transaxle in the P or N position
- A/C switch is off
- (2) Turn the ignition switch off.
- (3) Connect the intelligent tester together with the Controller Area Network Vehicle Interface Module (CAN VIM) to the DLC3.
- (4) Turn the ignition switch on (IG) and turn the intelligent tester main switch on.
- (5) Select the item "DIAGNOSIS/ENHANCED OBD II/CHECK MODE" (Check that the MIL flashes). NOTICE:


All DTCs and freeze frame data recorded will be erased if: 1) the intelligent tester is used to change the ECM from normal mode to check mode or vice-versa; or 2) during check mode, the ignition switch is turned from the on (IG) to ACC position or turned OFF.

- (6) Start the engine (the MIL goes off after the engine starts).
- (7) Perform "MONITOR DRIVE PATTERN" for the ECT test (See page AX-16). (Or, simulate the conditions of the malfunction described by the customer).
 NOTICE:

Leave the ignition switch on (IG) until you have checked the DTCs, etc.

- (8) After simulating malfunction conditions, use the intelligent tester diagnosis selector to check the DTCs and freeze frame data, etc.
- (9) When you use intelligent tester: Select the item "DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES".
- (10)After checking the DTC, inspect the applicable circuit.

(11)(See page AX-32) to confirm the details of the DTCs.

- 2. DTC CLEAR
 - (a) Connect the intelligent tester to the CAN VIM. Then connect the CAN VIM to the DLC3.
 - (b) Turn the ignition switch on (IG).
 - (c) Enter the following menus: DIÁGNOSIS / ENHANCED OBD II / DTC INFO / CLEAR CODES and press YES.

FAIL-SAFE CHART

1. FAIL-SAFE

This function minimizes the loss of the ECT functions when any malfunction occurs in a sensor or solenoid.

(a) ATF (Automatic Transmission Fluid) temperature sensor:

When the ATF temperature sensor has a malfunction, 5th upshift is prohibited.

- (b) Counter gear speed sensor NC (Speed sensor NC): When the counter gear speed sensor has a malfunction, 5th upshift is prohibited.
- (c) Shift solenoid valve DSL: When the solenoid valve DSL has a malfunction, the current to the solenoid valve is stopped. This stops lock-up control, then fuel economy decreases.
- (d) Shift solenoid valve SL1, SL2, SL3 and S4: Fail safe function:

If either of the shift solenoid valve circuits develops an open or short, the ECM turns the other shift solenoid "ON" and "OFF" in order to shift into the gear positions shown in the table below. Manual shifting as shown in the following table must be done (In case of a short circuit, the ECM stops sending the current to the short circuited solenoid). Even if starting the engine in the fail-safe mode, the gear position remains in the same position. HINT:

Normal	Solenoid Valve	SL1	ON	OFF	ON	OFF	OFF
		SL2	ON	ON	OFF	FL	FL
		SL3	OFF	OFF	OFF	ON	ON
		S4	OFF	OFF	OFF	OFF	ON
	Gear Position		1st	2nd	3rd	4th	5th
SL1 Malfunction (During driving	Solenoid Valve	SL1	OFF				
		SL2	ON	ON	OFF to ON	FL to ON	FL to ON
		SL3	OFF	OFF	OFF	ON to OFF	ON to OFF
at 1st or 2nd)		S4	OFF	OFF	OFF	OFF	ON to OFF
	Gear Position		1st to 2nd	2nd	3rd to 2nd	4th to 2nd	5th to 2nd
SL1 Malfunction (During driving at 3rd)		SL1	OFF		·	·	
	Solenoid Valve	SL2	ON to FL	ON to FL	OFF to FL	FL	FL
		SL3	OFF	OFF	OFF	ON to FL	ON to FL
		S4	OFF to ON	OFF to ON	OFF to ON	OFF to ON	ON
	Gear Position		1st to 4th	2nd to 4th	3rd to 4th	4th	5th to 4th
SL1 Malfunction (During driving at 4th or 5th)	Solenoid Valve	SL1	OFF				
		SL2	ON to FL	ON to FL	OFF to FL	FL	FL
		SL3	OFF to ON	OFF to ON	OFF to ON	ON	ON
		S4	OFF	OFF	OFF	OFF	ON
	Gear Position		1st to 4th	2nd to 4th	3rd to 4th	4th	5th to 4th

FL: Flex Lock-up

U151E AUTOMATIC TRANSAXLE – AUTOMATIC TRANSAXLE SYSTEM

		SL1	ON	OFF to ON	ON	OFF to ON	OFF to ON		
SL2 Malfunction		SL2	OFF						
	Solenoid Valve	SL3	OFF	OFF	OFF	ON to OFF	ON to OFF		
Wandhoton		S4	OFF to ON	OFF to ON	OFF to ON	OFF to ON	ON		
	Gear Position		1st to 4th	2nd to 4th	3rd to 4th	4th	5th to 4th		
		SL1	ON	OFF	ON	OFF to ON	OFF to ON		
	Solenoid Valve	SL2	ON	ON	OFF	FL	FL		
SL3 Malfunction		SL3	OFF	OFF					
Wandhoton		S4	OFF	OFF	OFF	OFF to ON	ON		
	Gear Position		1st	2nd	3rd	4th	5th to 4th		
	Solenoid Valve	SL1	ON	OFF	ON	OFF	OFF		
		SL2	ON	ON	OFF	FL	FL		
S4 Malfunction		SL3	OFF	OFF	OFF	ON	ON		
		S4	OFF						
	Gear Position		1st	2nd	3rd	4th	5th to 4th		
	SL1		OFF	·	·	·			
SL1, SL2, SL3, and S4		SL2	OFF						
	Solenoid Valve	SL3	OFF						
Malfunction		S4	OFF						
	Gear Position		1st to 4th	2nd to 4th	3rd to 4th	4th	5th to 4th		

DATA LIST / ACTIVE TEST

1. DATA LIST

HINT:

According to the DATA LIST displayed by the intelligent tester, you can read the value of the switch, sensor, actuator and so on without parts removal. Reading the DATA LIST as the first step of troubleshooting is one method to shorten labor time.

In the table below, the values listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether a part is faulty or not.

- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (d) Turn the ignition switch to the on position.
- (e) Turn on the tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / DATA LIST".
- (g) According to the display on the tester, read the "DATA LIST".

Item	Measurement Item/ Range (display)	Normal Condition	Diagnostic Note
STOP LIGHT SW	Stop light switch Status/ ON or OFF	 Brake Pedal is depressed: ON Brake Pedal is released: OFF 	-
PNP SW [NSW]	PNP switch Status/ ON or OFF	Shift lever position is; P and N: ON Except P and N: OFF	When the shift lever position displayed on the Intelligent tester differs from the actual position, adjustment of the PNP switch or the shift cable may be incorrect. HINT: When the failure still occurs even after adjusting these parts, See page AX-36.
REVERSE	PNP switch Status/ ON or OFF	Shift lever position is; R: ON Except R: OFF	↑
DRIVE	PNP switch Status/ ON or OFF	Shift lever position is; D and S : ON Except D and S: OFF	↑.
SHIFT	Actual Gear Position/ 1st, 2nd, 3rd, 4th or 5th	 Shift Lever Position is; D: 1st, 2nd, 3rd, 4th or 5th S: 1st, 2nd, 3rd, 4th or 5th 	-
LOCK UP SOL	Lock Up Solenoid Status/ ON or OFF	Lock Up: ONExcept Lock Up: OFF	-
SOLENOID (SLT)	Shift Solenoid SLT Status/ ON or OFF	 Accelerator pedal is depressed: OFF Accelerator pedal is released: ON 	-
AT FLUID TEMP	ATF Temp. Sensor Value/ min.: -40°C (-40°F) max.: 215°C (419°F)	 After Stall Test; Approx. 80°C (176°F) Equal to ambient temperature when cold soak 	If the value is "-40°C (-40°F)" or "215°C (419°F)", ATF temp. sensor circuit is opened or shorted.

Item	Measurement Item/ Range (display)	Normal Condition	Diagnostic Note
SPD (NC)	Counter Gear Speed/ display: 50 r/min	 HINT: 3rd when shift lever position is D position (After warming up the engine); Intermediate shaft speed (NC) becomes close to the engine speed. 	-

2. ACTIVE TEST

HINT:

Performing the ACTIVE TEST using the intelligent tester allows the relay, VSV, actuator and so on to operate without parts removal. Performing the ACTIVE TEST as the first step of troubleshooting is one method to shorten labor time.

It is possible to display the DATA LIST during the ACTIVE TEST.

- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (d) Turn the ignition switch to the ON position.
- (e) Push the "ON" button of the intelligent tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST".
- (g) According to the display on tester, perform the "ACTIVE TEST".

Item	Test Details	Diagnostic Note
SHIFT	 [Test Details] Operate the shift solenoid valve and set the each shift position by yourself. [Vehicle Condition] IDL: ON Less than 50 km/h (31 mph) [Others] Press "→" button: Shift up Press "←" button: Shift down 	Possible to check the operation of the shift solenoid valves.
LOCK UP	 [Test Details] Control the shift solenoid DSL to set the automatic transaxle to the lock-up condition. [Vehicle Condition] Vehicle Speed: 60 km/h (37 mph) or more, and 6th gear 	Possible to check the DSL operation.
LINE PRESS UP *	 [Test Details] Operate the shift solenoid SLT and raise the line pressure. [Vehicle Condition] Vehicle Stopped. IDL: ON HINT: OFF: Line pressure up (When the active test of "LINE PRESS UP" is performed, the ECM commands the SLT solenoid to turn off). ON: No action (normal operation) 	-

*: "LINE PRESS UP" in the ACTIVE TEST is performed to check the line pressure changes by connecting the SST to the automatic transaxle, which is used in the HYDRAULIC TEST (See page AX-13) as well.

HINT:

The pressure values in ACTIVE TEST and HYDRAULIC TEST are different from each other.

DIAGNOSTIC TROUBLE CODE CHART

If a DTC is displayed during the DTC check, check the parts listed in the table below and proceed to the page given. HINT:

- *1: Comes on MIL (Malfunction Indicator Lamp) light up
- *2: "DTC stored" mark means ECM memorizes the
 - malfunction code if the ECM detects the DTC detection condition.
- This DTC may be output when the clutch, brake and gear components etc. inside the automatic transmission are damaged.

DTC No.	Detection Item	Trouble Area	MIL *1	Memory *2	See page
P0705	Transmission Range Sensor Circuit Malfunction (PRNDL Input)	 Open or short in park/neutral position switch circuit Park/neutral position switch ECM 	Comes on	DTC stored	AX-36
P0710	Transmission Fluid Temperature Sensor "A" Circuit	 Open or short in ATF temperature sensor circuit Transmission wire (ATF temperature sensor) ECM 	Comes on	DTC stored	AX-44
P0711	Transmission Fluid Temperature Sensor "A" Performance	1. Transmission wire (ATF temperature sensor)	Comes on	DTC stored	AX-49
P0712	Transmission Fluid Temperature Sensor "A" Circuit Low Input	 Short in ATF temperature sensor circuit Transmission wire (ATF temperature sensor) ECM 	Comes on	DTC stored	AX-44
P0713	Transmission Fluid Temperature Sensor "A" Circuit High Input	1. Open in ATF temperature sensor circuit 2. Transmission wire (ATF temperature sensor) 3. ECM	Comes on	DTC stored	AX-44
P0717	Turbine Speed Sensor Circuit No Signal	1. Open or short in transmission revolution sensor NT (speed sensor NT) circuit2. Transmission revolution sensor NT (speed sensor NT) 3. ECM4. Automatic transaxle assembly	Comes on	DTC stored	AX-53
P0724	Brake Switch "B" Circuit High	 Short in stop light switch circuit Stop light switch ECM 	Comes on	DTC stored	AX-56

AUTOMATIC TRANSMISSION SYSTEM

DTC No.	Detection Item	Trouble Area	MIL *1	Memory *2	See page
P0741	Torque Converter Clutch Solenoid Performance (Shift Solenoid Valve DSL)	 Shift solenoid valve DSL remains open or closed Valve body is blocked Torque converter clutch Automatic transaxle (clutch, brake or gear etc.) Line pressure is too low 	Comes on	DTC stored	AX-59
P0746	Pressure Control Solenoid "A" Performance (Shift Solenoid Valve SL1)	1. Shift solenoid valve SL1 remains open or closed 2. Valve body is blocked 3. Automatic transaxle (clutch, brake or gear etc.)	Comes on	DTC stored	AX-65
P0748	Pressure Control Solenoid "A" Electrical (Shift Solenoid Valve SL1)	1. Open or short in shift solenoid valve SL1 circuit 2. Shift solenoid valve SL1 3. ECM	Comes on	DTC stored	AX-69
P0766	Shift Solenoid "D" Performance (Shift Solenoid Valve S4)	 Shift solenoid valve S4 remains open or closed Valve body is blocked (Brake control valve) Automatic transmission (clutch, brake or gear, etc.) 	Comes on	DTC stored	AX-73
P0771	Shift Solenoid "E" Performance (Shift Solenoid Valve SR)	1. Shift solenoid valve SR remains open or closed 2. Valve body is blocked 3. Automatic transaxle (clutch, brake or gear etc.)	Comes on	DTC stored	AX-77
P0776	Pressure Control Solenoid "B" Performance (Shift Solenoid Valve SL2)	1. Shift solenoid valve SL2 remains open or closed 2. Valve body is blocked 3. Automatic transaxle (clutch, brake or gear etc.)	Comes on	DTC stored	AX-81
P0778	Pressure Control Solenoid "B" Electrical (Shift Solenoid Valve SL2)	1. Open or short in shift solenoid valve SL2 circuit 2. Shift solenoid valve SL2 3. ECM	Comes on	DTC stored	AX-86
P0793	Intermediate Shaft Speed Sensor "A"	1. Open or short in transmission revolution sensor NC (speed sensor NC) circuit 2. Transmission revolution sensor NC (speed sensor NC) 3. ECM	Comes on	DTC stored	AX-90

DTC No.	Detection Item	Trouble Area	MIL *1	Memory *2	See page
P0796	Pressure Control Solenoid "C" Performance (Shift Solenoid Valve SL3)	1. Shift solenoid valve SL3 remains open or closed 2. Valve body is blocked 3. Automatic transaxle (clutch, brake or gear etc.)	Comes on	DTC stored	AX-94
P0798	Pressure Control Solenoid "C" Electrical (Shift Solenoid Valve SL3)	 Open or short in shift solenoid valve SL3 circuit Shift solenoid valve SL3 ECM 	Comes on	DTC stored	AX-98
P0982	Shift Solenoid "D" Control Circuit Low (Shift Solenoid Valve S4)	1. Short in shift solenoid valve S4 circuit 2. Shift solenoid valve S4 3. ECM	Comes on	DTC stored	AX-102
P0983	Shift Solenoid "D" Control Circuit High (Shift Solenoid Valve S4)	1. Open in shift solenoid valve S4 circuit 2. Shift solenoid valve S4 3. ECM	Comes on	DTC stored	AX-102
P0985	Shift Solenoid "E" Control Circuit Low (Shift Solenoid Valve SR)	1. Short in shift solenoid valve SR circuit 2. Shift solenoid valve SR 3. ECM	Comes on	DTC stored	AX-105
P0986	Shift Solenoid "E" Control Circuit High (Shift Solenoid Valve SR)	1. Open in shift solenoid valve SR circuit 2. Shift solenoid valve SR 3. ECM	Comes on	DTC stored	AX-105
P2716	Pressure Control Solenoid "D" Electrical (Shift Solenoid Valve SLT)	1. Open or short in shift solenoid valve SLT circuit 2. Shift solenoid valve SLT 3. ECM	Comes on	DTC stored	AX-108
P2769	Torque Converter Clutch Solenoid Circuit Low (Shift Solenoid Valve DSL)	1. Short in shift solenoid valve DSL circuit 2. Shift solenoid valve DSL 3. ECM	Comes on	DTC stored	AX-112
P2770	Torque Converter Clutch Solenoid Circuit High (Shift Solenoid Valve DSL)	1. Open in shift solenoid valve DSL circuit 2. Shift solenoid valve DSL 3. ECM	Comes on	DTC stored	AX-112

AX

AX-44

DTC	

P0705

Transmission Range Sensor Circuit Malfunction (PRNDL Input)

DESCRIPTION

The park/neutral position switch detects the shift lever position and sends signals to the ECM.

DTC No.	DTC Detection Condition	Trouble Area
P0705	 (A) Any 2 or more signals of the following are ON simultaneously (2-trip detection logic) P input signal is ON. N input signal is ON. D input signal is ON. (B) Any 2 or more signals of the following are ON simultaneously (2-trip detection logic) STAR input signal is ON. R input signal is ON. D input signal is ON. D input signal is ON. C) When any of following conditions is for 2.0sec. or more in the S position (2-trip detection logic). STAR input signal is ON. P input signal is ON. N input signal is ON. R input signal is ON. 	 Short in park/neutral position switch circuit Park/neutral position switch ECM

MONITOR DESCRIPTION

These DTCs indicate a problem with the park/neutral position switch and the wire harness in the park/ neutral position switch circuit.

The park/neutral position switch detects the shift lever position and sends a signal to the ECM. For security, the park/neutral position switch detects the shift lever position so that engine can be started only when the shift lever is in the P or N position

The park/neutral position switch sends a signal to the ECM according to the shift position (P, R, N or D). The ECM determines that there is a problem with the switch or related parts if in receives more than 1 position signal simultaneously. The ECM will turn on the MIL and store the DTC.

MONITOR STRATEGY

Related DTCs	P0705: Park/neutral position switch/Verify switch input
Required sensors/Components	Park/neutral position switch
Frequency of operation	Continuous
Duration	2 sec.
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever this DTC is not present.	None			
Ignition switch	ON			
Battery voltage	10.5 V or more			

TYPICAL MALFUNCTION THRESHOLDS

1. One of the following conditions is met: Condition (A), (B) and (C) Condition (A)

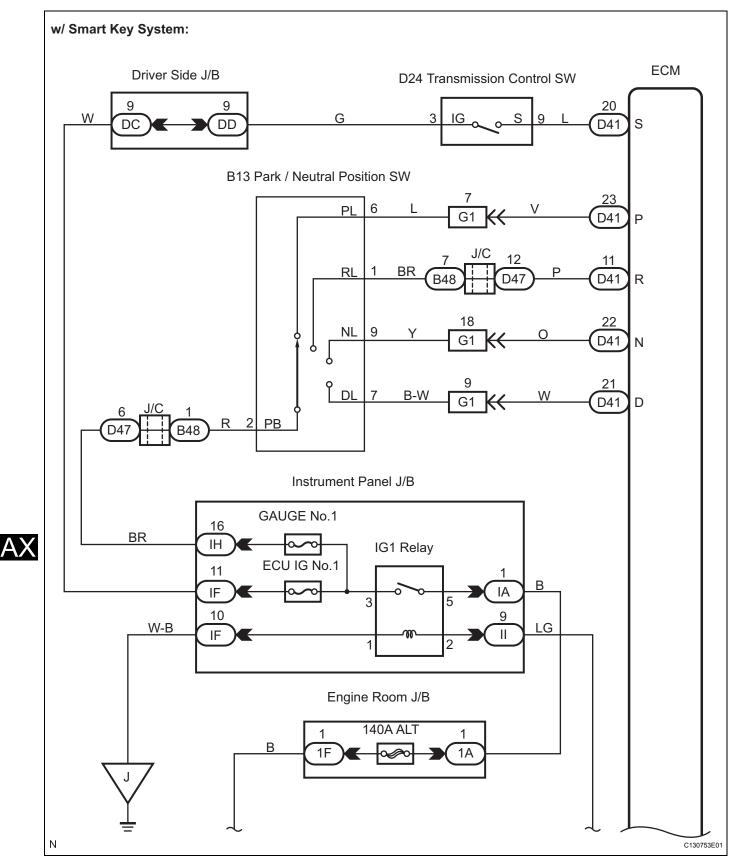
Number of the following signal input at the same time 2 or more

P switch	ON
N switch	ON
R switch	ON
D switch	ON

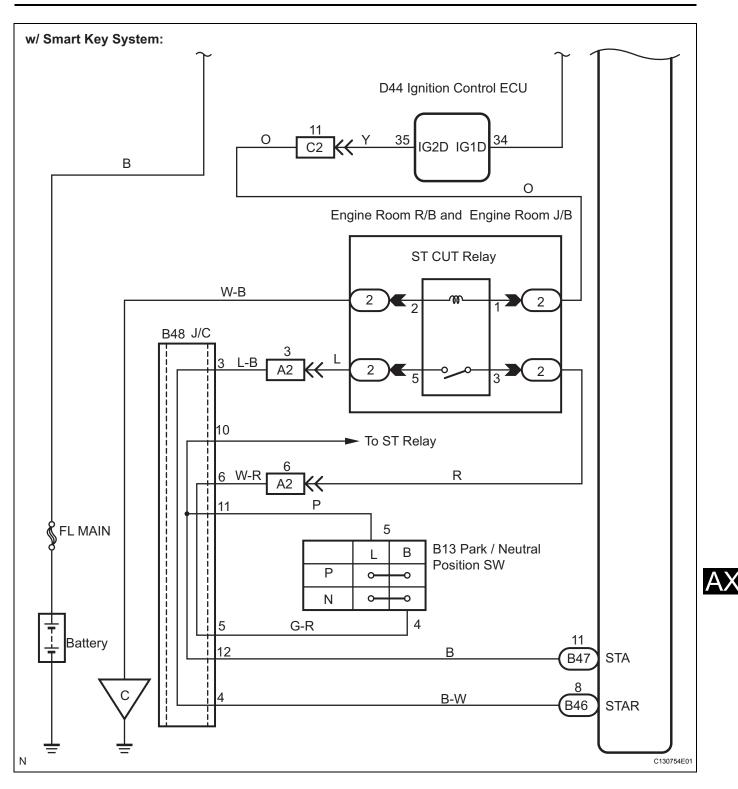
Condition (B)

Number of the following signal input at the same time	2 or more
STAR switch	ON
R switch	ON
D switch	ON

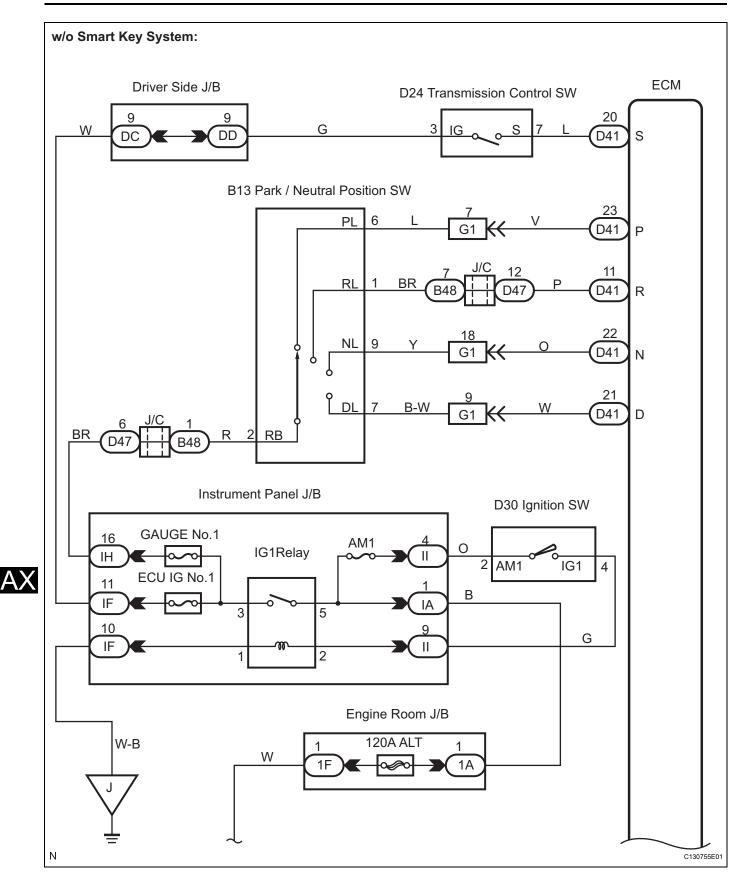
Condition (C)

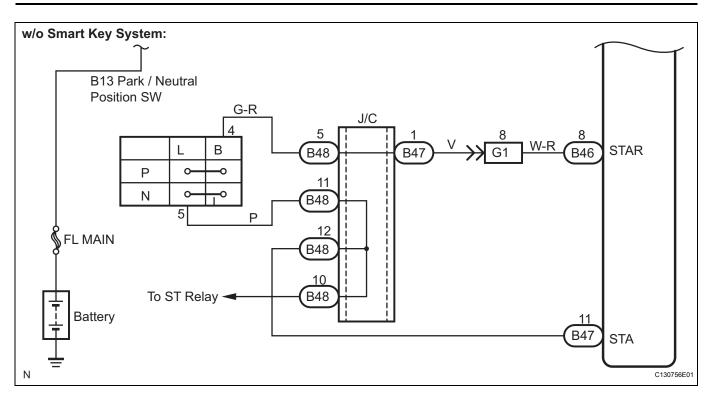

When shift lever is in the S position, one of the following conditions is met.

STAR switch	ON
P switch	ON
N switch	ON
R switch	ON


COMPONENT OPERATING RANGE

Park/neutral Position switch	The park/neutral position switch sends only one signal to the ECM.
------------------------------	--


WIRING DIAGRAM



U151E AUTOMATIC TRANSAXLE – AUTOMATIC TRANSAXLE SYSTEM

AX-48

INSPECTION PROCEDURE

HINT:

According to the DATA LIST displayed by the intelligent tester, you can read the value of the switch, sensor, actuator and so on without parts removal. Reading the DATA LIST as the first step of troubleshooting is one method to shorten labor time.

NOTICE:

In the table below, the values listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether a part is faulty or not.

1. READ DATA LIST

- (a) Turn the ignition switch off.
- (b) Connect the intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (c) Turn the ignition switch on (IG).
- (d) Turn on the tester.
- (e) Select the item "DIAGNOSIS / ENHANCED OBD II / DATA LIST".
- (f) According to the display on the tester, read the "DATA LIST".

ltem	Measurement Item / Range (Display)	Normal Condition	Diagnostic Note
PNP SW [NSW]	PNP SW Status / ON or OFF	Shift lever position is; P and N: ON Except P or N: OFF	When the shift lever position displayed on the intelligent tester differs from the actual position, adjustment of the PNP switch or the shift cable may be incorrect.
REVERSE	PNP SW Status / ON or OFF	Shift lever position is; R: ON Except R: OFF	Ŷ
DRIVE	PNP SW Status / ON or OFF	Shift lever position is; D and S: ON Except D or S: OFF	Ŷ

AX-50

Switch Side:

(Connector Front View):

<u>43</u>21

 (b) Measure resistance according to the value(s) in the table below when the shift lever is moved to each position.
 Resistance

Shift Position	Tester Connection	Specified Condition
Р	2 - 6 and 4 - 5	Below 1 Ω
Except P	2 - 6 anu 4 - 5	10 k Ω or higher
R	2 - 1	Below 1 Ω
Except R	2 - 1	10 k Ω or higher
N	0.0 and 4.5	Below 1 Ω
Except N	2 - 9 and 4 - 5	10 k Ω or higher
D, S, "+" and "-"	0.7	Below 1 Ω
Except D, S, "+" and "-"	2 - 7	10 k Ω or higher

NG

(a)

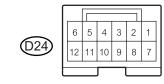
(C)

NG

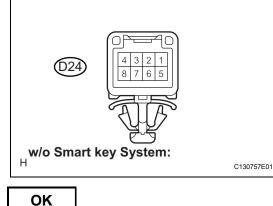
>	REPLACE PARK/NEUTRAL POSITION
	SWITCH ASSEMBLY

ОК

2


(B13)

Ρ


INSPECT TRANSMISSION FLOOR SHIFT ASSEMBLY

C110340E28

Switch Side: (Connector Front View):

w/ Smart key System:

position. Resistance		
Shift Position	Tester Connection	Specified Condition
S, "+" and "-"	3 - 9 * ¹	Below 1 Ω

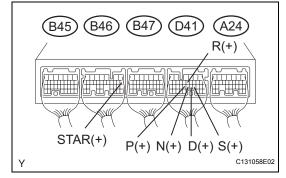
Connect the park/neutral position switch connector.

(b) Disconnect the transmission control switch connector of

table below when the shift lever is moved to each

Measure the resistance according to the value(s) in the

S, "+" and "-"	3 - 9 * ¹ 3 - 7 * ²	Below 1 Ω
Except S, "+" and "-"	\uparrow	10 k Ω or higher


*1: w/ Smart Key System

shift lock control unit assembly.

*1: w/ Smart Key System

REPLACE TRANSMISSION FLOOR SHIFT ASSEMBLY 3

CHECK HARNESS AND CONNECTOR ((PARK/NEUTRAL POSITION SWITCH - ECM)

- (a) Connect the transmission control switch connector of shift lock control unit assembly.
- (b) Turn the ignition switch to the ON position, and measure the voltage according to the value(s) in the table below when the shift lever is moved to each position.

Voltage

Shift Position	Tester Connection	Specified Condition
P and N	P46 8 (STAD) Pody ground	Below 2 V
Except P and N	B46-8 (STAR) - Body ground	10 to 14 V
Р	D44.02 (D) Deduceround	10 to 14 V
Except P	D41-23 (P) - Body ground	Below 1 V
Ν	– D41-22 (N) - Body ground -	10 to 14 V
Except N		Below 1 V
R	D41-11 (R) - Body ground	10 to 14 V [*]
Except R		Below 1 V
D and S	D44.24 (D) Backs around	10 to 14 V
Except D and S	– D41-21 (D) - Body ground	Below 1 V
S, "+" and "-"	D44 20 (S) Body ground	10 to 14 V
Except S, "+" and "-"	D41-20 (S) - Body ground	Below 1 V

HINT:

*: The voltage will drop slightly due to lighting up of the back up light.

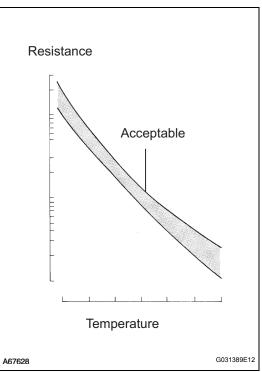
REPAIR OR REPLACE HARNESS OR CONNECTOR

OK

REPLACE ECM

DTC	P0710	Transmission Fluid Temperature Sensor "A" Circuit
DTC	P0712	Transmission Fluid Temperature Sensor "A" Circuit Low Input
DTC	P0713	Transmission Fluid Temperature Sensor "A" Circuit High Input

DESCRIPTION


The ATF (Automatic Transmission Fluid) temperature sensor converts the fluid temperature into a resistance value which is input into the ECM.

The ECM applies a voltage to the temperature sensor through ECM terminal THO1.

The sensor resistance changes with the transmission fluid temperature. As the temperature becomes higher, the sensor resistance decreases.

One terminal of the sensor is grounded so that the sensor resistance decreases and the voltage goes down as the temperature becomes higher.

The ECM calculates the fluid temperature based on the voltage signal.

DTC No.	DTC Detection Condition	Trouble Area
P0710	(a) and (b) are detected momentarily within 0.5 sec. when neither P0712 nor P0713 is detected (1-trip detection logic) (a) ATF temperature sensor resistance is less than 79 Ω . (b) ATF temperature sensor resistance is more than 156 k Ω . HINT: Within 0.5 sec., the malfunction switches from (a) to (b) or from (b) to (a)	 Open or short in ATF temperature sensor circuit Transmission wire (ATF temperature sensor) ECM
P0712	ATF temperature sensor resistance is less than 79 Ω for 0.5 sec. or more (1-trip detection logic)	 Short in ATF temperature sensor circuit Transmission wire (ATF temperature sensor) ECM

		-	
	ATF temperature sensor resistance is more than 156 k Ω when	•	Open in ATF temperature sensor circuit
P0713	15 minutes or more have elapsed after the engine start	•	Transmission wire (ATF temperature sensor)
	DTC is detected for 0.5 sec. or more (1-trip detection logic)	•	ECM

MONITOR DESCRIPTION

These DTCs indicate an open or short in the automatic transmission fluid (ATF) temperature sensor (TFT sensor) circuit. The automatic transmission fluid (ATF) temperature sensor converts ATF temperature to an electrical resistance value. Based on the resistance, the ECM determines the ATF temperature, and the ECM detects an opens or shorts in the ATF temperature circuit. If the resistance value of the ATF temperature is less than 79 Ω ^{*1}or more than 156 k Ω ^{*2}, the ECM interprets this as a fault in the ATF sensor or wiring. The ECM will turn on the MIL and store the DTC.

*1: 150°C (302°F) or more is indicated regardless of the actual ATF temperature.

*2: -40°C (-40°F) is indicated regardless of the actual ATF temperature.

HINT:

The ATF temperature can be checked on the OBD II scan tool or intelligent tester display.

MONITOR STRATEGY

Related DTCs	P0710: ATF temperature sensor/Range check (Chattering) P0712: ATF temperature sensor/Range check (Low resistance) P0713: ATF temperature sensor/Range check (High resistance)
Required sensors/Components	ATF temperature sensor (TFT sensor)
Frequency of operation	Continuous
Duration	0.5 sec.
MIL operation	Immediate
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

P0710: Range check (Chattering)

P0712: Range check (Low resistance)

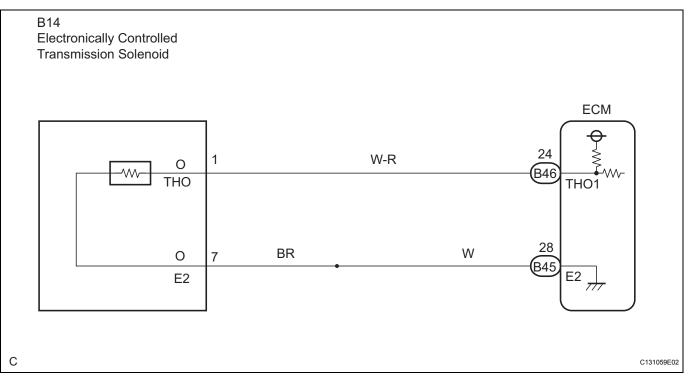
The monitor will run whenever these DTCs are not present.	None	
The typical enabling condition is not available.	-	AX

P0713: Range check (High resistance)

The monitor will run whenever this DTC is not present.	None
Time after engine start	15 min. or more

TYPICAL MALFUNCTION THRESHOLDS

P0710: Range check (Chattering)


TFT (Transmission fluid temperature) sensor resistance	Less than 79 Ω or More than 156 kΩ		
P0712: Range check (Low resistance)			
TFT sensor resistance	Less than 79 Ω		
P0713: Range check (High resistance)			
TFT sensor resistance	More than 156 k Ω		

COMPONENT OPERATING RANGE

TFT sensor.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

According to the DATA LIST displayed by the OBD II scan tool or intelligent tester, you can read the value of the switch, sensor, actuator and so on without parts removal. Reading the DATA LIST as the first step of troubleshooting is one method to shorten labor time.

NOTICE:

In the table below, the value listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether apart is faulty or not.

1. READ DATA LIST

- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (d) Turn the ignition switch on (IG).
- (e) Turn on the tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / DATA LIST".
- (g) According to the display on the tester, read the "DATA LIST".

Item	Measurement Item/ Range (display)	Normal Condition
AT FLUID TEMP	ATF Temp. Sensor Value/ min.: -40°C (-40°F) max.: 215°C (419°F)	Approx. 80°C (176°F) (After Stall Test)

HINT:

When DTC P0712 is output and OBD II scan tool or intelligent tester output is 150°C (302°F), there is a short circuit.

When DTC P0713 is output and OBD II scan tool or intelligent tester output is -40°C (-40°F), there is an open circuit.

Measure the resistance between terminal THO1 (THO) and body ground.

Temperature Displayed	Malfunction
-----------------------	-------------

-40°C (-40°F)	Open circuit
150°C (302°F) or more	Short circuit

HINT:

THO1

G038618E05

É2

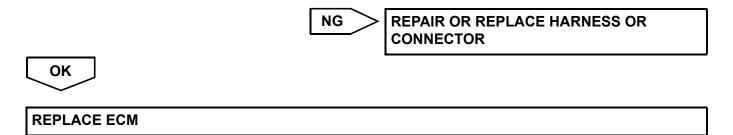
If a circuit related to the ATF temperature sensor become open, P0713 is immediately set (in 0.5 second).

When P0713 is set, P0711 cannot be detected.

It is not necessary to inspect the circuit when P0711 is set.

1 INSPECT TRANSMISSION WIRE (ATF TEMPERATURE SENSOR)

-			
Transmission Wire Side:	(a) Disconnect the transmission wire connector from the transaxle.		
	(b) Measure the resistance according to the value(s) in the		
(Connector Front View):	table below.		
	Resistance		
7110	Tester Conn	ection Specified Co	ndition
ТНО	1 (THO) - 7	(E2) 79 Ω to 15	6 k Ω
(B14) <u><u>п</u><u>г</u><u>п</u></u>	1 (THO) - Bod	r ground 10 k Ω or h	igher
	7 (E2) - Body	ground 1	
6 5 4 3 2 1	HINT:		
	If the resistance is out of the specified range with either the ATF temperature shown in the table below, the driveability of the vehicle may decrease.		
E2			
C113969E14	ATF Temperature	Specified Condition	
	20°C (68°F)	3 to 4 kΩ	
	110°C (230°F)	0.22 to 0.28 kΩ	
NG REPAIR OR REPLACE TRANSMISSION WIRE			SSION
ОК			
2 CHECK HARNESS AND CONNECTOR (TRANSMISSION WIRE - ECM)			
	(-)	transmission wire connector to	the
B45 B46 B47 D41 A24	transaxle.		
	(b) Disconnect the ECM connectors.		
	(c) Measure the resistance according to the value(s) in the table below.		


Resistance

Tester Connection	Specified Condition
B46 - 24 (THO1) - B45 - 28 (E2)	79 Ω to 156 kΩ

(d) Measure the resistance according to the value(s) in the table below.

Resistance (Check for short)

Tester Connection	Specified Condition	
B46 - 24 (THO1) - Body ground	10 k Ω or higher	
B45 - 28 (E2) - Body ground		

P0711

Transmission Fluid Temperature Sensor "A" Performance

DESCRIPTION

The ATF (Automatic Transmission Fluid) temperature sensor converts the fluid temperature into a resistance value which is input into the ECM.

DTC No.	DTC Detection Condition	Trouble Area
P0711	 (A) Both (a) and (b) are detected: (2-trip detection logic) (a) Intake air and engine coolant temperatures are more than - 10°C (14°F) at engine start (b) After normal driving for over 19 min. and 9 km (6 mile) or more, ATF temp. is less than 20°C (68°F) (B) When engine coolant temp. is less that 35°C (95°F) at engine start, the ATF temp. is 110°C (230°F) or more after 17 min. of engine start (2-trip detection logic). 	Transmission wire (ATF temperature sensor)

MONITOR DESCRIPTION

The ATF temperature sensor converts the ATF temperature to an electrical resistance value. Based on the resistance, the ECM determines the ATF temperature and detects an open or short in the ATF temperature circuit or a fault in the ATF temperature sensor.

After running the vehicle for a certain period, the ATF temperature should increase. If the ATF temperature is below 20°C (68°F) after running the vehicle for a certain period, the ECM interprets this as a fault, and turns on the MIL.

When the ATF temperature is 110°C (230°F) or more after 17 minutes of engine cold start, the ECM also determines this as a fault, turns on the MIL, and stores the DTC.

MONITOR STRATEGY

Related DTCs	P0711: ATF temperature sensor/Rationality check	
Required sensors/Components	ATF temperature sensor (TFT sensor)	
Frequency of operation	Continuous	
Duration	3 sec.: Condition (A) 10 sec.: Condition (B)	Α
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

All:

The monitor will run whenever this DTC is not present.	None
Time after engine start	16 min. and 40 sec. or more
ECT (Engine coolant temperature)	-15°C (5°F) or more
ATF sensor circuit	Not circuit malfunction
ECT sensor circuit	Not circuit malfunction
IAT sensor circuit	Not circuit malfunction
ETCS	Not circuit malfunction

Condition (A):

Time After engine start	18 min. and 20 sec.
Driving distance after engine start	9 km (5.6 mile) or more
IAT (Intake air temperature) (12 sec. after starting engine)	-10°C (14°F) or more
ECT (12 sec. after starting engine)	-10°C (14°F) or more

AX-58

Condition (B):	
ECT (Current temperature)	60°C (140°F) or more
ECT (12 sec. after engine start)	Less than 35°C (95°F)

TYPICAL MALFUNCTION THRESHOLDS

Condition (A):

ATF temperature sensor Less than 20°C (68°F)	
Condition (B):	
ATF temperature sensor	110°C (230°F) or more

COMPONENT OPERATING RANGE

ATF temperature sensor Atmospheric temperature to approx. 130°C (266°F)

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

According to the DATA LIST displayed by the OBD II scan tool or intelligent tester, you can read the value of the switch, sensor, actuator and so on without parts removal. Reading the DATA LIST as the first step of troubleshooting is one method to shorten labor time.

NOTICE:

In the table below, the value listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether apart is faulty or not.

1. READ DATA LIST

- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.

- (d) Turn the ignition switch on (IG).
- (e) Turn on the tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / DATA LIST".
- (g) According to the display on the tester, read the "DATA LIST".

Item	Measurement Item/ Range (display)	Normal Condition
AT FLUID TEMP	ATF Temp. Sensor Value/ min.: -40°C (-40°F) max.: 215°C (419°F)	Approx. 80°C (176°F) (After Stall Test)

HINT:

When DTC P0712 is output and OBD II scan tool or intelligent tester output is 150°C (302°F), there is a short circuit.

When DTC P0713 is output and OBD II scan tool or intelligent tester output is -40°C (-40°F), there is an open circuit.

Measure the resistance between terminal THO1 (THO) and body ground.

Temperature Displayed	Malfunction
-40°C (-40°F)	Open circuit
150°C (302°F) or more	Short circuit

HINT:

If a circuit related to the ATF temperature sensor becomes open, P0713 is immediately set (in 0.5 second).

When P0713 is set, P0711 cannot be detected.

It is not necessary to inspect the circuit when P0711 is set.

1 CHECK OTHER DTCS OUTPUT (IN ADDITION TO DTC P0711)

- (a) Connect the OBD II scan tool or the intelligent tester to the DLC3.
- (b) Turn the ignition switch on (IG) and push the OBD II scan tool or the intelligent tester main switch ON.
- (c) When you use intelligent tester: Select the item "DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES".
- (d) Read the DTCs using the OBD II scan tool or the intelligent tester.

Result

Display (DTC output)	Proceed to
Only "P0711" is output	A
"P0711" and other DTCs	В

HINT:

If any other codes besides "P0711" are output, perform troubleshooting for those DTCs first.

2

CHECK TRANSMISSION FLUID LEVEL

OK:

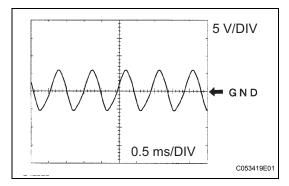
В

Automatic transmission fluid level is correct.

GO TO DTC CHART

NG ADD FLUID

REPLACE TRANSMISSION WIRE (ATF TEMPERATURE SENSOR)


P0717

Turbine Speed Sensor Circuit No Signal

DESCRIPTION

This sensor detects the rotation speed of the input turbine. By comparing the input turbine speed signal (NT) with the counter gear speed sensor signal (NC), the ECM detects the shift timing of the gears and appropriately controls the engine torque and hydraulic pressure according to various conditions. Thus, providing smooth gear shift.

DTC No.	DTC Detection Condition	Trouble Area
P0717	 ECM detects conditions (a), (b) and (c) continuously for 5 sec. or more: (1-trip detection logic) (a) Vehicle speed: 50 km/h (31 mph) or more (b) Park/neutral position switch (STAR and R) is OFF (c) Speed sensor (NT): less than 300 rpm 	 Open or short in transmission revolution sensor NT (speed sensor NT) circuit Transmission revolution sensor NT (speed sensor NT) ECM Automatic transaxle assembly

Reference (Using an oscilloscope):

Check the waveform between terminals NT+ and NT- of the ECM connector. **Standard: Refer to the illustration.**

Terminal	Tool setting	Vehicle condition
NT+ - NT-	5 V/DIV, 0.5ms/DIV	Vehicle speed 20 km/h (12 mph)

MONITOR DESCRIPTION

The NT terminal of the ECM detects a revolution signal from the speed sensor (NT) (input RPM). The ECM calculates a gearshift comparing the speed sensor (NT) with the speed sensor (NC). While the vehicle is operating in 2nd, 3rd, 4th or 5th gear in the shift position of D, if the input shaft revolution is less than 300 rpm ^{*1}although the output shaft revolution is more than 1,000 rpm ^{*2}, the ECM detects the trouble, illuminates the MIL and stores the DTC.

*1: Pulse is not output or is irregularly output.

*2: The vehicle speed is 50 km/h (31 mph) or more.

MONITOR STRATEGY

Related DTCs	P0717: Speed sensor (NT) / Verify pulse input
Required sensors/Components	Speed sensor (NT), Speed sensor (NC)
Frequency of operation	Continuous
Duration	5 sec.
MIL operation	Immediate
Sequence of operation	None

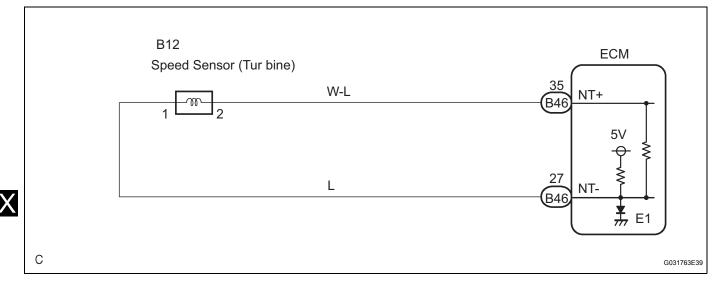
TYPICAL ENABLING CONDITIONS

The monitor will run whenever this DTC is not present.	P0500 (VSS)
The monitor will full whenever this DTC is not present.	P0748, P0778, P0798 (Shift solenoid valve (range))

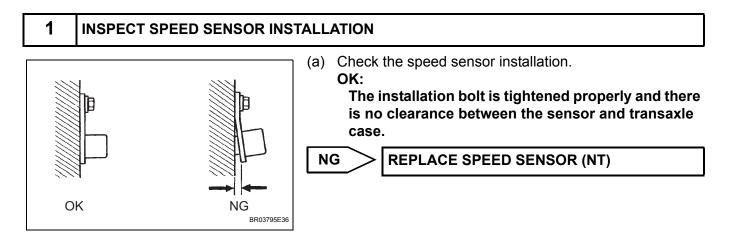
Shift change	Shift change is completed and before starting next shift change operation
ECM selected gear	2nd, 3rd, 4th or 5th
Output shaft rpm	1,000 rpm or more
STAR switch	OFF
R switch	OFF
Engine	Running
Battery voltage	8 V or more
Ignition switch	ON
Starter	OFF

TYPICAL MALFUNCTION THRESHOLDS

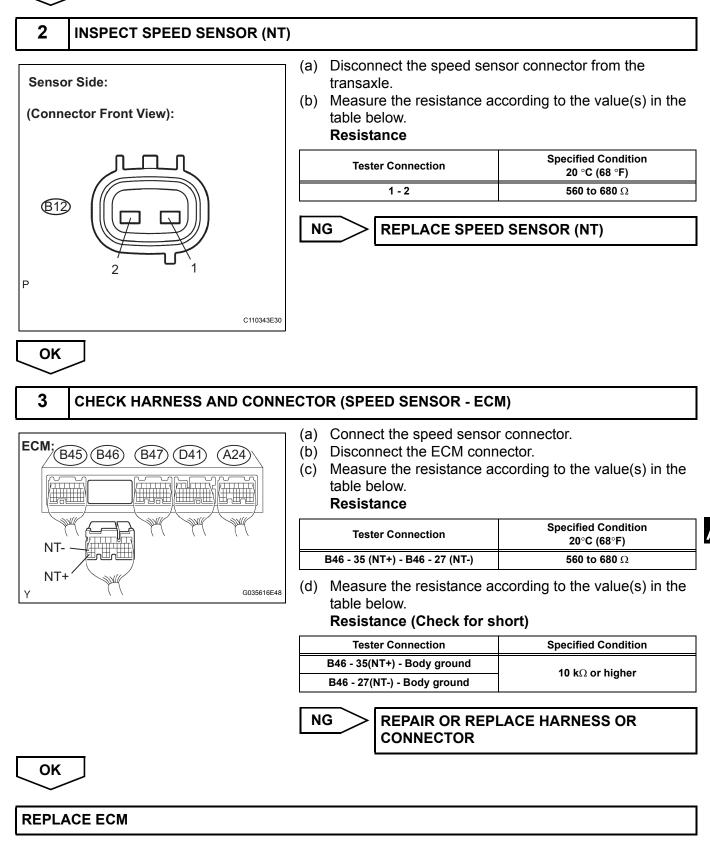
Sensor signal rpm


Δ

Less than 300 rpm


COMPONENT OPERATING RANGE

Speed sensor (NT) Turbine speed is equal to engine speed with lock-up ON
--


WIRING DIAGRAM

INSPECTION PROCEDURE

ОК

DTC	,	P0724	Brake Switch "B" Circuit High
-----	---	-------	-------------------------------

DESCRIPTION

The purpose of this circuit is to prevent the engine from stalling while driving in lock-up condition when brakes are suddenly applied.

When the brake pedal is depressed, this switch sends a signals to the ECM. Then the ECM cancels the operation of the lock-up clutch while braking is in progress.

DTC No.	DTC Detecting Condition	Trouble Area
P0724	The stop light switch remains ON even when the vehicle is driven in a STOP (less than 3 km/h (2 mph) and GO (30 km/h (19 mph) or more) fashion 5 times. (2-trip detection logic).	Short in stop light switch circuitStop light switchECM

MONITOR DESCRIPTION

This DTC indicates that the stop light switch remains on. When the stop light switch remains ON during "stop and go" driving, the ECM interprets this as a fault in the stop light switch and the MIL comes on and the ECM stores the DTC. The vehicle must stop (less than 3 km/h (2 mph)) and go (30 km/h (19 mph) or more) 5 times for two driving cycles in order to detect a malfunction.

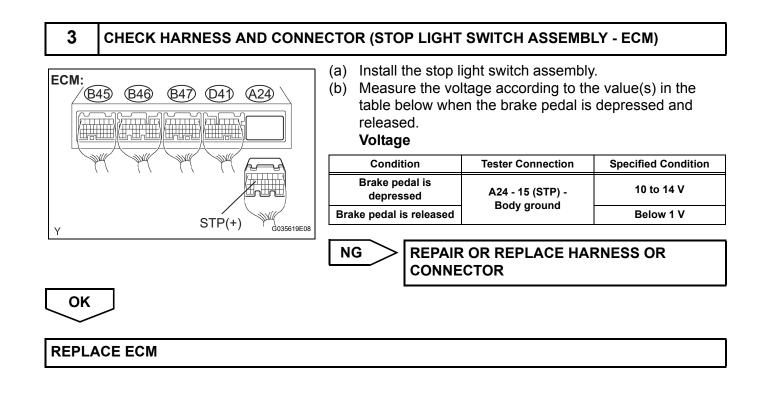
MONITOR STRATEGY

Related DTCs	P0724: Stop light switch/Rationality
Required sensors/Components	Stop light switch, Vehicle speed sensor
Frequency of operation	Continuous
Duration	GO and STOP 5 times
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever this DTC is not present.	None
Ignition switch	ON
Starter	OFF
Battery voltage	8 V or more
GO (Vehicle speed is 30 km/h (18.63 mph) or more)	Once
STOP (Vehicle speed is less than 3 km/h (1.86 mph))	Once

TYPICAL MALFUNCTION THRESHOLDS


Brake switch	Remain ON during GO and STOP 5 times

WIRING DIAGRAM

See page ES-265.

INSPECTION PROCEDURE

Item Measurement Item/ Range (display) Normal Condition STOP LIGHT SW Stop light SW Status/ ON or OFF • Brake pedal is depressed: ON Brake pedal is released: OFF NOTICE: In the table below, the value listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether apart is faulty or not. OK Go to step 3 NG INSPECT STOP LIGHT SWITCH ASSEMBLY (a) Remove the stop light switch assembly. (b) Measure the resistance according to the value(s) in the table below. Resistance Switch pin free 1-2 Switch pin free 1-2 Switch pin pushed in ↑ Switch pin free 3-4	According to the DATA LIST displayed by the OBD II scan tool or intelligent tester, you can read the value of the switch sensor, actuator and so on without parts removal. Reading the DATA LIST as the first step of troubleshooting is one method to shorten labor time. (a) Warm up the engine. (b) Turn the ignition switch off. (c) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3. (d) Turn the ignition switch on (IG). (e) Turn on the tester. (f) Select the item "DIAGNOSIS / ENHANCED OBD II / DATA LIST. (g) According to the display on the tester, read the "DATA LIST. (g) According to the display on the tester, read the "DATA LIST. (g) According to the display on the tester, read the "DATA LIST. (g) According to the display on the tester, read the "DATA LIST. (g) According to the display on the tester, read the "DATA LIST. (g) According to the display on the tester, read the "DATA LIST. (g) According to or OFF NOTICE: In the table below, the value listed under "Normal Condition" are reference values. Do not depend solely on these reference values. When deciding whether apart is faulty or not. (b) Measure the resistance according to the value(s) in th table below. Resistance Switch pin pushed in <u>1 to 10 k20 or higher</u> Switch pin pushed in <u>1 to 10 k20 or higher</u> Switch pin pushed in <u>1 to 10 k20 or higher</u> Switch pin pushed in <u>1 to 10 k20 or higher</u> Switch pin pushed in <u>1 to 10 k20 or higher</u> Switch pin pushed in <u>1 to 10 k20 or higher</u> Switch pin pushed in <u>1 to 10 k20 or higher</u> Switch pin pushed in <u>1 to 10 k20 or higher</u> Switch pin pushed in <u>1 to 10 k20 or higher</u> Switch pin pushed in <u>1 to 10 k20 or higher</u> Switch pin pushed in <u>1 to 10 k20 or higher</u>	1 RE	EAD VALUE OF I	DATA LIST				
Item Measurement Item/ Range (display) Normal Condition STOP LIGHT SW Stop light SW Status/ ON or OFF • Brake pedal is depressed: ON Brake pedal is released: OFF NOTICE: In the table below, the value listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether apart is faulty or not. OK Go to step 3 NG INSPECT STOP LIGHT SWITCH ASSEMBLY (a) Remove the stop light switch assembly. (b) Measure the resistance according to the value(s) in the table below. Resistance Switch pin free 1 - 2 Switch pin free 1 - 2 Switch pin free 3 - 4	Item Measurement Item/ Range (display) Normal Condition STOP LIGHT SW Stop light SW Status/ ON O OFF • Brake pedal is depressed: ON • Brake pedal is released: OFF NOTICE: In the table below, the value listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether apart is faulty or not. OK Go to step 3 NG INSPECT STOP LIGHT SWITCH ASSEMBLY (a) Remove the stop light switch assembly. (b) Measure the resistance according to the value(s) in th table below. Resistance Switch pin pushed in H 10 kΩ or higher Switch pin pushed in 1 NG REPLACE STOP LIGHT SWITCH ASSEMBL				 According to the DA tool or intelligent test sensor, actuator and the DATA LIST as the method to shorten late (a) Warm up the ere (b) Turn the ignition (c) Connect the OE together with the vehicle interface (d) Turn the ignition (e) Turn on the test (f) Select the item DATA LIST". (g) According to the other other interface (d) the method is the important of th	ter, you l so on he first abor tin ngine. n switc 3D II so e CAN e modu n switc ter "DIAG	u can read the without parts step of trouble ne. h off. can tool or inte VIM (controll ule) to the DLO h on (IG).	e value of the switch, removal. Reading eshooting is one elligent tester er area network C3. ANCED OBD II /
Stop Light SW ON or OFF • Brake pedal is released: OFF NOTICE: In the table below, the value listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether apart is faulty or not. OK Go to step 3 NG 2 INSPECT STOP LIGHT SWITCH ASSEMBLY (a) Remove the stop light switch assembly. (b) Measure the resistance according to the value(s) in the table below. Resistance Switch pin free 1 - 2 Switch pin free 1 - 2 Switch pin free 1 0 kΩ or higher	Stop Light SW ON or OFF • Brake pedal is released: OFF NOTICE: In the table below, the value listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether apart is faulty or not. OK Go to step 3 NG INSPECT STOP LIGHT SWITCH ASSEMBLY (a) Remove the stop light switch assembly. (b) Measure the resistance according to the value(s) in th table below. Resistance Switch position Tester Connection Specified Condition Switch pin pushed in ↑ 10 kΩ or higher Switch pin pushed						Nor	mal Condition
In the table below, the value listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether apart is faulty or not. OK Go to step 3 NG INSPECT STOP LIGHT SWITCH ASSEMBLY (a) Remove the stop light switch assembly. (b) Measure the resistance according to the value(s) in the table below. Resistance Switch position Tester Connection Specified Condition Switch pin pushed in 1 10 k\(\Omega \omega	In the table below, the value listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether apart is faulty or not. OK Go to step 3 NG Go to step 3 INSPECT STOP LIGHT SWITCH ASSEMBLY (a) Remove the stop light switch assembly. (b) Measure the resistance according to the value(s) in the table below. Resistance Free Pushed In Switch position Tester Connection Specified Condition H Excessed Switch pin pushed in ↑ 10 kΩ or higher Switch pin pushed in ↑ 10 kΩ or higher Switch pin pushed in ↑ Below 1 Ω NG RepLACE STOP LIGHT SWITCH ASSEMBLE	S	STOP LIGHT SW				•	•
 (a) Remove the stop light switch assembly. (b) Measure the resistance according to the value(s) in the table below. Resistance Switch position Tester Connection Specified Condition Switch pin free 1 - 2 Below 1 Ω Switch pin pushed in ↑ 10 kΩ or higher Switch pin free 3 - 4 10 kΩ or higher 	 (a) Remove the stop light switch assembly. (b) Measure the resistance according to the value(s) in the table below. Resistance Switch position Tester Connection Specified Condition Switch pin free 1 - 2 Below 1 Ω Switch pin pushed in ↑ 10 kΩ or higher Switch pin pushed in ↑ 10 kΩ or higher Switch pin pushed in ↑ 10 kΩ or higher Switch pin pushed in ↑ Below 1 Ω 	NG			Condition" are solely on thes whether apart	e refere e refer is faul	ence values. ence values ty or not.	Do not depend
 (b) Measure the resistance according to the value(s) in the table below. Resistance Switch position Tester Connection Specified Condition Switch pin free 1 - 2 Below 1 Ω Switch pin pushed in ↑ 10 kΩ or higher Switch pin free 3 - 4 10 kΩ or higher 	 (b) Measure the resistance according to the value(s) in the table below. Resistance (b) Measure the resistance according to the value(s) in the table below. Resistance Switch position Tester Connection Specified Condition Switch pin free 1 - 2 Below 1 Ω Switch pin pushed in ↑ 10 kΩ or higher Switch pin pushed in ↑ Below 1 Ω Switch pin pushed in ↑ Below 1 Ω 	2 IN:	SPECT STOP LI	GHT SWITCH	ASSEMBLY			
	H E0665594E45 NG REPLACE STOP LIGHT SWITCH ASSEMBL		ed In		 (b) Measure the retable below. Resistance Switch position Switch pin free Switch pin pushed in Switch pin free 	sistanc	e according to er Connection 1 - 2 ↑ 3 - 4	Specified Condition Below 1 Ω 10 kΩ or higher 10 kΩ or higher
		ок			REPLA	05 21		

DTC

P0741

Torque Converter Clutch Solenoid Performance (Shift Solenoid Valve DSL)

SYSTEM DESCRIPTION

The ECM uses the signals from the throttle position sensor, air-flow meter, turbine (input) speed sensor, intermediate (counter) shaft speed sensor and crankshaft position sensor to monitor the engagement condition of the lock-up clutch.

Then the ECM compares the engagement condition of the lock-up clutch with the lock-up schedule in the ECM memory to detect a mechanical problems of the shift solenoid valve DSL, valve body and torque converter clutch.

DTC No.	DTC Detection CondS1ition	Trouble Area
P0741	Lock-up does not occur when driving in the lock-up range (normal driving at 80 km/h [50 mph]), or lock up remains ON in the lock-up OFF range. (2-trip detection logic)	 Shift solenoid valve DSL remains open or closed Valve body is blocked Torque converter clutch Automatic transaxle (clutch, brake or gear etc.) Line pressure is too low

MONITOR DESCRIPTION

Torque converter lock-up is controlled by the ECM based on the speed sensor (NT), speed sensor (NC), engine rpm, engine load, engine temperature, vehicle speed, transmission temperature, and gear selection. The ECM determines the lock-up status of the torque converter by comparing the engine rpm (NE) to the input turbine rpm (NT). The ECM calculates the actual transmission gear by comparing input turbine rpm (NT) to counter gear rpm (NC). When conditions are appropriate, the ECM requests "lock-up" by applying control voltage to the shift solenoid DSL. When the DSL is turned on, it applies pressure to the lock-up relay valve and locks the torque converter clutch.

If the ECM detects no lock-up after lock-up has been requested or if it detects lock-up when it is not requested, the ECM interprets this as a fault in the shift solenoid valve DSL or lock-up system performance. The ECM will turn on the MIL and store the DTC. HINT:

Example:

When any of the following is met, the system judges it as a malfunction.

- There is a difference in rotation between the input side (engine speed) and output side (input turbine speed) of the torque converter when the ECM commands lock-up.
- (Engine speed is at least 75 rpm greater than input turbine speed.)
- There is no difference in rotation between the input side (engine speed) and output side (input turbine speed) of the torque converter when the ECM commands lock-up off.
 (The difference between engine speed and input turbine speed is less than 35 rpm.)

(The difference between engine speed and input turbine speed is less than 35 rpm.)

MONITOR STRATEGY

Related DTCs	P0741: Shift solenoid valve DSL/OFF malfunction Shift solenoid valve DSL/ON malfunction
Required sensors/Components	Shift solenoid valve DSL, Speed sensor (NT), Speed sensor (NC), Crankshaft position sensor (NE), Throttle position sensor (VPA1), Mass air flow sensor (MAF), Transmission temperature sensor (THO1), Engine coolant temperature sensor (ECT)
Frequency of operation	Continuous
Duration	OFF malfunction 3.5 sec. ON malfunction 1.8 sec.
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

ALL:

The monitor will run whenever this DTC is not present.	P0115 - P0118 (ECT sensor) P0125 (Insufficient ECT for closed loop) P0500 (VSS) P0748, P0778, P0798 (Shift solenoid valve (range))
ECT (Engine coolant temperature)	10°C (50°F) or more
Transmission range	"D"
TFT (Transmission fluid temperature)	-20°C (-4°F) or more
TFT sensor circuit	Not circuit malfunction
ECT sensor circuit	Not circuit malfunction
Turbine speed sensor circuit	Not circuit malfunction
Intermediate shaft speed sensor circuit	Not circuit malfunction
Output speed sensor circuit	Not circuit malfunction
Shift solenoid valve SL1 circuit	Not circuit malfunction
Shift solenoid valve SL2 circuit	Not circuit malfunction
Shift solenoid valve SL3 circuit	Not circuit malfunction
Shift solenoid valve S4 circuit	Not circuit malfunction
Shift solenoid valve SR circuit	Not circuit malfunction
Shift solenoid valve DSL circuit	Not circuit malfunction
Electronic throttle system	Not circuit malfunction

OFF malfunction

ECM lock-up command	ON
ECM selected gear	3rd, 4th or 5th
Vehicle speed	25 km/h (15.5 mph) or more

ON malfunction

	ECM lock-up command	OFF
	ECM selected gear	3rd, 4th or 5th
1	Throttle valve opening angle	7% or more
	Vehicle speed	25 to 60 km/h (15.5 to 37.3 mph)

TYPICAL MALFUNCTION THRESHOLDS

Either of the following conditions is met: OFF malfunction or ON malfunction OFF malfunction:

Engine Speed - Input (turbine) speed	100 rpm or more
ON malfunction:	

|--|

Less than 35 rpm

INSPECTION PROCEDURE

HINT:

Performing the ACTIVE TEST using the intelligent tester allows the relay, VSV, actuator and so on to operate without parts removal. Performing the ACTIVE TEST as the first step of troubleshooting is one method to shorten labor time.

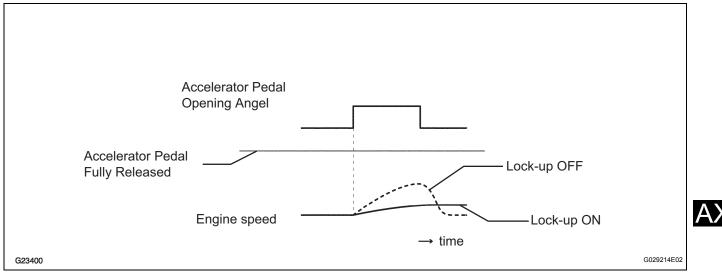
It is possible to display the DATA LIST during the ACTIVE TEST.

1. PERFORM ACTIVE TEST

- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.

AX-69

- (d) Turn the ignition switch on (IG).
- (e) Turn on the tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST".
- (g) According to the display on the tester, perform the "ACTIVE TEST".

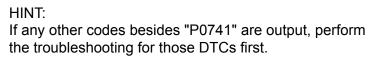

Item	Test Details	Diagnostic Note
LOCK UP	[Test Details] Control the shift solenoid DSL to set the automatic transaxle to the lock-up condition. [Vehicle Condition] Vehicle Speed: 60 km/h (37 mph) or more	Possible to check the DSL operation.

HINT:

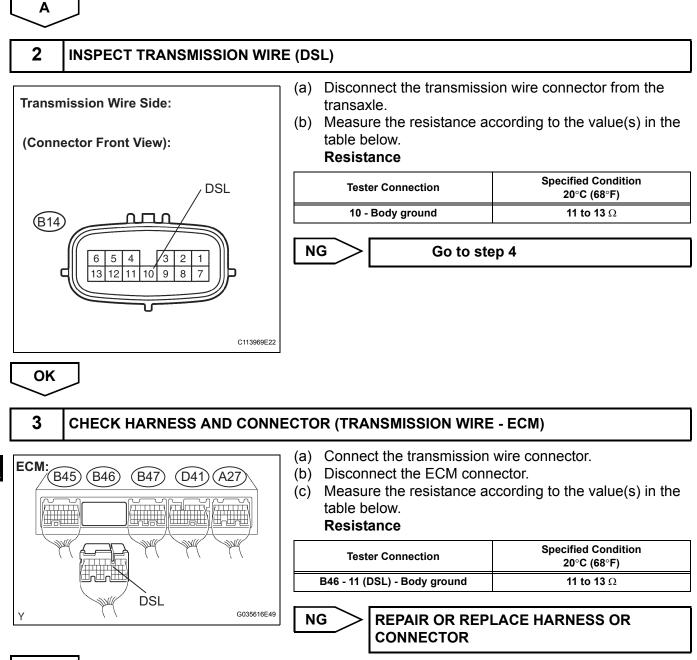
- This test can be conducted when the vehicle speed is 60 km/h (37 mph) or more.
- This test can be conducted in the 5th gear.
- (h) Lightly depress the accelerator pedal and check that the engine speed does not change abruptly.

HINT:

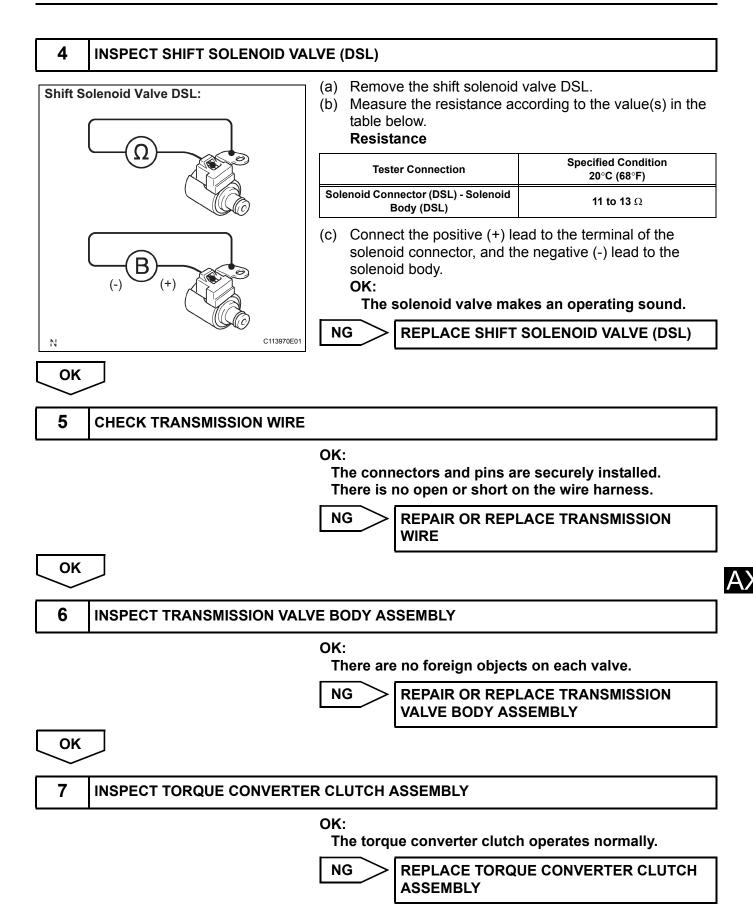
- When changing the accelerator pedal opening angle while driving, if the engine speed does not change, lock-up is on.
- Slowly release, but not fully, the accelerator pedal in order to decelerate. (Fully releasing the pedal will close the throttle valve and lock-up may be turned off.)


CHECK OTHER DTCS OUTPUT (IN ADDITION TO DTC P0741)

- (a) Connect the OBD II scan tool or the intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (b) Turn the ignition switch on (IG) and turn the OBD II scan tool or the intelligent tester main switch ON.
- (c) When you use intelligent tester: Select the item "DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES".
- (d) Read the DTCs using the OBD II scan tool or the intelligent tester.


Dee	
Res	

1


Display (DTC output)	Proceed to
Only "P0741" is output	A
"P0741" and other DTCs	В

ОК

ОК

REPAIR AUTOMATIC TRANSAXLE ASSEMBLY

P0746

Pressure Control Solenoid "A" Performance (Shift Solenoid Valve SL1)

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor to detect the actual gear position (1st, 2nd, 3rd, 4th or 5th gear).

Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical problems of the shift solenoid valves, valve body or automatic transaxle (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P0746	The gear required by the ECM does not match the actual gear when driving (2-trip detection logic)	 Shift solenoid valve SL1 remains open or closed Valve body is blocked Automatic transaxle (clutch, brake or gear etc.)

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". According to the input shaft revolution, intermediate (counter) shaft revolution and output shaft revolution, the ECM detects the actual gear position (1st, 2nd, 3rd, 4th or 5th gear position). When the gear position commanded by the ECM and the actual gear position are not the same, the ECM illuminates the MIL. HINT:

Example:

When either condition (a) or (b) is met, the ECM detects a malfunction.

(a) The ECM commands the 1st gear, but the actual gear is 2nd.

(b) The ECM commands the 2nd gear, but the actual gear is 1st.

MONITOR STRATEGY

Related DTCs	P0746: Shift solenoid valve SL1/OFF malfunction Shift solenoid valve SL1/ON malfunction
Required sensors/Components	Shift solenoid valve SL1, Speed sensor (NT), Speed sensor (NC), Crankshaft position sensor (NE)
Frequency of operation	Continuous
Duration	0.8 sec.
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

ALL:

The monitor will run whenever this DTC is not present.	P0115 - P0118 (ECT sensor) P0125 (Insufficient ECT for closed loop) P0500 (VSS) P0748, P0778, P0798 (Shift solenoid valve (range))
ECT (Engine coolant temperature)	10°C (50°F) or more
Transmission range	"D"
TFT (Transmission fluid temperature)	-20°C (-4°F) or more
TFT sensor circuit	Not circuit malfunction
ECT sensor circuit	Not circuit malfunction
Turbine speed sensor circuit	Not circuit malfunction
Intermediate shaft speed sensor circuit	Not circuit malfunction
Output speed sensor circuit	Not circuit malfunction
Shift solenoid valve SL1 circuit	Not circuit malfunction
Shift solenoid valve SL2 circuit	Not circuit malfunction

Shift solenoid valve SL3 circuit	Not circuit malfunction
Shift solenoid valve S4 circuit	Not circuit malfunction
Shift solenoid valve SR circuit	Not circuit malfunction
Shift solenoid valve DSL circuit	Not circuit malfunction
Electronic throttle system	Not circuit malfunction

OFF malfunction:

ECM selected gear	1st
Vehicle speed	Less than 40 km/h (24.9 mph)
Throttle valve opening angle	4.5% or more at engine speed 1,900 rpm (Varies with engine speed)

ON malfunction:

ECM selected gear	2nd
Throttle valve opening angle	4.5% or more at engine speed 1,900 rpm (Varies with engine speed)

TYPICAL MALFUNCTION THRESHOLDS

Either of the following conditions is met: OFF malfunction or ON malfunction OFF malfunction:

2 detections are necessary per driving cycle:

1st detection; temporary flag ON

2nd detection; pending fault code ON

Input (turbine) speed/Intermediate shaft speed

ON malfunction:

Input (turbine) speed/Intermediate shaft speed	2.72 to 2.86
--	--------------

1.49 to 1.63

INSPECTION PROCEDURE

HINT:

Performing the ACTIVE TEST using the intelligent tester allows the relay, VSV, actuator and so on to operate without parts removal. Performing the ACTIVE TEST as the first step of troubleshooting is one method to shorten labor time.

It is possible to display the DATA LIST during the ACTIVE TEST.

1. PERFORM ACTIVE TEST

- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (d) Turn the ignition switch on (IG).
- (e) Turn on the tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / SHIFT".
- (g) According to the display on the tester, perform the "ACTIVE TEST".

HINT:

While driving, the shift position can be forcibly changed with the intelligent tester.

Comparing the shift position commanded by the ACTIVE TEST with the actual shift position enables you to confirm the problem (See page AX-29).

Item	Test Details	Diagnostic Note
------	--------------	-----------------

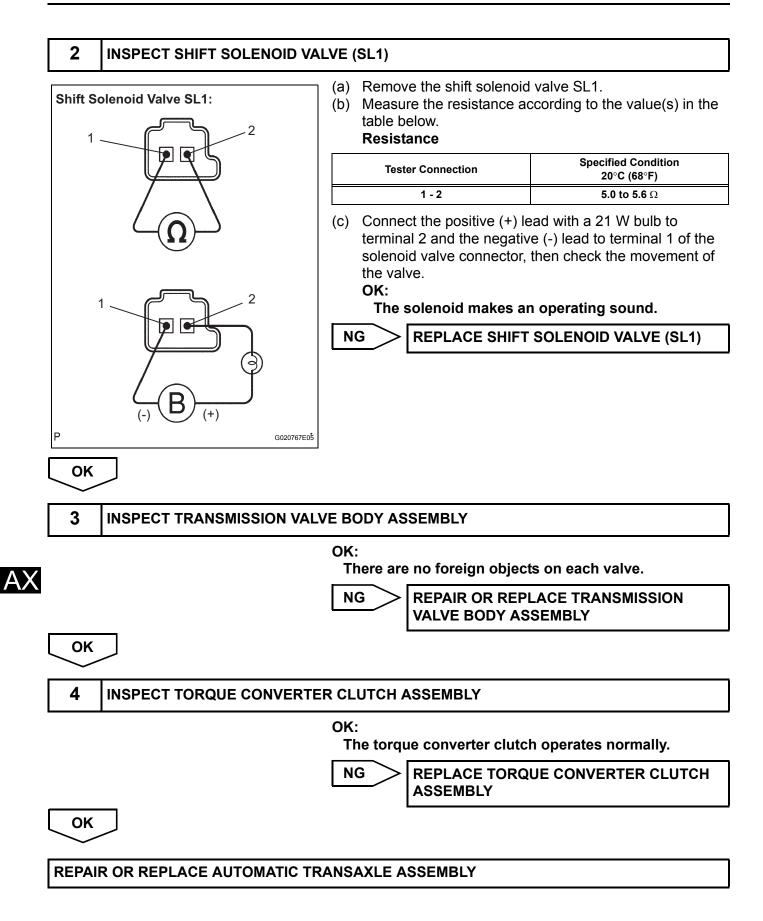
 Press "←" button: Shift up Press "→" button: Shift down
--

HINT:

- This test can be conducted when the vehicle speed is 50 km/h (31 mph) or less.
- The shift position commanded by the ECM is shown in the DATA LIST/SHIFT display on the intelligent tester.

1 CHECK OTHER DTCS OUTPUT (IN ADDITION TO DTC P0746)		
	(a) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network	

- vehicle interface module) to the DLC3.(b) Turn the ignition switch on (IG) and turn the OBD II scan tool or the intelligent tester main switch ON.
- (c) When you use intelligent tester: Select the item "DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES".
- (d) Read the DTCs using the OBD II scan tool or the intelligent tester.


Result:

Display (DTC output)	Proceed to
Only "P0746" is output	A
"P0746" and other DTCs	В

HINT:

If any other codes besides "P0746" are output, perform the troubleshooting for those DTCs first.

Pressure Control Solenoid "A" Electrical (Shift Solenoid Valve SL1)

DESCRIPTION

Shifting from 1st to 5th is performed in combination with "ON" and "OFF" operation of the shift solenoid valves SL1, SL2, SL3, S4 and SR which are controlled by the ECM. If an open or short circuit occurs in either of the shift solenoid valves, the ECM controls the remaining normal shift solenoid valves to allow the vehicle to be operated smoothly (Fail safe function).

DTC No.	DTC Detection Condition	Trouble Area
P0748	 The ECM checks for an open or short in the shift solenoid valve SL1 circuit while driving and shift gears. (1-trip detection logic) Output signal duty equals to 100 %. (NOTE: SL1 output signal duty is less than 100 % under normal condition.) 	 Open or short in shift solenoid valve SL1 circuit Shift solenoid valve SL1 ECM

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". When there is an open or short circuit in any shift solenoid valve circuit, the ECM detects the problem and illuminates the MIL and stores the DTC. And the ECM performs the fail-safe function and turns the other normal shift solenoid valves "ON/OFF" (In case of an open or short circuit, the ECM stops sending current to the circuit.) (See page AX-29).

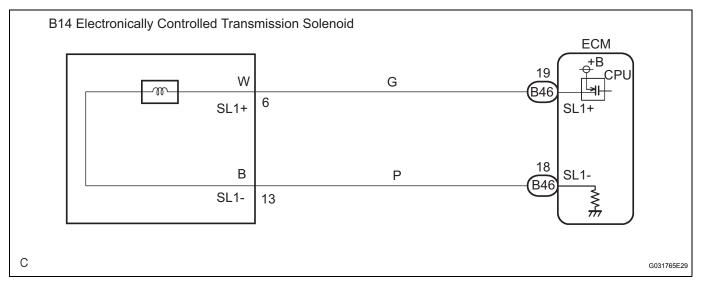
MONITOR STRATEGY

Related DTCs	P0748: Shift solenoid valve SL1/Range check
Required sensors/Components	Shift solenoid valve SL1
Frequency of operation	Continuous
Duration	1 sec.
MIL operation	Immediate
Sequence of operation	None

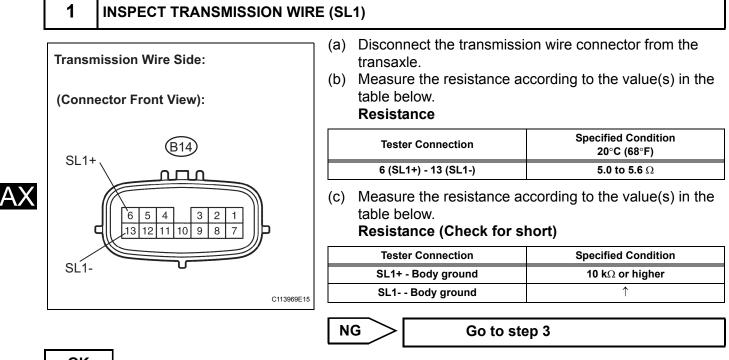
TYPICAL ENABLING CONDITIONS

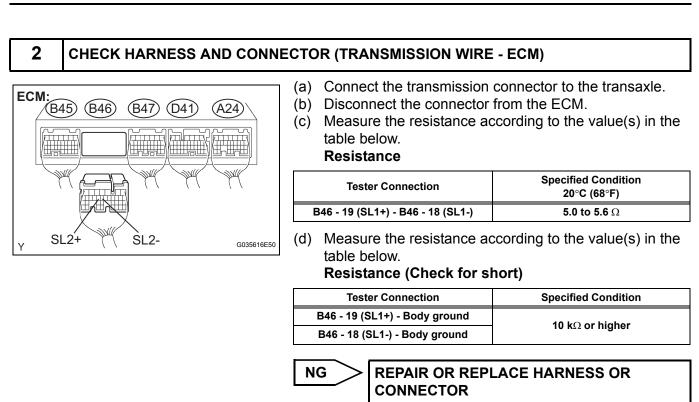
The monitor will run whenever this DTC is not present.	None
Battery voltage	10 V or more
Ignition switch	ON
Starter	OFF

TYPICAL MALFUNCTION THRESHOLDS


	Output signal duty	100%
--	--------------------	------

COMPONENT OPERATING RANGE


Output signal duty Less than 100%


WIRING DIAGRAM

INSPECTION PROCEDURE

OK

ОК

REPLACE ECM

3 INSPECT SHIFT SOLENOID VA	LVE (SL1)			
Shift Solenoid Valve SL1:	 (a) Remove the shift solenoid valve SL1. (b) Measure the resistance according to the value(s) in the table below. Resistance 			
	Tester Connection Specified Condition 20°C (68°F) 20°C (68°F)			
	1 - 2	5.0 to 5.6 Ω		
	•	e (-) lead to terminal 1 of the then check the movement of		
	NG REPLACE SHIFT SOLENOID VALVE (SL1)			
P G020767E05				

ОК

REPAIR OR REPLACE TRANSMISSION WIRE

DTC	P0766	Shift Solenoid "D" Performance (Shift Solenoid Valve S4)
-----	-------	--

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor to detect the actual gear position (1st, 2nd, 3rd, 4th or 5th gear).

Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical problems of the shift solenoid valves, valve body or automatic transaxle (clutch, brake or gear etc.).

[DTC No.	DTC Detecting Condition		Trouble Area
	P0766	The gear required by the ECM does not match the actual gear when driving (2-trip detection logic)	•	Shift solenoid valve S4 remains open or closed Valve body is blocked Automatic transaxle (clutch, brake or gear etc.)

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". According to the input shaft revolution, intermediate (counter) shaft revolution and output shaft revolution, the ECM detects the actual gear position (1st, 2nd, 3rd, 4th or 5th gear position). When the gear position commanded by the ECM and the actual gear position are not the same, the ECM illuminates the MIL and stores the DTC.

MONITOR STRATEGY

P0766: Shift solenoid valve S4/OFF malfunction Shift solenoid valve S4/ON malfunction	
Shift solenoid valve S4, Speed sensor (NT), Speed sensor (NC), Crankshaft position sensor (NE)	
Continuous	
OFF malfunction (A) and ON malfunction (B) 1 sec. OFF malfunction (B) 1.2 sec. ON malfunction (A) 0.8 sec.	
2 driving cycles	
None	

TYPICAL ENABLING CONDITIONS

All:

The monitor will run whenever this DTC is not present.	P0115 - P0118 (ECT sensor) P0125 (Insufficient ECT for closed loop) P0500 (VSS) P0748, P0778, P0798 (Shift solenoid valve (range))
ECT (Engine coolant temperature)	10°C (50°F) or more
Transmission range	"D"
TFT (Transmission fluid temperature)	-20°C (-4°F) or more
TFT sensor circuit	Not circuit malfunction
ECT sensor circuit	Not circuit malfunction
Turbine speed sensor circuit	Not circuit malfunction
Intermediate shaft speed sensor circuit	Not circuit malfunction
Output speed sensor circuit	Not circuit malfunction
Shift solenoid valve SL1 circuit	Not circuit malfunction
Shift solenoid valve SL2 circuit	Not circuit malfunction
Shift solenoid valve SL3 circuit	Not circuit malfunction

AX-82

Electronic throttle system	Not circuit malfunction
Shift solenoid valve DSL circuit	Not circuit malfunction
Shift solenoid valve SR circuit	Not circuit malfunction
Shift solenoid valve S4 circuit	Not circuit malfunction

OFF malfunction (A):

ECM selected gear	5th
Throttle valve opening angle	5% or more
Vehicle speed	10 km/h (6.2 mph) or more

OFF malfunction (B):

ECM lock-up command	ON
ECM selected gear	3rd, 4th or 5th
Throttle valve opening angle	10% or more
Vehicle speed	25 to 100 km/h (15.5 to 62.1 mph)

ON malfunction (A):

ECM selected gear	4th or 5th
Throttle valve opening angle	4.5% or more at engine speed 1,900 rpm (Varies with engine speed)

ON malfunction (B):

ECM selected gear	4th
Throttle valve opening angle	5% or more
Vehicle speed	10 km/h (6.2 mph) or more

TYPICAL MALFUNCTION THRESHOLDS

Either of the following conditions is met: OFF malfunction (A) and (B), or ON malfunction (A) and (B)

2 detections are necessary per driving cycle:

1st detection; temporary flag ON

2nd detection; pending fault code ON

OFF malfunction (A):

Intermediate shaft speed/Output speed

1.44 to 1.58

Less than 35 rpm

OFF malfunction (B):

Difference between engine speed and input (turbine) speed

ON malfunction (A):

Input (turbine) speed/Intermediate shaft speed

0.64 to 0.74

ON malfunction (B):

Intermediate shaft speed/Output speed	1.02 to 1.16

INSPECTION PROCEDURE

HINT:

Performing the ACTIVE TEST using the intelligent tester allows the relay, VSV, actuator and so on to operate without parts removal. Performing the ACTIVE TEST as the first step of troubleshooting is one method to shorten labor time.

It is possible to display the DATA LIST during the ACTIVE TEST.

1. PERFORM ACTIVE TEST

- (a) Warm up the engine.
- (b) Turn the ignition switch off.

- (c) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (d) Turn the ignition switch on (IG).
- (e) Turn on the tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / SHIFT".
- (g) According to the display on the tester, perform the "ACTIVE TEST".

HINT:

While driving, the shift position can be forcibly changed with the intelligent tester.

Comparing the shift position commanded by the ACTIVE TEST with the actual shift position enables you to confirm the problem (See page AX-29).

Item	Test Details	Diagnostic Note
SHIFT	[Test Details] Operate the shift solenoid valve and set each shift position by yourself. [Vehicle Condition] Less than 50 km/h (31 mph) [Others] • Press "→" button: Shift up • Press "←" button: Shift down	Possible to check the operation of the shift solenoid valves.

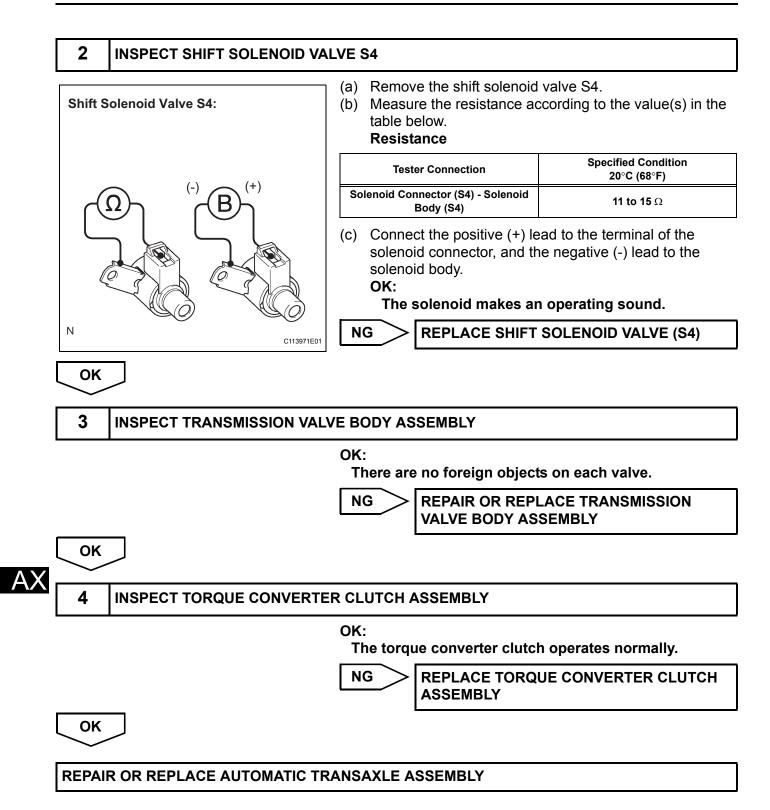
HINT:

- This test can be conducted when the vehicle speed is 50 km/h (31 mph) or less.
- The shift position commanded by the ECM is shown in the DATA LIST/SHIFT display on the intelligent tester.

1	CHECK OTHER DTCS OUTPUT (IN ADDITION TO DTC P0766)	
	(a)	Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
	(b)	Turn the ignition switch on (IG) and turn the OBD II scan tool or the intelligent tester main switch ON.

- (c) Select the item "DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES".
- (d) Read the DTCs using the OBD II scan tool or the intelligent tester.

Result:


Display (DTC output)	Proceed to
Only "P0766" is output	A
"P0766" and other DTCs	В

HINT:

If any other codes besides "P0766" are output, perform the troubleshooting for those DTCs first.

A

AX–85

DTC	P0771	Shift Solenoid "E" Performance (Shift Solenoid Valve SR)
-----	-------	--

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor to detect the actual gear position (1st, 2nd, 3rd, 4th or 5th gear).

Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical problems of the shift solenoid valves, valve body or automatic transaxle (clutch, brake or gear etc.).

[DTC No.	DTC Detecting Condition		Trouble Area	
	P0771	The gear required by the ECM does not match the actual gear when driving (2-trip detection logic)	•	Shift solenoid valve SR remains open or closed Valve body is blocked Automatic transaxle (clutch, brake or gear etc.)	

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". According to the input shaft revolution, intermediate (counter) shaft revolution and output shaft revolution, the ECM detects the actual gear position (1st, 2nd, 3rd, 4th or 5th gear position). When the gear position commanded by the ECM and the actual gear position are not the same, the ECM illuminates the MIL and stores the DTC.

MONITOR STRATEGY

Related DTCs	P0771: Shift solenoid valve SR/Rationality check
Required sensors/Components	Shift solenoid valve SR, Speed sensor (NT), Speed sensor (NC), Crankshaft position sensor (NE)
Frequency of operation	Continuous
Duration	OFF malfunction (A) 1 sec. OFF malfunction (B) 3.5 sec. ON malfunction (A) Continuous ON malfunction (B) and (C) 0.8 sec.
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

All:

The monitor will run whenever this DTC is not present	P0115 - P0118 (ECT sensor) P0125 (Insufficient ECT for closed loop) P0500 (VSS) P0748, P0778, P0798 (Shift solenoid valve (range))		
ECT (Engine coolant temperature)	10°C (50°F) or more		
Transmission range	"D"		
TFT (Transmission fluid temperature)	-20°C (-4°F) or more		
TFT sensor circuit	Not circuit malfunction		
ECT sensor circuit	Not circuit malfunction		
Turbine speed sensor circuit	Not circuit malfunction		
Intermediate shaft speed sensor circuit	Not circuit malfunction		
Output speed sensor circuit	Not circuit malfunction		
Shift solenoid valve SL1 circuit	Not circuit malfunction		
Shift solenoid valve SL2 circuit	Not circuit malfunction		

Shift solenoid valve SL3 circuit	Not circuit malfunction	
Shift solenoid valve S4 circuit	Not circuit malfunction	
Shift solenoid valve SR circuit	Not circuit malfunction	
Shift solenoid valve DSL circuit	Not circuit malfunction	
Electronic throttle system	Not circuit malfunction	

OFF malfunction (A):

ECM selected gear	5th	
Throttle valve opening angle	5% or more	
Vehicle speed	10 km/h (6.2 mph) or more	

OFF malfunction (B):

ECM lock-up command	ON	
ECM selected gear	3rd, 4th or 5th	
Vehicle speed	25 km/h (15.5 mph) or more	

ON malfunction (A):

ECM lock-up command	OFF

ON malfunction (B):

ECM selected gear	1st	
Vehicle speed	Less than 40 km/h (24.9 mph)	
Throttle valve opening angle	4.5% or more at engine speed 1,900 rpm (Varies with engine speed)	

ON malfunction (C):

ECM selected gear	3rd	
Throttle valve opening angle	4.5% or more at engine speed 1,900 rpm (Varies with engine speed)	

ON malfunction (D):

Duration time from shift command of ECM	15 sec. or more
ECM selected gear	4th or 5th

TYPICAL MALFUNCTION THRESHOLDS

Intermediate shaft speed/Output speed	1.44 to 1.58
OFF malfunction (B):	
Engine speed - Input (turbine) speed	75 rpm or more
ON malfunction (A):	
Difference between engine speed and input (turbine) speed	150 rpm or more
ON malfunction (B):	
Input (turbine) speed/Intermediate shaft speed	0.93 to 1.07
ON malfunction (C):	
Input (turbine) speed/Intermediate shaft speed	0.93 to 1.07

INSPECTION PROCEDURE

HINT:

Performing the ACTIVE TEST using the intelligent tester allows the relay, VSV, actuator and so on to operate without parts removal. Performing the ACTIVE TEST as the first step of troubleshooting is one method to shorten labor time.

It is possible to display the DATA LIST during the ACTIVE TEST.

1. PERFORM ACTIVE TEST

- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (d) Turn the ignition switch on (IG).
- (e) Turn on the tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / SHIFT".
- (g) According to the display on the tester, perform the "ACTIVE TEST".

HINT:

While driving, the shift position can be forcibly changed with the intelligent tester.

Comparing the shift position commanded by the ACTIVE TEST with the actual shift position enables you to confirm the problem (See page AX-29).

Item	Test Details	Diagnostic Note
SHIFT	[Test Details] Operate the shift solenoid valve and set each shift position by yourself. [Vehicle Condition] Less than 50 km/h (31 mph) [Others] • Press "→" button: Shift up • Press "←" button: Shift down	Possible to check the operation of the shift solenoid valves.

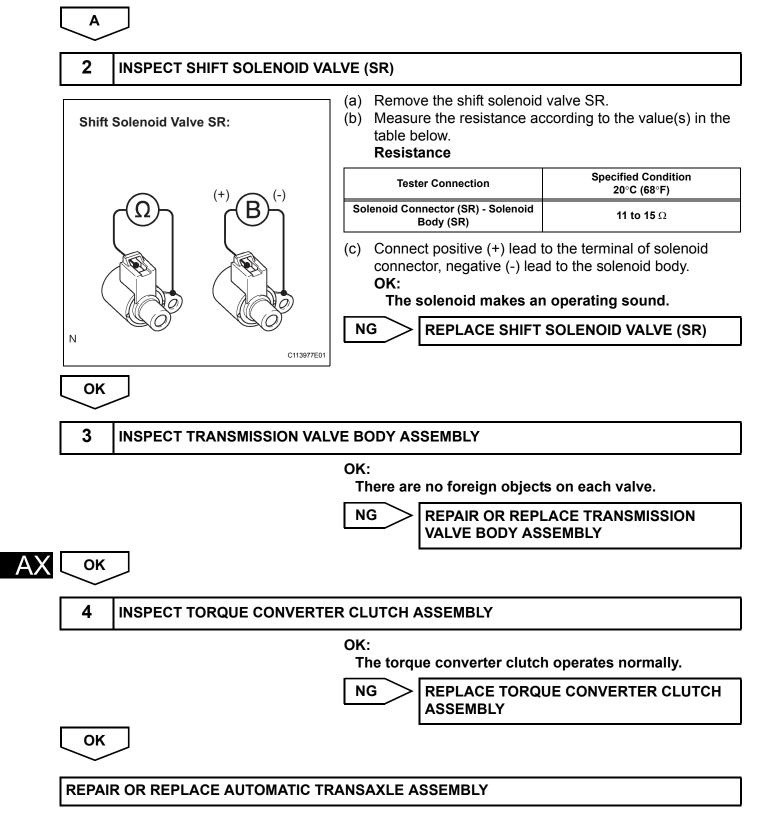
HINT:

- This test can be conducted when the vehicle speed is 50 km/h (31 mph) or less.
- The shift position commanded by the ECM is shown in the DATA LIST/SHIFT display on the intelligent tester.

1

CHECK OTHER DTCS OUTPUT (IN ADDITION TO DTC P0771)

- (a) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (b) Turn the ignition switch on (IG) and turn the OBD II scan tool or the intelligent tester main switch ON.
- (c) When you use intelligent tester: Select the item "DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES".
- (d) Read the DTCs using the OBD II scan tool or the intelligent tester.


Result:

Display (DTC output)	Proceed to
Only "P0771" is output	A
"P0771" and other DTCs	В

HINT:

If any other codes besides "P0771" are output, perform the troubleshooting for those DTCs first.

AX-88

|--|

Pressure Control Solenoid "B" Performance (Shift Solenoid Valve SL2)

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor to detect the actual gear position (1st, 2nd, 3rd, 4th or 5th gear).

Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical problems of the shift solenoid valves, valve body or automatic transaxle (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition		Trouble Area
P0776	The gear required by the ECM does not match the actual gear when driving (2-trip detection logic)	•	Shift solenoid valve SL2 remains open or closed Valve body is blocked Automatic transaxle (clutch, brake or gear etc.)

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". According to the input shaft revolution, intermediate (counter) shaft revolution and output shaft revolution, the ECM detects the actual gear position (1st, 2nd, 3rd, 4th or 5th gear position). When the gear position commanded by the ECM and the actual gear position are not the same, the ECM illuminates the MIL and stores the DTC.

MONITOR STRATEGY

Related DTCs	P0776: Shift solenoid valve SL2/OFF malfunction Shift solenoid valve SL2/ON malfunction
Required sensors/Components	Shift solenoid valve SL2, Speed sensor (NT), Speed sensor (NC), Crannkshaft position sensor (NE)
Frequency of operation	Continuous
Duration	OFF malfunction (A) 1.8 sec. OFF malfunction (B) and (C) 0.8 sec. ON malfunction (A) and (B) 0.8 sec. ON malfunction (C) 0.4 sec.
MIL operation	2 driving cycles
Sequence of operation	None

TVDICAL ENABLING CONDITIONS

The monitor will run whenever this DTC is not present.	P0115 - P0118 (ECT sensor) P0125 (Insufficient ECT for closed loop) P0500 (VSS) P0748, P0778, P0798 (Shift solenoid valve (range))
ECT (Engine coolant temperature)	10°C (50°F) or more
Transmission range	"D"
TFT (Transmission fluid temperature)	-20°C (-4°F) or more
TFT sensor circuit	Not circuit malfunction
ECT sensor circuit	Not circuit malfunction
Turbine speed sensor circuit	Not circuit malfunction
Intermediate shaft speed sensor circuit	Not circuit malfunction
Output speed sensor circuit	Not circuit malfunction
Shift solenoid valve SL1 circuit	Not circuit malfunction
Shift solenoid valve SL2 circuit	Not circuit malfunction

Shift solenoid valve SL3 circuit	Not circuit malfunction
Shift solenoid valve S4 circuit	Not circuit malfunction
Shift solenoid valve SR circuit	Not circuit malfunction
Shift solenoid valve DSL circuit	Not circuit malfunction
Electronic throttle system	Not circuit malfunction

OFF malfunction (A):

ECM lock-up command	OFF
Vehicle speed	Less than 60 km/h (37.3 mph)
Throttle valve opening angle	7% or more

OFF malfunction (B):

ECM selected gear	1st
Vehicle speed	Less than 40 km/h (24.9 mph)
Throttle valve opening angle	4.5% or more at engine speed 1,900 rpm (Varies with engine speed)

OFF malfunction (C):

ECM selected gear	3rd
Throttle valve opening angle	4.5% or more at engine speed 1,900 rpm (Varies with engine speed)

OFF malfunction (D):

Duration time from shift command of ECM	15 sec. or more
ECM selected gear	4th or 5th

ON malfunction (A):

ECM selected gear	1st
Vehicle speed	Less than 40 km/h (24.9 mph)
Throttle valve opening angle	4.5% or more at engine speed 1,900 rpm (Varies with engine speed)

ON malfunction (B):

7	ECM selected gear	3rd
	Throttle valve opening angle	7.0% or more at output speed 1,400 rpm (Varies with engine speed)
	Malfunction of pressure control solenoid "B" (SL2) and "C" (SL3)	Not detected

ON malfunction (C):

٢	Throttle valve opening angle	7.0% or more at output speed 1,050 rpm (Varies with engine speed)
Ν	Malfunction of pressure control solenoid "B" (SL2)	Not detected

TYPICAL MALFUNCTION THRESHOLDS

Either of the following conditions is met: OFF malfunction (A), (B), (C) and (D), or ON malfunction (A), (B) and (C)

OFF malfunction (A):

Difference between engine speed and input (turbine) speed

Less than 35 rpm

OFF malfunction (B) and (C):

 Input (turbine) speed/Intermediate shaft speed
 0.93 to 1.07

OFF malfunction (D):

Input (turbine) speed/Intermediate shaft speed

0.64 to 0.74

ON malfunction (A):

Input (turbine) speed/Intermediate shaft speed	2.72 to 2.86	
ON malfunction (B):		
Input (turbine) speed - Intermediate shaft speed	700 rpm or more	
ON malfunction (C):		

	Less than -500 rpm
Input (turbine) speed - Intermediate shaft speed	or
	700 rpm or more

INSPECTION PROCEDURE

HINT:

Performing the ACTIVE TEST using the intelligent tester allows the relay, VSV, actuator and so on to operate without parts removal. Performing the ACTIVE TEST as the first step of troubleshooting is one method to shorten labor time.

It is possible to display the DATA LIST during the ACTIVE TEST.

1. PERFORM ACTIVE TEST

- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (d) Turn the ignition switch on (IG).
- (e) Turn on the tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / SHIFT".
- (g) According to the display on the tester, perform the "ACTIVE TEST".

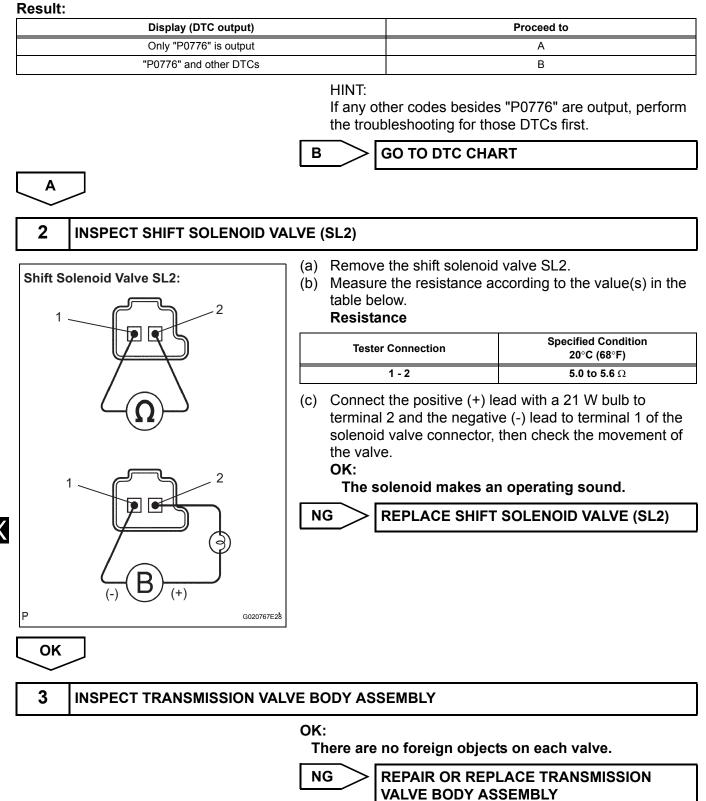
HINT:

While driving, the shift position can be forcibly changed with the intelligent tester.

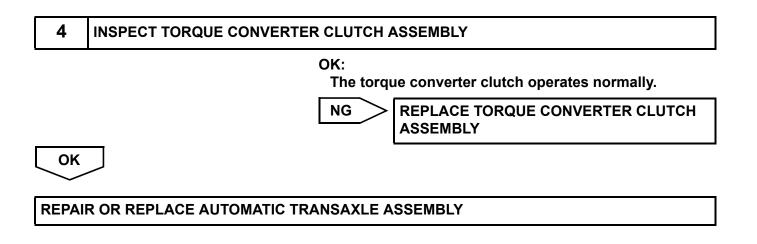
Comparing the shift position commanded by the ACTIVE TEST with the actual shift position enables you to confirm the problem (See page AX-29).

Item	Test Details	Diagnostic Note	
SHIFT	[Test Details] Operate the shift solenoid valve and set the each shift position by yourself. [Vehicle Condition] Less than 50 km/h (31 mph) [Others] • Press "→" button: Shift up • Press "←" button: Shift down	Possible to check the operation of the shift solenoid valves.	A

HINT:


- This test can be conducted when the vehicle speed is 50 km/h (31 mph) or less.
- The shift position commanded by the ECM is shown in the DATA LIST/SHIFT display on the intelligent tester.

1


CHECK OTHER DTCS OUTPUT (IN ADDITION TO DTC P0776)

- (a) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (b) Turn the ignition switch on (IG) and turn the OBD II scan tool or the intelligent tester main switch ON.
- (c) When you use intelligent tester: Select the item "DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES".

(d) Read the DTCs using the OBD II scan tool or the intelligent tester.

OK

AX

AX-94

DTC		Pressure Control Solenoid "B" Electrical (Shift Solenoid Valve SL2)
-----	--	---

DESCRIPTION

Shifting from 1st to 5th is performed in combination with "ON" and "OFF" operation of the shift solenoid valves SL1, SL2, SL3, S4 and SR which are controlled by the ECM. If an open or short circuit occurs in either of the shift solenoid valves, the ECM controls the remaining normal shift solenoid valves to allow the vehicle to be operated smoothly (Fail safe function).

DTC No.	DTC Detection Condition	Trouble Area
P0778	ECM checks for an open or short circuit in shift solenoid valves SL2 (1-trip detection logic) Hybrid IC for solenoid indicates fail.	 Open or short in shift solenoid valve SL2 circuit Shift solenoid valve SL2 ECM

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". When there is an open or short circuit in any shift solenoid valve circuit, the ECM detects the problem and illuminates the MIL and stores the DTC. And the ECM performs the fail-safe function and turns the other normal shift solenoid valves "ON/OFF" (In case of an open or short circuit, the ECM stops sending current to the circuit.) (See page AX-29).

MONITOR STRATEGY

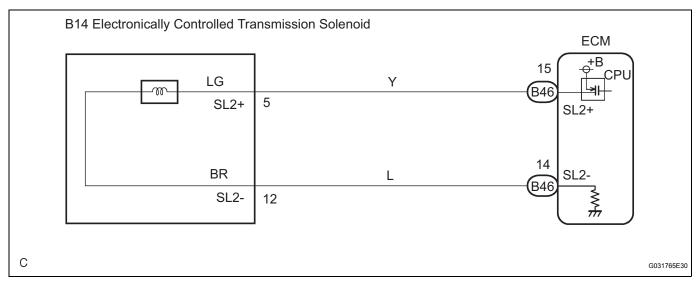
Related DTCs	P0778: Shift solenoid valve SL2/Range check
Required sensors/Components	Shift solenoid valve SL2
Frequency of operation	Continuous
Duration	1 sec.
MIL operation	Immediate
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

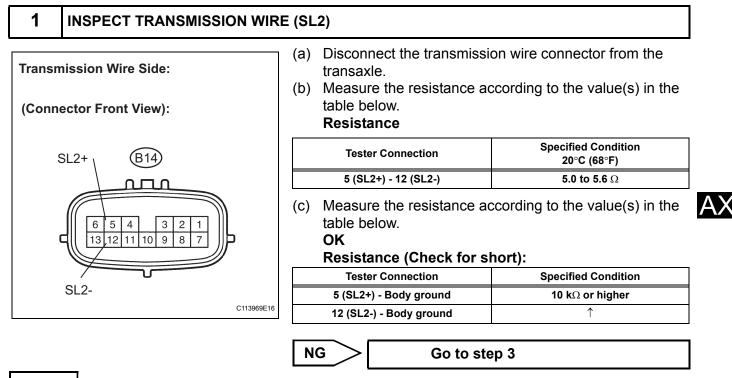
The monitor will run whenever this DTC is not present.	None	
Solenoid current cut status	Not cut	
Battery voltage	11 V or more	
Ignition switch	ON	
Starter	OFF	
CPU commanded duty ratio to SL2	19% or more	

TYPICAL MALFUNCTION THRESHOLDS

Solenoid status from IC	
-------------------------	--


Fail (Open or short)

COMPONENT OPERATING RANGE


Output signal duty

Less than 100%

WIRING DIAGRAM

INSPECTION PROCEDURE

OK

2 CHECK HARNESS AND CONNECTOR (TRANSMISSION WIRE - ECM) Connect the transmission connector to the transaxle. (a) ECM: (b) Disconnect the connector from the ECM. (B45) (B46) (B47) (D41) (A24) (c) Measure the resistance according to the value(s) in the table below. Resistance **Specified Condition Tester Connection** 20°C (68°F) B46 - 15 (SL2+) - B46 - 14 (SL2-) **5.0 to 5.6** Ω Measure the resistance according to the value(s) in the SL2+ SL2-(d) G035616E51 table below. OK: **Resistance (Check for short) Specified Condition Tester Connection** B46 - 15 (SL2+) - Body ground 10 k Ω or higher B46 - 14 (SL2-) - Body ground NG **REPAIR OR REPLACE HARNESS OR** CONNECTOR

ОК

REPLACE ECM

3 **INSPECT SHIFT SOLENOID VALVE (SL2)** Remove the shift solenoid valve SL2. (a) Shift Solenoid Valve SL2: (b) Measure the resistance according to the value(s) in the table below. 2 Resistance **Specified Condition Tester Connection** 20°C (68°F) 1 - 2 5.0 to 5.6 Ω (c) Connect the positive (+) lead with a 21 W bulb to terminal 2 and the negative (-) lead to terminal 1 of the solenoid valve connector, then check the movement of the valve. OK: 2 The solenoid makes an operating sound. NG **REPLACE SHIFT SOLENOID VALVE (SL2)** G020767E28

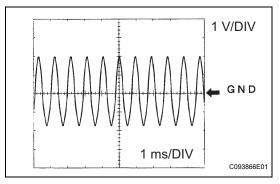
ОК

REPAIR OR REPLACE TRANSMISSION WIRE

Ы.	Т	
υ		

Intermediate Shaft Speed Sensor "A"

DESCRIPTION


This sensor detects the rotation speed of the counter gear. By comparing the counter gear speed signal (NC) with the direct clutch speed sensor signal (NT), the ECM detects the shift timing of the gears and appropriately controls the engine torque and hydraulic pressure according to various conditions. Thus smooth gear shifting is performed.

DTC No.	DTC Detection Condition	Trouble Area
P0793	 ECM detects conditions (a), (b) and (c) continuously for 5 sec. or more: (1-trip detection logic) (a) Vehicle speed: 50 km/h (31 mph) or more (b) Park/neutral position switch (STAR) is OFF (c) Speed sensor (NC): less than 300 rpm 	 Open or short in transmission revolution sensor NC (speed sensor NC) circuit Transmission revolution sensor NC (speed sensor NC) ECM

Reference (Using an oscilloscope):

P0793

Check the waveform between terminals NC+ and NC- of the ECM connector.

Standard: Refer to the illustration.

	Terminal	NC+ - NC-
	Tool setting	1 V/DIV, 1ms/DIV
1	Vehicle condition	Vehicle speed 30 km/h (19 mph): (3rd gear) Engine speed 1,400 rpm

MONITOR DESCRIPTION

The NC terminal of the ECM detects a revolution signal from the speed sensor (NC) (counter gear rpm). The ECM calculates a gearshift comparing the speed sensor (NT) with the speed sensor (NC). While the vehicle is operating in 2nd, 3rd, 4th or 5th gear in the shift position of D, if the counter gear revolution is less than 300 rpm ^{*1}although the output shaft revolution is more than 1,000 rpm ^{*2}, the ECM detects the trouble, illuminates the MIL and stores the DTC.

*1: Pulse is not output or is irregularly output.

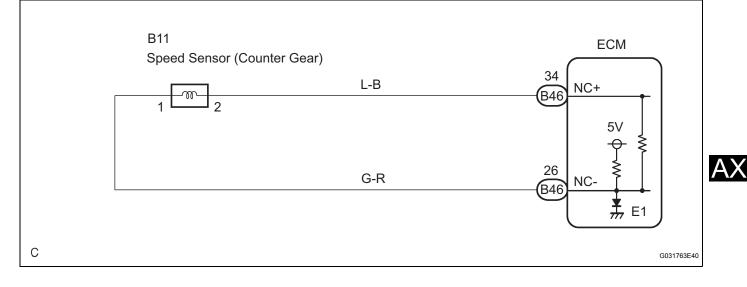
*2: The vehicle speed is 50 km/h (31 mph) or more.

MONITOR STRATEGY

Related DTCs	P0793: Speed sensor (NC)/Verify pulse input
Required sensors/Components	Speed sensor (NC), Speed sensor (NT), Park/neutral position switch
Frequency of operation	Continuous
Duration	5 sec.
MIL operation	Immediate
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever this DTC is not present.	P0500 (VSS) P0748, P0778, P0798 (Shift solenoid valve(range))
Engine	Running
NSW switch	OFF
Output shaft rpm	1,000 rpm or more
Battery voltage	8 V or more
Ignition switch	ON
Starter	OFF


TYPICAL MALFUNCTION THRESHOLDS

	Sensor signal rpm	Less than 300 rpm
--	-------------------	-------------------

COMPONENT OPERATING RANGE

	HINT:
Counter gear speed sensor (NC)	3rd when shift lever position is D position (After warming up the engine);
	 Intermediate shaft speed (NC) becomes close to the engine speed.

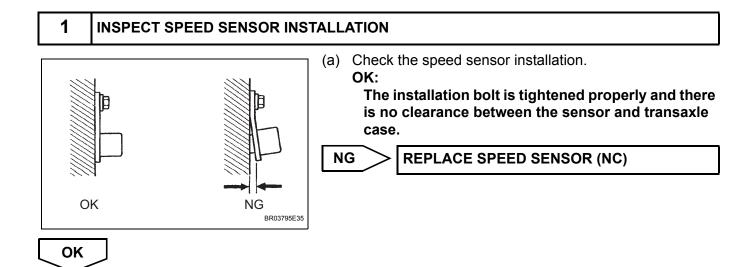
WIRING DIAGRAM

INSPECTION PROCEDURE

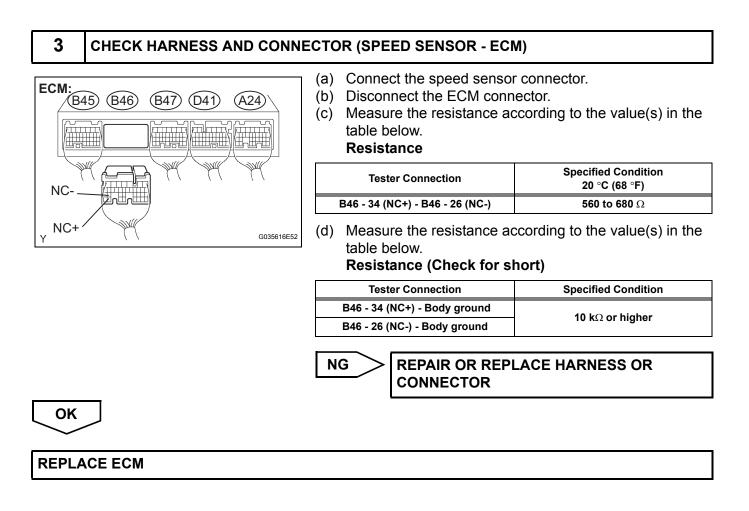
HINT:

According to the DATA LIST displayed by the OBD II scan tool or intelligent tester, you can read the value of the switch, sensor, actuator and so on without parts removal. Reading the DATA LIST as the first step of troubleshooting is one method to shorten labor time.

1. READ DATA LIST


- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (d) Turn the ignition switch on (IG).
- (e) Turn on the tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / DATA LIST".
- (g) According to the display on the tester, read the "DATA LIST".

Iter	m	Measurement Item/ Range (display)	Normal Condition
SPD ((NC)	Counter Gear Speed/ display: 50 r/min	 [HINT] 3rd when shift lever position is D position (After warming up the engine); Intermediate shaft speed (NC) becomes close to the engine speed.


HINT:

- SPD (NC) is always 0 while driving: Open or short in the sensor or circuit.
- SPD (NC) is always more than 0 and less than 300 rpm while driving the vehicle at 50 km/h (31 mph) or more:

Sensor trouble, improper installation, or intermittent connection trouble of the circuit.

2	INSPECT SPEED SENS	OR (NC)	
	r Side: ector Front View):	transaxle.	sensor connector from the e according to the value(s) in the
	rnr	Tester Connection	Specified Condition 20 °C (68 °F)
D11		1 - 2	560 to 680 Ω
(B11		NG REPLACE SP	EED SENSOR (NC)
Р	2 1	C110343E31	
ОК			

DTC		Pressure Control Solenoid "C" Performance (Shift Solenoid Valve SL3)
-----	--	---

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor to detect the actual gear position (1st, 2nd, 3rd, 4th or 5th gear).

Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical troubles of the shift solenoid valves and valve body.

DTC No.	DTC Detecting Condition	Trouble Area
P0796	The gear required by the ECM does not match the actual gear when driving (2-trip detection logic)	 Shift solenoid valve SL3 remains open or closed Valve body is blocked Automatic transaxle (clutch, brake or gear etc.)

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". According to the input shaft revolution, intermediate (counter) shaft revolution and output shaft revolution, the ECM detects the actual gear position (1st, 2nd, 3rd, 4th or 5th gear position). When the gear position commanded by the ECM and the actual gear position are not the same, the ECM illuminates the MIL and stores the DTC.

MONITOR STRATEGY

Related DTCs	P0796: Shift solenoid valve SL3/OFF malfunction Shift solenoid valve SL3/ON malfunction
Required sensors/Components	Shift solenoid valve SL3, Speed sensor (NT), Speed sensor (NC), Crankshaft position sensor (NE)
Frequency of operation	Continuous
Duration	OFF malfunction (A) 0.8 sec. OFF malfunction (B) 1 sec. ON malfunction (A) and (B) 0.8 sec. ON malfunction (C) 0.4 sec.
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

All:

The monitor will run whenever this DTC is not present.	P0115 - P0118 (ECT sensor) P0125 (Insufficient ECT for closed loop) P0500 (VSS) P0748, P0778, P0798 (Shift solenoid valve (range))
ECT (Engine coolant temperature)	10°C (50°F) or more
Transmission range	"D"
TFT (Transmission fluid temperature)	-20°C (-4°F) or more
TFT sensor circuit	Not circuit malfunction
ECT sensor circuit	Not circuit malfunction
Turbine speed sensor circuit	Not circuit malfunction
Intermediate shaft speed sensor circuit	Not circuit malfunction
Output speed sensor circuit	Not circuit malfunction
Shift solenoid valve SL1 circuit	Not circuit malfunction
Shift solenoid valve SL2 circuit	Not circuit malfunction

Shift solenoid valve SL3 circuit	Not circuit malfunction	
Shift solenoid valve S4 circuit	Not circuit malfunction	
Shift solenoid valve SR circuit	Not circuit malfunction	
Shift solenoid valve DSL circuit	Not circuit malfunction	
Electronic throttle system	Not circuit malfunction	
DFF malfunction (A):		
ECM selected gear	4th or 5th	
Throttle valve opening angle	4.5% or more at engine speed 1,900 rpm (Varies with engine speed)	
OFF malfunction (B):		
ECM selected gear	4th	
Throttle valve opening angle	5% or more	
Vehicle speed	10 km/h (6.2 mph) or more	
ON malfunction (A):		
ECM selected gear	1st	
Vehicle speed	Less than 40 km/h (24.9 mph)	
Throttle valve opening angle	4.5% or more at engine speed 1,900 rpm (Varies with engine speed)	
ON malfunction (B):		
ECM selected gear	3rd	
Throttle valve opening angle	7.0% or more at output speed 1,400 rpm (Varies with engine speed)	
Malfunction of pressure control solenoid "B" (SL2) and "C" (SL3)	Not detected	
DN malfunction (C):		
Throttle valve opening angle	7.0% or more at output speed 1,050 rpm (Varies with engine speed)	

OFF malfunction (A):

Input (turbine) speed/Intermediate shaft speed	0.93 to 1.07

0.93 to 1.07

700 rpm or more

OFF malfunction (B):

Intermediate shaft speed/Output speed	1.02 to 1.16

ON malfunction (A):

Input (turbine) speed/Intermediate shaft speed	
--	--

ON malfunction (B):

Input (turbine) speed - Intermediate shaft speed

ON malfunction (C):

	Less than -500 rpm
Input (turbine) speed - Intermediate shaft speed	or
	700 rpm or more

INSPECTION PROCEDURE

HINT:

Performing the ACTIVE TEST using the intelligent tester allows the relay, VSV, actuator and so on to operate without parts removal. Performing the ACTIVE TEST as the first step of troubleshooting is one method to shorten labor time.

It is possible to display the DATA LIST during the ACTIVE TEST.

1. PERFORM ACTIVE TEST

- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (d) Turn the ignition switch on (IG).
- (e) Turn on the tester.
- (f) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / SHIFT".
- (g) According to the display on the tester, perform the "ACTIVE TEST".

HINT:

While driving, the shift position can be forcibly changed with the intelligent tester.

Comparing the shift position commanded by the ACTIVE TEST with the actual shift position enables you to confirm the problem (See page AX-29).

Item	Test Details	Diagnostic Note
SHIFT	[Test Details] Operate the shift solenoid valve and set each shift position by yourself. [Vehicle Condition] Less than 50 km/h (31 mph) [Others] • Press "→" button: Shift up • Press "←" button: Shift down	Possible to check the operation of the shift solenoid valves.

HINT:

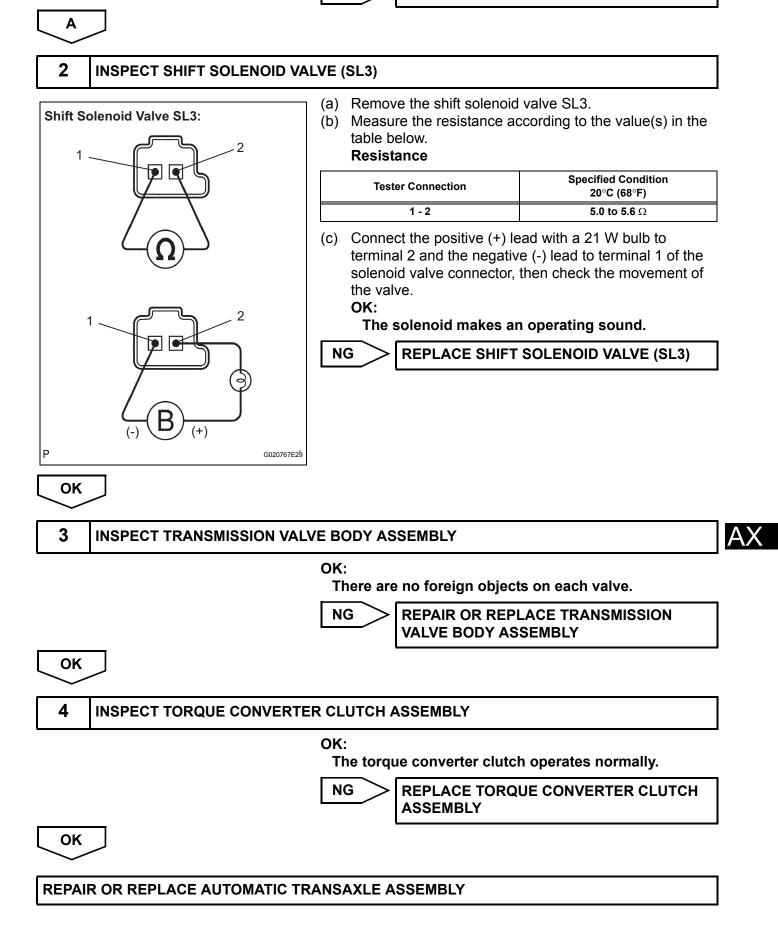
1

- This test can be conducted when the vehicle speed is 50 km/h (31 mph) or less.
- The shift position commanded by the ECM is shown in the DATA LIST/SHIFT display on the intelligent tester.

CHECK OTHER DTCS OUTPUT (IN ADDITION TO DTC P0796)

- (a) Connect the OBD II scan tool or intelligent tester together with the CAN VIM (controller area network vehicle interface module) to the DLC3.
- (b) Turn the ignition switch on (IG) and turn the OBD II scan tool or the intelligent tester main switch ON.
- (c) When you use intelligent tester: Select the item "DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES".
- (d) Read the DTCs using the OBD II scan tool or the intelligent tester.

Result:


Display (DTC output)	Proceed to
Only "P0796" is output	A
"P0796" and other DTCs	В

HINT:

If any other codes besides "P0796" are output, perform the troubleshooting for those DTCs first.

L _	
ΙВ	>
-	

GO TO DTC CHART

тс	P0798	Pressure Control Solence
DIC P0/98	Solenoid Valve SL3)	

oid "C" Electrical (Shift

DESCRIPTION

Shifting from 1st to 5th is performed in combination with "ON" and "OFF" operation of the shift solenoid valves SL1, SL2, SL3, S4 and SR which are controlled by the ECM. If an open or short circuit occurs in either of the shift solenoid valves, the ECM controls the remaining normal shift solenoid valves to allow the vehicle to be operated smoothly (Fail safe function).

DTC No.	DTC Detection Condition	Trouble Area
P0798	 The ECM checks for an open or short in the shift solenoid valve SL3 circuit while driving and shifting gears. (1-trip detection logic) Output signal duty equals to 100 %. (NOTE: SL3 output signal duty is less than 100 % under normal condition.) 	 Open or short in shift solenoid valve SL3 circuit Shift solenoid valve SL3 ECM

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". When there is an open or short circuit in any shift solenoid valve circuit, the ECM detects the problem and illuminates the MIL and stores the DTC. And the ECM performs the fail-safe function and turns the other normal shift solenoid valves "ON/OFF" (In case of an open or short circuit, the ECM stops sending current to the circuit.) (See page AX-29).

MONITOR STRATEGY

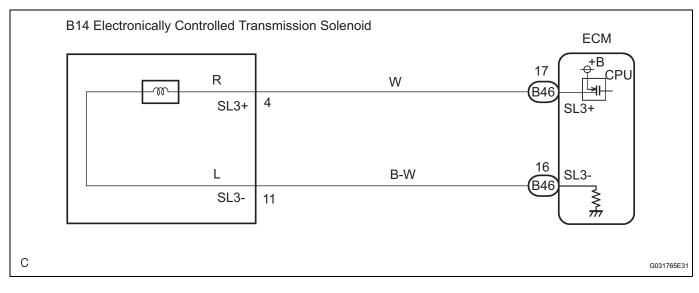
Related DTCs	P0798: Shift solenoid valve SL3/Range check
Required sensors/Components	Shift solenoid valve SL3
Frequency of operation	Continuous
Duration	1 sec.
MIL operation	Immediate
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

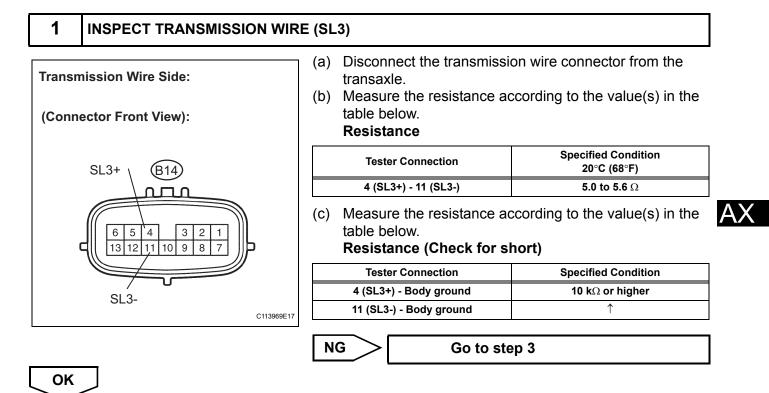
The monitor will run whenever this DTC is not present.	None
Battery voltage	10 V or more
Ignition switch	ON
Starter	OFF

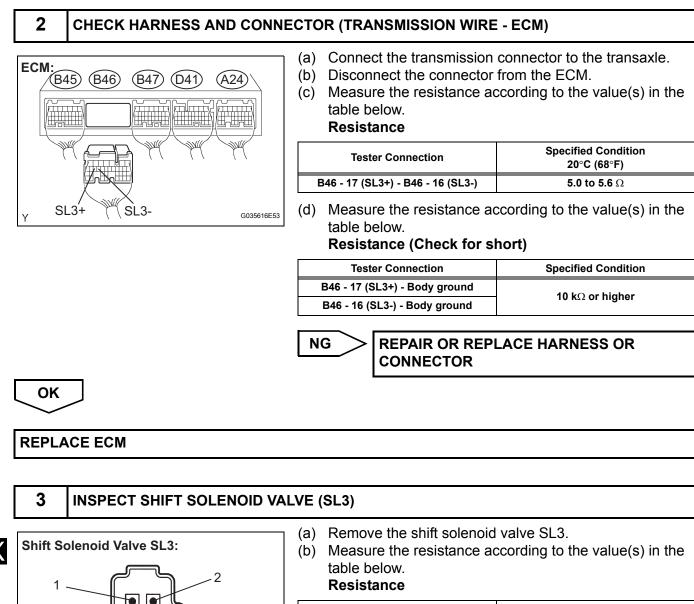
TYPICAL MALFUNCTION THRESHOLDS

Output signal duty


100%

COMPONENT OPERATING RANGE


Output signal duty


Less than 100%

WIRING DIAGRAM

INSPECTION PROCEDURE

Tes	ter Connection	Specified Condition 20°C (68°F)
1 - 2	2	5.0 to 5.6 Ω
 (c) Connect the positive (+) lead with a 21 W bulb to terminal 2 and the negative (-) lead to terminal 1 of the solenoid valve connector, then check the movement of the valve. 		

OK:

2

G020767E29

The solenoid makes an operating sound.

ОК

REPAIR OR REPLACE TRANSMISSION WIRE

DTC	P0982	Shift Solenoid "D" Control Circuit Low (Shift Solenoid Valve S4)
DTC	P0983	Shift Solenoid "D" Control Circuit High (Shift Solenoid Valve S4)

DESCRIPTION

Shifting from 1st to 5th is performed in combination with "ON" and "OFF" operation of the shift solenoid valves SL1, SL2, SL3, S4 and SR which are controlled by the ECM. If an open or short circuit occurs in either of the shift solenoid valves, the ECM controls the remaining normal shift solenoid valves to allow the vehicle to be operated smoothly (Fail safe function).

DTC No.	DTC Detection Condition	Trouble Area
P0982	ECM detects short in solenoid valve S4 circuit 2 times when solenoid valve S4 is operated (1-trip detection logic)	 Short in shift solenoid valve S4 circuit Shift solenoid valve S4 ECM
P0983	ECM detects open in solenoid valve S4 circuit 2 times when solenoid valve S4 is not operated (1-trip detection logic)	 Open in shift solenoid valve S4 circuit Shift solenoid valve S4 ECM

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". When there is an open or short circuit in any shift solenoid valve circuit, the ECM detects the problem and illuminates the MIL and stores the DTC. And the ECM performs the fail-safe function and turns the other normal shift solenoid valves "ON/OFF" (In case of an open or short circuit, the ECM stops sending current to the circuit.) (See page AX-29).

MONITOR STRATEGY

Related DTCs	P0982: Shift solenoid valve S4/Range check (Low resistance) P0983: Shift solenoid valve S4/Range check (High resistance)
Required sensors/Components	Shift solenoid valve S4
Frequency of operation	Continuous
Duration	0.064 sec.
MIL operation	Immediate
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

P0982: Range check (Low resistance):

The monitor will run whenever this DTC is not present.	None
Shift solenoid valve S4	ON
Battery voltage	8 V or more
Ignition switch	ON
Starter	OFF

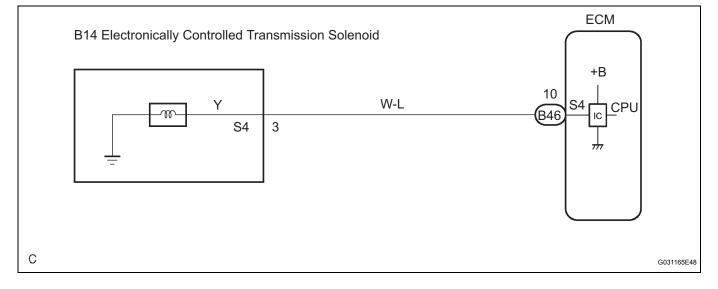
P0983: Range check (High resistance):

The monitor will run whenever this DTC is not present.	None
Shift solenoid valve S4	OFF
Battery voltage	8 V or more
Ignition switch	ON
Starter	OFF

TYPICAL MALFUNCTION THRESHOLDS

P0982: Range check (Low resistance):

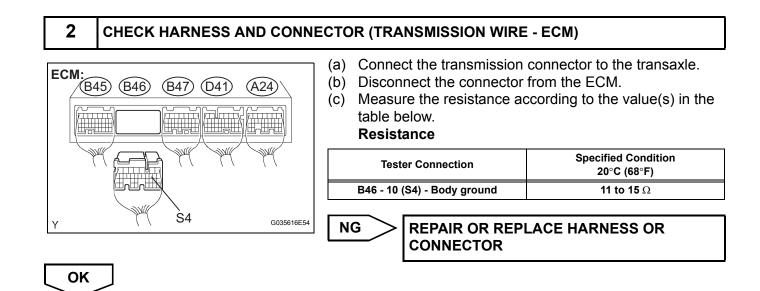
Shift solenoid valve S4 resistance	8 Ω or less
P0983: Range check (High resistance):	

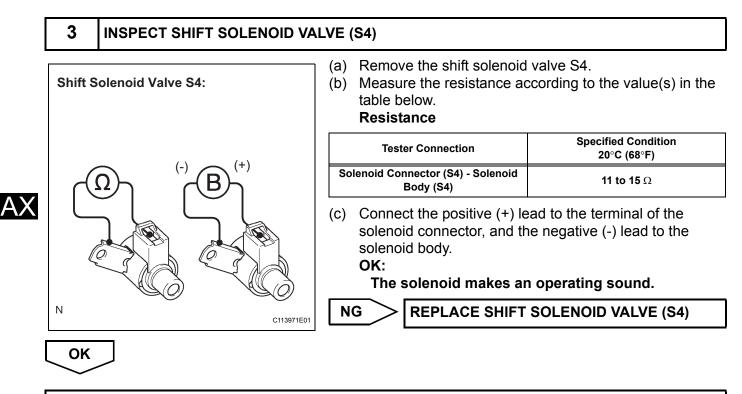

robbe. Runge check (riigh resistance).		
Shift solenoid valve S4 resistance	100 k Ω or more	

COMPONENT OPERATING RANGE

Shift solenoid valve S4

Resistance: 11 to 15 Ω at 20°C (68°F)


WIRING DIAGRAM


INSPECTION PROCEDURE

1 INSPECT TRANSMISSION WIRE (S4)				
Transmission Wire Side:		(a) Disconnect the transmission wire connector from the transaxle.		
(Connector Front View):		(b) Measu table b Resist	elow.	cording to the value(s) in the
	(B14) / S4	Test	er Connection	Specified Condition 20°C (68°F)
		3 -	Body ground	11 to 15 Ω
		NG	Go to ste	o 3
ок	C113969E18			

REPLACE ECM

REPAIR OR REPLACE TRANSMISSION WIRE

DTC	P0985	Shift Solenoid "E" Control Circuit Low (Shift Solenoid Valve SR)
DTC	P0986	Shift Solenoid "E" Control Circuit High (Shift Solenoid Valve SR)

DESCRIPTION

Shifting from 1st to 5th is performed in combination with "ON" and "OFF" operation of the shift solenoid valves SL1, SL2, SL3, S4 and SR which are controlled by the ECM. If an open or short circuit occurs in either of the shift solenoid valves, the ECM controls the remaining normal shift solenoid valves to allow the vehicle to be operated smoothly (Fail safe function).

DTC No.	DTC Detection Condition	Trouble Area
P0985	ECM detects short in solenoid valve SR circuit 2 times when solenoid valve SR is operated (1-trip detection logic)	 Short in shift solenoid valve SR circuit Shift solenoid valve SR ECM
P0986	ECM detects open in solenoid valve SR circuit 2 times when solenoid valve SR is not operated (1-trip detection logic)	 Open in shift solenoid valve SR circuit Shift solenoid valve SR ECM

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". When there is an open or short circuit in any shift solenoid valve circuit, the ECM detects the problem and illuminates the MIL and stores the DTC. And the ECM performs the fail-safe function and turns the other normal shift solenoid valves "ON/OFF" (In case of an open or short circuit, the ECM stops sending current to the circuit.) (See page AX-29).

MONITOR STRATEGY

Related DTCs	P0985: Shift solenoid valve SR/Range check (Low resistance) P0986: Shift solenoid valve SR/Range check (High resistance)	
Required sensors/Components	Shift solenoid valve SR	AX
Frequency of operation	Continuous	
Duration	0.064 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

P0985: Range check (Low resistance):

The monitor will run whenever this DTC is not present.	None
Shift solenoid valve SR	ON
Battery voltage	8 V or more
Ignition switch	ON
Starter	OFF

P0986: Range check (High resistance):

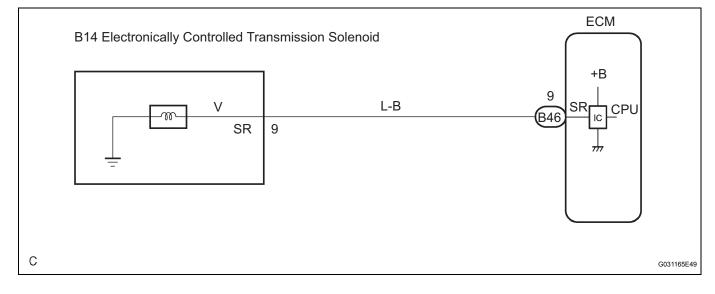
The monitor will run whenever this DTC is not present.	None
Shift solenoid valve SR	OFF
Battery voltage	8 V or more
Ignition switch	ON
Starter	OFF

TYPICAL MALFUNCTION THRESHOLDS

P0985: Range check (Low resistance):

Shift solenoid valve SR resistance	8 Ω or less
P0986: Range check (High resistance):	

Shift solenoid valve SR resistance

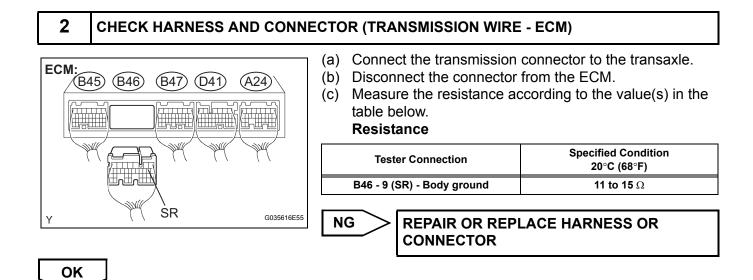

100 k Ω or more

COMPONENT OPERATING RANGE

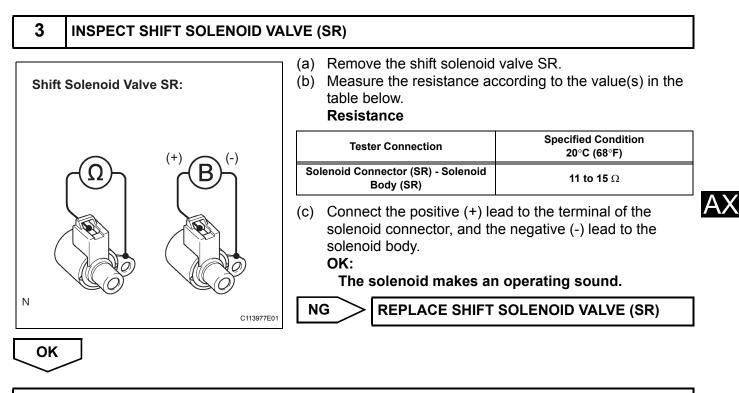
Shift solenoid valve SR

Resistance: 11 to 15 Ω at 20°C (68°F)

WIRING DIAGRAM



AX


INSPECTION PROCEDURE

1 INSPECT TRANSMISSION WIF	RE (SR)	
Transmission Wire Side:	 (a) Disconnect the transmission transaxle. (b) Measure the resistance as 	on wire connector from the cording to the value(s) in the
(Connector Front View):	(b) Measure the resistance ac table below. Resistance	
(B14)	Tester Connection	Specified Condition 20°C (68°F)
	9 - Body ground	11 to 15 Ω
6 5 4 3 2 1 13 12 11 10 9 8 7	NG Go to ste	р 3
SR C113969E19		
ОК	<u>`</u>]	

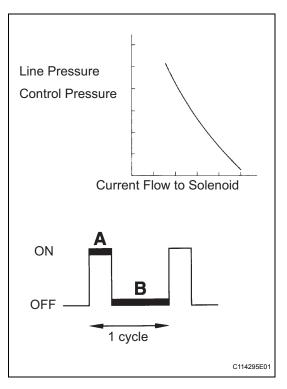
OK

REPLACE ECM

REPAIR OR REPLACE TRANSMISSION WIRE

DTC	P2716	Pressure Control Solenoid "D" Electrical (Shift
	_	Solenoid Valve SLT)

DESCRIPTION


The linear solenoid valve (SLT) controls the transmission line pressure for smooth transmission operation based on signals from the throttle position sensor and the vehicle speed sensor. The ECM adjusts the duty cycle of the SLT solenoid valve to control hydraulic line pressure coming from the primary regulator valve. Appropriate line pressure assures smooth shifting with varying engine outputs.

(*): Duty Ratio

The duty ratio is the ratio of the period of continuity in one cycle.

For example, if A is the period of continuity in one cycle, and B is the period of non-continuity, then Duty Ratio= $A/(A + B) \times 100(\%)$

DTC No.	DTC Detection Condition	Trouble Area
P2716	Open or short is detected in shift solenoid valve SLT circuit for 1 second or more while driving (1-trip detecting logic).	 Open or short in shift solenoid valve SLT circuit Shift solenoid valve SLT ECM

MONITOR DESCRIPTION

When an open or short in the linear solenoid valve (SLT) circuit is detected, the ECM interprets this as a fault. The ECM will turn on the MIL and store the DTC.

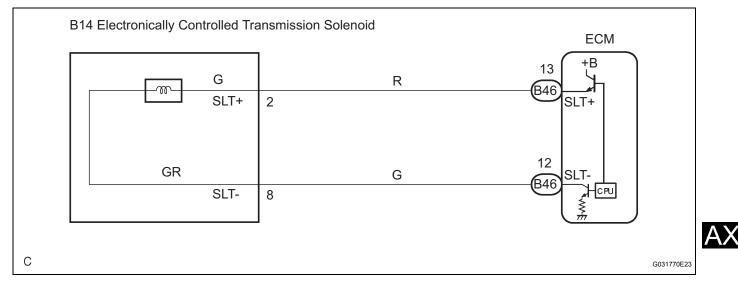
MONITOR STRATEGY

Related DTCs	P2716: Shift solenoid valve SLT/Range check
Required sensors/Components	Shift solenoid valve SLT
Frequency of operation	Continuous
Duration	1 sec.
MIL operation	Immediate
Sequence of operation	None

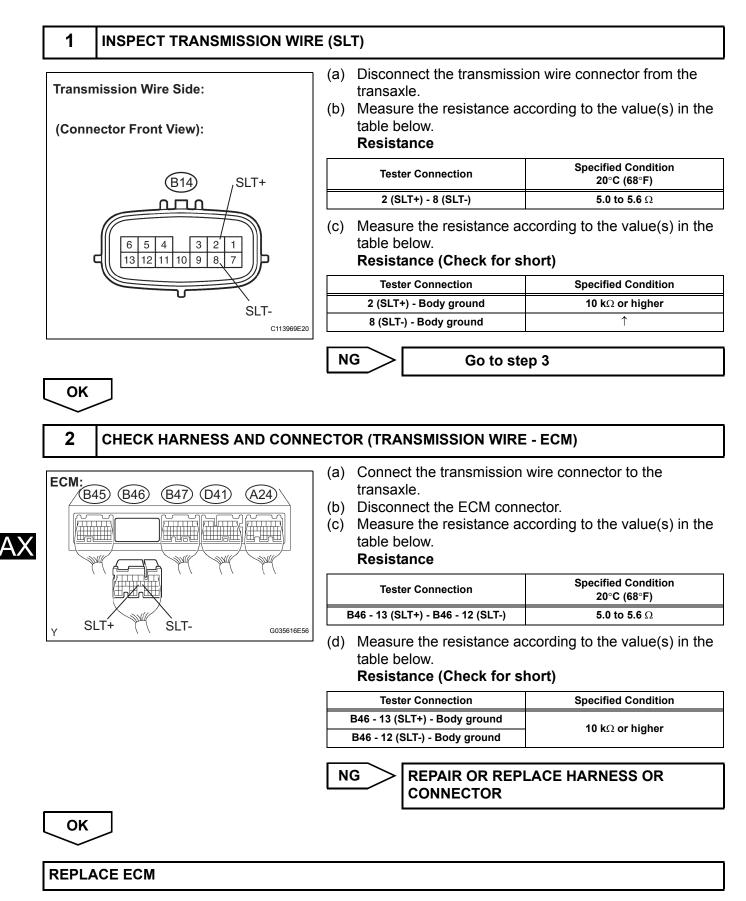
TYPICAL ENABLING CONDITIONS

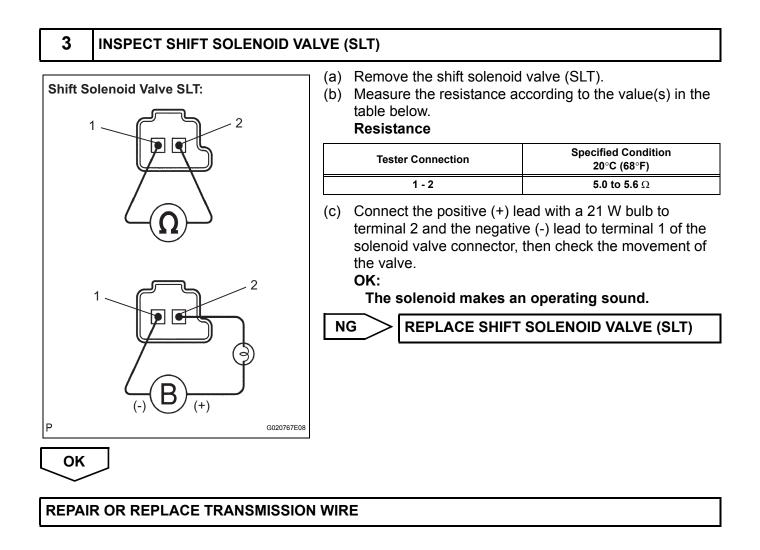
The monitor will run whenever this DTC is not present.	None
Solenoid current cut status	Not cut
Battery voltage	11 V or more
Ignition switch	ON
Starter	OFF
CPU commanded duty ratio to SLT	19% or more

TYPICAL MALFUNCTION THRESHOLDS


Solenoid	status	from	IC
Colonola	otatao		10

Fail (Open or short)


COMPONENT OPERATING RANGE


Shift solenoid valve SLTResistance: 5.0 to 5.6Ω at 20° C (68° F)

WIRING DIAGRAM

INSPECTION PROCEDURE

AX–119

DTC	P2769	Torque Converter Clutch Solenoid Circuit Low (Shift Solenoid Valve DSL)
DTC	P2770	Torque Converter Clutch Solenoid Circuit High (Shift Solenoid Valve DSL)

DESCRIPTION

The shift solenoid valve DSL is turned "ON" and "OFF" by signals from the ECM in order to control the hydraulic pressure operation, the lock-up relay valve, which then controls operation of the lock-up clutch.

DTC No.	DTC Detection Condition	Trouble Area
P2769	ECM detects short in solenoid valve DSL circuit (0.1 sec.) when solenoid valve DSL is operated (2-trip detection logic)	 Short in shift solenoid valve DSL circuit Shift solenoid valve DSL ECM
P2770	ECM detects open in solenoid valve DSL circuit (0.1 sec.) when solenoid valve DSL is not operated (2-trip detection logic)	 Open in shift solenoid valve DSL circuit Shift solenoid valve DSL ECM

MONITOR DESCRIPTION

Torque converter lock-up is controlled by the ECM based on engine rpm, engine load, engine temperature, vehicle speed, transmission temperature, and shift range selection. The ECM determines the lock-up status of the torque converter by comparing the engine rpm (NE) to the input turbine rpm (NT). The ECM calculates the actual transmission gear by comparing input turbine rpm (NT) to counter gear rpm (NC). When conditions are appropriate, the ECM requests "lock-up" by applying control voltage to the shift solenoid DSL. When the DSL is opened, it applies pressure to the lock-up relay valve and locks the torque converter clutch. If the ECM detects an open or short in the DSL solenoid circuit, the ECM interprets this as a fault in the DSL solenoid or circuit. The ECM will turn on the MIL and store the DTC.

MONITOR STRATEGY

AX	

Related DTCs	P2769: Shift solenoid valve DSL/Range check (Low resistance) P2770: Shift solenoid valve DSL/Range check (High resistance)
Required sensors/Components	Shift solenoid valve DSL
Frequency of operation	Continuous
Duration	0.064 sec. or more
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

P2769: Range check (Low resistance):

The monitor will run whenever this DTC is not present.	None
Shift solenoid valve DSL	ON
Solenoid current cut status	Not cut
Battery voltage	8 V or more
Ignition switch	ON
Starter	OFF

P2770: Range check (High resistance):

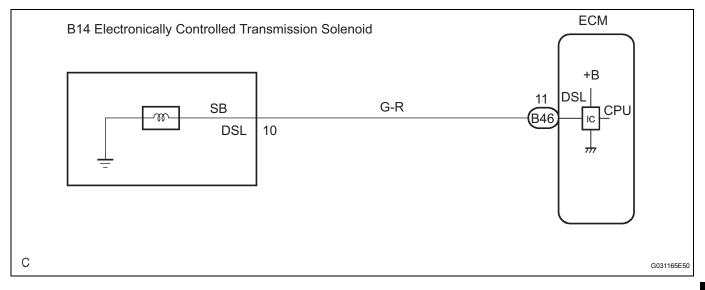
The monitor will run whenever this DTC is not present.	None
Shift solenoid valve DSL	ON
Battery voltage	8 V or more
Ignition switch	ON

Starter

OFF

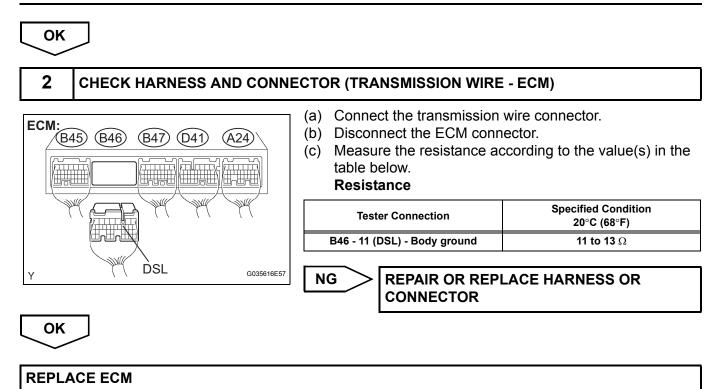
AX-121

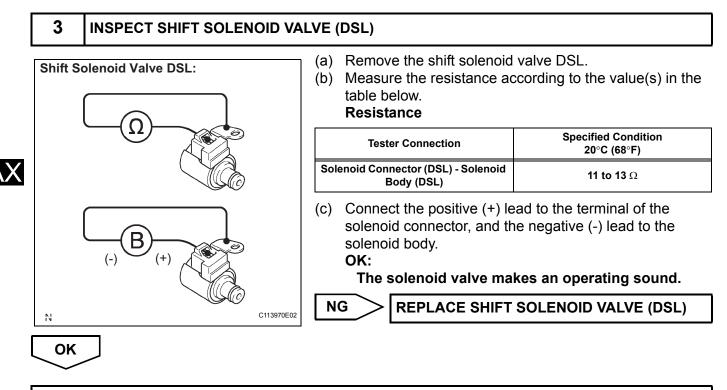
TYPICAL MALFUNCTION THRESHOLDS


P2769: Range check (Low resistance):

Shift solenoid valve DSL resistance	8 Ω or less	
P2770: Range check (High resistance):		
Shift solenoid valve DSL resistance	100 kΩ or more	

COMPONENT OPERATING RANGE

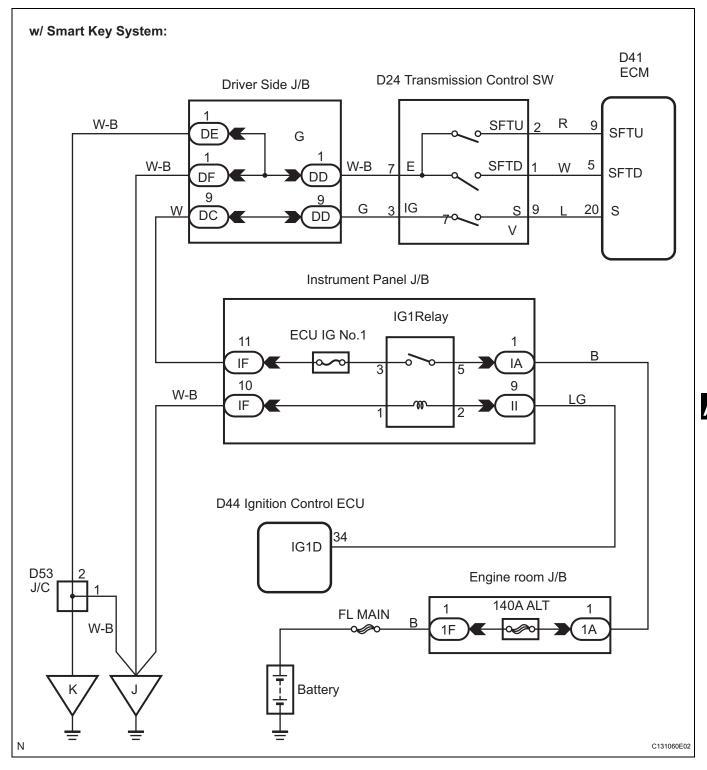

Shift solenoid valve DSL	Resistance: 11 to 13 Ω at 20°C (68°F)

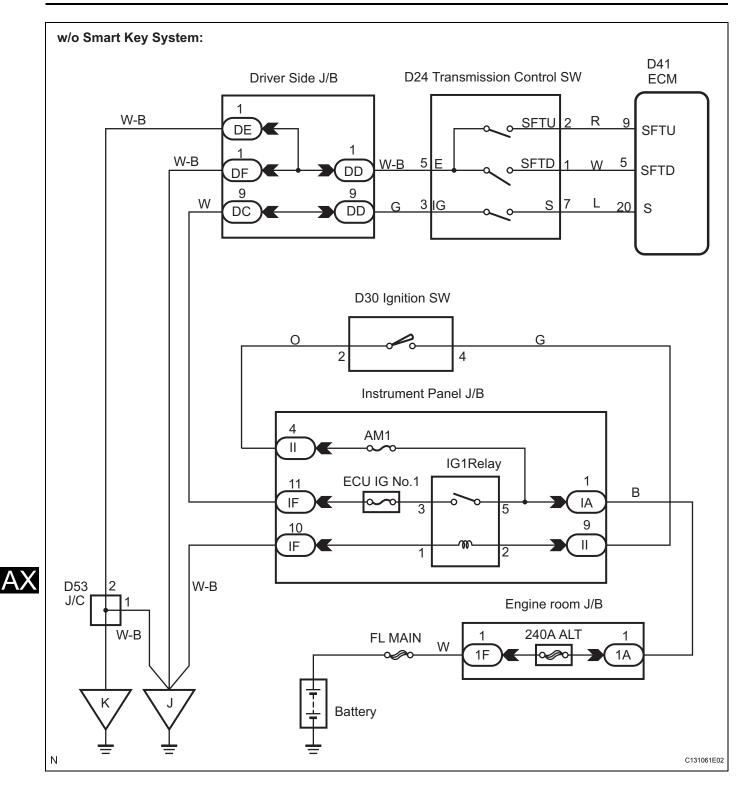

WIRING DIAGRAM

INSPECTION PROCEDURE

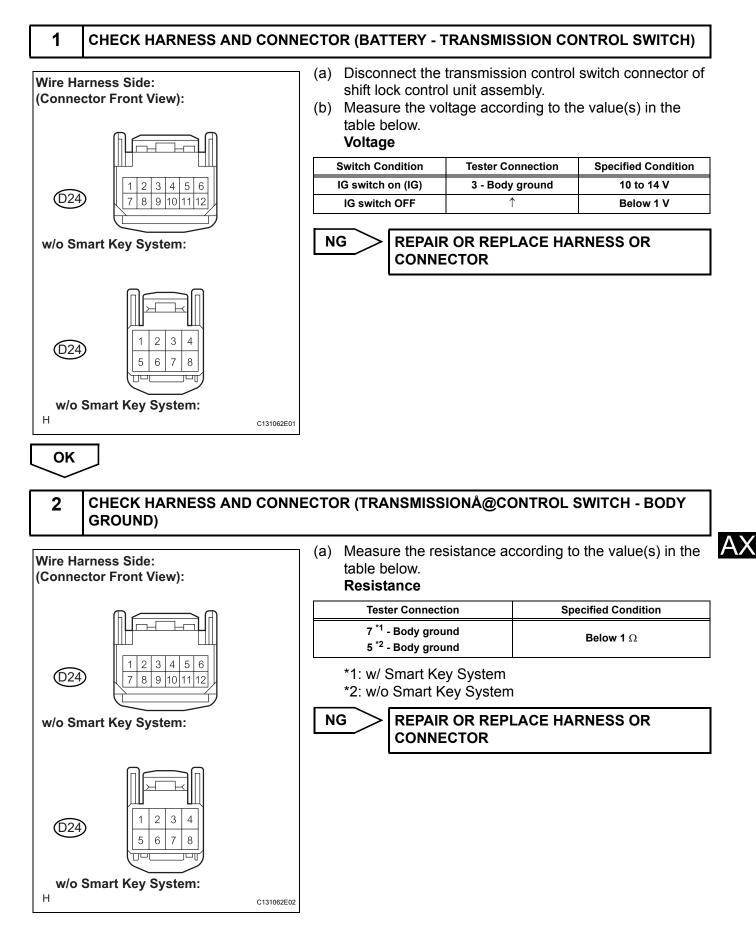
1	INSPECT TRANSMISSION WI	RE (DSL)	
Trans	mission Wire Side:	transaxle. (b) Measure the resistance a	sion wire connector from the according to the value(s) in the
(Conr	nector Front View):	table below. Resistance	
	(B14)	Tester Connection	Specified Condition 20°C (68°F)
		10 - Body ground	11 to 13 Ω
	6 5 4 3 2 1 13 12 11 10 9 8 7	NG Go to st	tep 3
	DSL C113969E2	1	

REPAIR OR REPLACE TRANSMISSION WIRE

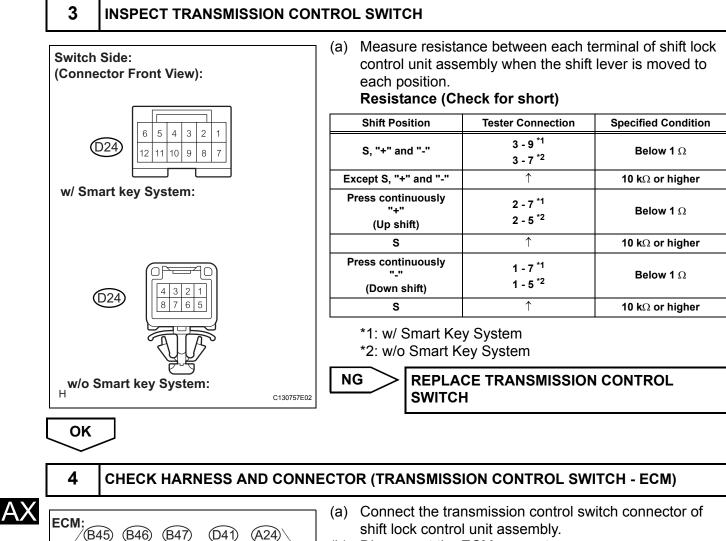

Transmission Control Switch Circuit


DESCRIPTION

When moving the shift lever into the S position using the transmission control switch, it is possible to switch the shift range position between "1" (first range) and "5" (fifth range).


Shifting up "+" once raises one shift range position, and shifting down "-" lowers one shift range position.

WIRING DIAGRAM

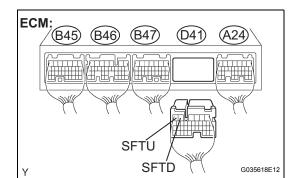


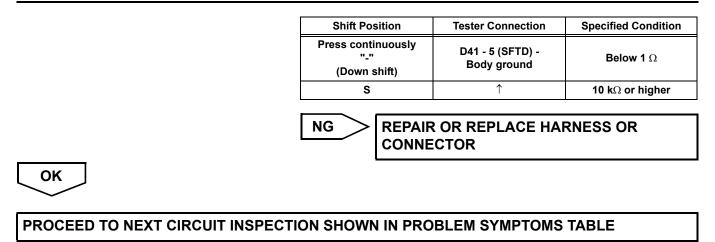
INSPECTION PROCEDURE

- (b) Disconnect the ECM connector.
- (c) Turn the ignition switch on (IG), and measure the voltage according to the value(s) in the table below when the shift lever is moved to each position.

Voltage

S(+)_{G035618E11}


Shift Position	Tester Connection	Specified Condition
S, "+" and "-"	D41 - 20(S) - Body ground	10 to 14 V
Except S, "+" and "-"	\uparrow	Below 1 V


(d) Turn the ignition switch to the LOCK position.

(e) Measure the resistance according to the value(s) in the table below when the shift lever is moved to each position.

Resistance

Shift Position	Tester Connection	Specified Condition
Press continuously "+" (Up shift)	D41 - 6 (SFTU) - Body ground	Below 1 Ω
S	\uparrow	10 k Ω or higher

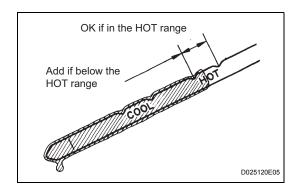
AUTOMATIC TRANSAXLE FLUID

ON-VEHICLE INSPECTION

1. CHECK FLUID LEVEL

HINT:

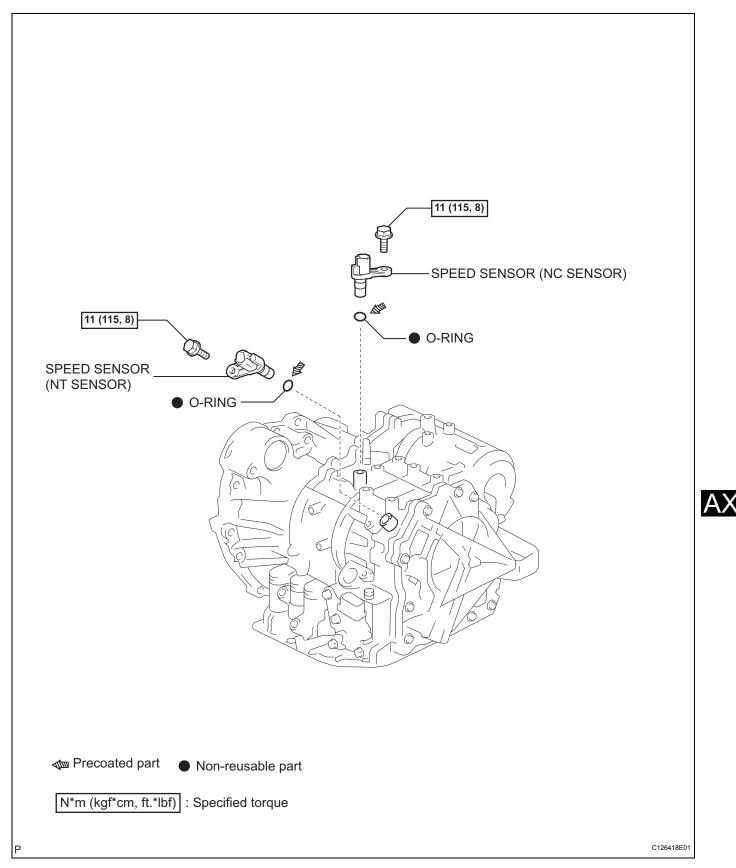
Drive the vehicle so that the engine and transaxle are at normal operating temperature. **Fluid temperature:**

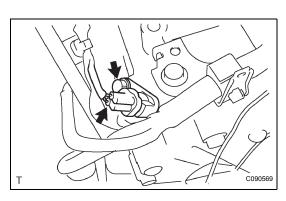

70 to 80°C (158 to 176°F)

- (a) Park the vehicle on a level surface and set the parking brake.
- (b) With the engine idling and the brake pedal depressed, move the shift lever to all positions from P to L (S1) and return to the P position.
- (c) Take out the dipstick and wipe it clean.
- (d) Put the dipstick back all the way.
- (e) Take out the dipstick again and check that the fluid level is within the HOT range.

If the fluid level is below the HOT range, add new fluid and recheck the fluid level.

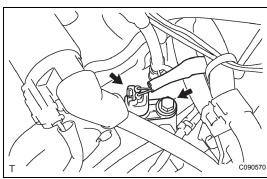
If the fluid level exceeds the HOT range, drain the fluid once, add the proper amount of new fluid and recheck the fluid level.


If there are leaks, it is necessary to repair or replace O-rings, FIPGs, oil seals, plugs and/or other parts.



SPEED SENSOR

COMPONENTS

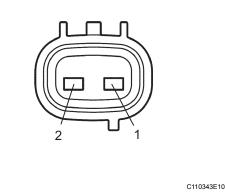


REMOVAL

- 1. REMOVE BATTERY
- 2. REMOVE AIR CLEANER ASSEMBLY HINT:

(See page EM-28)

- 3. REMOVE SPEED SENSOR (NT SENSOR)
 - (a) Disconnect the speed sensor connector.
 - (b) Remove the bolt and speed sensor.

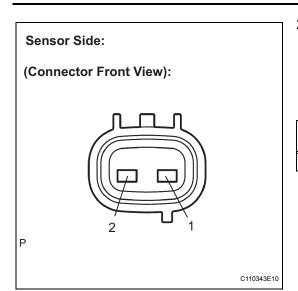

REMOVE SPEED SENSOR (NC SENSOR) (a) Disconnect the speed sensor connector.

(b) Remove the bolt and speed sensor.

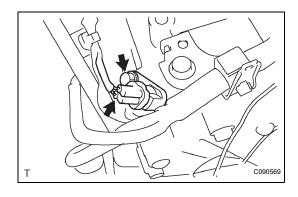
Sensor Side:

Р

(Connector Front View):


INSPECTION

1. INSPECT SPEED SENSOR (NT SENSOR)


- (a) Disconnect the speed sensor connector from the transaxle.
- (b) Measure the resistance according to the value(s) in the table below.

Resistance:

Tester Connection	Specified Condition 20°C (68°F)
1 - 2	560 to 680 Ω

T C090570

2. INSPECT SPEED SENSOR (NC SENSOR)

- (a) Disconnect the speed sensor connector from the transaxle.
- (b) Measure the resistance according to the value(s) in the table below.
 Resistance:

Tester Connection Specified Condition 20°C (68°F) 1 - 2 560 to 680 Ω

INSTALLATION

1. INSTALL SPEED SENSOR (NC SENSOR)

- (a) Coat the O-ring with ATF.
- (b) Install the speed sensor with the bolt.
 Torque: 11 N*m (115 kgf*cm, 8 ft.*lbf) HINT:
 Make sure to install the same manufacturer's

Make sure to install the same manufacturer's sensor.

(c) Connect the speed sensor connector.

2. INSTALL SPEED SENSOR (NT SENSOR)

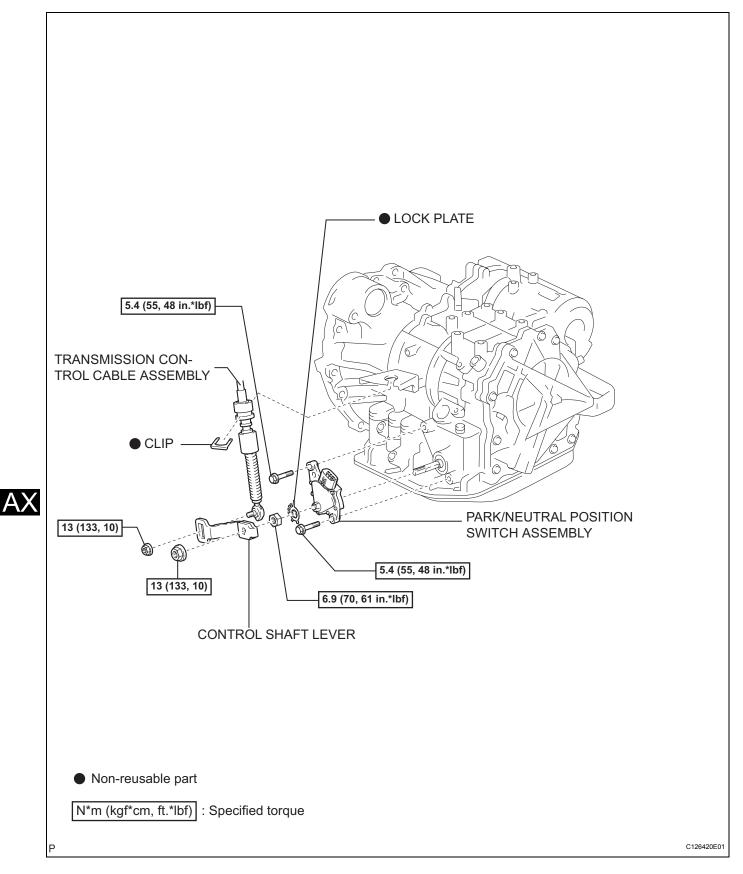
- (a) Coat the O-ring with ATF.
- (b) Install the speed sensor with the bolt.
 Torque: 11 N*m (115 kgf*cm, 8 ft.*lbf) HINT: Make sure to install the same manufacturer's
- (c) Connect the speed sensor connector.

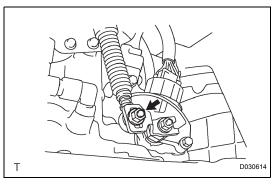
3. INSTALL AIR CLEANER ASSEMBLY HINT:

(See page EM-44)

4. INSTALL BATTERY

sensor.


5. PERFORM INITIALIZATION HINT:


Some systems need initialization when disconnecting the cable from the negative battery terminal (See page AX-1).

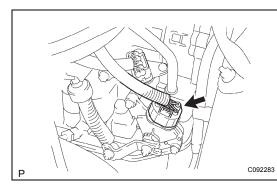
PARK / NEUTRAL POSITION SWITCH

COMPONENTS

REMOVAL

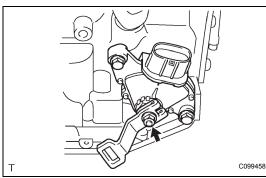
1. REMOVE BATTERY

NOTICE:

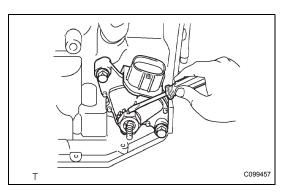

- 2. REMOVE AIR CLEANER ASSEMBLY HINT: (See page EM-28)
- 3. SEPARATE TRANSMISSION CONTROL CABLE ASSEMBLY
 - (a) Remove the nut from the control shaft lever.
 - (b) Disconnect the control cable from the control shaft lever.

(c) Remove the clip and disconnect the control cable

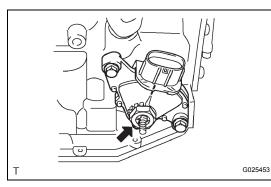
from the control cable bracket.

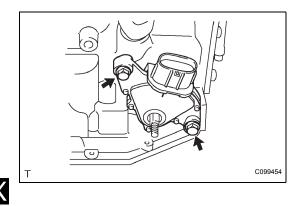

Do not hold the resin guide pipe.

N D025415



- 4. REMOVE PARK/NEUTRAL POSITION SWITCH ASSEMBLY
 - (a) Disconnect the park/neutral position switch connector.





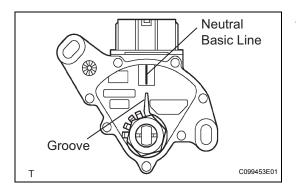
(b) Remove the nut, washer and control shaft lever.

(c) Using a screwdriver, pry up the lock plate.

(d) Remove the lock nut and the lock plate.

(e) Remove the 2 bolts and pull out the park/neutral position switch.

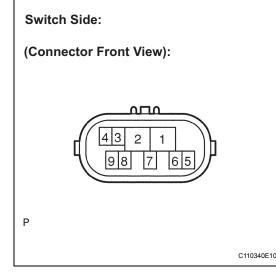
INSPECTION

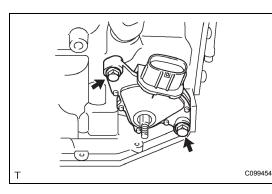

- 1. INSPECT PARK/NEUTRAL POSITION SWITCH ASSEMBLY OPERATION
 - (a) Apply the parking brake and turn the ignition switch to the ON position.
 - (b) Depress the brake pedal and check that the engine starts only when the shift lever is in the N or P position and the engine does not start when the shift lever is in other positions.
 - (c) Check that the back up light comes on and the reverse warning buzzer sounds only when the shift lever is in the R position and the light and buzzer do not operate when the shift lever is in other positions.
 - (d) If a failure is found, check the park/neutral position switch for continuity.

2. INSPECT PARK/NEUTRAL POSITION SWITCH ASSEMBLY

- (a) Jack up the vehicle.
- (b) Disconnect the park/neutral position switch connector.
- (c) Measure the resistance according to the value(s) in the table below when the shift lever is moved to each position.

Resistance

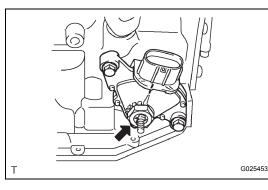

Shift Position	Tester Connection	Specified Condition
Р	2 - 6 and 4 - 5	Below 1 Ω
Except P		10 k Ω or higher
R	2 - 1	Below 1 Ω
Except R		10 k Ω or higher
Ν	2 - 9 and 4 - 5	Below 1 Ω
Except N		10 k Ω or higher
D, S, "+" and "-"	2 - 7	Below 1 Ω
Except D, S, "+" and "-		10 k Ω or higher

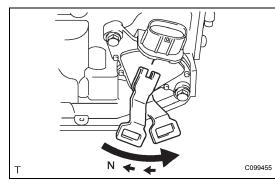


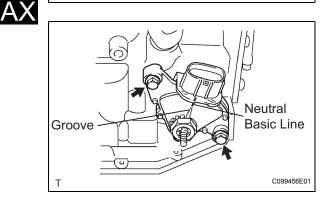
ADJUSTMENT

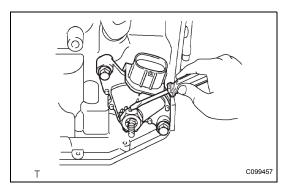
1. ADJUST PARK/NEUTRAL POSITION SWITCH ASSEMBLY

- (a) Loosen the 2 bolts of the park/neutral position switch and move the shift lever to the N position.
- (b) Align the groove with the neutral basic line.
- (c) Hold the switch in position and tighten the 2 bolts. Torque: 5.4 N*m (55 kgf*cm, 48 in.*lbf)
- (d) After adjustment, perform the inspection described in park/neutral position switch assembly operation.

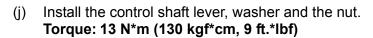

INSTALLATION

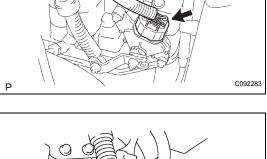

- 1. INSTALL PARK/NEUTRAL POSITION SWITCH ASSEMBLY
 - (a) Install the park/neutral position switch to the manual valve shaft.
 - (b) Temporarily install the 2 bolts.
 - (c) Place a new lock plate and tighten the nut. Torque: 6.9 N*m (70 kgf*cm, 61 in.*lbf)
 - (d) Temporarily install the control shaft lever.

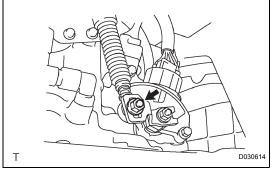

- (e) Turn the lever counterclockwise until it stops, then turn it clockwise 2 notches.
- (f) Remove the control shaft lever.


- (g) Align the groove with the neutral basic line.
- (h) Hold the switch in position and tighten the 2 bolts. Torque: 5.4 N*m (55 kgf*cm, 48 in.*lbf)

(i) Using a screwdriver, bend the tabs of the lock plate.







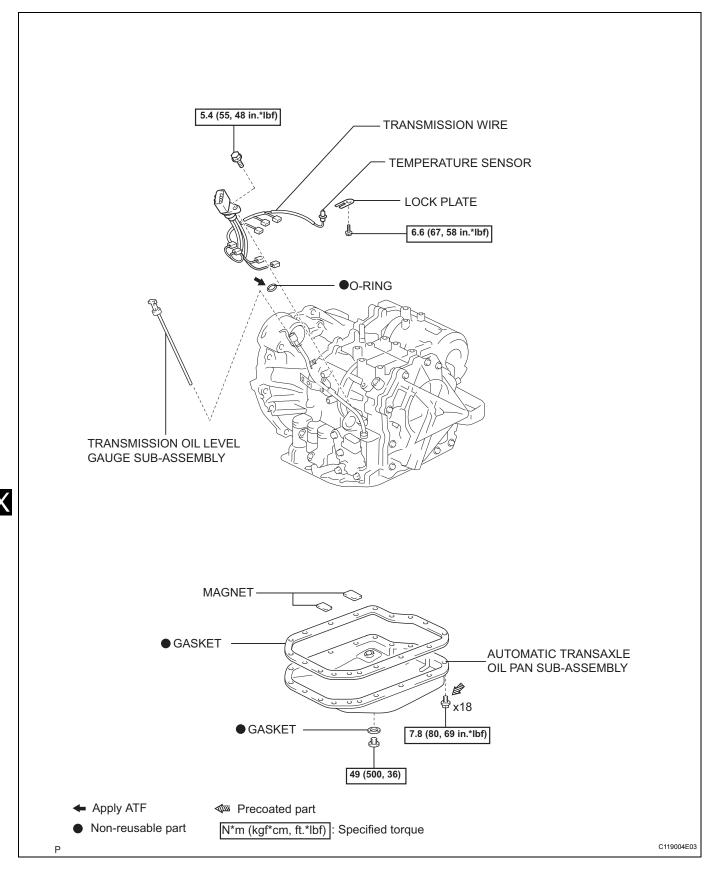
(k) Connect the park/neutral position switch connector.

N D025415

- 2. CONNECT TRANSMISSION CONTROL CABLE ASSEMBLY
 - (a) Connect the control cable to the control shaft lever with the nut.

Torque: 13 N*m (133 kgf*cm, 10 ft.*lbf)

- (b) Install the control cable with a new clip to the bracket.
- 3. ADJUST PARK/NEUTRAL POSITION SWITCH ASSEMBLY (See page AX-127)
- 4. INSPECT PARK/NEUTRAL POSITION SWITCH ASSEMBLY OPERATION (See page AX-126)
- 5. INSPECT SHIFT LEVER POSITION (See page AX-147)
- 6. ADJUST SHIFT LEVER POSITION (See page AX-147)
- 7. INSTALL AIR CLEANER ASSEMBLY HINT:


(See page EM-44)

- 8. INSTALL BATTERY
- 9. PERFORM INITIALIZATION HINT:

Some systems need initialization when disconnecting the cable from the negative battery terminal (See page AX-1).

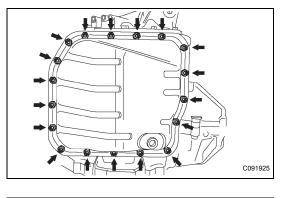
TRANSMISSION WIRE

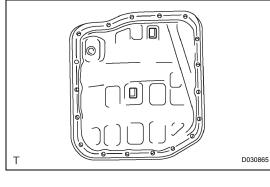
COMPONENTS

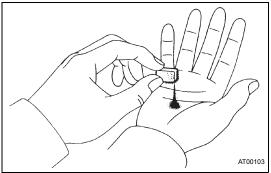
REMOVAL

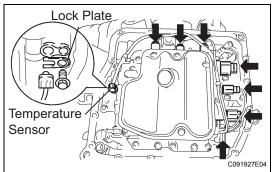
- 1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL
- 2. REMOVE ENGINE UNDER COVER LH
- 3. DRAIN AUTOMATIC TRANSAXLE FLUID
 - (a) Remove the drain plug and gasket, and drain the ATF.
 - (b) Install a new gasket and the drain plug. Torque: 49 N*m (500 kgf*cm, 36 ft.*lbf)
- 4. REMOVE AUTOMATIC TRANSAXLE OIL PAN SUB-ASSEMBLY
 - (a) Remove the 18 bolts, oil pan and gasket. **NOTICE:**

Some fluid will remain in the oil pan. Carefully remove the oil pan so that fluid remaining in the pan does not spill out.

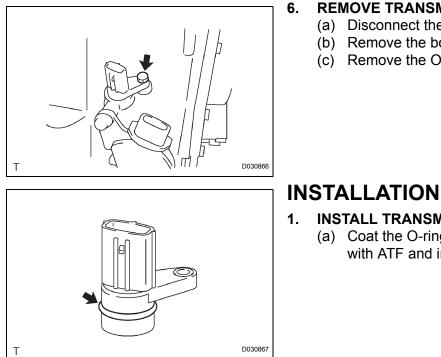

(b) Remove the 2 magnets from the oil pan.


- (c) Examine particles in the pan.
 - Collect any steel chips using the removed magnets. Look carefully at the chips and particles in the pan and on the magnets to see the type of wear which might be found in the transaxle.


Result: Steel (magnetic):


Wear of the bearing, gear or plate Brass (non-magnetic): Wear of the bearing

- DISCONNECT TRANSMISSION WIRE
 - (a) Disconnect the 7 shift solenoid valve connectors.
 - (b) Remove the bolt and lock plate, and disconnect the ATF temperature sensor.

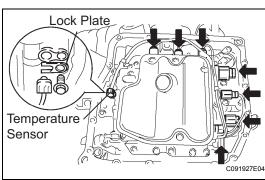


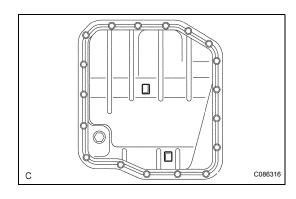
5.

REMOVE TRANSMISSION WIRE

INSTALL TRANSMISSION WIRE

with ATF and install it.

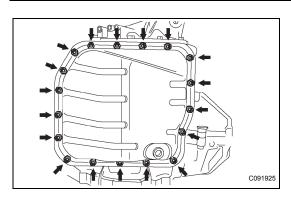

- (a) Disconnect the transmission wire connector.
- (b) Remove the bolt and transmission wire.
- (c) Remove the O-ring from the transmission wire.


(a) Coat the O-ring of the transmission wire connector

(b) Install the transmission wire with the bolt. Torque: 5.4 N*m (55 kgf*cm, 48 ft.*lbf)

D030866 Т

CONNECT TRANSMISSION WIRE 2.


- (a) Coat the O-ring of the ATF temperature sensor with ATF.
- (b) Install the ATF temperature sensor with the lock plate and bolt.

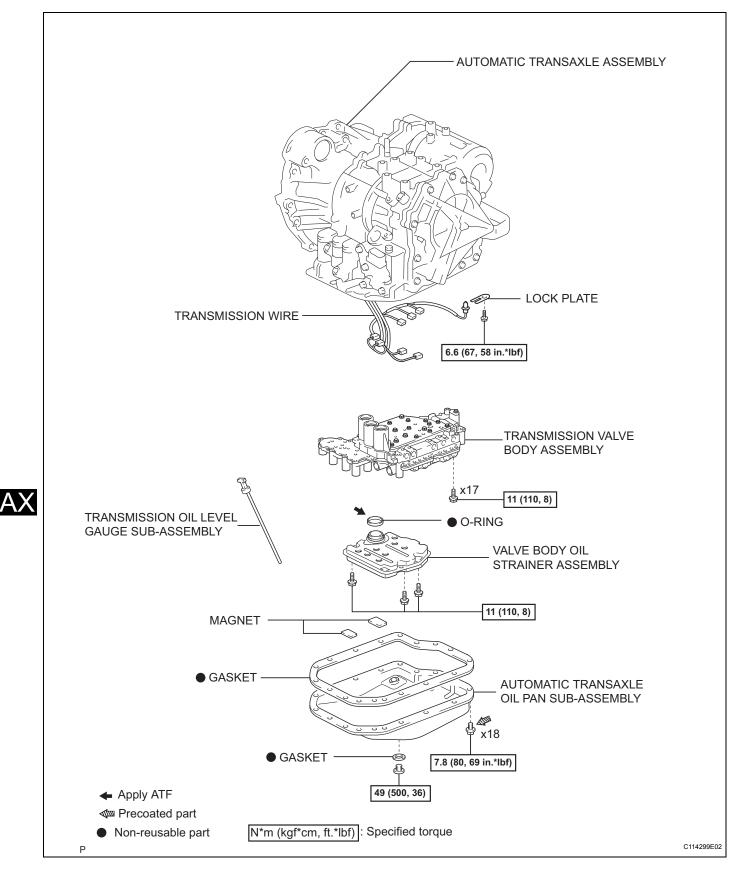
Torque: 6.6 N*m (67 kgf*cm, 58 ft.*lbf)

(c) Connect the 7 shift solenoid valve connectors.

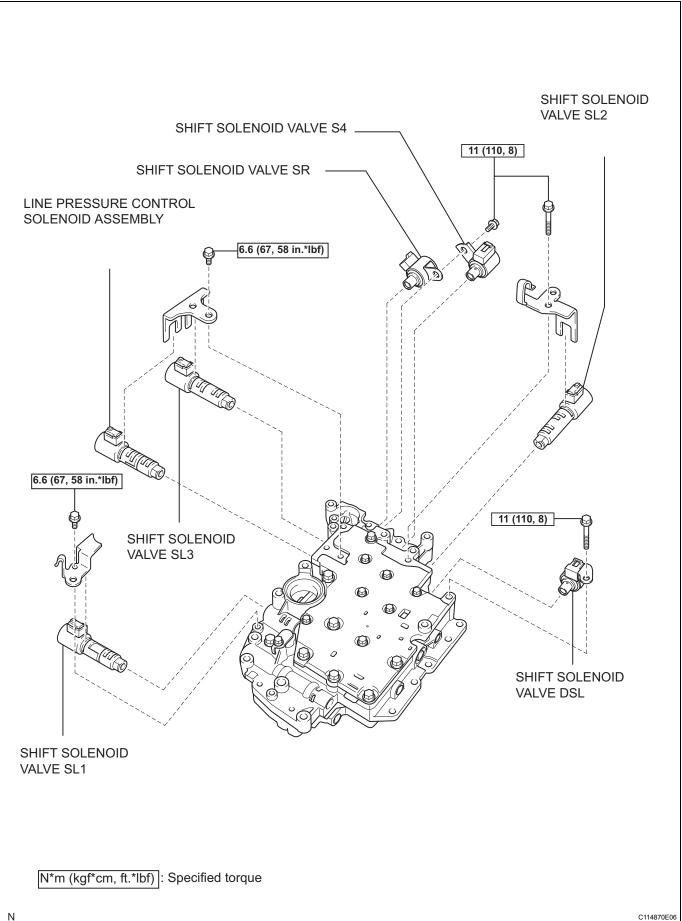
INSTALL AUTOMATIC TRANSAXLE OIL PAN SUB-3. ASSEMBLY

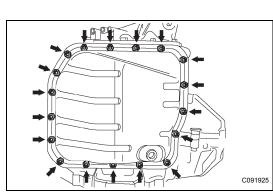
- (a) Install the 2 magnets in the oil pan.
- (b) Apply seal packing to the 18 bolts. Seal packing: THREE BOND 2430 or equivalent

- (c) Using a new gasket, install the oil pan to the transaxle case with the 18 bolts.
 Torque: 7.8 N*m (80 kgf*cm, 69 in.*lbf) NOTICE:
 Apply seal packing to the bolts and tighten them within 10 minutes of application.
- 4. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 5. ADD AUTOMATIC TRANSAXLE FLUID
- 6. INSPECT AUTOMATIC TRANSAXLE FLUID (See page AX-120)
- 7. INSTALL ENGINE UNDER COVER LH
- 8. RESET MEMORY HINT: (See page AX-1)
- 9. PERFORM INITIALIZATION


HINT:

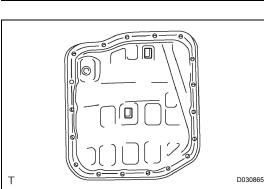
Some systems need initialization after reconnecting the cable to the negative battery terminal (See page AX-1).



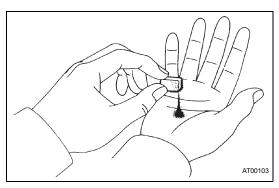

VALVE BODY ASSEMBLY

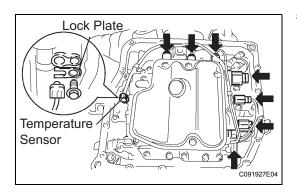
COMPONENTS

AX

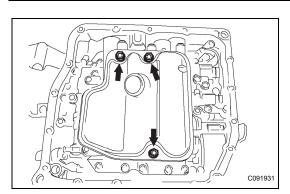


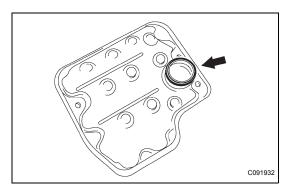
REMOVAL

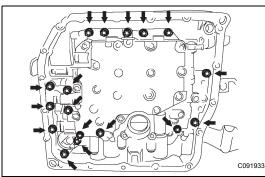

- 1. REMOVE ENGINE UNDER COVER RH
- 2. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL
- 3. DRAIN AUTOMATIC TRANSAXLE FLUID (See page AX-131)
- 4. REMOVE AUTOMATIC TRANSAXLE OIL PAN SUB-ASSEMBLY
 - (a) Remove the 18 bolts, oil pan and gasket. **NOTICE:**


Some fluid will remain in the oil pan. Carefully remove the oil pan so that the fluid remaining in the pan does not spill out.

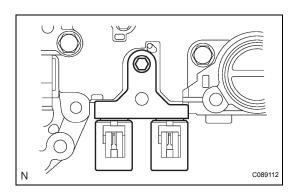
(b) Remove the 2 magnets from the oil pan.


- (c) Examine particles in the pan.
 - Collect any steel chips using the removed magnets. Look carefully at the chips and particles in the pan and on the magnets to see the type of wear which might be found in the transaxle.

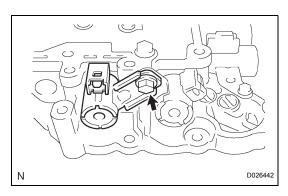

Result:

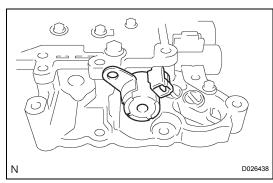

Steel (magnetic): Wear of the bearing, gear or plate Brass (non-magnetic): Wear of the bearing

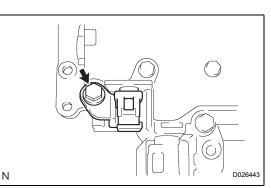
5. DISCONNECT TRANSMISSION WIRE

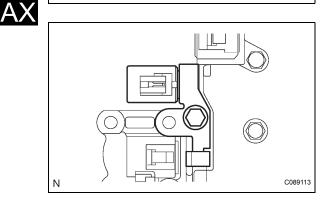

- (a) Disconnect the 7 shift solenoid valve connectors.
- (b) Remove the bolt and lock plate, and disconnect the ATF temperature sensor.

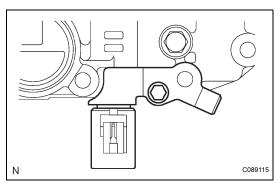
C050017

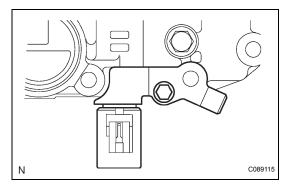

6. REMOVE VALVE BODY OIL STRAINER ASSEMBLY

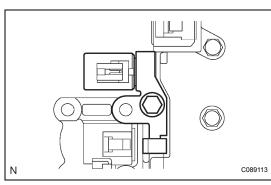

- (a) Remove the 3 bolts and oil strainer.
 NOTICE:
 Be careful when removing the oil strainer as fluid will come out.
- (b) Remove the O-ring from the valve body oil strainer assembly.

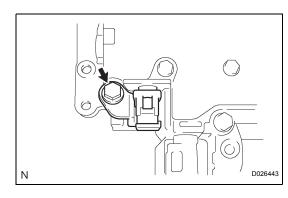

- 7. REMOVE TRANSMISSION VALVE BODY ASSEMBLY
 - (a) Support the valve body assembly and remove the 17 bolts and the transmission valve body assembly.

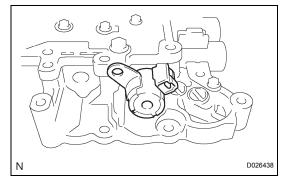

- (b) Remove the check ball body and the spring.
- AX

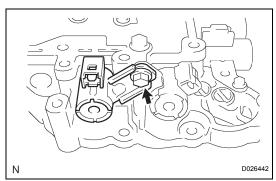

- (c) Remove the bolt and lock plate from the valve body assembly.
- (d) Remove the shift solenoid valve SL3 and SLT from the valve body assembly.

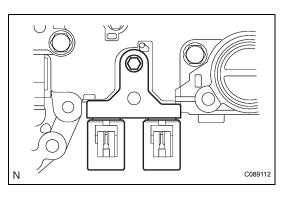

(e) Remove the bolt and shift solenoid valve S4 from the valve body assembly.

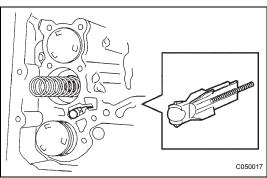

(f) Remove the shift solenoid valve SR from the valve body assembly.

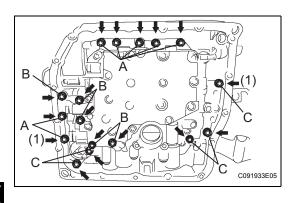

(g) Remove the bolt and shift solenoid valve DSL from the valve body assembly.

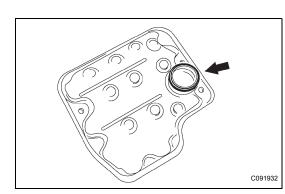

(h) Remove the bolt and shift solenoid valve SL2 from the valve body assembly.


(i) Remove the bolt and shift solenoid valve SL1 from the valve body assembly.


INSTALLATION


- 1. INSTALL TRANSMISSION VALVE BODY ASSEMBLY
 - (a) Install the shift solenoid valve SL1 to the valve body assembly with the bolt.
 Torque: 6.6 N*m (67 kgf*cm, 58 in.*lbf)
 - (b) Install the shift solenoid valve SL2 to the valve body assembly with the bolt.
 Torque: 11 N*m (110 kgf*cm, 8 ft.*lbf)


(c) Install the shift solenoid valve DSL to the valve body assembly with the bolt.
 Torque: 11 N*m (110 kgf*cm, 8 ft.*lbf)

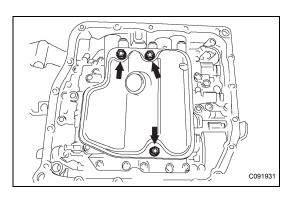

- (d) Install the shift solenoid valve SR to the valve body assembly.
- AX

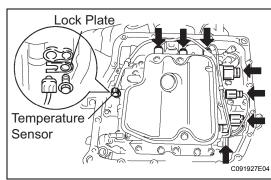
(e) Install the shift solenoid valve S4 to the valve body assembly with the bolt.
 Torque: 11 N*m (110 kgf*cm, 8 ft.*lbf)

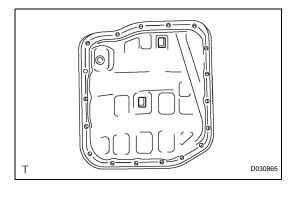
- (f) Install the shift solenoid valve SL3 and SLT to the valve body assembly.
- (g) Install the lock plate to the valve body assembly with the bolt.

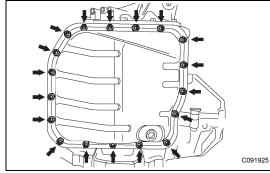
Torque: 6.6 N*m (67 kgf*cm, 58 in.*lbf)

(h) Install the spring and check ball body.


- (i) Align the groove of the manual valve with the pin of the lever.
- (j) Install the 17 bolts.
 Torque: 11 N*m (110 kgf*cm, 8 ft.*lbf) NOTICE:
 - Push the valve body against the accumulator piston springs and check ball body to install the valve body.
 - First, temporarily tighten the bolts marked with (1) in the illustration because they are positioning bolts.


Bolt length:


Bolt A: 41 mm (1.614 in.) Bolt B: 57 mm (2.244 in.) Bolt C: 25 mm (0.984 in.)


2. INSTALL VALVE BODY OIL STRAINER ASSEMBLY

- (a) Coat a new O-ring with ATF.
- (b) Install the O-ring to the oil strainer.

(c) Install the oil strainer with the 3 bolts. Torque: 11 N*m (110 kgf*cm, 8 ft.*lbf)

- 3. INSTALL TRANSMISSION WIRE
 - (a) Coat the O-ring with ATF.
 - (b) Install the ATF temperature sensor with the lock plate and bolt.
 - Torque: 6.6 N*m (67 kgf*cm, 58 in.*lbf)
 - (c) Connect the 7 shift solenoid valve connectors.
- 4. INSTALL AUTOMATIC TRANSAXLE OIL PAN SUB-ASSEMBLY
 - (a) Install the 2 magnets in the oil pan.
 - (b) Apply seal packing or equivalent to the 18 bolts. **Seal packing:**

THREE BOND 2430 or equivalent

(c) Install the oil pan and new gasket with the 18 bolts to the transaxle case.
 Torque: 7.8 N*m (80 kgf*cm, 69 in.*lbf)
 NOTICE:

Tighten the bolts within 10 minutes of sealant application.

- 5. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 6. ADD AUTOMATIC TRANSAXLE FLUID
- 7. CHECK FLUID LEVEL IN AUTOMATIC TRANSAXLE (See page AX-120)
- 8. INSTALL ENGINE UNDER COVER RH
- 9. RESET MEMORY

HINT: (See page AX-1)

10. PERFORM INITIALIZATION

HINT:

Some systems need initialization after reconnecting the cable to the negative battery terminal (See page AX-1).

SHIFT LOCK SYSTEM

ON-VEHICLE INSPECTION

1. CHECK SHIFT LOCK OPERATION

- (a) Move the shift lever to the P position.
- (b) Turn the ignition switch to the LOCK position.
- (c) Check that the shift lever cannot be moved to any position other than P.
- (d) Turn the ignition switch to the on position, depress the brake pedal and check that the shift lever can be moved to another position. If operation can not be done as specified, inspect the shift lock control unit.

2. CHECK SHIFT LOCK RELEASE BUTTON OPERATION

- (a) Using a small screwdriver, remove the shift lock release cover.
- (b) When operating the shift lever with the shift lock release button pressed, check that the lever can be moved to any position other than P.
 If operation can not be done as specified, check the shift lever assembly installation condition.

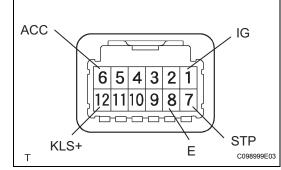
3. CHECK KEY INTERLOCK OPERATION

- (a) Turn the ignition switch to the ON position.
- (b))Depress the brake pedal and move the shift lever to any position other than P.
- (c) Check that the ignition key cannot be turned to the LOCK position.
- (d) Move the shift lever to the P position, turn the ignition key to the LOCK position and check that the ignition key can be removed.

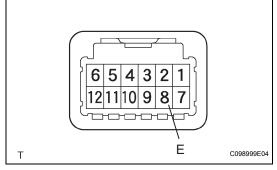
If operation cannot be done as specified, inspect the shift lock control unit.

4. INSPECT SHIFT LOCK CONTROL UNIT ASSEMBLY

(a) Measure the voltage according to the value(s) in the table below.
 HINT:


Do not disconnect the shift lock control unit

assembly connector.


Voltage	
---------	--

Terminal	Measuring Condition	Voltage (V)
6 (ACC) - 8 (E)	Ignition switch ACC	10 to 14
6 (ACC) - 8 (E)	Ignition switch OFF Belo	
7 (STP) - 8 (E)	Depress brake pedal	10 to 14
7 (STP) - 8 (E)	Release brake pedal	Below 1
12 (KLS+) - 8 (E)	 Ignition switch ACC and shift lever P position Ignition switch ACC and shift lever except P position Ignition switch ACC and shift lever except P position (After approx. 1 second) 	Below 1 7.5 to 11 6 to 9

Terminal	Measuring Condition	Voltage (V)
1 (IG) - 8 (E)	Ignition switch ON	10 to 14
1 (IG) - 8 (E)	Ignition switch OFF	Below 1

(b) Measure the resistance according to the value(s) in the table below.
 HINT:
 Do not disconnect the shift lock control unit

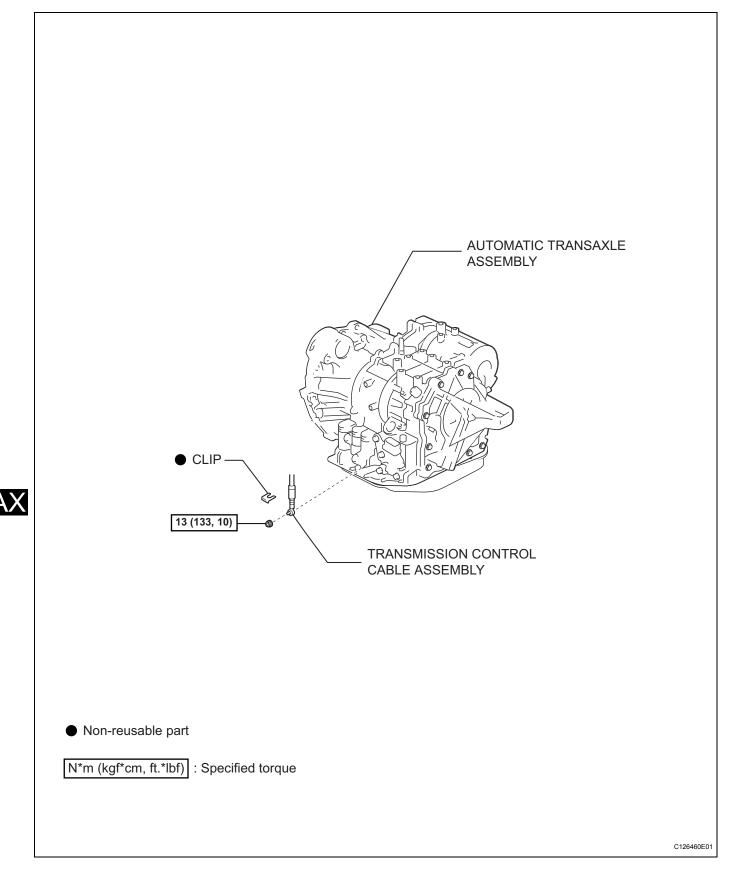
assembly connector. If operation cannot be done as specified, replace

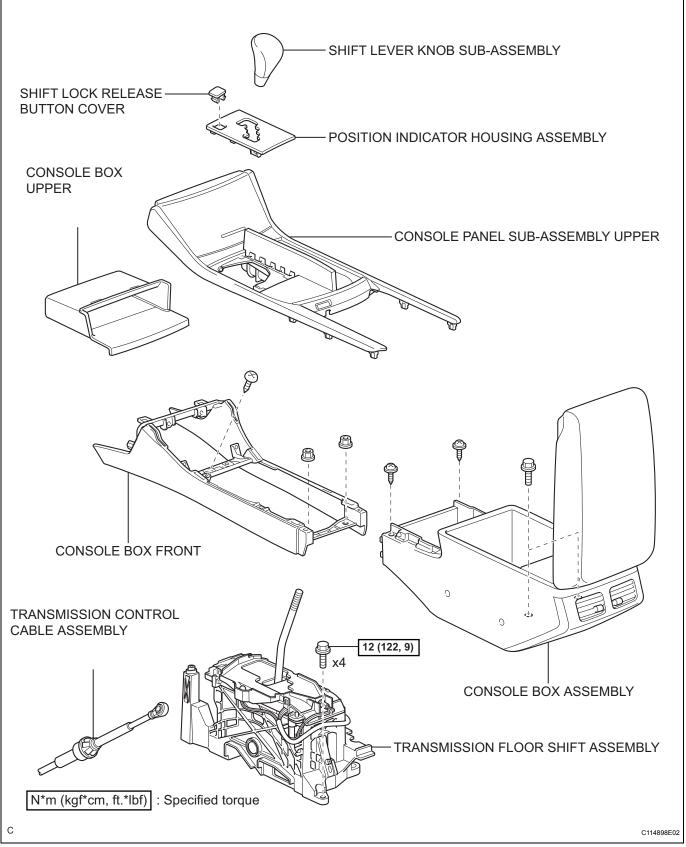
the shift lever assembly.

Resistance

Ferminal	Measuring Condition	Specified Value
3 (E) - Body ground	Always	Below 1 Ω
SLS- SLL+	(+) terminal, and the	noid connector. 2) terminal to the battery positive 2 SLS- (1) terminal to the battery I, and apply about 12 V between

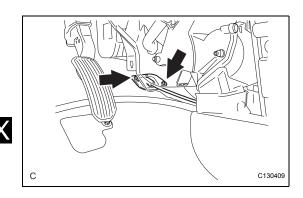
D030503E02

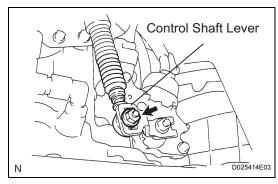

(c) Check that operation noise can be heard from the solenoid.


If the solenoid does not operate, replace the solenoid.

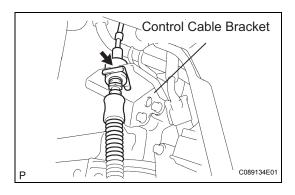
TRANSMISSION CONTROL CABLE ASSEMBLY

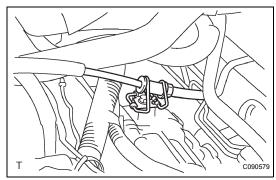
COMPONENTS

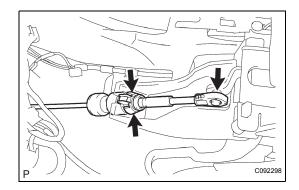




AX


REMOVAL


- 1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL
- 2. REMOVE SHIFT LEVER KNOB SUB-ASSEMBLY (See page IP-12)
- 3. REMOVE POSITION INDICATOR HOUSING ASSEMBLY (See page IP-12)
- 4. REMOVE CONSOLE BOX UPPER
- 5. REMOVE CONSOLE PANEL SUB-ASSEMBLY UPPER (See page IP-13)
- 6. REMOVE CONSOLE BOX ASSEMBLY (See page IP-13)
- 7. REMOVE CONSOLE BOX FRONT (See page IP-14)
- 8. REMOVE AIR BAG SENSOR ASSEMBLY CENTER (See page RS-354)
- 9. REMOVE AIR CLEANER ASSEMBLY (See page EM-28)
- 10. REMOVE INTAKE AIR RESONATOR SUB-ASSEMBLY (See page EM-28)
- 11. REMOVE ENGINE UNDER COVER LH
- 12. REMOVE TRANSMISSION CONTROL CABLE ASSEMBLY
 - (a) Remove the 2 bolts and disconnect the shift cable grommet retainer No. 2.



- (b) Remove the nut from the control shaft lever.
- (c) Disconnect the transmission control cable assembly from the control shaft lever.

(d) Remove the clip and disconnect the transmission control cable assembly from the control cable bracket.

(e) Disconnect the control cable from the control cable clamp.

- (f) Disconnect the floor shift cable from the transmission floor shift assembly.
- (g) Pull out the control cable from the body.
- (h) Remove the shift cable grommet retainer No. 2.

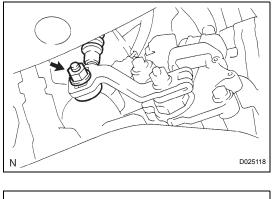
2.

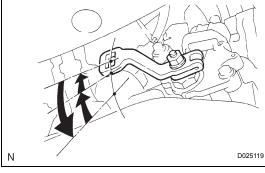
ADJUSTMENT

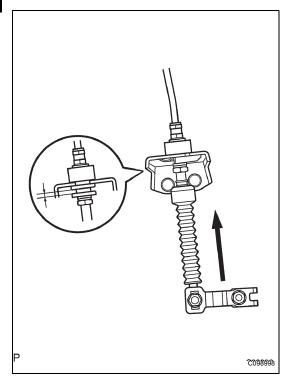
1. INSPECT SHIFT LEVER POSITION

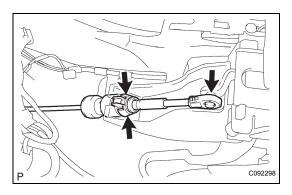
- (a) When shifting from the P to R position only with the ignition switch on and brake pedal depressed, make sure that the shift lever moves smoothly and can be moderately operated.
- (b) Start the engine and make sure that the vehicle moves forward when shifting from the N to D position and moves rearward when shifting to the R position.

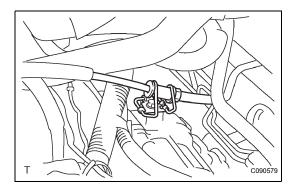
ADJUST SHIFT LEVER POSITION

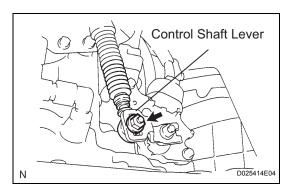

(a) Loosen the nut on the control shaft lever.

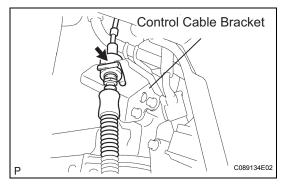

- (b) Push the control shaft fully downward.
- (c) Return the control shaft lever 2 notches to the N position.

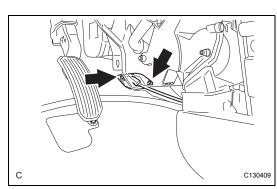

 (d) While pushing the control cable end up with the shift lever in the N position, install it to the control shaft lever with the nut.
 Torque: 15 N*m (150 kgf*cm, 10 ft.*lbf)


NOTICE:


- If the control cable end is excessively pushed up, the shift lever can not be adjusted.
- When tightening the nut, confirm that the control cable is properly stretched.
- (e) Start the engine and make sure that the vehicle moves forward when shifting the lever from the N to D position and moves rearward when shifting it to the R position.



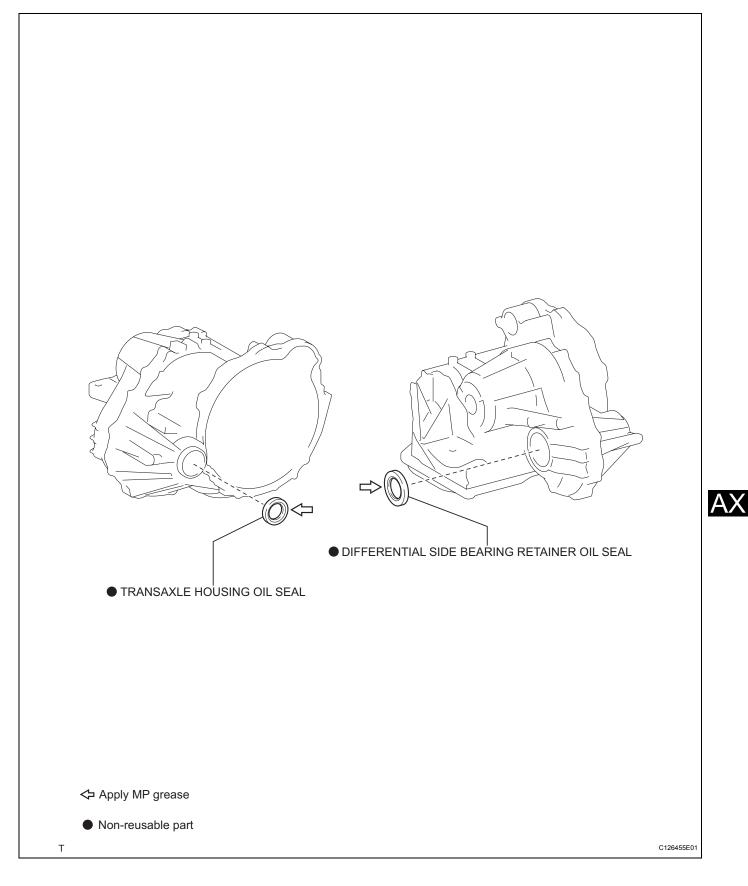



INSTALLATION

- 1. INSTALL TRANSMISSION CONTROL CABLE ASSEMBLY
 - (a) Install the shift cable grommet retainer No. 2 to the floor shift cable.
 - (b) Put in the control cable to the body.
 - (c) Install the floor shift cable as shown in the illustration.
 HINT:
 - Install it with the uneven surface facing up.
 - Securely engage the claws.
 - (d) Connect the control cable to the control cable clamp.

(e) Temporarily install the transmission control cable assembly to the control shaft lever with the nut.

(f) Connect the transmission control cable assembly with a new clip to the bracket.



- (g) Install the shift cable grommet retainer No. 2 with the 2 bolts.
 Torque: 5.0 N*m (50 kgf*cm, 43 in.*lbf)
- 2. INSTALL INTAKE AIR RESONATOR SUB-ASSEMBLY (See page EM-44)
- 3. INSTALL AIR CLEANER ASSEMBLY HINT: (See page EM-44)
- INSTALL AIR BAG SENSOR ASSEMBLY CENTER HINT: (See page RS-354)
- 5. INSTALL CONSOLE BOX FRONT HINT: (See page IP-17)
- 6. INSTALL CONSOLE BOX ASSEMBLY HINT: (See page IP-17)
- 7. INSTALL CONSOLE PANEL SUB-ASSEMBLY UPPER HINT: (See page IP-17)
- 8. INSTALL CONSOLE BOX UPPER HINT: (See page IP-17)
- 9. INSTALL POSITION INDICATOR HOUSING ASSEMBLY HINT: (See page IP-17)
- 10. INSTALL SHIFT LEVER KNOB SUB-ASSEMBLY HINT: (See page IP-17)
- 11. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 12. INSPECT SHIFT LEVER POSITION (See page AX-147)
- 13. ADJUST SHIFT LEVER POSITION (See page AX-147)

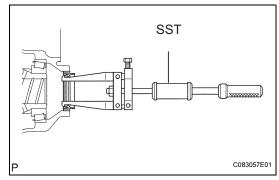
DIFFERENTIAL OIL SEAL

COMPONENTS

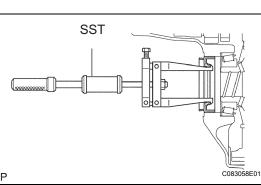
REMOVAL

- 1 **REMOVE FRONT WHEELS**
- 2. **REMOVE ENGINE UNDER COVER RH**
- 3. **REMOVE ENGINE UNDER COVER LH**
- DRAIN AUTOMATIC TRANSAXLE FLUID 4.
 - (a) Remove the drain plug, gasket and drain ATF.
 - (b) Install a new gasket and the drain plug. Torque: 49 N*m (500 kgf*cm, 36 ft.*lbf)
- REMOVE FRONT DRIVE SHAFT ASSEMBLY LH 5. HINT:

(See page DS-6)

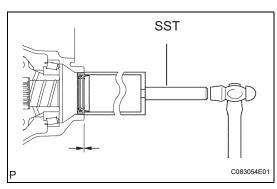

SST 09520-01010, 09520-24010 (09520-32040)

REMOVE FRONT DRIVE SHAFT ASSEMBLY RH 6. HINT:


(See page DS-7)

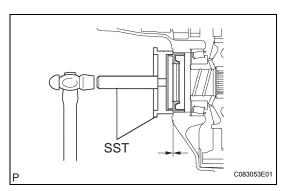
SST 09520-01010, 09520-24010 (09520-32040)

- **REMOVE TRANSAXLE HOUSING OIL SEAL** 7.
 - (a) Using SST, pull out the oil seal. SST 09308-00010



REMOVE DIFFERENTIAL SIDE BEARING RETAINER 8. OIL SEAL

(a) Using SST, pull out the oil seal. SST 09308-00010



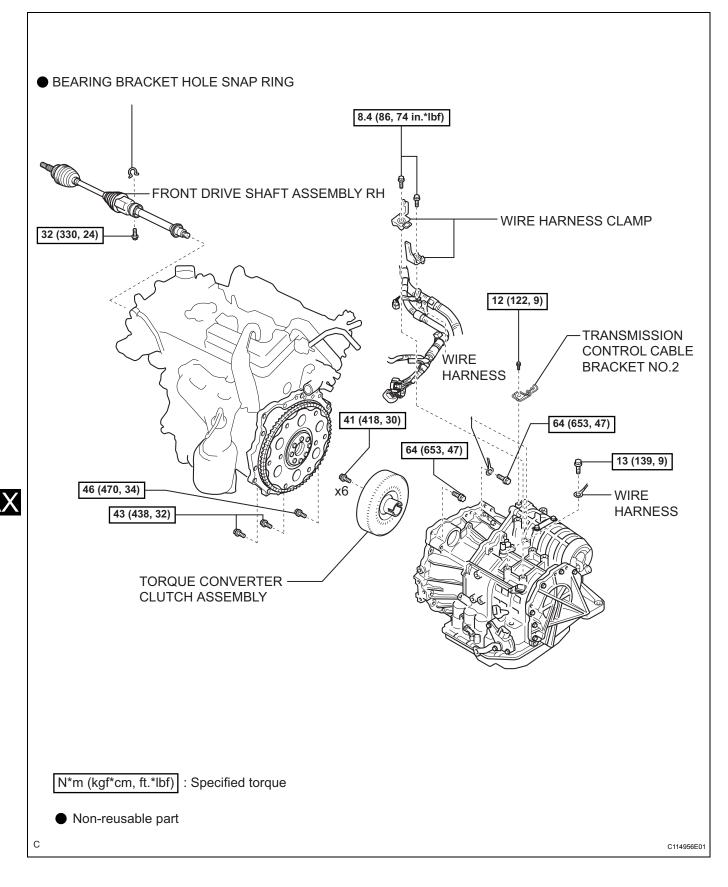
INSTALLATION

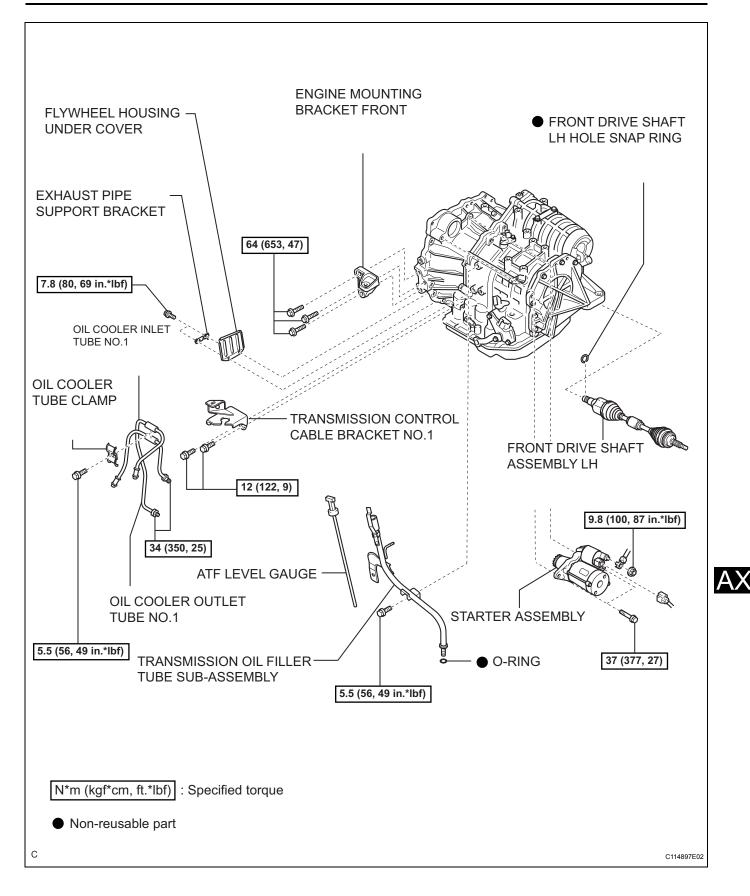
INSTALL TRANSAXLE HOUSING OIL SEAL 1.

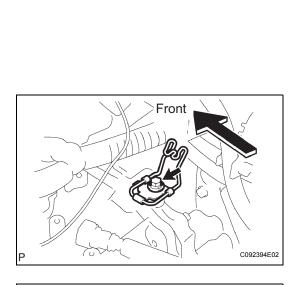
- (a) Using SST and a hammer, install a new oil seal. SST 09316-60011 (09316-00011) Oil seal installation depth:
- -0.5 to 0.5 mm (-0.020 to 0.020 in.)
- (b) Coat the lip of the oil seal with MP grease.

- 2. INSTALL DIFFERENTIAL SIDE BEARING RETAINER OIL SEAL
 - (a) Using SST and a hammer, install a new oil seal.
 SST 09223-15020, 09950-70010 (09951-07150)
 Oil seal installation depth:
 -0.5 to 0.5 mm (-0.020 to 0.020 in.)
 - (b) Coat the lip of the oil seal with MP grease.
- 3. INSTALL FRONT DRIVE SHAFT ASSEMBLY LH HINT:

(See page DS-13)


- 4. INSTALL FRONT DRIVE SHAFT ASSEMBLY RH HINT: (See page DS-13)
- 5. INSTALL FRONT WHEELS Torque: 103 N*m (1,050 kgf*cm, 76 ft.*lbf)
- 6. ADD AUTOMATIC TRANSAXLE FLUID
- 7. INSPECT AUTOMATIC TRANSAXLE FLUID (See page AX-120)
- 8. INSTALL ENGINE UNDER COVER LH
- 9. INSTALL ENGINE UNDER COVER RH
- 10. CHECK ABS SPEED SENSOR SIGNAL HINT: (See page BC-107)
- **11. PERFORM INITIALIZATION** HINT:


Some systems need initialization when disconnecting the cable from the negative battery terminal (See page AX-1).



AUTOMATIC TRANSAXLE ASSEMBLY

COMPONENTS

Front

C092393E02

REMOVAL

1. REMOVE ENGINE ASSEMBLY WITH TRANSAXLE HINT: (See page EM-27)

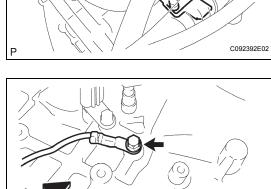
(See page EM-27)

2. REMOVE FRONT DRIVE SHAFT ASSEMBLY LH HINT:

(See page DS-6)

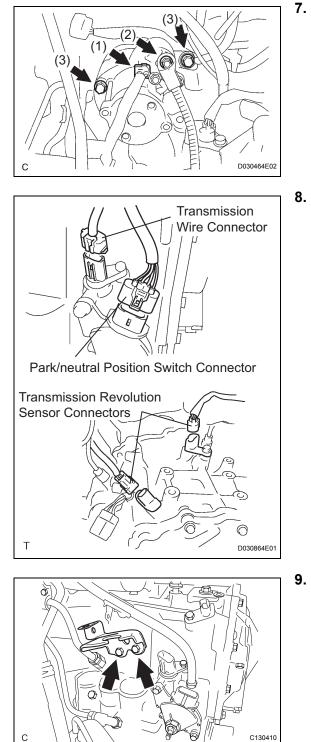
3. REMOVE FRONT DRIVE SHAFT ASSEMBLY RH HINT:

(See page DS-7)


- 4. REMOVE TRANSMISSION CONTROL CABLE BRACKET NO.2
 - (a) Remove the bolt and the transmission control cable bracket No.2.

5. REMOVE WIRE HARNESS CLAMP

- (a) Disconnect the wire harnesses from the 2 clamps.
- (b) Remove the 4 bolts and 4 clamps.

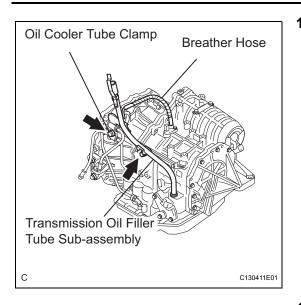


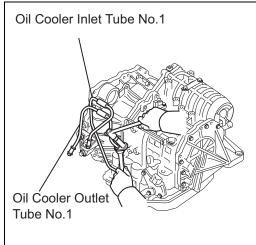
Front

6. DISCONNECT WIRE HARNESS

(a) Remove the bolt and disconnect the wire harness.

REMOVE STARTER ASSEMBLY

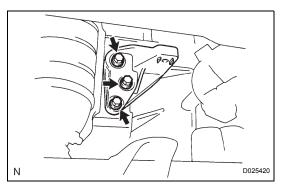

- (a) Disconnect the connector (1).
- (b) Remove the nut (2) and disconnect the starter wire.
- (c) Remove the 2 bolts (3) and starter assembly.


. DISCONNECT CONNECTORS

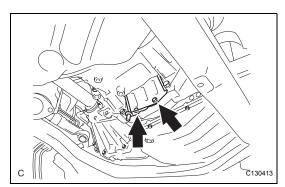
- (a) Disconnect the transmission wire connector.
- (b) Disconnect the park/neutral position switch connector.
- (c) Disconnect the 2 transmission revolution sensor connectors.

- REMOVE TRANSMISSION CONTROL CABLE BRACKET NO.1
 - (a) Remove the 2 bolts and transmission control cable bracket No.1.

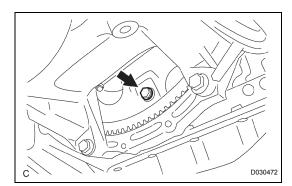
10. REMOVE TRANSMISSION OIL FILLER TUBE SUB-ASSEMBLY

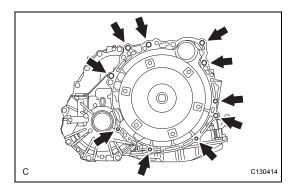

- (a) Remove the ATF level gauge.
- (b) Remove the bolt and oil cooler tube clamp.
- (c) Disconnect the breather hose.
- (d) Remove the bolt and transmission oil filter tube subassembly.
- (e) Remove the O-ring from the oil filter tube subassembly.

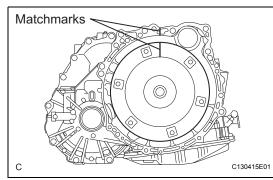
- 11. REMOVE OIL COOLER INLET TUBE NO.1
 - (a) Using SST and a wrench, disconnect the oil cooler inlet tube No.1.
 SST 09023-12701
- 12. REMOVE OIL COOLER OUTLET TUBE NO.1
 - (a) Using SST and a wrench, disconnect the oil cooler outlet tube No.1.
 - SST 09023-12701

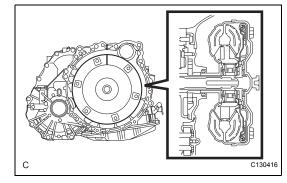

AX

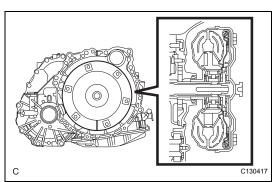
С




- 13. REMOVE ENGINE MOUNTING BRACKET FRONT
 - (a) Remove the 3 bolts and engine mounting bracket front.




14. REMOVE AUTOMATIC TRANSAXLE ASSEMBLY


- (a) Remove the 2 bolts.
- (b) Remove the exhaust pipe support bracket and flywheel under cover from the automatic transaxle.

 (c) Turn the crankshaft to gain access and remove the 6 bolts while holding the crankshaft pulley bolt with a wrench.
 HINT:

There will be one green colored bolt.

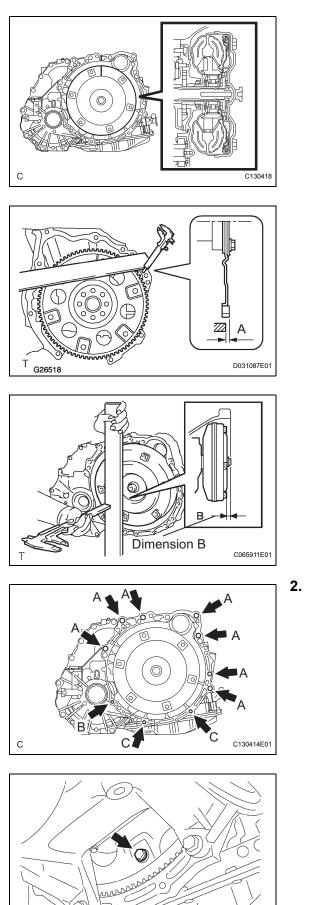
- (d) Remove the 10 bolts.
- (e) Separate and remove the automatic transaxle.

- 15. REMOVE TORQUE CONVERTER CLUTCH ASSEMBLY
 - (a) Put matchmarks on the transaxle case and torque converter clutch assembly.
 - (b) Remove the torque converter clutch assembly from the automatic transaxle assembly.
- 16. INSPECT TORQUE CONVERTER CLUTCH ASSEMBLY

HINT:

(See page AX-175)

INSTALLATION


- 1. INSTALL TORQUE CONVERTER CLUTCH ASSEMBLY
 - (a) Aligning the matchmarks on the transmission case and torque converter clutch assembly, engage the splines of the input shaft and turbine runner.
 NOTICE:

Do not push on the torque converter when aligning the matchmarks.

(b) Engage the splines of the stator shaft and stator while turning the torque converter clutch assembly. HINT:

Turn the torque converter clutch assembly approximately 180°.

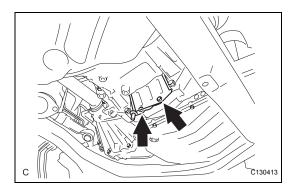
D030472

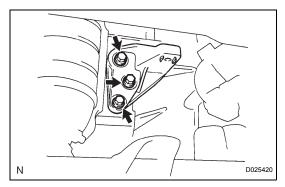
- (c) Turn the torque converter clutch assembly and align the matchmarks on the torque converter clutch assembly and transmission case to engage the key of the oil pump drive gear into the slot on the torque converter clutch assembly.
- (d) Using vernier calipers and a straight edge, measure the dimension "A" between the transaxle fitting part of the engine and the converter fitting part of the drive plate (*1).

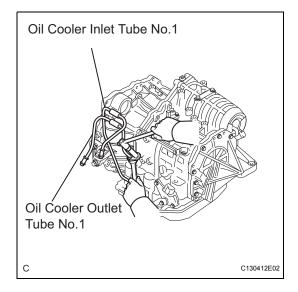
(e) Using vernier calipers and a straight edge, measure the dimension "B" shown in the illustration and check that "B" is greater than "A" (measured in step (*1)).

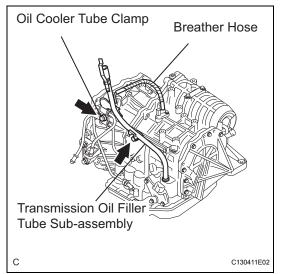
Standard:

A + 1 mm (0.03937 in.) or more NOTICE: Remember to minus the thickness of the straight edge.


INSTALL AUTOMATIC TRANSAXLE ASSEMBLY


(a) Install the automatic transaxle to the engine with the 10 bolts.


Torque: Bolt A 64 N*m (650 kgf*cm, 47 ft.*lbf) Bolt B 46 N*m (470 kgf*cm, 34 ft.*lbf) Bolt C 43 N*m (438 kgf*cm, 32 ft.*lbf)


 (b) Install the 6 torque converter clutch mounting bolts. Torque: 41 N*m (418 kgf*cm, 30 ft.*lbf) NOTICE:

First install the green colored bolt, and then the remaining 5 bolts.

 Install the exhaust pipe support bracket and flywheel housing under cover to the automatic transaxle with the 2 bolts.
 Torque: 7.8 N*m (80 kgf*cm, 69 in.*lbf)

3. INSTALL ENGINE MOUNTING BRACKET FRONT

(a) Install the engine mounting bracket front to the automatic transaxle with the 3 bolts.
 Torque: 64 N*m (653 kgf*cm, 47 ft.*lbf)

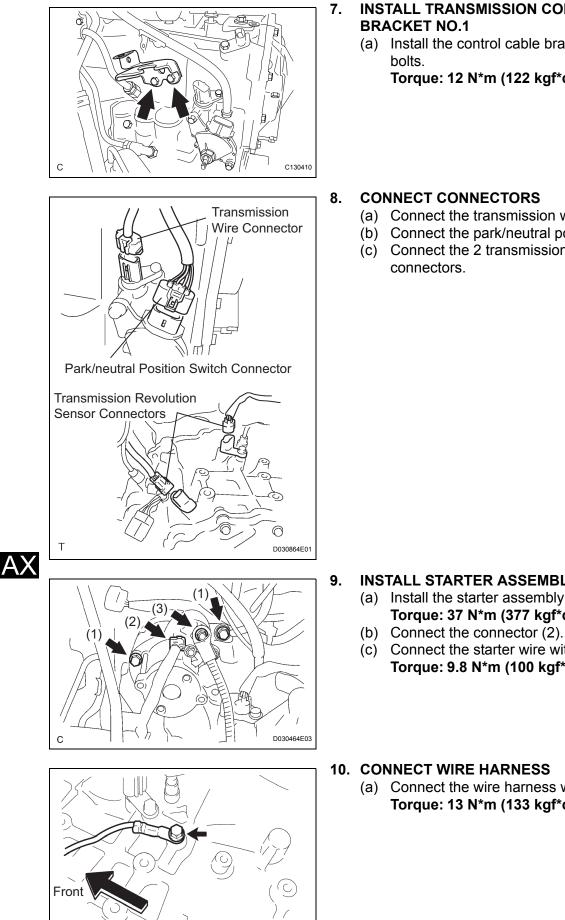
4. INSTALL OIL COOLER INLET TUBE NO.1

- (a) Temporarily install the oil cooler outlet tube No.1.
- (b) Temporarily install the oil cooler inlet tube No.1.
- (c) Using SST and a wrench, tighten the oil cooler inlet tube No.1.
 SST 09023-12701
 Torque: 34 N*m (347 kgf*cm, 25 ft.*lbf)

5. INSTALL OIL COOLER OUTLET TUBE NO.1

(a) Using SST and a wrench, tighten the oil cooler outlet tube No.1.
 SST 09023-12701

Torque: 34 N*m (347 kgf*cm, 25 ft.*lbf)



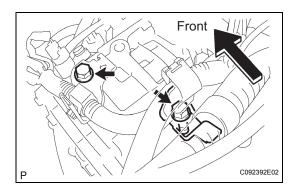
6. INSTALL TRANSMISSION OIL FILLER TUBE SUB-ASSEMBLY

- (a) Coat a new O-ring with ATF, and install it to the oil filler tube.
- (b) Install the oil filler tube to the automatic transaxle with the bolt.

Torque: 5.5 N*m (56 kgf*cm, 49 in.*lbf)

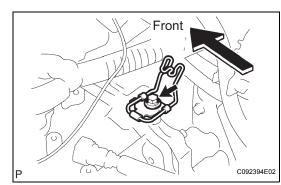
- (c) Install the oil cooler tube clamp with the bolt.Torque: 5.5 N*m (56 kgf*cm, 49 in.*lbf)
- (d) Connect the breather hose to the oil filter tube.
- (e) Install the ATF level gauge.

C092393E02


INSTALL TRANSMISSION CONTROL CABLE

(a) Install the control cable bracket No.1 with the 2

Torque: 12 N*m (122 kgf*cm, 9 ft.*lbf)


- (a) Connect the transmission wire connector.
- (b) Connect the park/neutral position switch connector.
- (c) Connect the 2 transmission revolution sensor

- **INSTALL STARTER ASSEMBLY**
 - (a) Install the starter assembly with the 2 bolts (1). Torque: 37 N*m (377 kgf*cm, 27 ft.*lbf)
 - (c) Connect the starter wire with the nut (3). Torque: 9.8 N*m (100 kgf*cm, 87 in.*lbf)
 - (a) Connect the wire harness with the bolt. Torque: 13 N*m (133 kgf*cm, 10 ft.*lbf)

11. INSTALL WIRE HARNESS CLAMP

- (a) Install the 4 clamps and 4 bolts.Torque: 8.4 N*m (86 kgf*cm, 74 in.*lbf)
- (b) Connect the wire harnesses to the clamps.

- 12. INSTALL TRANSMISSION CONTROL CABLE BRACKET NO.2
 - (a) Install the transmission control cable bracket No.2 with the bolt.

Torque: 12 N*m (122 kgf*cm, 9 ft.*lbf)

13. INSTALL LH FRONT DRIVE SHAFT ASSEMBLY HINT:

(See page DS-13)

14. INSTALL RH FRONT DRIVE SHAFT ASSEMBLY HINT:

(See page DS-13)

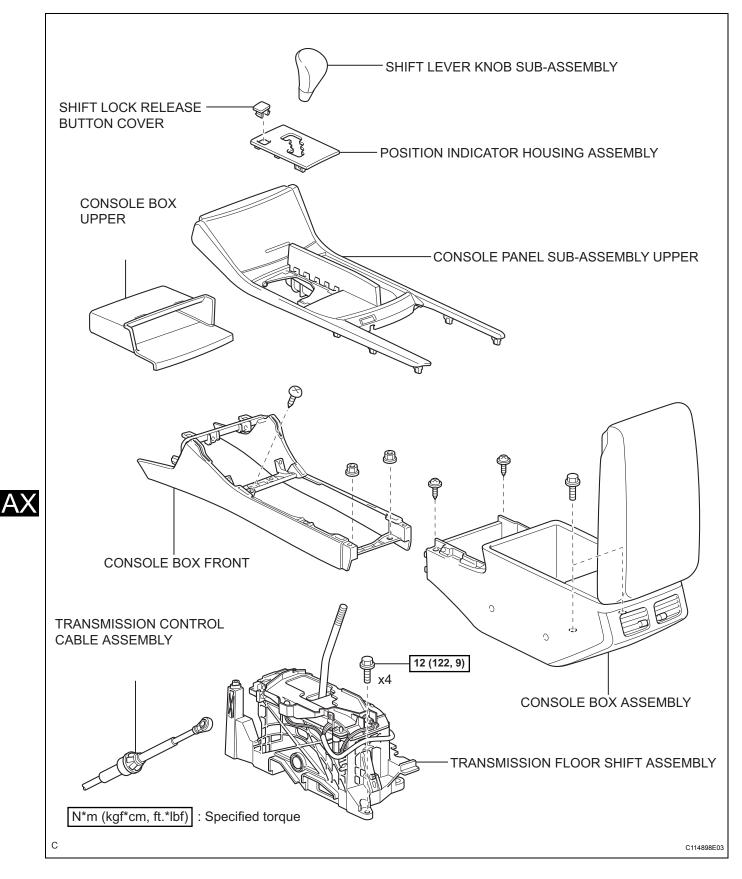
15. INSTALL ENGINE ASSEMBLY WITH TRANSAXLE HINT:

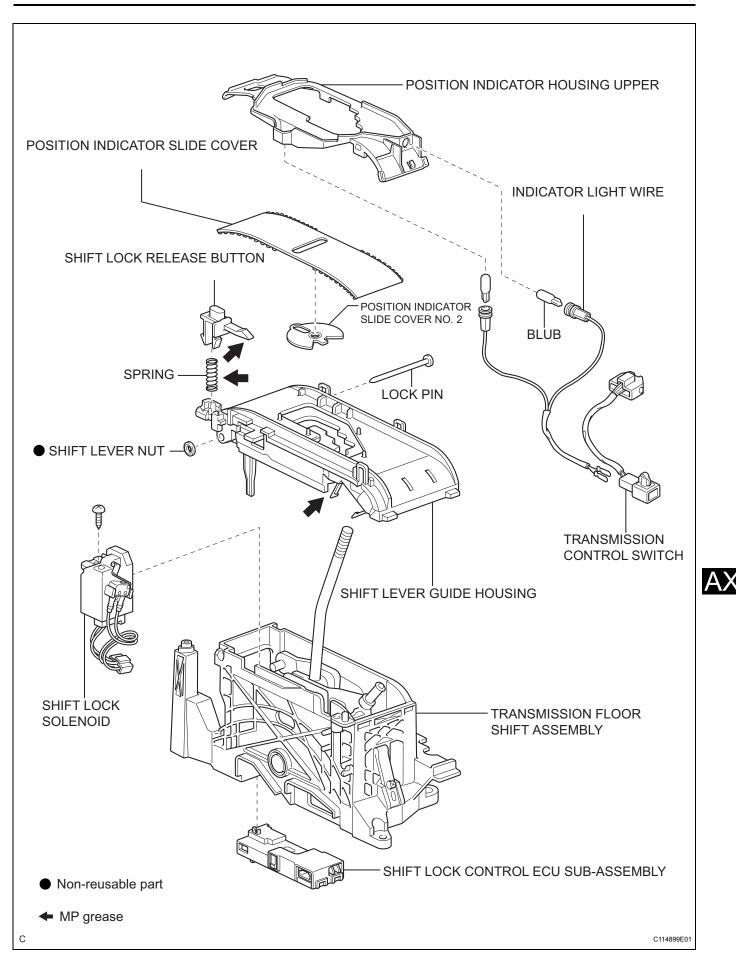
(See page EM-37)

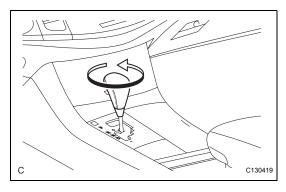
16. RESET MEMORY HINT:

(See page AX-1)

17. PERFORM INITIALIZATION

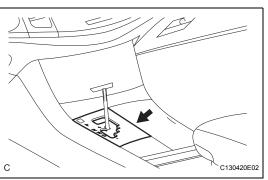

HINT:

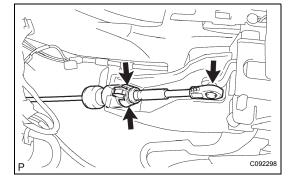

Some system need initialization when disconnecting the cable from the negative battery terminal (See page AX-1).



SHIFT LEVER

COMPONENTS



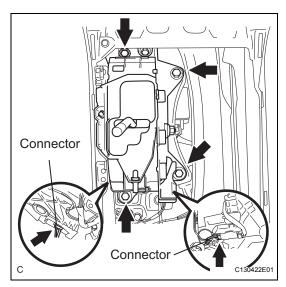


REMOVAL

- 1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL
- 2. REMOVE SHIFT LEVER KNOB SUB-ASSEMBLY
 - (a) Remove the shift lever knob sub-assembly.

C Shift Lock Release Button Cover

- 3. REMOVE POSITION INDICATOR HOUSING ASSEMBLY
 - (a) Remove the position indicator housing assembly.


- 4. REMOVE SHIFT LOCK RELEASE BUTTON COVER
 - (a) Using a screwdriver, remove the shift lock release button cover from the position indicator housing assembly.
- 5. REMOVE CONSOLE BOX UPPER HINT:

(See page IP-13)

- 6. REMOVE CONSOLE PANEL SUB-ASSEMBLY UPPER HINT: (See page IP-13)
- 7. REMOVE CONSOLE BOX ASSEMBLY HINT:
 - (See page IP-13)
- 8. REMOVE CONSOLE BOX FRONT HINT:

(See page IP-14)

- 9. REMOVE TRANSMISSION CONTROL CABLE ASSEMBLY
 - (a) Disconnect the transmission control cable assembly from the transmission floor shift assembly.

Key

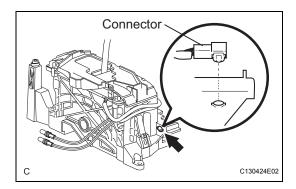
Claw

Claw

C130423E01

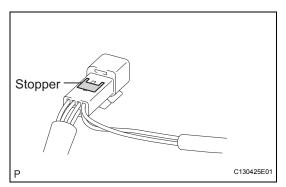
10. REMOVE TRANSMISSION FLOOR SHIFT ASSEMBLY

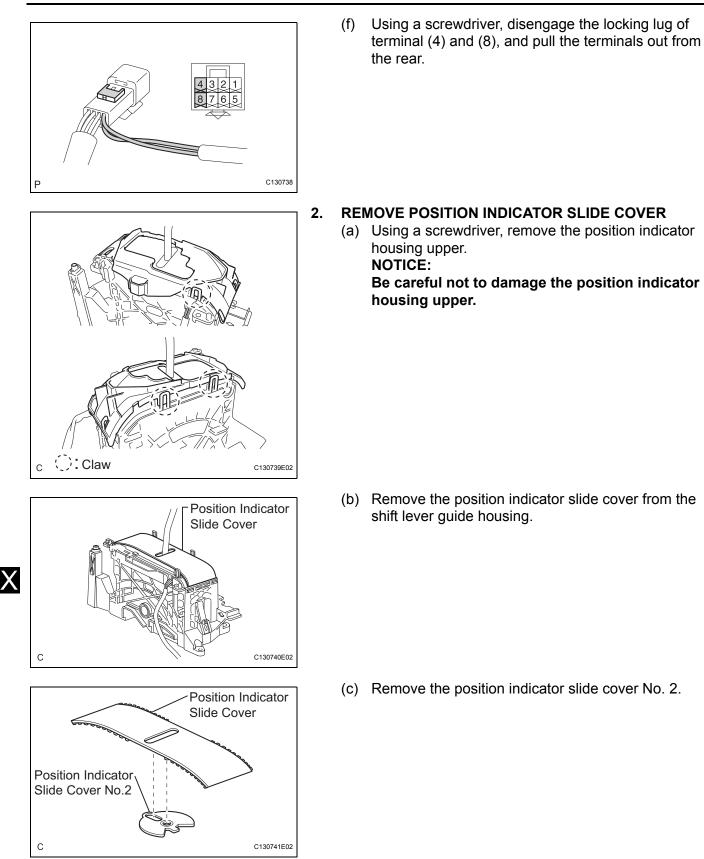
- (a) Disconnect the 2 connectors and clamp.
- (b) Remove the 4 bolts and floor shift assembly.

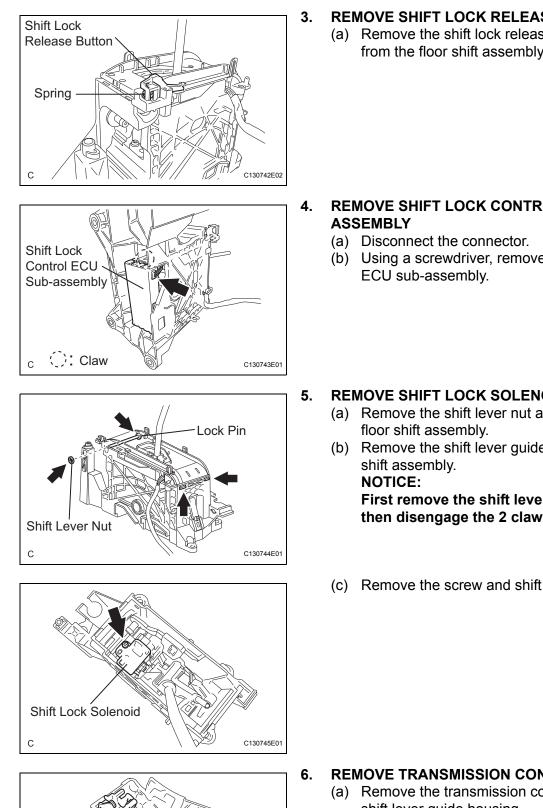

DISASSEMBLY

REMOVE INDICATOR LIGHT WIRE 1.

- (a) Remove the indicator light wire from the floor shift assembly as shown in the illustration.
- (b) Remove the position indicator bulb from the indicator light wire.
- (c) Remove the position indicator bulb cap from the position indicator bulb.


(d) Separate the transmission control switch connector.




e. Claw

Claw

(e) Using a screwdriver, release the stopper.

Transmission Control Switch

C130746E01

С

REMOVE SHIFT LOCK RELEASE BUTTON

(a) Remove the shift lock release button and spring from the floor shift assembly.

- **REMOVE SHIFT LOCK CONTROL ECU SUB-**
 - (b) Using a screwdriver, remove the shift lock control

REMOVE SHIFT LOCK SOLENOID

- (a) Remove the shift lever nut and lock pin from the
- (b) Remove the shift lever guide housing from the floor

First remove the shift lever nut and lock pin, then disengage the 2 claws.

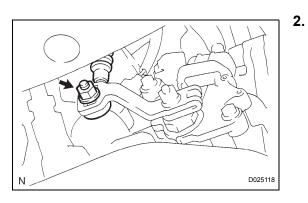
(c) Remove the screw and shift lock solenoid.

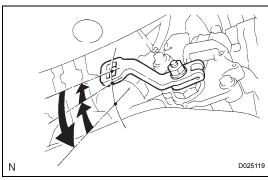
REMOVE TRANSMISSION CONTROL SWITCH

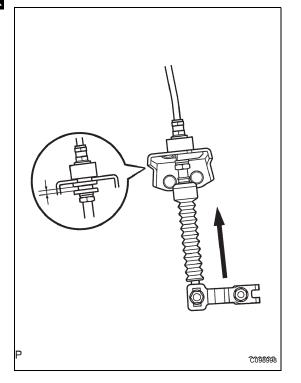
(a) Remove the transmission control switch from the shift lever guide housing.

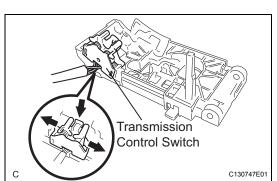
ADJUSTMENT

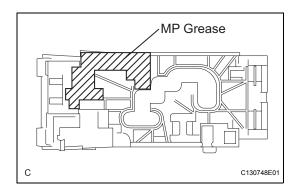
1. INSPECT SHIFT LEVER POSITION

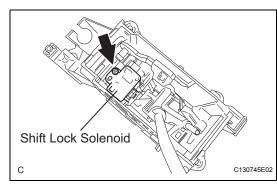

- (a) When shifting from the P to R position only with the ignition switch on and brake pedal depressed, make sure that the shift lever moves smoothly and can be moderately operated.
- (b) Start the engine and make sure that the vehicle moves forward when shifting from the N to D position and moves rearward when shifting to the R position.

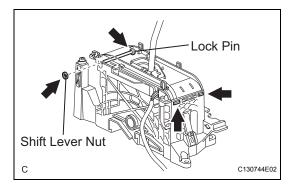

ADJUST SHIFT LEVER POSITION

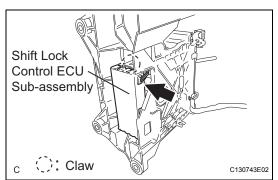

(a) Loosen the nut on the control shaft lever.


- (b) Push the control shaft fully downward.
- (c) Return the control shaft lever 2 notches to the N position.


- (d) While pushing the control cable end up with the shift lever in the N position, install it to the control shaft lever with the nut.
 Torque: 15 N*m (150 kgf*cm, 10 ft.*lbf) NOTICE:
 - If the control cable end is excessively pushed up, the shift lever can not be adjusted.
 - When tightening the nut, confirm that the control cable is properly stretched.
- (e) Start the engine and make sure that the vehicle moves forward when shifting the lever from the N to D position and moves rearward when shifting it to the R position.





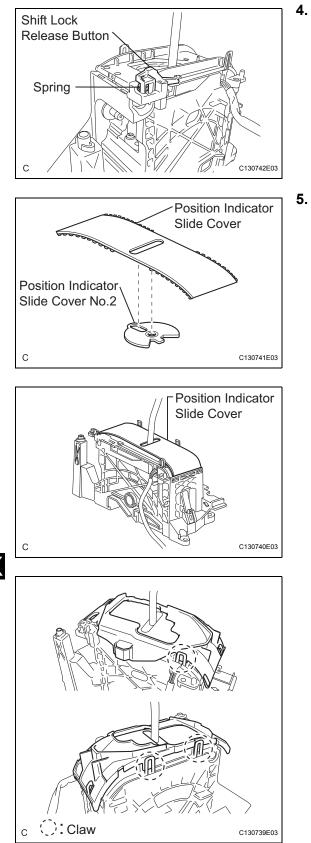


REASSEMBLY

1. INSTALL TRANSMISSION CONTROL SWITCH

 (a) Install the transmission control switch to the shift lever guide housing.
 HINT:

Securely engage the claws.


2. INSTALL SHIFT LOCK SOLENOID

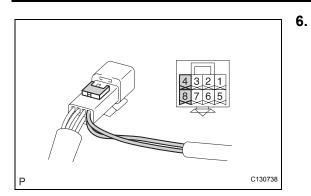
(a) Apply MP grease to the hatched area of the shift lever guide housing as indicated in the illustration.

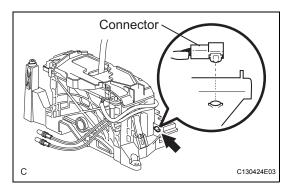
(b) Install the shift lock solenoid with the screw.

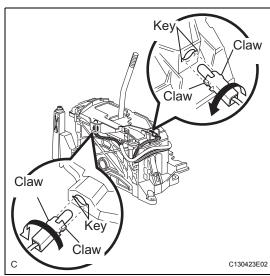
- (c) Install the shift lever guide housing with the lock pin and a new shift lever nut.
 NOTICE:
 - Install the shift lever nut and lock pin after engaging the 2 claws.
 - Securely engage the claws.
- 3. INSTALL SHIFT LOCK CONTROL ECU SUB-ASSEMBLY
 - (a) Install the shift lock control ECU sub-assembly.
 - (b) Connect the connector to the shift lock control ECU sub-assembly.

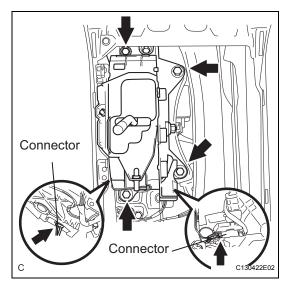
INSTALL SHIFT LOCK RELEASE BUTTON

- (a) Apply MP grease to the shift lock release button and spring in the illustration.
- (b) Install the shift lock release button and spring to the floor shift assembly. HINT:


Securely engage the claws.

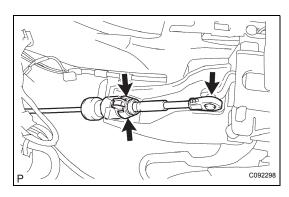

. INSTALL POSITION INDICATOR SLIDE COVER


(a) Install position indicator slide cover No. 2 to the position indicator slide cover.


(b) Install the position indicator slide cover to the shift lever guide housing.

(c) Install the position indicator housing upper to the shift lever guide housing.
 HINT:
 Securely engage the claws.

INSTALL INDICATOR LIGHT WIRE


- (a) Securely connect the 2 terminals of the indicator light wire harness to the transmission control switch connector.
- (b) Install the position indicator light bulb to the indicator light wire.
- (c) Install the position indicator bulb cap to the position indicator light bulb.
- (d) Install the transmission control switch connector.

 (e) Install the indicator light wire to the position indicator housing upper.
 NOTICE:
 Make sure that the indicator light wire is securely installed to the position indicator housing upper.

INSTALLATION

1. INSTALL TRANSMISSION FLOOR SHIFT ASSEMBLY

- (a) Install the floor shift assembly with the 4 bolts. Torque: 12 N*m (122 kgf*cm, 9 ft.*lbf)
- (b) Connect the 2 connectors and clamp to the floor shift assembly.

2. INSTALL TRANSMISSION CONTROL CABLE ASSEMBLY

- (a) Connect the transmission control cable assembly to the transmission floor shift assembly. HINT:
 - Install it with the uneven surface facing up.
 - Securely engage the claws. •
- **INSTALL CONSOLE BOX FRONT** 3. HINT:

(See page IP-17)

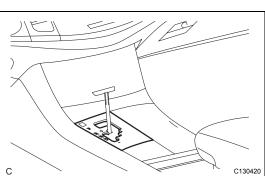
INSTALL CONSOLE BOX ASSEMBLY 4. HINT:

(See page IP-17)

5. INSTALL CONSOLE PANEL SUB-ASSEMBLY UPPER HINT:

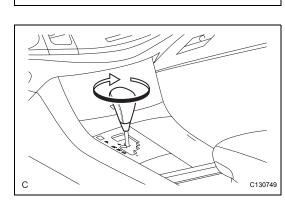
(See page IP-17)

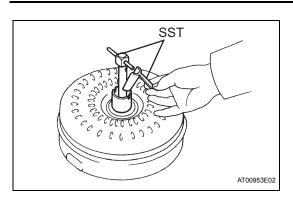
INSTALL CONSOLE BOX UPPER 6. HINT:

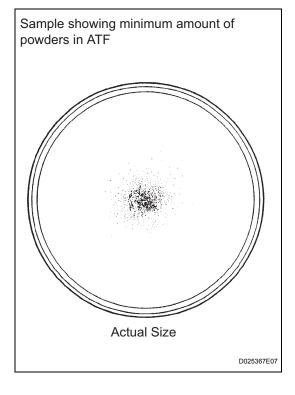

(See page IP-17)

7. INSTALL SHIFT LOCK RELEASE BUTTON COVER

(a) Install the shift lock release button cover to the position indicator housing assembly.






- 8. INSTALL POSITION INDICATOR HOUSING ASSEMBLY
 - (a) Install the position indicator housing.

- 9. INSTALL SHIFT LEVER KNOB SUB-ASSEMBLY
 - (a) Install the shift lever knob sub-assembly to the floor shift lever assembly.
- **10. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL**
- 11. INSPECT SHIFT LEVER POSITION (See page AX-169)
- 12. ADJUST SHIFT LEVER POSITION (See page AX-170)
- 13. PERFORM INITIALIZATION HINT: (See page AX-1)

Hold Lock Turn Free AT03306E02

TORQUE CONVERTER CLUTCH AND DRIVE PLATE

INSPECTION

- 1. INSPECT TORQUE CONVERTER CLUTCH ASSEMBLY
 - (a) Inspect the one-way clutch.
 - (1) Set SST into the inner race of the one-way clutch.
 - SST 09350-32014 (09351-32010)
 - (2) Install SST so that it fits in the notch of the converter hub and outer race of the one-way clutch.
 - SST 09350-32014 (09351-32010, 09351-32020)
 - (3) Stand the torque converter up and turn the SST.

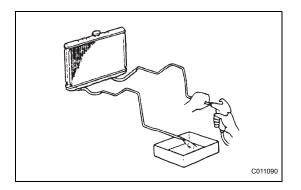
Standard:

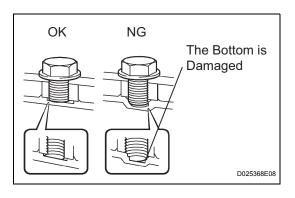
If the one-way clutch is turned clockwise, it rotates freely and if turned counterclockwise, it locks.

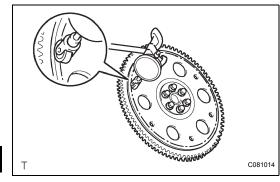
- (b) Determine the condition of the torque converter clutch assembly.
 - If the inspection result of the torque converter clutch assembly satisfies the following conditions, replace the torque converter clutch assembly.

Malfunction item:

A metallic sound is emitted from the torque converter clutch assembly during the stall test or when the shift lever is moved to the N position.


The one-way clutch is free or locked in both directions.

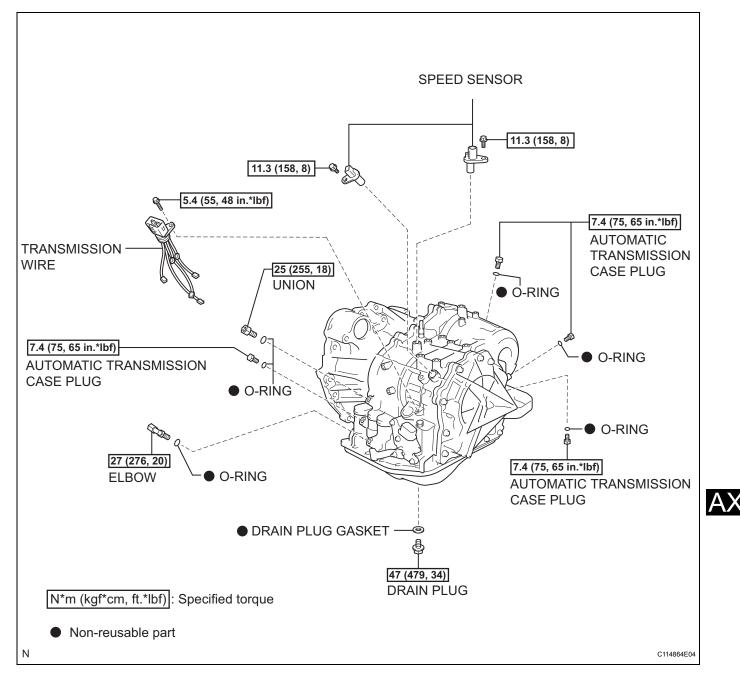

The amount of powder in the ATF is greater than the sample shown on the illustration (see the sample).

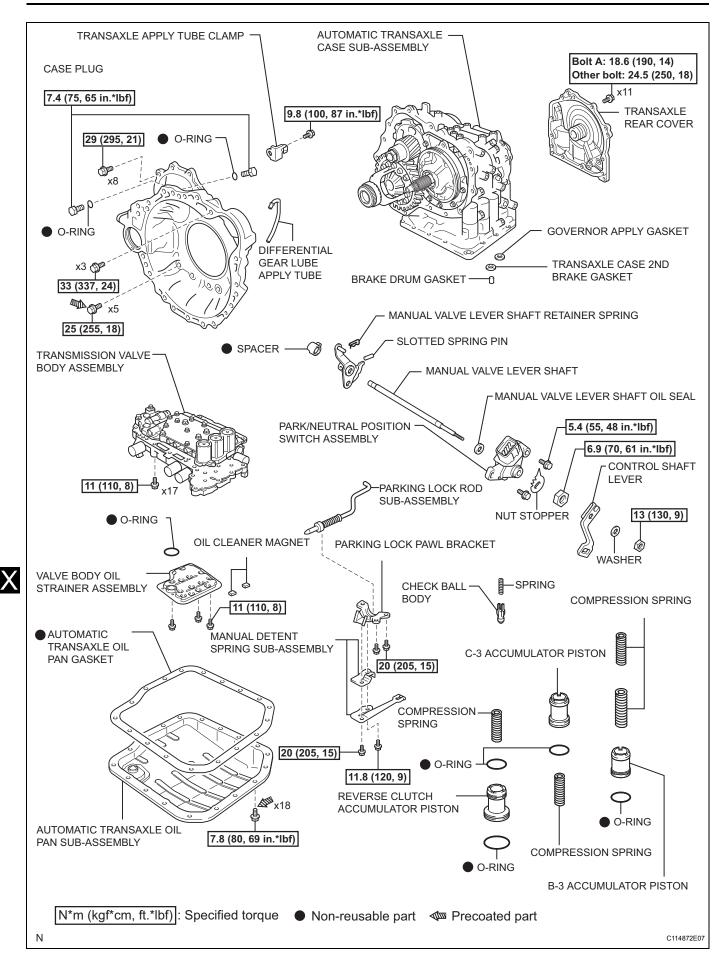

HINT:

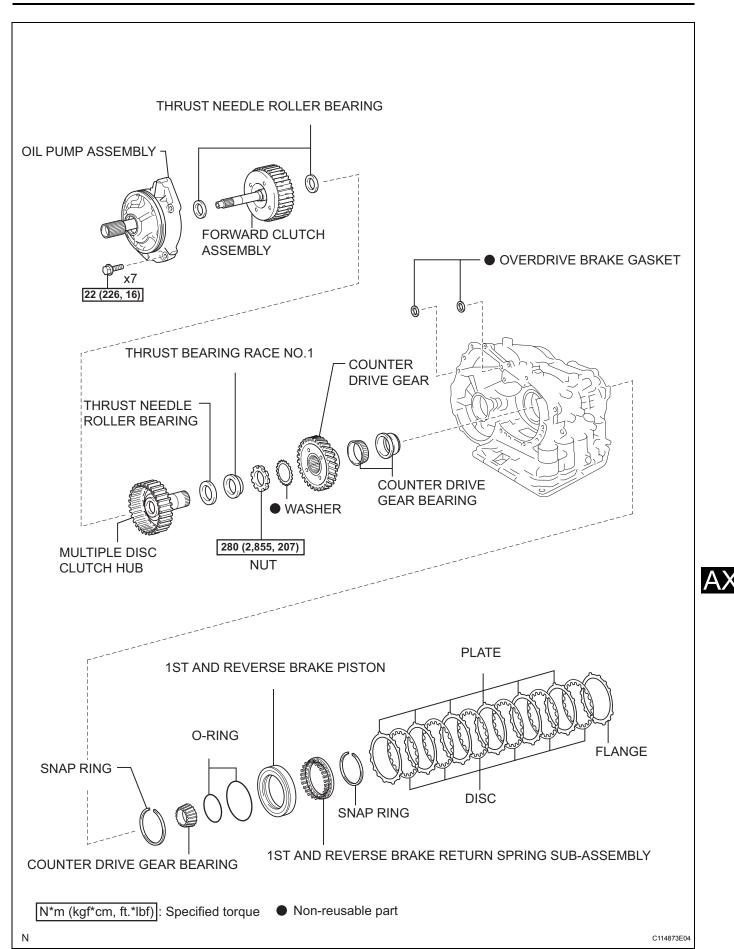
The sample shows the auto fluid of approximately 0.25 liters (0.26 US qts, 0.22 Imp. qts) that is taken out from the removed torque converter clutch.

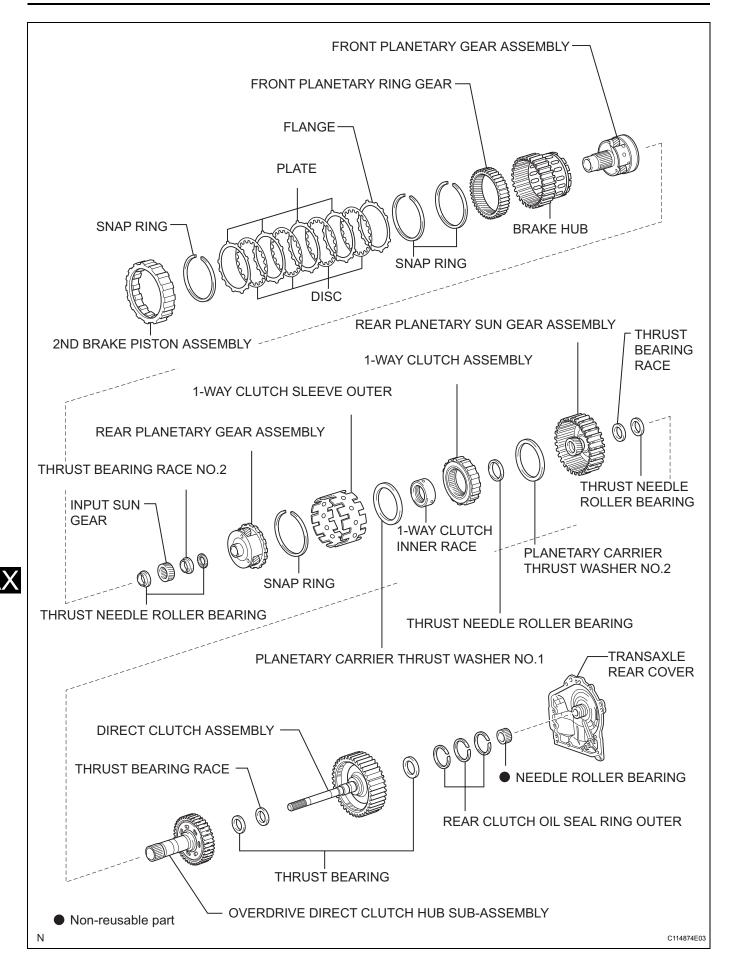
- (c) Exchange the ATF in the torque converter clutch.
 - If the ATF is discolored and/or has a foul odor, completely stir the ATF in the torque converter clutch and drain it with the torque converter facing up.

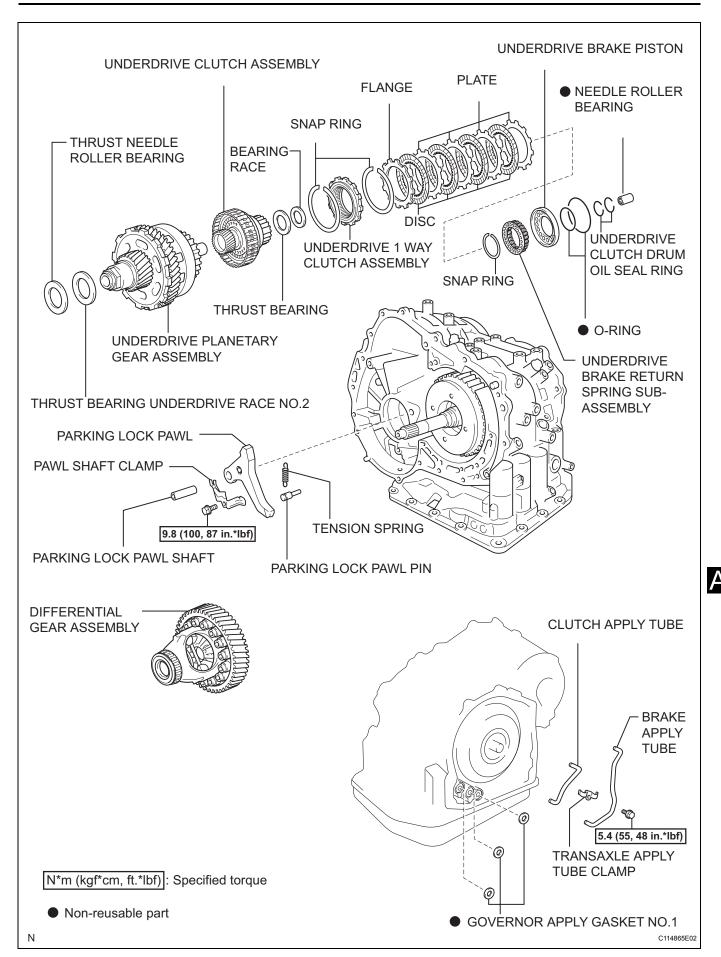
- (d) Clean and check the oil cooler and oil pipe line.
 - (1) If the torque converter clutch is inspected or the ATF is exchanged, clean the oil cooler and oil pipe line. HINT:


NI: Sprav.compressed


- Spray compressed air of 196 kPa (2 kgf/cm 2, 28 psi) from the inlet hose.
- If plenty of fine powders are identified in the ATF, add new ATF using a bucket pump and clean it again.
- (2) If the ATF is cloudy, inspect the oil cooler (radiator).
- (e) Prevent deformation of the torque converter clutch and damage to the oil pump gear.
 - (1) When there is any damage on the end of the bolt for the torque converter clutch and on the bottom of the bolt hole, replace the bolt and the torque converter clutch.
 - (2) All of the bolts must be same length.
 - (3) Bolts with washers must be used.
- 2. INSPECT DRIVE PLATE & RING GEAR SUB-ASSEMBLY
 - (a) Set up a dial indicator with a roller instrument and measure the drive plate runout.
 - (b) Check for damage of the ring gear.Maximum runout:0.20 mm (0.0079 in.)


If runout is not within specification or ring gear is damaged, replace the drive plate.

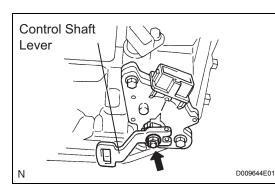

AUTOMATIC TRANSAXLE UNIT


COMPONENTS

Nut Stopper

Ν

Ν


Union

O-ring

AX

Park/neutral

Position Switch

.ock Nut

D009643E01

D009639E01

C083143E01

DISASSEMBLY

- 1. REMOVE PARK/NEUTRAL POSITION SWITCH ASSEMBLY
 - (a) Remove the nut, washer and control shaft lever.

(b) Using a screwdriver, unstake the nut stopper, and remove the lock nut and nut stopper.

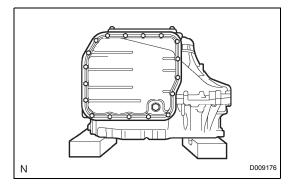
- (c) Remove the 2 bolts and pull out the park/neutral position switch.
- 2. REMOVE BREATHER PLUG HOSE
 - (a) Remove the breather plug hose from the transaxle case.
- 3. REMOVE OIL COOLER TUBE UNION (INLET OIL COOLER UNION)
 - (a) Remove the union.
 - (b) Remove the O-ring from the union.

- Elbow O-ring P
- 4. REMOVE OIL COOLER TUBE UNION (OUTLET OIL COOLER UNION)
 - (a) Remove the elbow.
 - (b) Remove the O-ring from the elbow.

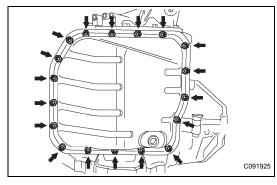
D030672E01

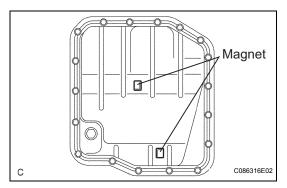
D026716

5. REMOVE SPEED SENSOR


(a) Remove the 2 bolts and the 2 speed sensors from the transaxle assembly.

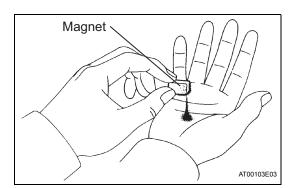
6. REMOVE TRANSAXLE CASE NO.1 PLUG

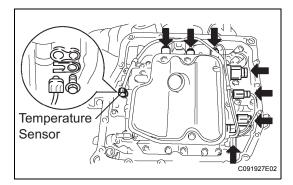

- (a) Remove the 4 transaxle case No.1 plugs from the transaxle case.
- (b) Remove the 4 O-rings from the 4 transaxle case No.1 plugs.
- 7. FIX AUTOMATIC TRANSAXLE ASSEMBLY
 - (a) Fix the transaxle assembly.

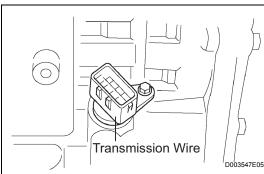

- 8. REMOVE AUTOMATIC TRANSAXLE OIL PAN SUB-ASSEMBLY
 - (a) Remove the 18 bolts, oil pan and gasket.

(b) Remove the 2 magnets from the oil pan.

Ν







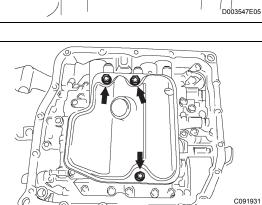
AX

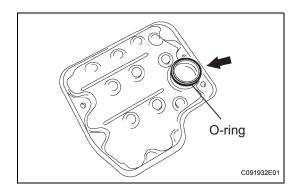
9.

INSPECT TRANSMISSION OIL CLEANER MAGNET

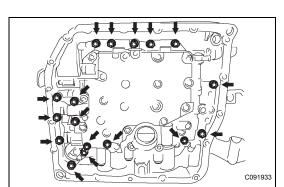
(a) Remove the magnets and use them to collect any steel chips. Examine the chips and particles in the pan and on the magnet to determine what type of wear has occurred in the transaxle:
 Result:

Steel (magnetic): Wear of the bearing, gear and plate Brass (non-magnetic): Wear of the bushing

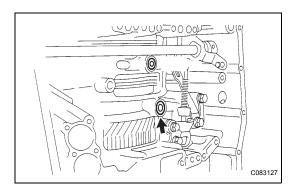

10. DISCONNECT TRANSMISSION WIRE

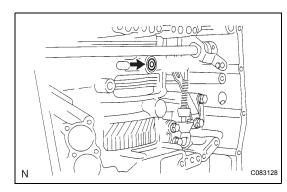

- (a) Remove the 7 connectors from the shift solenoid valves.
- (b) Remove the bolt, lock plate and temperature sensor.

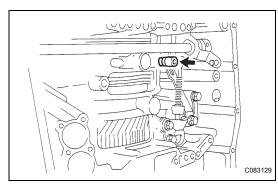
11. REMOVE TRANSMISSION WIRE

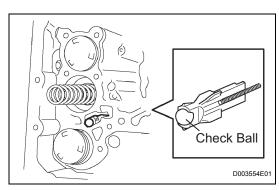

(a) Remove the bolt and transmission wire from the transaxle case.

12. REMOVE VALVE BODY OIL STRAINER ASSEMBLY(a) Remove the 3 bolts and oil strainer.




(b) Remove the O-ring from the oil strainer.



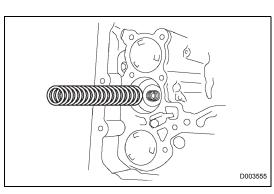

13. REMOVE TRANSMISSION VALVE BODY ASSEMBLY

(a) Support the valve body assembly and remove the 17 bolts and valve body assembly.

14. REMOVE GOVERNOR APPLY GASKET NO.1

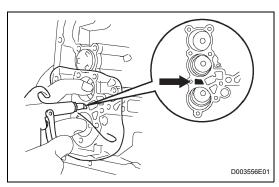
(a) Remove the governor apply gasket No.1 from the transaxle case.

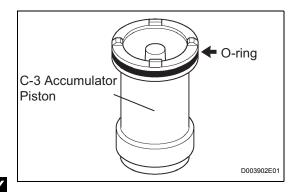
- 15. REMOVE TRANSAXLE CASE 2ND BRAKE GASKET
 - (a) Remove the transaxle case 2nd brake gasket from the transaxle case.

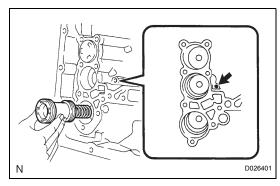

16. REMOVE BRAKE DRUM GASKET

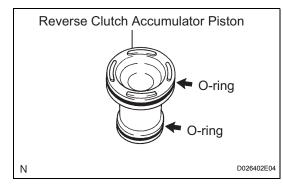
(a) Remove the brake drum gasket from the transaxle case.

17. REMOVE CHECK BALL BODY

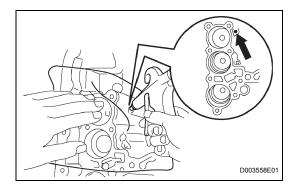

(a) Remove the check ball body and spring from the transaxle case.

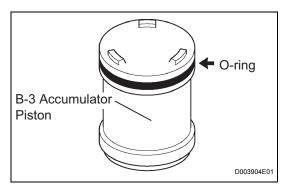


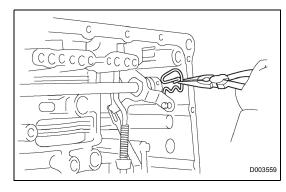



18. REMOVE C-3 ACCUMULATOR PISTON

(a) Remove the spring from the C-3 accumulator piston.

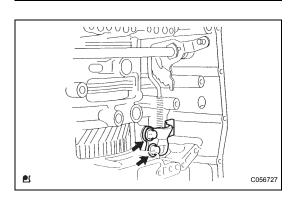






- (b) Apply compressed air (392 kPa, 4.0 kgf/cm², 57 psi) to the oil hole and remove the C-3 accumulator piston.
 NOTICE:
 - Applying compressed air may cause the piston to jump-out. When removing the piston, hold it using a waste cloth.
 - Take care not to splash ATF when applying compressed air.
- (c) Remove the O-ring from the C-3 accumulator piston.

- 19. REMOVE REVERSE CLUTCH ACCUMULATOR PISTON
 - (a) Apply compressed air (392 kPa, 4.0 kgf/cm², 57 psi) to the oil hole and remove the reverse accumulator piston and spring.
 NOTICE:
 - Applying compressed air may cause the piston to jump-out. When removing the piston, hold it using a waste cloth.
 - Take care not to splash ATF when applying compressed air.
 - (b) Remove the 2 O-rings from the reverse clutch accumulator piston.

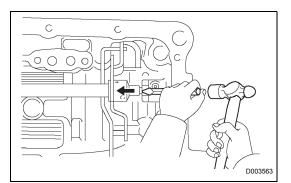


20. REMOVE B-3 ACCUMULATOR PISTON

- (a) Apply compressed air (392 kPa, 4.0 kgf/cm², 57 psi) to the oil hole and remove the B-3 accumulator piston and 2 springs.
 NOTICE:
 - Applying compressed air may cause the piston to jump-out. When removing the piston, hold it using a waste cloth.
 - Take care not to splash ATF when applying compressed air.
- (b) Remove the O-ring from the B-3 accumulator piston.

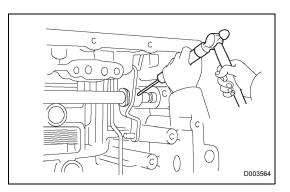
- 21. REMOVE MANUAL VALVE LEVER SHAFT RETAINER SPRING
 - (a) Using needle-nose pliers, remove the manual valve lever shaft retainer spring.

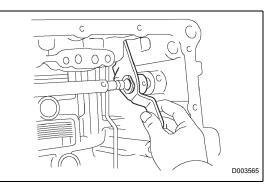
22. REMOVE MANUAL DETENT SPRING SUB-ASSEMBLY

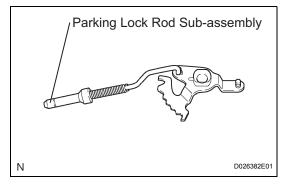

 (a) Remove the 2 bolts, the manual detent spring subassembly and cover.

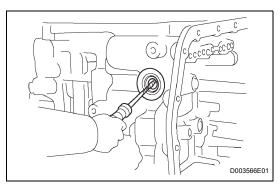
23. REMOVE PARKING LOCK PAWL BRACKET

(a) Remove the 2 bolts and parking lock pawl bracket.


AX


AX



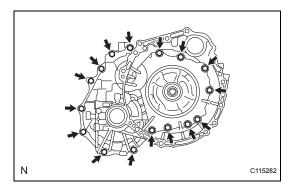

24. REMOVE MANUAL VALVE LEVER SUB-ASSEMBLY

(a) Using a chisel and hammer, cut off and remove the spacer.

(b) Using a pin punch (φ35 mm) and hammer, drive out the pin.
 HINT:

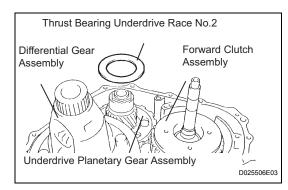
Slowly drive out the pin so that it will not fall into the transaxle case.

(c) Remove the manual valve lever shaft and manual valve lever.


- 25. REMOVE PARKING LOCK ROD SUB-ASSEMBLY
 - (a) Remove the parking lock rod from the manual valve lever.

- 26. REMOVE MANUAL VALVE LEVER SHAFT OIL SEAL
 - (a) Using a screwdriver, remove the oil seal from the transaxle case.
 NOTICE:

Do not apply excessive force when removing the oil seal.


27. FIX AUTOMATIC TRANSAXLE ASSEMBLY

(a) Fix the transaxle case with the oil pump side facing up.

Pump Assembly D003569E05

Thrust Needle Roller Bearing Differential Gear Assembly Forward clutch Assembly D025505E02

28. INSPECT INPUT SHAFT ENDPLAY HINT:

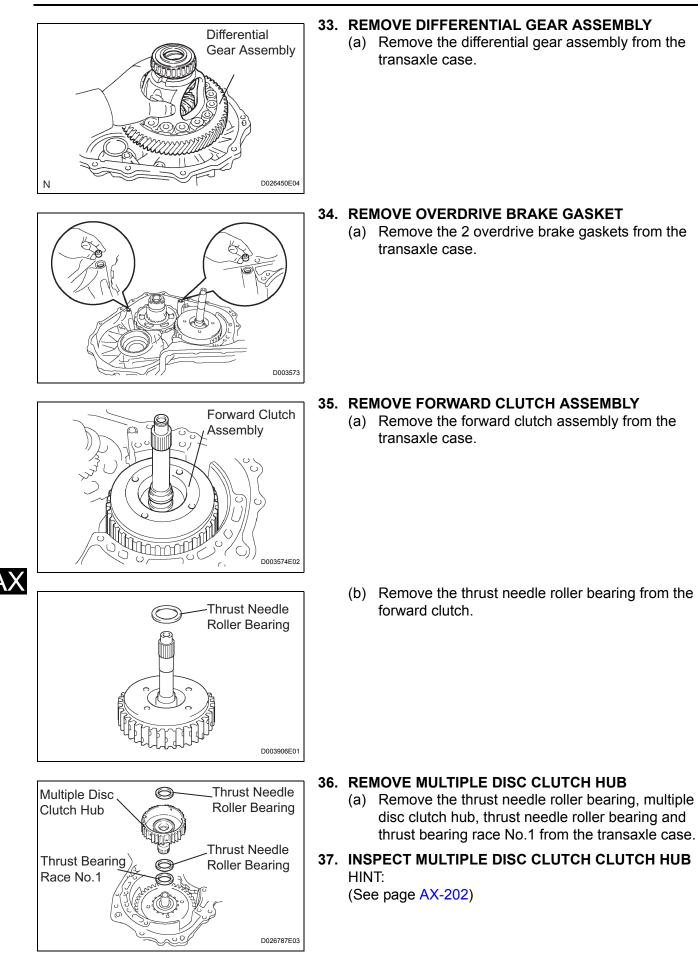
(See page AX-205)

29. REMOVE TRANSAXLE HOUSING

- (a) Remove the 16 bolts.
- (b) Tap on the circumference of the transaxle housing with a plastic hammer to remove the transaxle housing from the transaxle case. NOTICE:

The differential may be accidentally removed when the transaxle housing is removed.

30. REMOVE OIL PUMP ASSEMBLY


(a) Remove the 7 bolts and oil pump from the transaxle case.

- **31. REMOVE THRUST NEEDLE ROLLER BEARING**
 - (a) Remove the thrust needle roller bearing from the underdrive planetary gear assembly.

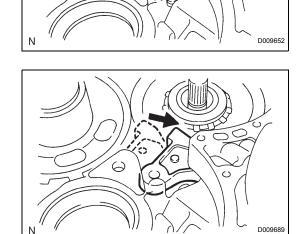
32. REMOVE THRUST BEARING UNDERDRIVE RACE **NO.2**

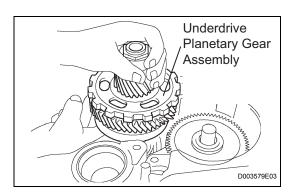
(a) Remove the thrust bearing underdrive race No.2 from the underdrive planetary gear assembly.

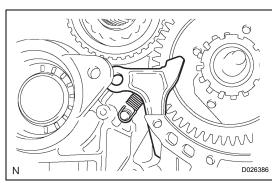
D003576E02

38. REMOVE UNDERDRIVE PLANETARY GEAR ASSEMBLY

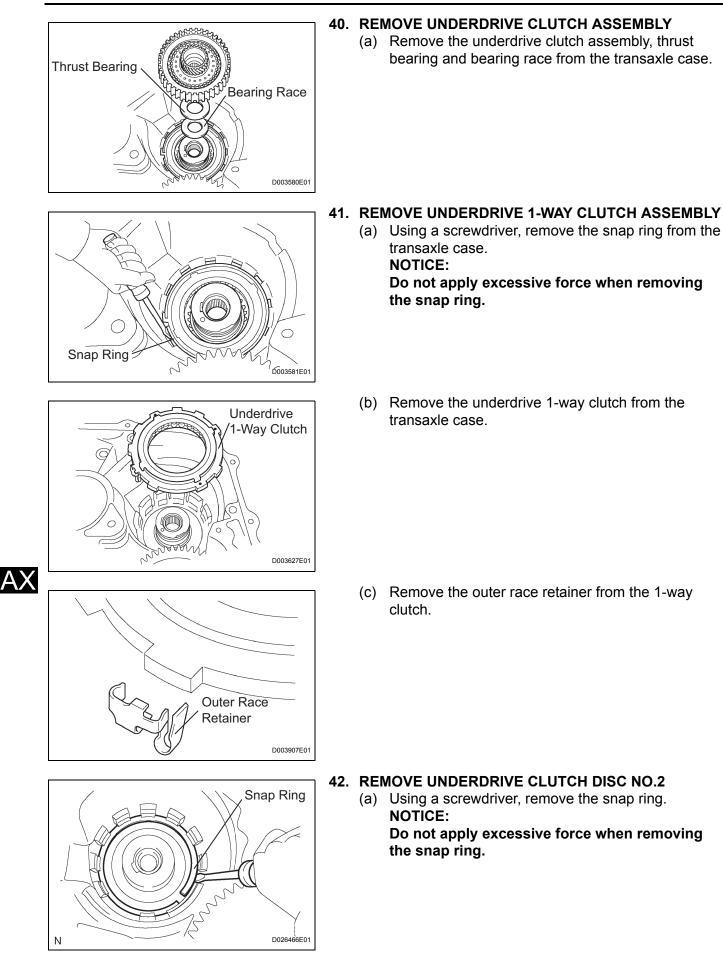
(a) Remove the bolt and pawl shaft clamp.

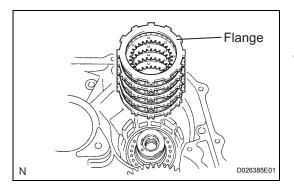

(b) Remove the parking lock pawl shaft.

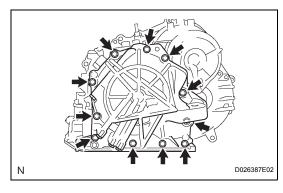

 (c) Push the parking lock pawl. HINT: Failure to do so will cause interference when the underdrive planetary gear is removed.

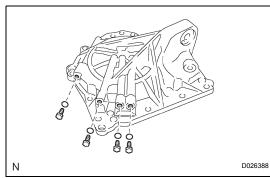

(d) Remove the underdrive planetary gear assembly from the transaxle case.
 NOTICE:
 Be careful so that the underdrive planetary gear assembly will not fall out.

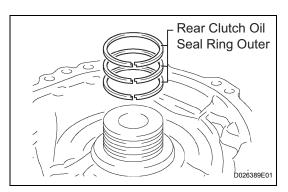
39. REMOVE PARKING LOCK PAWL

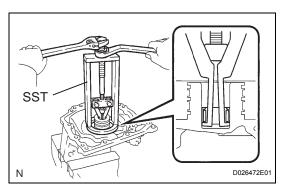

(a) Remove the spring, pawl pin and parking lock pawl.











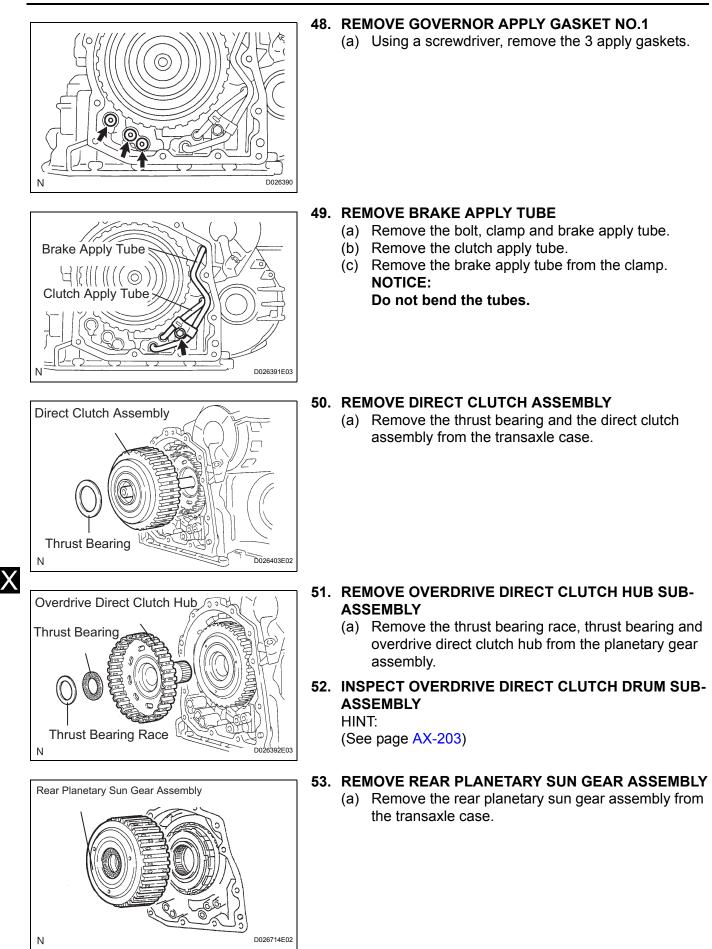
- (b) Remove the flange, 4 discs and 4 plates from the transaxle case.
- 43. INSPECT UNDERDRIVE CLUTCH DISC NO.2 HINT:

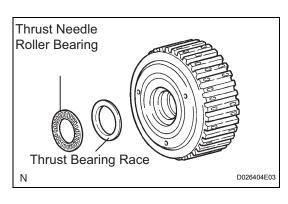
(See page AX-202)

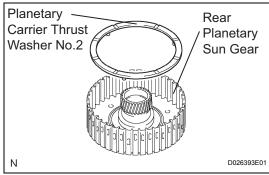
- 44. REMOVE TRANSAXLE REAR COVER SUB-ASSEMBLY
 - (a) Remove the 11 bolts.
 - (b) Tap on the circumference of the rear cover with a plastic hammer to remove the transaxle rear cover from the transaxle case.

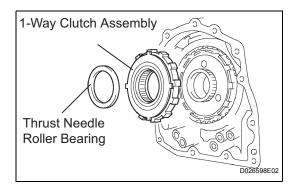
45. REMOVE TRANSAXLE CASE NO.1 PLUG

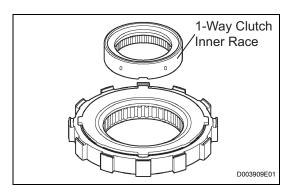
- (a) Remove the 4 transaxle case No.1 plugs from the transaxle rear cover.
- (b) Remove the 4 O-rings from the 4 transaxle case No.1 plugs.

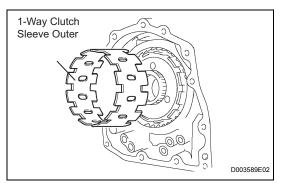

46. REMOVE REAR CLUTCH OIL SEAL RING OUTER


(a) Remove the 3 rear clutch oil seal rings from the transaxle rear cover.


47. REMOVE NEEDLE-ROLLER BEARING


- (a) Using SST, remove the needle-roller bearing from the transaxle rear cover.
 - SST 09387-00041 (09387-01021, 09387-01030, 09387-01040)



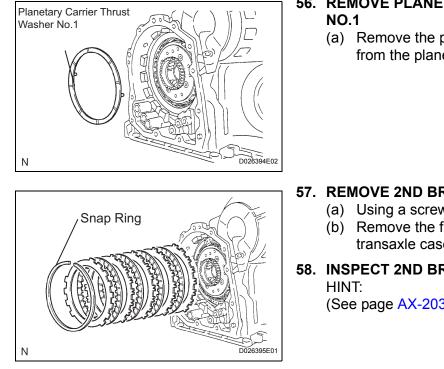


(b) Remove the thrust needle roller bearing and thrust bearing race from the rear planetary sun gear assembly.

(c) Remove the planetary carrier thrust washer No.2 from the rear planetary sun gear assembly.

- 54. REMOVE 1-WAY CLUTCH ASSEMBLY
 - (a) Remove the 1-way clutch assembly and the thrust needle roller bearing from the transaxle case.

(b) Remove the 1-way clutch inner race from the 1-way clutch assembly.


55. REMOVE 1-WAY CLUTCH SLEEVE OUTER

(a) Remove the 1-way clutch sleeve outer from the transaxle case.

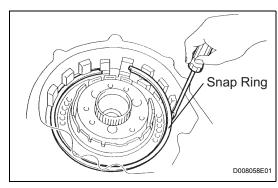
AX

AX

Ν

56. REMOVE PLANETARY CARRIER THRUST WASHER

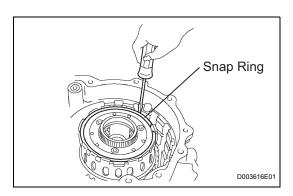
(a) Remove the planetary carrier thrust washer No.1 from the planetary gear assembly.

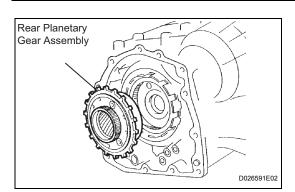

57. REMOVE 2ND BRAKE CLUTCH DISC

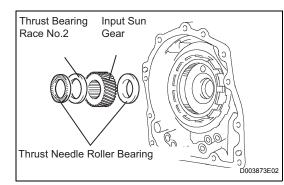
- (a) Using a screwdriver, remove the snap ring.
- (b) Remove the flange, 4 discs and 4 plates from the transaxle case.
- 58. INSPECT 2ND BRAKE CLUTCH DISC

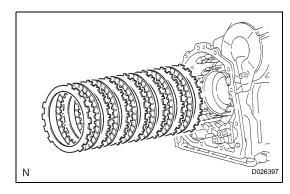
(See page AX-203)

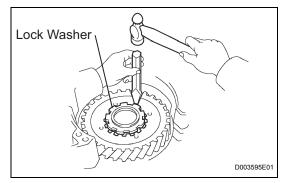
59. REMOVE 2ND BRAKE PISTON ASSEMBLY

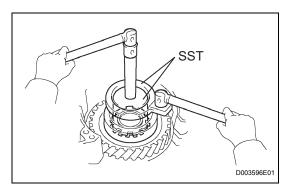

(a) Using a screwdriver, remove the snap ring.


2ND Brake Piston 507 Assembly


D026396E04


(b) Remove the 2ND brake piston assembly from the transaxle case.




- 60. REMOVE REAR PLANETARY GEAR ASSEMBLY
 - (a) Using a screwdriver, remove the snap ring.

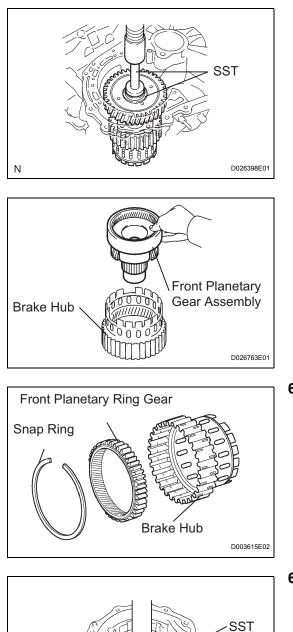
(b) Remove the rear planetary gear assembly from the transaxle case.

61. REMOVE INPUT SUN GEAR

(a) Remove the 2 thrust needle roller bearings, thrust bearing race No.2 and the input sun gear from the transaxle case.

- 62. REMOVE 1ST AND REVERSE BRAKE CLUTCH DISC
 - (a) Remove the flange, 6 discs and 6 plates from the transaxle case.
- 63. INSPECT 1ST AND REVERSE BRAKE CLUTCH DISC HINT:

(See page AX-203)


- 64. REMOVE FRONT PLANETARY GEAR ASSEMBLY
 - (a) Using a chisel and hammer, unstake the lock washer.
 NOTICE:

Push down all claws of the washer. Otherwise the SST cannot be fully pressed against the nut, and cannot loosen the nut.

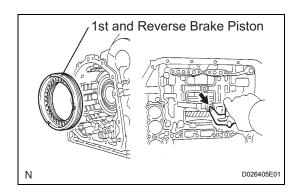
(b) Using SST, remove the nut. **SST** 09387-00030, 09387-00080

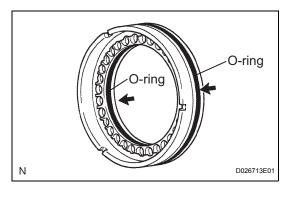
AX

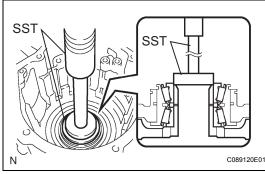
(c) Using SST and a press, remove the front planetary gear assembly from the counter drive gear.
 SST 09950-60010 (09951-00450), 09950-70010 (09951-07100)

(d) Remove the front planetary gear assembly from the brake hub.

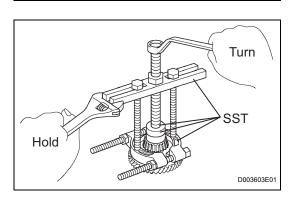
65. REMOVE FRONT PLANETARY RING GEAR


(a) Using a screwdriver, remove the snap ring and front planetary ring gear from the brake hub.


- 66. REMOVE 1ST AND REVERSE BRAKE RETURN SPRING SUB-ASSEMBLY
 - (a) Place SST on the return spring, and compress the return spring with a press.
 - **SST** 09387-00070(b) Using a snap ring expander, remove the snap ring.
 - NOTICE:
 Stop the press when the spring seat is
 - Stop the press when the spring seat is lowered 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove, to prevent the spring seat from being deformed.
 - Do not expand the snap ring excessively.
- 67. INSPECT 1ST AND REVERSE BRAKE RETURN SPRING SUB-ASSEMBLY HINT:

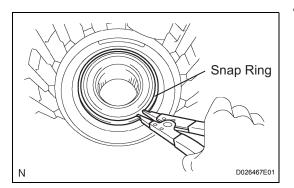

(See page AX-203)

D003600E01



Brown Contraction of the second secon

D003602E01

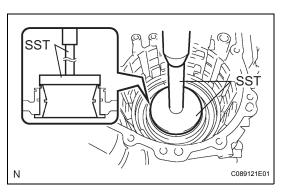


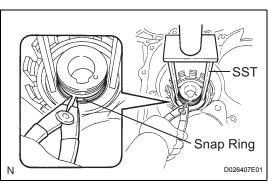
68. REMOVE 1ST AND REVERSE BRAKE PISTON

- (a) Apply compressed air (392 kPa, 4.0 kgf/cm², 57 psi) to the transaxle case to remove the 1st and reverse brake piston.
 NOTICE:
 - Applying compressed air may cause the piston to jump-out. When removing the piston, hold it using a waste cloth.
 - Take care not to splash ATF when applying compressed air.
- (b) Remove the 2 O-rings from the 1st and reverse brake piston.

- 69. REMOVE COUNTER DRIVE GEAR
 - (a) Using SST and a press, remove the counter drive gear from the transaxle case.
 - SST 09950-60010 (09951-00590), 09950-70010 (09951-07100)
 - (b) As shown in the illustration, tighten the 2 bolts evenly and make clearance of approx. 20.0 mm (0.787 in.) between the counter drive gear and the inner race.
- AX

(c) Using SST, remove the tapered roller bearing. SST 09950-60010 (09951-00590), 09950-00020, 09950-00030, 09950-40011 (09957-04010) race.

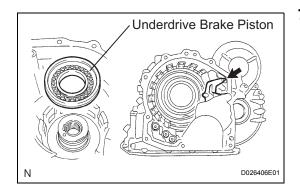

70. REMOVE TRANSFER DRIVEN PINION FRONT BEARING


(a) Using a snap ring expander, remove the snap ring.

(b) Using SST and a press, remove the bearing outer

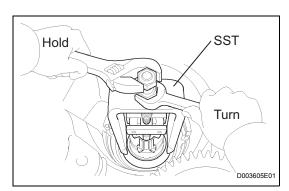
SST 09950-60020 (09951-00910)

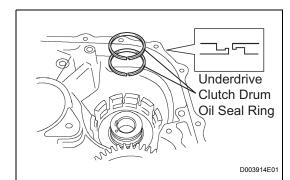
71. REMOVE BREATHER PLUG NO.2 (ATM)


- 72. REMOVE UNDERDRIVE BRAKE RETURN SPRING
 - SUB-ASSEMBLY
 (a) Place SST on the return spring, and compress the return spring with a press.
 SST 09387-00020
 - (b) Using a snap ring expander, remove the snap ring. **NOTICE:**
 - Stop the press when the spring seat is lowered 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove, to prevent the spring seat from being deformed.
 - Do not expand the snap ring excessively.
- 73. INSPECT UNDERDRIVE BRAKE RETURN SPRING SUB-ASSEMBLY

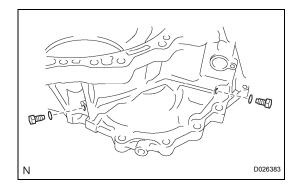
HINT:

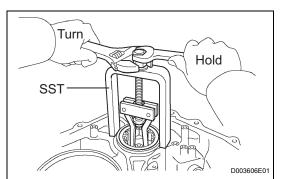
(See page AX-204)


74. REMOVE UNDERDRIVE BRAKE PISTON


(a) Apply compressed air (392 kPa, 4.0 kgf/cm², 57 psi) to the transaxle case to remove the underdrive brake piston.

D003794E01

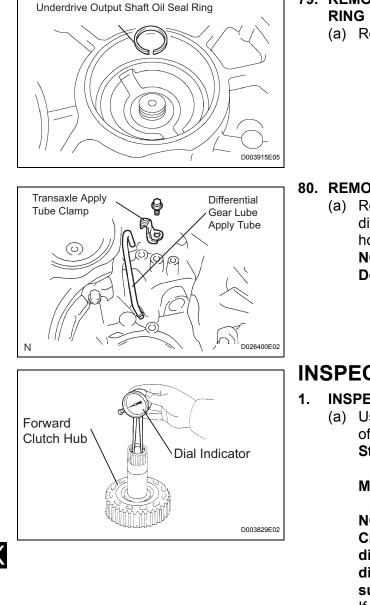


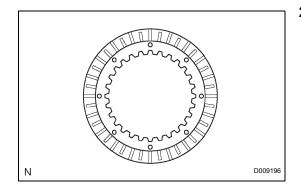


(b) Remove the 2 O-rings from the underdrive brake piston.

75. REMOVE NEEDLE ROLLER BEARING

- (a) Using SST, remove the needleroller bearing from the transaxle case.
 - SST 09387-00041 (09387-01010, 09387-01030, 09387-01040)
- 76. REMOVE UNDERDRIVE CLUTCH DRUM OIL SEAL RING
 - (a) Remove the 2 oil seal rings from the transaxle case.




77. REMOVE TRANSAXLE CASE NO.1 PLUG

- (a) Remove the 2 transaxle case No.1 plugs.
- (b) Remove the 2 O-rings from the 2 transaxle case No.1 plugs.

- 78. REMOVE UNDERDRIVE CYLINDRICAL ROLLER BEARING
 - (a) Using SST, remove the underdrive cylindrical roller bearing from the transaxle case.
 SST 09514-35011

79. REMOVE UNDERDRIVE OUTPUT SHAFT OIL SEAL

(a) Remove the oil seal ring from the transaxle housing.

80. REMOVE DIFFERENTIAL GEAR LUBE APPLY TUBE

(a) Remove the bolt, transaxle apply tube clamp and differential gear lube apply tube from the transaxle housing. NOTICE:

Do not bend the tubes.

INSPECTION

- **INSPECT MULTIPLE DISC CLUTCH HUB**
 - (a) Using a dial indicator, measure the inside diameter of the forward clutch hub bushing Standard inside diameter:

23.025 to 23.046 mm (0.9065 to 0.9073 in.) Maximum inside diameter:

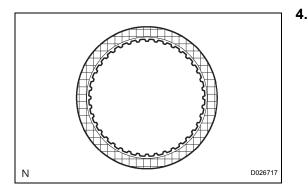
23.09 mm (0.9091 in.)

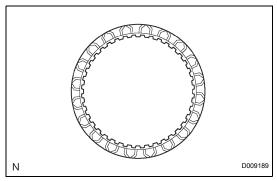
NOTICE:

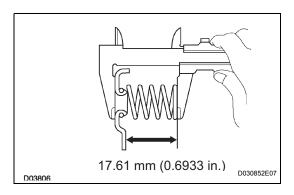
Check the contact surface of the bushing in the direct clutch shaft. If any scratch or discoloration is found, replace the direct clutch sub-assembly with a new one.

If the inside diameter is greater than the maximum, replace the forward clutch hub with a new one.

INSPECT UNDERDRIVE CLUTCH DISC NO.2 2.


(a) Check if the sliding surfaces of the disc, plate and flange are worn or burnt. If necessary, replace them.


NOTICE:


- If the lining of the disc comes off or discolors, or if a part of the groove is worn, replace all discs.
- Before installing new discs, immerse them in ATF for at least 15 minutes.

. INSPECT OVERDRIVE DIRECT CLUTCH DRUM SUB-ASSEMBLY

(a) Using a dial indicator, measure the inside diameter of the forward clutch hub bushing.
 Standard inside diameter:

23.025 to 23.046 mm (0.9065 to 0.9073 in.) Maximum inside diameter:

23.09 mm (0.9091 in.)

NOTICE:

Check the contact surface of the bushing in the direct clutch shaft. If any scratch or discoloration is found, replace the direct clutch sub-assembly with a new one.

If the inside diameter is greater than the maximum, replace the forward clutch hub with a new one.

INSPECT 2ND BRAKE CLUTCH DISC

(a) Check if the sliding surface of the disc, plate and flange are worn or burnt.

If necessary, replace them.

NOTICE:

- If the lining of the disc comes off or discolors, or if a part of the groove is worn, replace all discs.
- Before installing new discs, immerse them in ATF for at least 15 minutes.

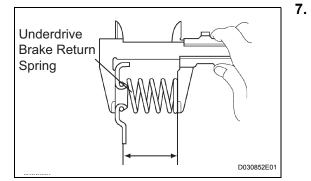
5. INSPECT 1ST AND REVERSE BRAKE CLUTCH DISC

(a) Check if the sliding surface of the disc, plate and flange are worn or burnt.

If necessary, replace them. **NOTICE:**

 If the lining of the disc comes off or discolors, or if a part of the groove is worn, replace all discs.

• Before installing new discs, immerse them in ATF for at least 15 minutes.


6. INSPECT 1ST AND REVERSE BRAKE RETURN SPRING SUB-ASSEMBLY

(a) Using a vernier calipers, measure the free length of the spring together with the spring seat.

Standard free length: 17.61 mm (0.6933 in.)

HINT:

If the result is not as specified, replace the spring.

INSPECT UNDERDRIVE BRAKE RETURN SPRING SUB-ASSEMBLY

 (a) Using a vernier calipers, measure the free length of the spring together with the spring seat.
 Standard free length:

13.24 mm (0.5213 in.)

HINT:

If the result is not as specified, replace the spring.

8. INSPECT PACK CLEARANCE OF 1ST AND REVERSE BRAKE

- (a) Using vernier calipers, measure the distance between the disc surface and the contact surface of the 2nd brake cylinder and transaxle case (Dimension A).
- (b) Select an appropriate flange so that the pack clearance will meet the specified value.
 Pack clearance:

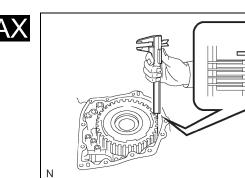
1.16 to 1.35 mm (0.0457 to 0.0531 in.) HINT:

Piston stroke = Dimension A - Flange thickness Flange thickness: mm (in.)

······			
Mark	Thickness	Mark	Thickness
1	1.8 (0.071)	5	2.2 (0.087)
2	1.9 (0.075)	6	2.3 (0.091)
3	2.0 (0.079)	7	2.4 (0.094)
4	2.1 (0.083)	8	2.5 (0.098)

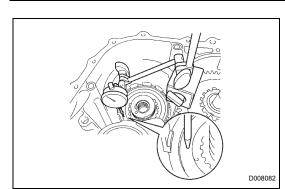
(c) Install the flange.

9. INSPECT PACK CLEARANCE OF 2ND BRAKE


- (a) Using a vernier calipers, measure the distance between the disc surface and snap ring surface (Dimension B).
- (b) Select an appropriate flange so that the pack clearance will meet the specified value.
 Pack clearance:

0.62 to 0.91 mm (0.0244 to 0.0358 in.) HINT:

Piston stroke = Dimension B - Flange thickness -Snap ring thickness 1.6 mm (0.063 in.)


Flange thickness: mm (in.)

Mark	Thickness	Mark	Thickness
1	3.0 (0.118)	5	3.4 (0.134)
2	3.1 (0.122)	6	3.5 (0.138)
3	3.2 (0.126)	7	3.6 (0.142)
4	3.3 (0.130)	8	-

R

D026453E01

10. INSPECT PACK CLEARANCE OF UNDERDRIVE BRAKE

(a) Using a dial indicator, measure the underdrive brake pack clearance while applying and releasing compressed air (392 kPa, 4.0 kgf/cm², 57 psi).

Pack clearance:

1.81 to 2.20 mm (0.0713 to 0.0866 in.) HINT:

Select an appropriate flange from the table below so that it will meet the specified value.

Flange thickness: mm (in.)

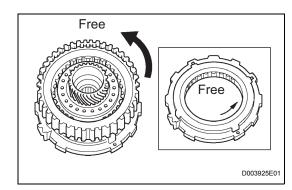
Mark	Thickness	Mark	Thickness
1	3.0 (0.118)	4	3.1 (0.122)
2	3.2 (0.126)	5	3.3 (0.130)
3	3.4 (0.134)	-	-

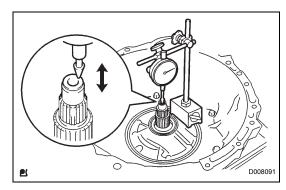
- (b) Temporarily remove the snap ring and attach it to the flange.
- (c) Reinstall the snap ring.

11. INSPECT UNDERDRIVE 1-WAY CLUTCH ASSEMBLY

- (a) Install the underdrive clutch assembly to the 1-way clutch.
- (b) Rotate the underdrive 1-way clutch assembly to check the rotating direction for the lock or free operation.
 HINT:

If the result is not as specified, replace the underdrive 1-way clutch.

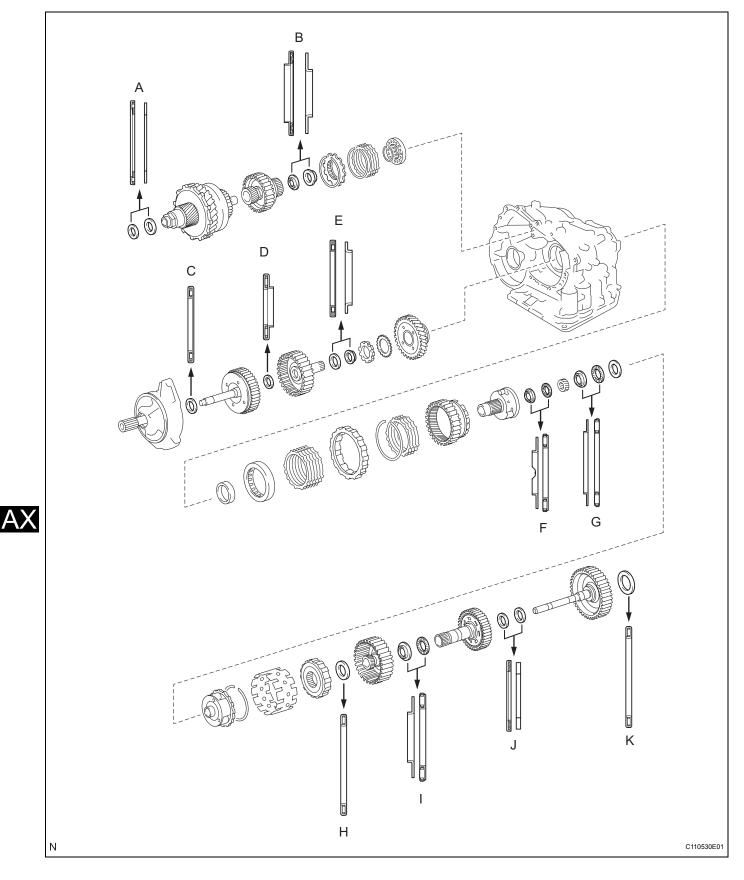

12. INSPECT INPUT SHAFT END PLAY

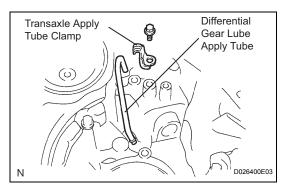

(a) Using a dial indicator, measure the input shaft end play.

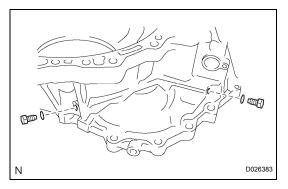
End play:

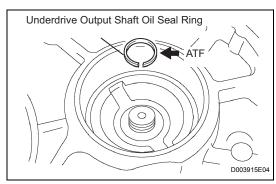
0.262 to 1.244 mm (0.01 to 0.049 in.) HINT:

If the result is not as specified, replace the input shaft or thrust needle roller bearing.






REASSEMBLY

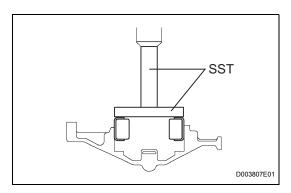

1. BEARING POSITION

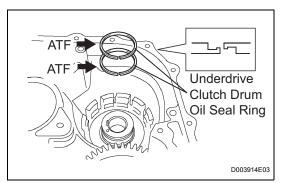
Mark	Front Race Diameter Inside / Outside mm (in.)	Thrust Bearing Diameter Inside / Outside mm (in.)	Rear Race Diameter Inside / Outside mm (in.)
А	-	57.2 (2.252) / 84.96 (3.3449)	56.4 (2.220) / 83.0 (3.268)
В	-	37.73 (1.4854) / 58.0 (2.283)	-
С	-	33.85 (1.3327) / 52.2 (2.055)	-
D	24.94 (0.982)	23.5 (0.925) / 44.0(1.732)	-
E	-	36.3 (1.429) / 51.93 (2.044)	34.5 (1.358) / 48.35 (1.904)
F	34.35 (1.352) / 56.57 (2.227)	32.45 (1.278) / 56.48 (2.223)	-
G	40.15 (1.581) / 59.25 (2.333)	38.65 (1.522) / 59.79 (2.354)	38.65 (1.522) / 59.25 (2.332)
Н	-	53.6 (2.110) / 69.6 (2.740)	-
I	33.02 (1.3) / 45.8 (1.803)	31.85 (1.254) / 57.3 (2.256)	-
J	-	24.79 (0.976) / 39.5 (1.555)	23.6 (0.929) / 37.95 (1.494)
К	-	56.3 (2.216) / 75.96 (2.991)	-

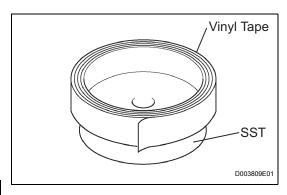
2. INSTALL DIFFERENTIAL GEAR LUBE APPLY TUBE

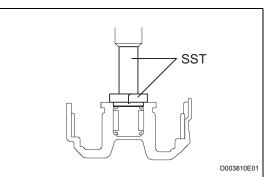
(a) Install the differential gear lube apply tube and transaxle apply tube clamp with the bolt to the transaxle housing.

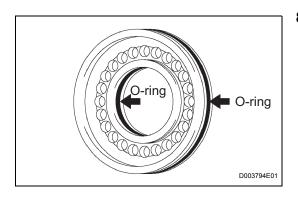
Torque: 9.8 N*m (100 kgf*cm, 87 in.*lbf) NOTICE:


Make sure to insert the pipe to the stopper.


3. INSTALL TRANSAXLE CASE NO.1 PLUG


- (a) Install 2 new O-rings to the 2 transaxle case No.1 plugs.
- (b) Install the 2 transaxle case No.1 plugs to the transaxle rear cover.
 Torque: 7.4 N*m (75 kgf*cm, 65 in.*lbf)


4. INSTALL UNDERDRIVE OUTPUT SHAFT OIL SEAL RING


(a) Coat a new oil seal ring with ATF and install it to the transaxle housing.

5. INSTALL UNDERDRIVE CYLINDRICAL ROLLER BEARING

- (a) Coat the underdrive cylindrical roller bearing with ATF.
- (b) Using SST and a press, install the underdrive cylindrical roller bearing.
 - SST 09950-60020 (09951-00810), 09950-70010 (09951-07100)

NOTICE:

Do not apply excessive pressure to the bearing.

6. INSTALL UNDERDRIVE CLUTCH DRUM OIL SEAL RING

- (a) Coat 2 new oil seal rings with ATF, and install them to the transaxle rear cover.
 NOTICE:
 - Do not expand the end gap of the oil seal ring too much.
 - Fix the hooks firmly. Confirm that the oil seal ring rotates freely in its groove.

7. INSTALL NEEDLE ROLLER BEARING

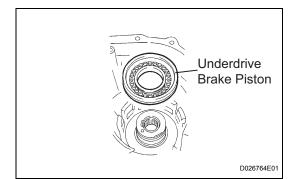
- (a) Wrap vinyl tape around the SST 4.0 mm (0.157 in.) from the bottom of the SST until the thickness of the tape is about 5.0 mm (0.197 in.).
 - SST 09950-60010 (09951-00320), 09950-70010 (09951-07100)

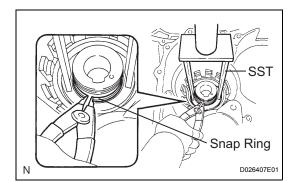
NOTICE:

Clean SST to remove deposited oil, before wrapping vinyl tape.

- (b) Coat the needle roller bearing with ATF.
- (c) Using SST and a press, install the needle-roller bearing to the transaxle case.

SST 09950-60010 (09951-00320), 09950-70010 (09951-07100)


NOTICE:


When the wrapped vinyl tape contacts the transaxle case, stop press-fitting.

8. INSTALL UNDERDRIVE BRAKE PISTON

- (a) Coat 2 new O-rings with ATF, and install them to the underdrive brake piston.
 NOTICE:
 - Make sure that the O-rings are not twisted or pinched when they are installed.
 - Apply sufficient ATF to the O-ring before installing.
- (b) Coat the underdrive brake piston with ATF.

(c) Install the underdrive brake piston to the transaxle case.

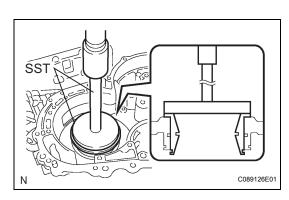
NOTICE: Be careful not to damage the O-ring.

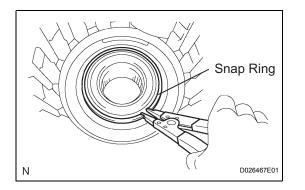
9. INSTALL UNDERDRIVE BRAKE RETURN SPRING SUB-ASSEMBLY

- (a) Place SST on the return spring and compress the return spring with a press.
 - SST 09387-00020
- (b) Using a snap ring expander, install the snap ring to the transaxle case.
 NOTICE:
 - Stop the press when the spring seat is lowered 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove, to prevent the spring seat from being deformed.
 - Do not expand the snap ring excessively.
 - Installing the spring sub-assembly, check that all of the springs are fit in the piston correctly.
 - The snap ring should be fully engaged in the groove of the transaxle case.

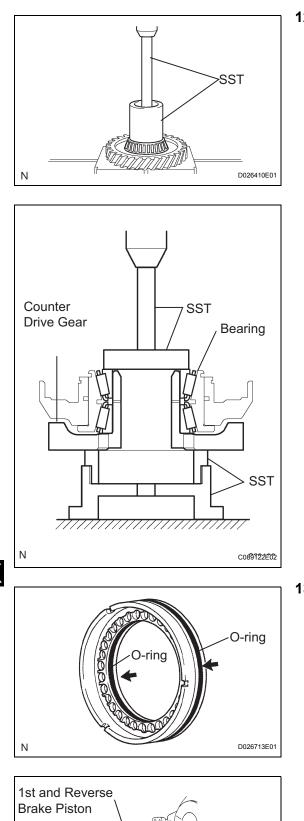
10. INSTALL BREATHER PLUG NO.2 (ATM)

11. INSTALL COUNTER DRIVE GEAR BEARING


- (a) Coat the counterdrive gear bearing with ATF.
- (b) Using SST and a press, install the bearing outer race.


SST 09950-60020 (09951-01030), 09950-70010 (09951-07150), 09649-17010

NOTICE:


- Do not apply excessive pressure to the bearing.
- Press-fit the bearing outer race until it contacts the transaxle case.
- (c) Using a snap ring expander, install the snap ring. **NOTICE:**

The white mark side of the snap ring should face upward.

12. INSTALL COUNTER DRIVE GEAR

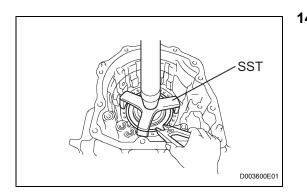
- (a) Coat the couterdrive gear with ATF.
- (b) Using SST and a press, install the tapered roller bearing to the counter drive gear.
 SST 09950-70010 (09951-07150), 09649-17010

NOTICE: Do not apply excessive pressure to the bearing.

(c) Using SST and a press, install the counter drive gear and bearing to the transaxle case.

SST 09950-70010 (09951-07150), 09223-15030, 09527-17011, 09950-60020 (09951-00750) NOTICE:

Do not apply excessive pressure to the counter drive gear.


- 13. INSTALL 1ST AND REVERSE BRAKE PISTON
 - (a) Coat 2 new O-rings with ATF.
 - (b) Install the 2 O-rings to the 1st and reverse brake piston.

NOTICE:

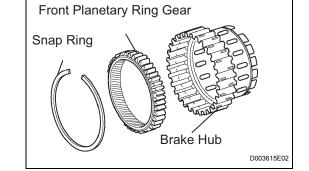
D026593E01

- Make sure that the O-rings are not twisted or pinched when they are installed.
- Apply sufficient ATF to the O-ring prior to assembling.
- (c) Coat the 1st and reverse brake piston with ATF, and install it to the transaxle case.
 NOTICE:

Be careful not to damage the O-ring.

14. INSTALL 1ST AND REVERSE BRAKE RETURN SPRING SUB-ASSEMBLY

- Place SST on the return spring and compress the return spring with a press.
 SST 09387-00070
- (b) Using a snap ring expander, install the snap ring to the transaxle case.

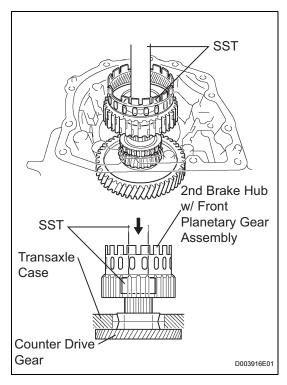

NOTICE:

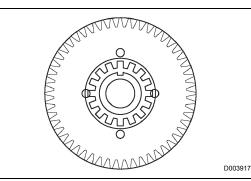
- Stop the press when the spring seat is lowered to the place 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove, preventing the spring seat from being deformed.
- Do not expand the snap ring excessively.
- Installing the spring sub-assembly, check that all of the springs are fit in the piston correctly.
- The snap ring should be fully engaged in the groove of the cylinder.
- Fix the snap ring to the inside of the claw of the spring seat firmly.

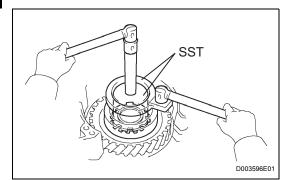
15. INSTALL FRONT PLANETARY RING GEAR

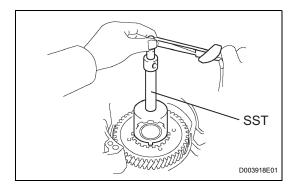
(a) Using a screwdriver, install the front planetary ring gear and snap ring to the brake hub.
 NOTICE:

Confirm that the snap ring is engaged in the groove of the brake hub correctly.

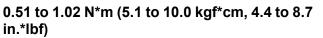



D026763E01


16. INSTALL FRONT PLANETARY GEAR ASSEMBLY


(a) Install the front planetary gear assembly to the brake hub.

- (b) Using SST and a press, press-fit the front planetary gear assembly.
 - SST 09950-60010 (09951-00500), 09950-70010 (09951-07100)

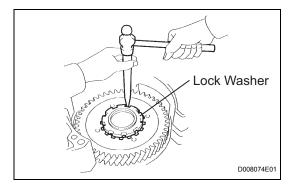

NOTICE:

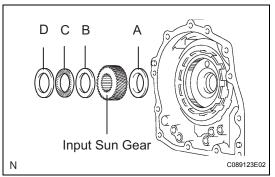
- Do not apply excessive pressure to the planetary gear assembly.
- Press the inner race of LH tapered roller bearing, counter gear and front planetary gear assembly to the position where no preload should be applied to one pair of tapered roller bearings (left and right).

(c) Install a new washer as shown in the illustration.

- (d) Using SST, install the nut.
 SST 09387-00030, 09387-00080
 Torque: 280 N*m (3,355 kgf*cm, 207 ft.*lbf)
 NOTICE:
 Assemble the washer after pressing each part, then tighten the nut to the minimum tightening torque.
- (e) Using SST and a torque wrench, measure the turning torque of the bearing while rotating SST at 60 rpm. When the measured value is not as specified, gradually tighten the nut until it reaches the specified value.
 SST 09387-00080
 Standard:

 Turning torque at 60 rpm
 Bearing:
 New Bearing:




Used Bearing: 0.26 to 0.51 N*m (2.7 to 5.2 kgf*cm, 2.3 to 4.5 in.*lbf)

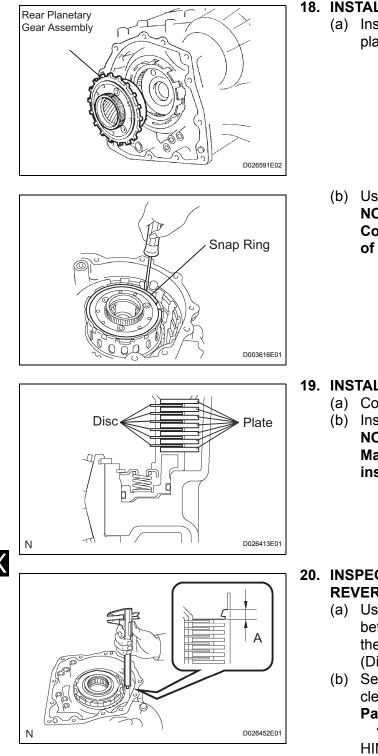
HINT:

Use a torque wrench with a fulcrum length of 160 mm (6.3 in.).

- (f) Tighten the nut gradually until the specified turning torque of tapered roller bearing is measured.
 Torque: 350 N*m (3,569 kgf*cm, 258 ft.*lbf)
- (g) Using a chisel and hammer, stake the front lock washer.

17. INSTALL INPUT SUN GEAR

- (a) Coat the 2 thrust bearings with ATF.
- (b) Install the 2 thrust bearings, the bearing race and the input sun gear to the front planetary gear assembly.


NOTICE:

- Install the bearing race on the side of the front planetary carrier. Be careful about the direction of the race.
- Installing thrust bearing and front sun gears, be careful about the direction of the parts.
- Install the bearing race on the side of the front sun gear. Be careful about the direction of the race.
- Install the thrust bearing and the race after holding the parts on the input sun gear by applying grease. Make sure that the assembling order is correct.

Thrust bearing and bearing race diameter: mm (in.)

	Inside	Outside
Thrust Bearing, A	32.5 (1.28)	56.5 (2.224)
Bearing Race, B	40.2 (1.583)	59.3 (2.335)
Thrust Bearing, C	38.6 (1.520)	59.7 (2.35)
Bearing Race, D	38.6 (1.520)	59.3 (2.335)

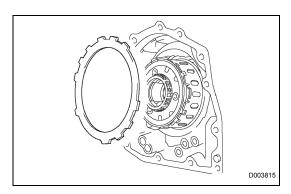
18. INSTALL REAR PLANETARY GEAR ASSEMBLY

(a) Install the rear planetary gear assembly to the rear planetary ring gear.

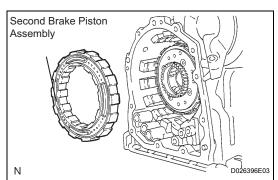
(b) Using a screwdriver, install the snap ring.
 NOTICE:
 Confirm that the snap ring is fixed in the groove of the 1st and reverse brake hub correctly.

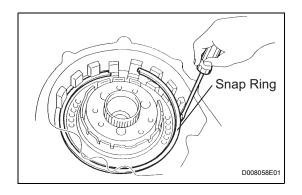
- 19. INSTALL 1ST AND REVERSE BRAKE CLUTCH DISC
 - (a) Coat the 6 discs with ATF.
 - (b) Install the 7 plates and 6 discs. **NOTICE:**

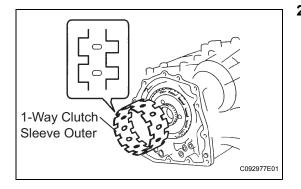
Make sure that the plates, discs, and flange are installed as shown in the illustration.


20. INSPECT PACK CLEARANCE OF FIRST AND REVERSE BRAKE

- (a) Using vernier calipers, measure the distance between the disc surface and the contact surface of the 2nd brake cylinder and transaxle case (Dimension A).
- (b) Select an appropriate flange so that the pack clearance will meet the specified value.
 Pack clearance:


1.16 to 1.35 mm (0.0457 to 0.0531 in.) HINT:


Piston stroke = Dimension A - Flange thickness Flange thickness: mm (in.)


Mark	Thickness	Mark	Thickness
1	1.8 (0.071)	5	2.2 (0.087)
2	1.9 (0.075)	6	2.3 (0.091)
3	2.0 (0.079)	7	2.4 (0.094)
4	2.1 (0.083)	8	2.5 (0.098)

(c) Install the flange.

21. INSTALL SECOND BRAKE PISTON ASSEMBLY

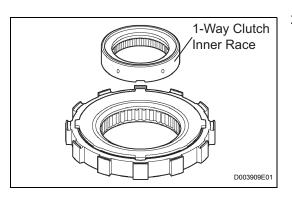
(a) Install the second brake piston assembly to the transaxle case.

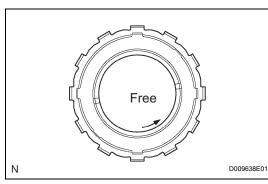
(b) Install the snap ring and measure the inside diameter.

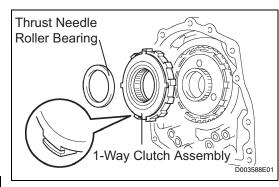
Inside diameter:

Greater than 167 mm (6.57 in.)

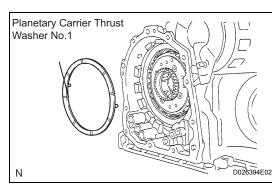
NOTICE:

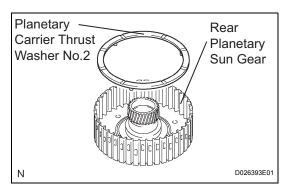

- Make sure that the taper snap ring is installed in the correct direction.
- When the diameter does not meet the specified value, replace the snap ring with a new one.
- After installing, confirm that there is no clearance between the 2nd brake cylinder and the fitting surface of the cylinder in the transaxle case.


22. INSTALL 1-WAY CLUTCH SLEEVE OUTER


(a) Install the 1-way clutch sleeve outer to the 2nd brake cylinder assembly.
 NOTICE:

Make sure that the outer sleeve is installed in the correct direction.





23. INSTALL 1-WAY CLUTCH ASSEMBLY

(a) Install the 1-way clutch inner race to the 1-way clutch.

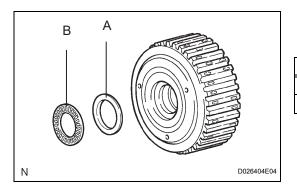
NOTICE:

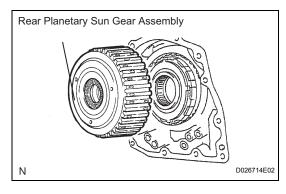
- Make sure that the inner race is installed in the correct direction.
- Confirm that the discrimination mark is visible.
- (b) Check the rotating direction of 1-way clutch for the lock or free operation as shown in the illustration.

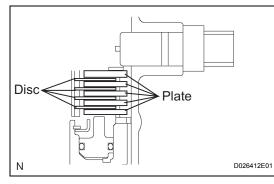
 (c) Install the 1-way clutch and thrust needle roller bearing to the 1-way clutch sleeve outer.
 Bearing diameter: mm (in.)

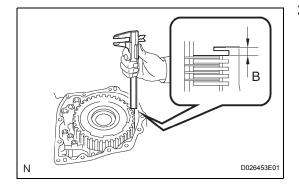
	Inside	Outside
Bearing	53.6 (2.110)	69.4 (2.732)

NOTICE:


Install the thrust bearing properly so that nocolored race will be visible.


- 24. INSTALL PLANETARY CARRIER THRUST WASHER NO.1
 - (a) Coat the planetary carrier thrust washer No.1 with yellow petrolatum, and install the washer onto the planetary sun gear assembly.
 NOTICE:


After installing, confirm that the projection should be fixed firmly in the hole of the planetary sun gear assembly.


25. REMOVE REAR PLANETARY SUN GEAR ASSEMBLY

(a) Coat the planetary carrier thrust washer No.2 with yellow petrolatum, and install the washer onto the rear planetary sun gear.

 (b) Coat the bearing with yellow petrolatum, and install the bearing onto the rear planetary sun gear.
 Bearing diameter: mm (in.)

0 *	Inside	Outside
Race, A	33.0 (1.299)	45.4 (1.787)
Bearing, B	31.85 (1.254)	45.2 (1.78)

(c) Install the rear planetary sun gear assembly to the rear planetary gear.
 NOTICE:

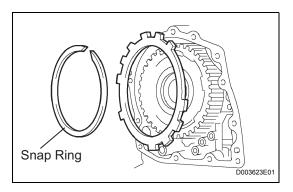
Installing the rear planetary sun gear assembly, make sure that the B1 discs are engaged.

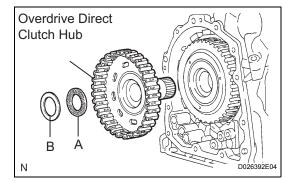
26. INSTALL 2ND BRAKE CLUTCH DISC

- (a) Coat the 4 discs with ATF.
- (b) Install the 4 discs and 5 plates to the transaxle case.
- (c) Temporarily install the snap ring.

27. INSPECT PACK CLEARANCE OF 2ND BRAKE

- (a) Using a vernier calipers, measure the distance between the disc surface and snap ring surface (Dimension B).
- (b) Select an appropriate flange so that the pack clearance will meet the specified value. **Clearance:**


0.62 to 0.91 mm (0.0244 to 0.0358 in.) HINT:


Piston stroke = Dimension B - Flange thickness -Snap ring thickness 1.6 mm (0.063 in.)

Flange thickness: mm (in.)

Mark	Thickness	Mark	Thickness
1	3.0 (0.118)	5	3.4 (0.134)
2	3.1 (0.122)	6	3.5 (0.138)
3	3.2 (0.126)	7	3.6 (0.142)
4	3.3 (0.130)	8	-

Secure the snap ring so that the ends visible through the groove of the transaxle case.

(c) Temporarily remove the snap ring, attach the selected flange and reinstall the snap ring.

- 28. INSTALL OVERDRIVE DIRECT CLUTCH HUB SUB-ASSEMBLY
 - (a) Install the direct clutch hub to the planetary gear assembly.

NOTICE:

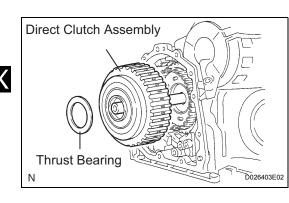
NOTICE:

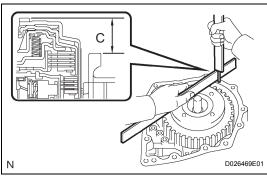
Be careful not to damage the bushing inside the overdrive clutch hub during installation.

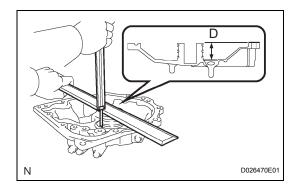
- (b) Coat the thrust bearing with ATF.
- (c) Install the bearing race and the thrust bearing to the direct clutch hub.
 - NOTICE:

Be careful not to drop the bearing when it is installed.

Bearing and race diameter: mm (in.)


	Inside	Outside
Bearing, A	24.7 (0.972)	39.5 (1.555)
Race, B	23.6 (0.929)	38.0 (1.496)


29. INSTALL DIRECT CLUTCH ASSEMBLY


- (a) Coat the thrust bearing with ATF.
- (b) Install the direct clutch assembly and thrust bearing to the rear planetary sun gear assembly.
 NOTICE:

The disc in the direct clutch should completely match with the hub attached outside the rear planetary sun gear. Otherwise, the rear cover cannot be installed.

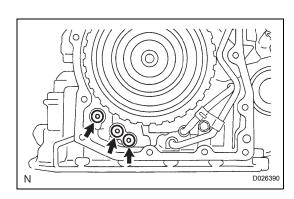
- (c) Clean the connecting part of the transaxle case and the rear cover.
- (d) As shown in the illustration, place a straightedge on the direct clutch drum and measure the distance between the transaxle case and the straightedge using vernier calipers (Dimension C).

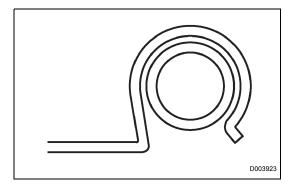
- (e) Using vernier calipers and a straightedge, measure the dimension shown in the illustration.
- (f) Calculate the end play value using the following formula. Select a thrust bearing which satisfies the end play value and install the selected bearing.
 End play:

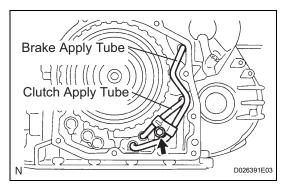
0.244 to 0.901 mm (0.0096 to 0.0355 in.) NOTICE:

Make sure that the no-colored race side is facing the direct clutch assembly.

HINT:


End play = Dimension D - Dimension C


Bearing thickness and diameter : mm (in.)

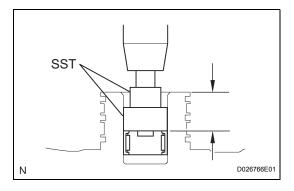

Thickness	Inside	Outside
3.6 (0.1417)	56.3 (2.217)	75.7 (2.980)
3.8 (0.1496)	56.3 (2.217)	75.7 (2.980)

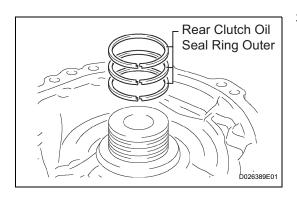
30. INSTALL GOVERNOR APPLY GASKET NO.1

(a) Install 3 new governor apply gaskets No.1 to the transaxle case.

31. INSTALL BRAKE APPLY TUBE

(a) Install the clamp to the brake apply tube. **NOTICE:**


Make sure to install the clamp to the apply tube before installing the apply tube to the transaxle case. This prevents the apply tube from being deformed or damaged.



- (b) Install the clutch apply tube.
- (c) Install the brake apply tube and a bolt to the transaxle case.
 Torque: 5.4 N*m (55 kgf*cm, 48 in.*lbf)

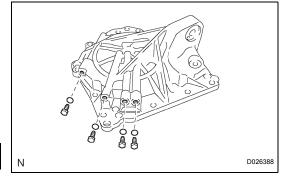
NOTICE:

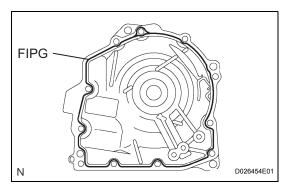
The tube should be securely inserted until it reaches the stopper.

- 32. INSTALL NEEDLE ROLLER BEARING
 - (a) Using SST and a press, press the needle roller bearing into the transaxle rear cover.
 SST 09950-60010 (09951-00230, 09952-06010) Press fit depth:

20.55 to 21.25 mm (0.8091 to 0.8366 in.) NOTICE:

- The engraved mark side of the bearing should face upward.
- Repeat the press fit until the specified value is obtained.
- (b) Coat a needle roller bearing with ATF.

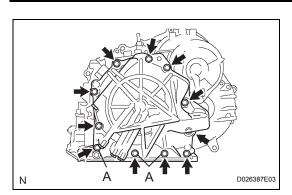

33. INSTALL REAR CLUTCH OIL SEAL RING OUTER

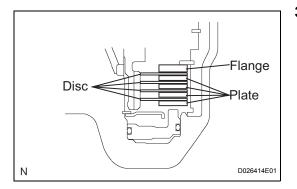

 (a) Coat 3 new rear clutch oil seal rings with ATF, install them to the transaxle rear cover.
 NOTICE:

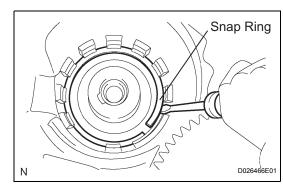
The snap ring should be fully engaged in the groove of the drum.

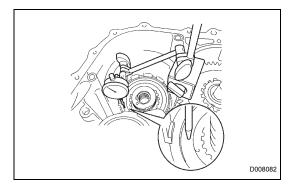
34. INSTALL TRANSAXLE CASE NO.1 PLUG

- (a) Coat 4 new O-rings with ATF.
- (b) Install the 4 O-rings to the 4 transaxle case No.1 plugs.
- (c) Install the 4 transaxle case No.1 plugs to the transaxle rear cover.
 Torgue: 7.4 N*m (75 kgf*cm, 65 in.*lbf)


35. INSTALL TRANSAXLE REAR COVER SUB-ASSEMBLY


- (a) Remove any packing material and be careful not to spill oil on the contact surfaces of the transaxle rear cover or the transaxle case.
- (b) Apply FIPG to the cover. **FIPG:**


Part No. 08826-00090, THREE BOND 1281 or equivalent.


NOTICE:

Make sure that the FIPG is applied in a bead (section diameter: ϕ 1.2) so that the entire sealing surface will be evenly sealed. The FIPG should also protrude slightly from the flange after the assembly of the parts has been completed.

- (c) Apply liquid sealer to the "A" bolt threads.
 Sealant:
 Part No. 08833-00080 THREE BOND 11
 - Part No. 08833-00080, THREE BOND 1344, LOCTITE 242 or equivalent.

36. INSTALL UNDERDRIVE CLUTCH DISC NO.2

- (a) Coat the 4 discs with ATF.
- (b) Install the 4 discs, 4 plates and flange to the transaxle case.

NOTICE:

Be careful about the order of discs, plate and flange assembly.

Using a screwdriver, install the snap ring.
 NOTICE:
 The snap ring should be fully engaged in the groove of the drum.

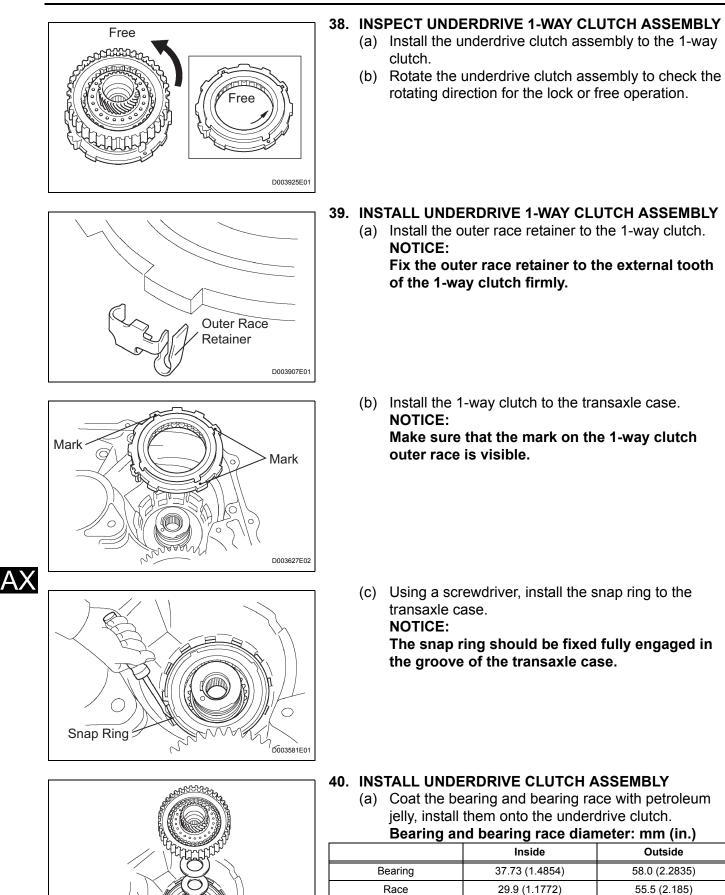
37. INSPECT PACK CLEARANCE OF UNDERDRIVE BRAKE

(a) Using a dial indicator, measure the underdrive brake pack clearance while applying and releasing

compressed air (392 kPa, 4.0 kgf/cm², 57 psi).

Pack clearance:

1.81 to 2.20 mm (0.0713 to 0.0866 in.) HINT:


Select an appropriate flange from the table below so that it will meet the specified value.

Flange thickness: mm (in.)

Mark	Thickness	Mark	Thickness
1	3.0 (0.118)	4	3.1 (0.122)
2	3.2 (0.126)	5	3.3 (0.130)
3	3.4 (0.134)	-	-

- (b) Temporarily remove the snap ring and attach it to the flange.
- (c) Reinstall the snap ring.

Outside

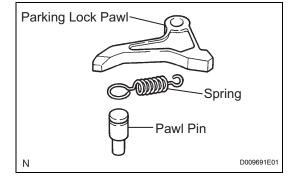
58.0 (2.2835)

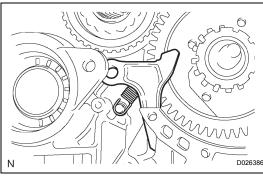
55.5 (2.185)

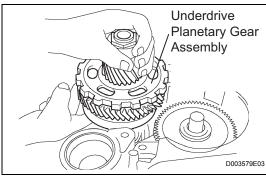
(b) Install the underdrive clutch assembly to the transaxle case.
 NOTICE:
 Do not damage the oil seal when installing the

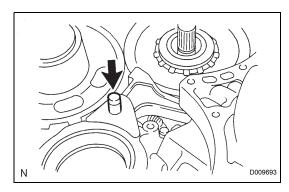
underdrive clutch drum sub-assembly.

- 41. INSTALL PARKING LOCK PAWL
 - (a) Install the pawl pin and spring to the parking lock pawl.

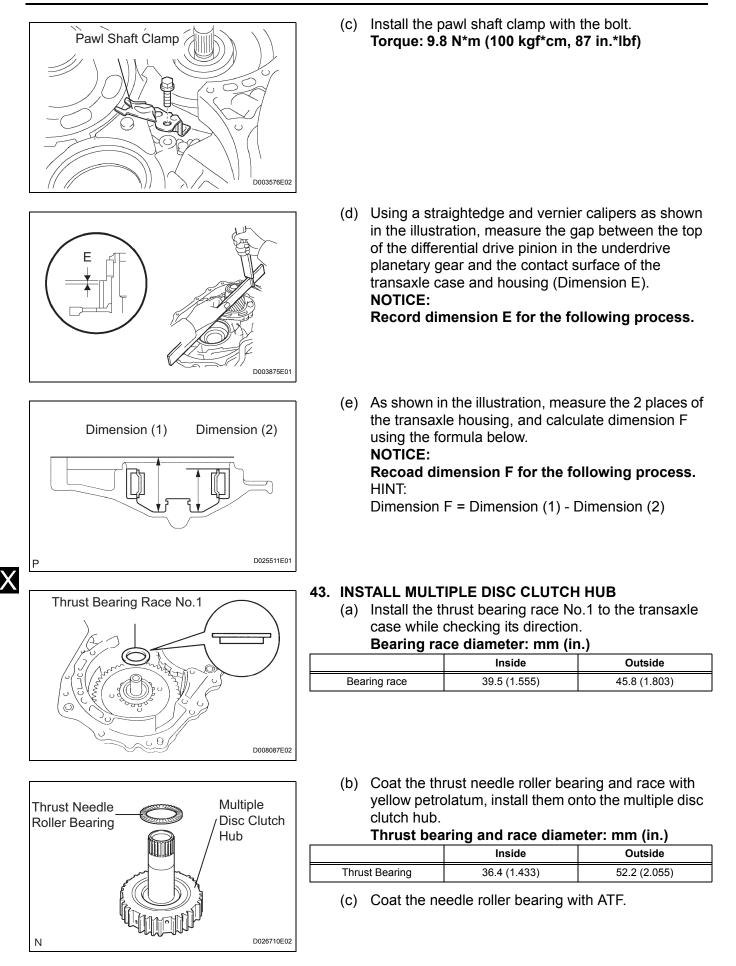

(b) Temporarily install the parking lock pawl, shaft and spring to the transaxle case, as shown in the illustration.

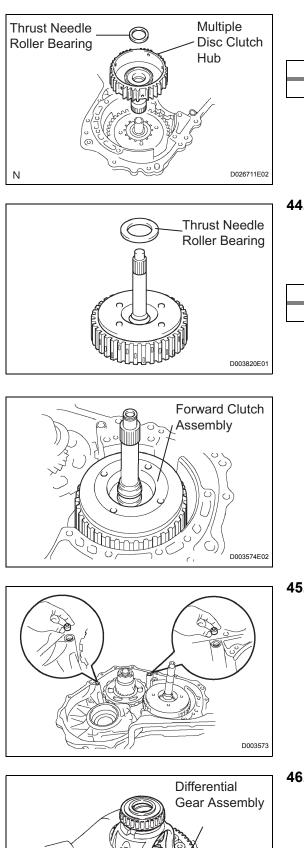

- 42. INSTALL UNDERDRIVE PLANETARY GEAR ASSEMBLY (a) Install the underdrive planetary gear asser
 - (a) Install the underdrive planetary gear assembly to the transaxle case.


NOTICE:


Fully engage all the discs of underdrive clutch and hub splines of the underdrive planetary gear assembly and install them securely.

(b) Install the parking lock pawl shaft.





D026450E04

Ν

(d) Install the needle roller bearing to the multiple clutch hub.

Bearing diameter: mm (in.)

	Inside	Outside
Bearing	23.6 (0.929)	44 (1.732)

(e) Install the multiple clutch hub to the transaxle case.

44. INSTALL FORWARD CLUTCH ASSEMBLY

- (a) Coat the thrust needle roller bearing with ATF.
- (b) Install the thrust needle roller bearing to the forward clutch.

Thrust bearing diameter: mm (in.)

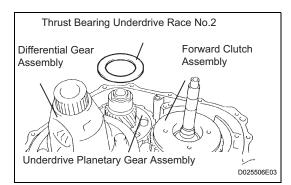
	Inside	Outside
Thrust Bearing	33.58 (1.3220)	51.9 (2.043)

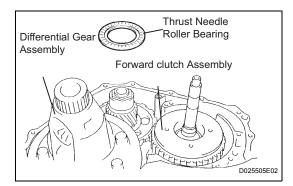
NOTICE:

Install the thrust bearing properly so that the nocolored race or blue ink jet race will be visible.

(c) Install the forward clutch to the forward clutch assembly.

NOTICE:


- Align the splines of all discs in the forward clutch with those of multiple clutch hub to install them securely.
- Be careful not to damage the bushing inside of the forward clutch hub during installation.


45. INSTALL OVERDRIVE BRAKE GASKET

(a) Install 2 new overdrive brake gaskets.

46. INSTALL DIFFERENTIAL GEAR ASSEMBLY

(a) Install the differential gear assembly to the transaxle case.

47. INSTALL THRUST BEARING UNDERDRIVE RACE NO.2

(a) Install the thrust bearing underdrive race No.2 to the underdrive planetary gear assembly.

48. INSTALL THRUST NEEDLE ROLLER BEARING

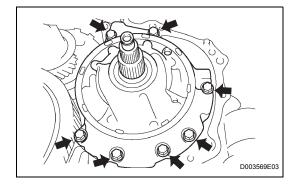
- (a) Coat the thrust needle roller bearing with ATF.
- (b) Calculate the end play value using the following formula and values of Dimension E and F that are measured when installing the cylindrical roller bearing and underdrive planetary gear. Select an appropriate underdrive planetary gear thrust bearing race No.2 which satisfies the specified end play value, and install the selected bearing race. End play:

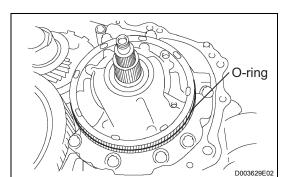
0.498 to 0.993 mm (0.01961 to 0.03909 in.) HINT:

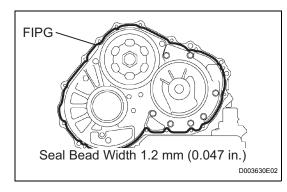
End play = Dimension F - Dimension E - thrust bearing thickness 2.5 mm (0.0984 in.) - underdrive thrust bearing race No.2 thickness.

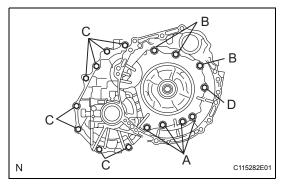
Race thickness: mm (in.)

F-E	Thickness
Less than 7.72 (0.3039)	3.5 (0.138)
7.72 (0.3039)	3.8 (0.150)


Bearing and bearing race diameter: mm (in.)


	Inside	Outside
Bearing	57.2 (2.252)	84.96 (3.345)
Bearing race	56.4 (2.22)	83 (3.268)


49. INSTALL OIL PUMP ASSEMBLY


(a) Install the oil pump to the transaxle case with the 7 bolts.

Torque: 22 N*m (226 kgf*cm, 16 ft.*lbf)

(b) Coat the O-ring of oil pump with ATF. **NOTICE:**

Confirm that the input shaft rotates smoothly with the manual operation after installing the oil pump.

50. INSTALL TRANSAXLE HOUSING

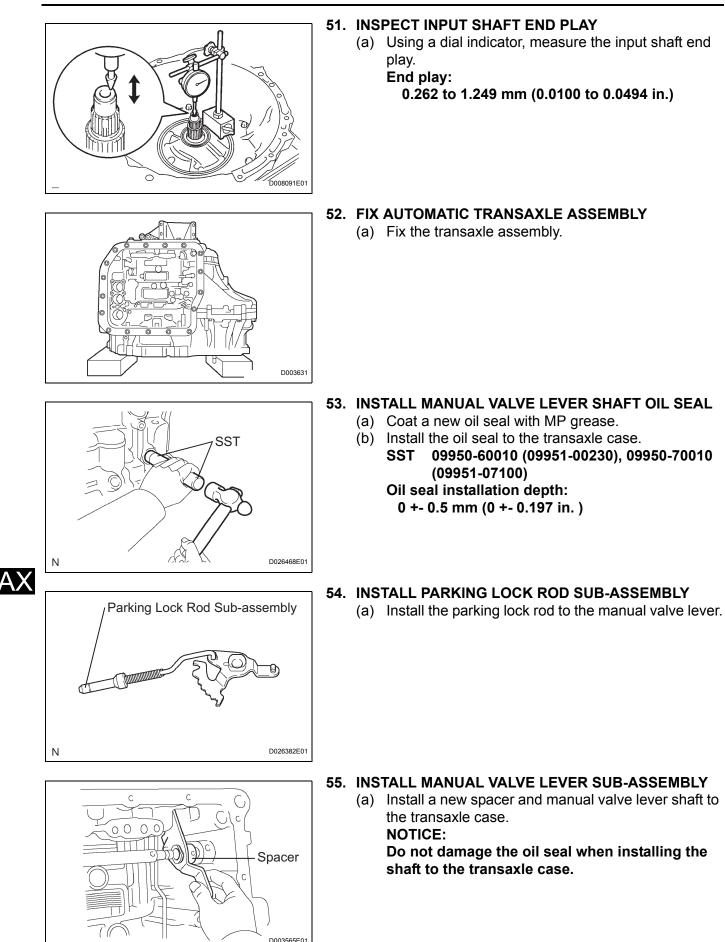
- (a) Remove any packing material and be careful not to spill oil on the contact surface of the transaxle case or transaxle housing.
- (b) Apply FIPG to the transaxle case. FIPG:

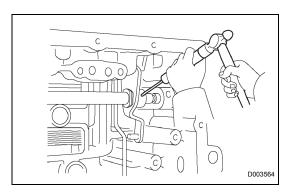
Part No. 08826-00090, THREE BOND 1281 or equivalent

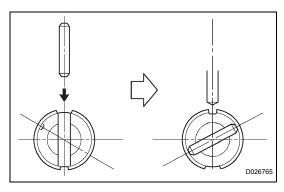
(c) Install the transaxle housing and 16 bolts to the transaxle case.

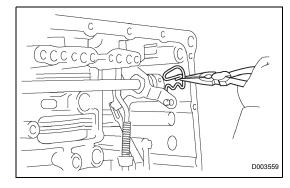
Torque: Bolt A

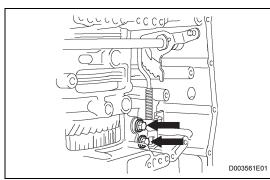
25 N*m (255 kgf*cm, 18 ft.*lbf) Bolt B 33 N*m (337 kgf*cm, 24 ft.*lbf) Bolt C 29 N*m (295 kgf*cm, 21 ft.*lbf) Bolt D 22 N*m (226 kgf*cm, 16 ft.*lbf)

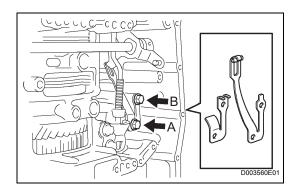

HINT:


Apply seal packing or equivalent to bolts A and D. Seal packing: THREE BOND 2403 or equivalent


Bolt length Bolt A: 50 mm (1.969 in.) Bolt B: 50 mm (1.969 in.) Bolt C: 42 mm (1.654 in.) Bolt D: 72 mm (2.835 in.) NOTICE: Tighten the bolts within 10 minutes of sealant


application.





(b) Using a pin punch and hammer, drive in a new pin.

- (c) Turn the spacer and the lever shaft to align the small hole for locating the staking position in the spacer with the staking position mark on the lever shaft.
- (d) Using a pin punch, stake the spacer through the small hole.
- (e) Check that the spacer does not turn.
- 56. INSTALL MANUAL VALVE LEVER SHAFT RETAINER SPRING
 - (a) Using needle-nose pliers, install the retainer spring. **NOTICE:**

Hang the spring on the shaft firmly.

- 57. INSTALL PARKING LOCK PAWL BRACKET
 - (a) Install the parking lock pawl bracket with the 2 bolts. Torque: 20 N*m (205 kgf*cm, 15 ft.*lbf) Bolt length: 25 mm (0.984 in.)

NOTICE:

Make sure that the parking rod is placed between the parking pawl and the guide of the parking bracket when the parking bracket is installed.

- 58. INSTALL MANUAL DETENT SPRING SUB-ASSEMBLY
 - (a) Install the manual detent spring and cover with the 2 bolts.

NOTICE:


Make sure to install the manual detent spring and cover in this order. HINT:

Tighten bolt A first, and then bolt B.

Torque: Bolt A

20 N*m (205 kgf*cm, 15 ft.*lbf)

59. INSTALL B-3 ACCUMULATOR PISTON

(a) Coat a new O-ring with ATF, install it to the B-3 accumulator piston.
 NOTICE:

Make sure that the O-ring is not twisted and that it does not protrude abnormally from the accumulator piston. Apply sufficient ATF before installing the O-ring. The O-ring must be installed in the correct position.

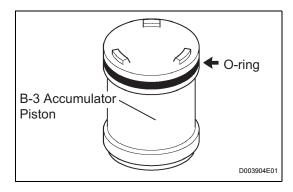
(b) Coat the piston with ATF, install it to the transaxle case.

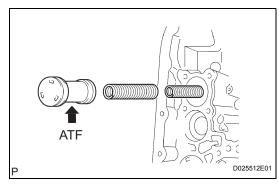
NOTICE:

Install the springs to each accumulator piston, checking the identification color or each spring. Accumulator spring:

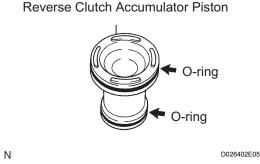
Free length Outer diameter mm (in.)	Color
Inner 62.00 (2.4409) / 15.50 (0.610)	Purple
Outer 74.23 (2.9224) / 21.70 (0.854)	Purple

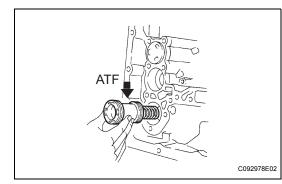
60. INSTALL REVERSE CLUTCH ACCUMULATOR PISTON

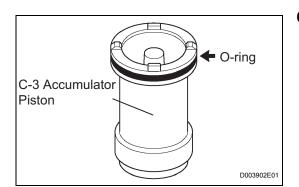

(a) Coat 2 new O-rings with ATF, install them to the reverse accumulator piston. **NOTICE:**

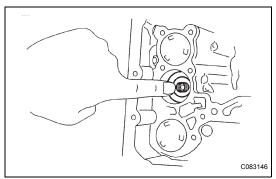

Make sure that the O-ring is not twisted and that it does not protrude abnormally from the accumulator piston. Apply sufficient ATF before installing the O-ring. The O-ring must be installed in the correct position.

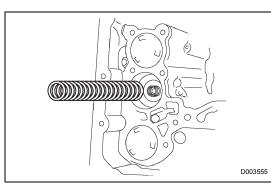
(b) Coat the piston with ATF, install it to the transaxle case.
 NOTICE:

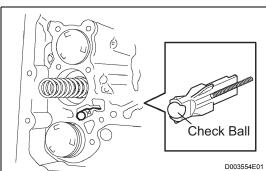

Install the springs to each accumulator piston, checking the identification color or each spring. Accumulator spring:

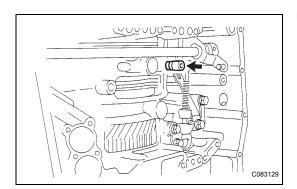

Free length Outer diameter mm (in.)	Color
60.96 (2.3999) / 14.10 (0.555)	Yellow











61. INSTALL C-3 ACCUMULATOR PISTON

(a) Coat a new O-ring with ATF, install it to the C-3 accumulator piston.

Make sure that the O-ring is not twisted and that it does not protrude abnormally from the accumulator piston. Apply sufficient ATF before installing the O-ring. The O-ring must be installed in the correct position.

(b) Coat the piston with ATF, install it to the transaxle case.

NOTICE:

Install the springs to each accumulator piston, checking the identification color or each spring. Accumulator spring:

Free length Outer diameter mm (in.)	Color
72.20 (2.8425) / 19.0 (0.748)	Colorless

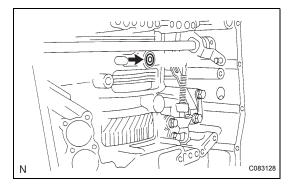
(c) Install the spring to the C-3 accumulator piston. **NOTICE:**

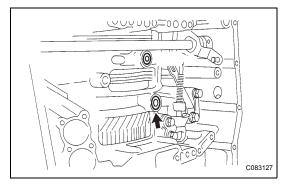
Install the springs to each accumulator piston, checking the identification color or each spring.

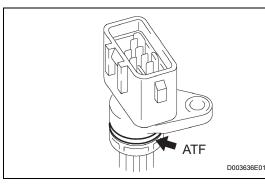
62. INSTALL CHECK BALL BODY

- (a) Coat the check ball body with ATF.
- (b) Install the check ball body and spring. **NOTICE:**

Be sure to place the spring in the hole in the check ball body. Be careful about the direction of the parts.


63. INSTALL BRAKE DRUM GASKET


(a) Coat a new brake drum gasket with ATF, install it to the transaxle case.


NOTICE:

Be sure not to damage the lip of the transaxle case brake gasket when inserting the gasket to the case. Apply sufficient ATF to the gasket before installation. Be careful about the direction of parts.

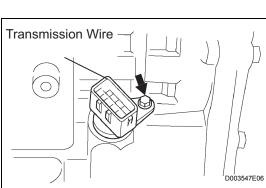
AX

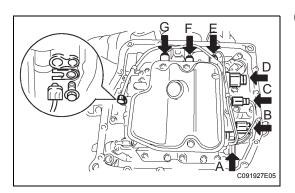
64. INSTALL TRANSAXLE CASE 2ND BRAKE GASKET

(a) Coat a new transaxle case 2nd brake gasket with ATF, and install it to the transaxle case.
 NOTICE:

Be sure not to damage the lip of the transaxle case brake gasket when inserting the gasket to the case. Apply sufficient ATF to the gasket before installation. Be careful about the direction of parts.

65. INSTALL GOVERNOR APPLY GASKET NO.1

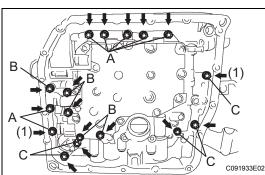

 (a) Coat a new governor apply gasket No.1 with ATF, and install it to the transaxle case.
 NOTICE:


Be sure not to damage the lip of the transaxle case brake gasket when inserting the gasket to the case. Apply sufficient ATF to the gasket before installation. Be careful about the direction of parts.

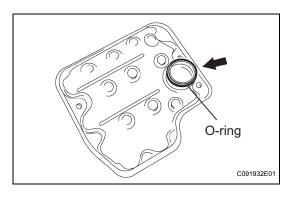
- 66. INSTALL TRANSMISSION WIRE
 - (a) Coat a new O-ring with ATF, and install it to the transmission wire.
 NOTICE:

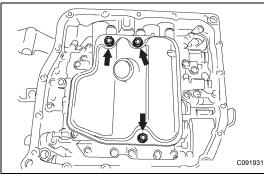
Make sure that the O-ring is not twisted, protruded, or pinched when installing the wire transmission to the transaxle case. Apply sufficient ATF to the O-ring before installation.

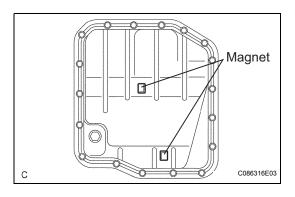
(b) Install the transmission wire retaining bolt. Torque: 5.4 N*m (55 kgf*cm, 48 in.*lbf)



67. CONNECT TRANSMISSION WIRE


- (a) Coat an O-ring of the ATF temperature sensor with ATF.
- (b) Install the ATF temperature sensor with the lock plate and bolt.


Torque: 6.6 N*m (67 kgf*cm, 58 in.*lbf)


- (c) Connect the 7 solenoid connectors. **NOTICE:**
 - Connect the connectors A, B, C, D, E, F, G, in the order from shortest to longest.
 - Apply ATF to the bolt.

CO91933E02

68. INSTALL TRANSMISSION VALVE BODY ASSEMBLY

(a) While positioning the manual valve lever position, install the valve body to the transaxle case with the 17 bolts.

Torque: 11 N*m (110 kgf*cm, 8 ft.*lbf) Bolt length: Bolt A:

41 mm (1.614 in.)

Bolt B:

```
57 mm (2.244 in.)
```

Bolt C:

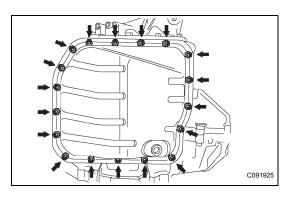
25 mm (0.984 in.)

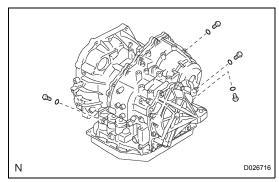
NOTICE:

- Push the valve body against the accumulator piston spring and the check ball body to install the valve body.
- When installing the valve body to the transaxle case, do not hold the solenoids.
- Temporarily tighten the bolts marked with (1) in the illustration first because they are positioning bolts.

69. INSTALL VALVE BODY OIL STRAINER ASSEMBLY

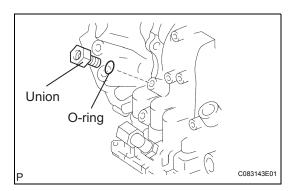
(a) Coat a new O-ring with ATF and install it to the oil strainer.
 NOTICE:


Make sure that the O-ring is not twisted or pinched. Apply sufficient ATF to the O-ring before installation.


 (b) Install the oil strainer and 3 bolts to the valve body. Torque: 11 N*m (110 kgf*cm, 8 ft.*lbf) NOTICE: Apply ATF to the bolts.


- 70. INSTALL AUTOMATIC TRANSAXLE OIL PAN SUB-ASSEMBLY
 - (a) Install the 2 magnets to the oil pan.
 - (b) Apply seal packing or equivalent to new 18 bolts.
 Seal packing: THREE BOND 2430 or equivalent

AX


AX

Elbow O-ring C083144E01

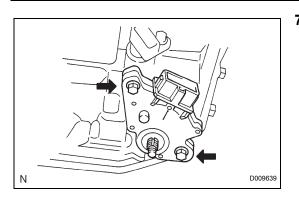
- (c) Install the oil pan and new oil pan gasket to the transaxle case with the 18 bolts.
 Torque: 7.8 N*m (80 kgf*cm, 69 in.*lbf) NOTICE:
 - Tighten the bolts within 10 minutes of sealant application.
 - Completely remove any oil or grease from the contact surface of the transaxle case and the oil pan with the gasket before installing the oil pan to the case.

71. INSTALL TRANSAXLE CASE NO.1 PLUG

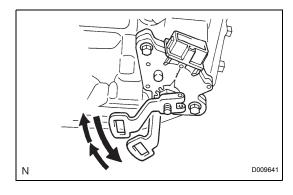
- (a) Coat 4 new O-rings with ATF, and install them to the 4 transaxle case No.1 plugs.
- (b) Install the 4 transaxle case No.1 plugs to the transaxle case.

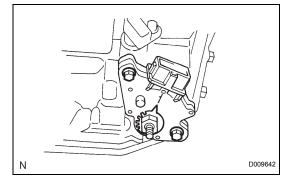
Torque: 7.4 N*m (75 kgf*cm, 65 in.*lbf)

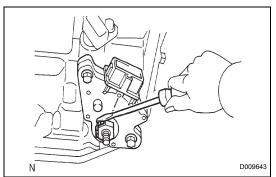
72. INSTALL SPEED SENSOR

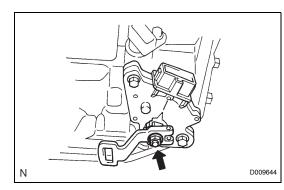

- (a) Coat 2 new O-rings with ATF and install them to the 2 sensors.
- (b) Install the 2 sensors to the transaxle case with the 2 bolts.

Torque: 11.0 N*m (115 kgf*cm, 8 ft.*lbf)


- 73. INSTALL OIL COOLER TUBE UNION (OUTLET OIL COOLER UNION)
 - (a) Coat a new O-ring with ATF, and install it to the elbow.
 - (b) Install the elbow to the transaxle case. Torque: 27 N*m (276 kgf*cm, 20 ft.*lbf)
- 74. INSTALL OIL COOLER TUBE UNION (INLET OIL COOLER UNION)
 - (a) Coat a new O-ring with ATF, and install it to the union.
 - (b) Install the union to the transaxle case. Torque: 25 N*m (255 kgf*cm, 18 ft.*lbf)


75. INSTALL BREATHER PLUG HOSE


(a) Install the breather plug hose to the transaxle case firmly.

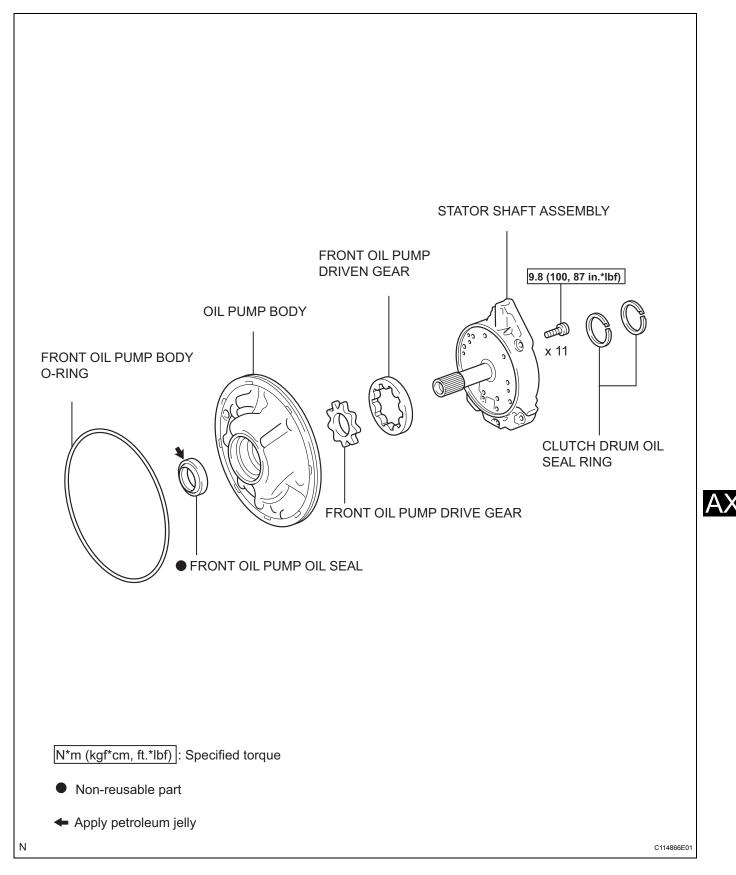

76. INSTALL PARK/NEUTRAL POSITION SWITCH ASSEMBLY

- (a) Install the park/neutral position switch onto the manual valve lever shaft, and temporarily install the 2 adjusting bolts.
- (b) Install a new nut stopper and nut. Torque: 6.9 N*m (70 kgf*cm, 61 in.*lbf)
- (c) Temporarily install the control shaft lever.

- (d) Turn the lever counterclockwise until it stops, and then turn it clockwise 2 notches.
- (e) Remove the control shaft lever.

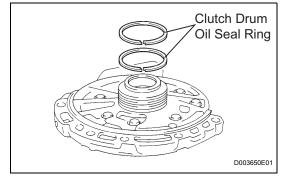
- (f) Align the groove with the neutral basic line.
- (g) Tighten the 2 bolts. Torque: 5.4 N*m (55 kgf*cm, 48 in.*lbf)

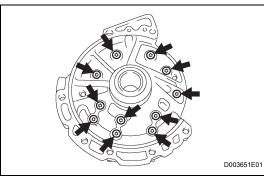
(h) Using a screwdriver, stake the nut with the nut stopper.



- (i) Install the control shaft lever, washer and nut. Torque: 13 N*m (130 kgf*cm, 9 ft.*lbf)
- 77. INSTALL SPEEDOMETER DRIVEN HOLE (ATM) COVER SUB-ASSEMBLY
 - (a) Coat a new O-ring with ATF and install it to the speedometer driven hole cover.
 - (b) Install the bolt and speedometer driven hoke cover sub assembly to the transaxle assembly.
 Torque: 6.9 N*m (70 kgf*cm, 61 in.*lbf)

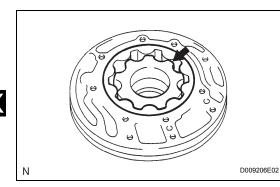
OIL PUMP

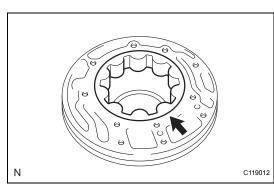

COMPONENTS



DISASSEMBLY

1. INSPECT OIL PUMP ASSEMBLY HINT: (See page AX-239)

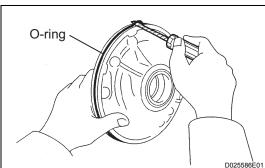

- **REMOVE CLUTCH DRUM OIL SEAL RING** 2.
 - (a) Remove the 2 clutch drum oil seal rings.


3. **REMOVE STATOR SHAFT ASSEMBLY**

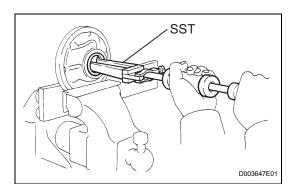
- (a) Using a "torx" socket (T30), remove the 11 bolts and stator shaft.
- **INSPECT CLEARANCE OF OIL PUMP ASSEMBLY** 4. HINT: (See page AX-239)

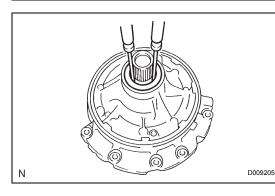
REMOVE FRONT OIL PUMP DRIVE GEAR 5.

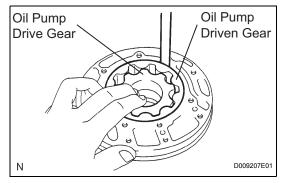
(a) Remove the front oil pump drive gear.

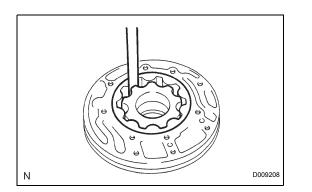


REMOVE FRONT OIL PUMP DRIVEN GEAR 6.


(a) Remove the front oil pump driven gear.


7.





(a) Using a screwdriver, remove the O-ring. HINT: Tape the screwdriver before use.

8. REMOVE FRONT OIL PUMP OIL SEAL

(a) Mount the oil pump in a soft jaw vise.

REMOVE FRONT OIL PUMP BODY O-RING

- (b) Using SST, remove the oil seal from the oil pump body.
 - SST 09308-00010

INSPECTION

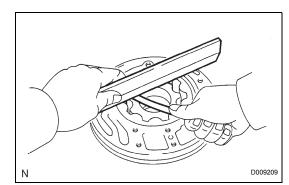
- 1. INSPECT OIL PUMP ASSEMBLY
 - (a) Turn the drive gear with the 2 screwdrivers and make sure that it rotates smoothly.
 NOTICE:

Be careful not to damage the oil seal lip.

2. INSPECT CLEARANCE OF OIL PUMP ASSEMBLY

- (a) Push the driven gear to one side of the body.(b) Using a feeler gauge, measure the clearance.
 - Dsing a feeler gauge, measure the clearance
 Standard body clearance:
 0.10 to 0.17 mm (0.0039 to 0.0067 in.)
 Side clearance:

0.02 to 0.05 mm (0.001 to 0.002 in.) Maximum body clearance: 0.17 mm (0.0067 in.)


If the body clearance is greater than the maximum, replace the oil pump body sub-assembly.

Using a feeler gauge, measure the tip clearance between the driven gear teeth and drive gear teeth.
 Standard tip clearance:

0.07 to 0.15 mm (0.0028 to 0.0059 in.) Maximum tip clearance: 0.15 mm (0.0059 in.)

If the tip clearance is greater than the maximum, replace the oil pump body sub-assembly.

(d) Using a straightedge and feeler gauge, measure the side clearance of both gears.

Standard side clearance: 0.02 to 0.05 mm (0.0008 to 0.0020 in.) Maximum side clearance: 0.05 mm (0.0020 in.)

Drive gear thickness: mm (in.)

Mark	Thickness
A	11.690 to 11.699 (0.4602 to 0.4606)
В	11.700 to 11.709 (0.4606 to 0.4610)
С	11.710 to 11.720 (0.4610 to 0.4614)
D	11.721 to 11.730 (0.4615 to 0.4618)
E	11.731 to 11.740 (0.4619 to 0.4622)

Driven gear thickness: mm (in.)

	5
Mark	Thickness
A	11.690 to 11.699 (0.4602 to 0.4606)
В	11.700 to 11.709 (0.4606 to 0.4610)
С	11.710 to 11.720 (0.4610 to 0.4614)
D	11.721 to 11.730 (0.4615 to 0.4618)
E	11.731 to 11.740 (0.4619 to 0.4622)

3. INSPECT FRONT OIL PUMP AND GEAR BODY SUB-ASSEMBLY

- (a) Using a dial indicator, measure the inside diameter of the oil pump body bushing.
 - Standard inside diameter: 38.113 to 38.138 mm (1.50051 to 1.50149 in.) Maximum inside diameter: 38.188 mm (1.50346 in.)

If the inside diameter is greater than the maximum, replace the oil pump body sub-assembly.

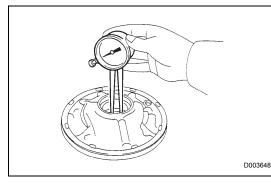
4. INSPECT STATOR SHAFT ASSEMBLY

(a) Using a dial indicator, measure the inside diameter of the stator shaft.

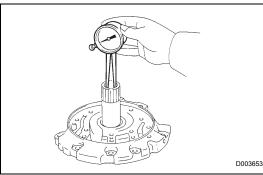
Standard inside diameter:

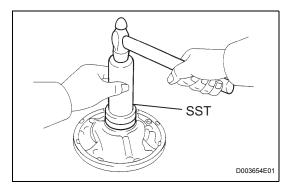
21.500 to 21.526 mm (0.84646 to 0.84748 in.) Maximum inside diameter: 21.57 mm (0.8492 in.)

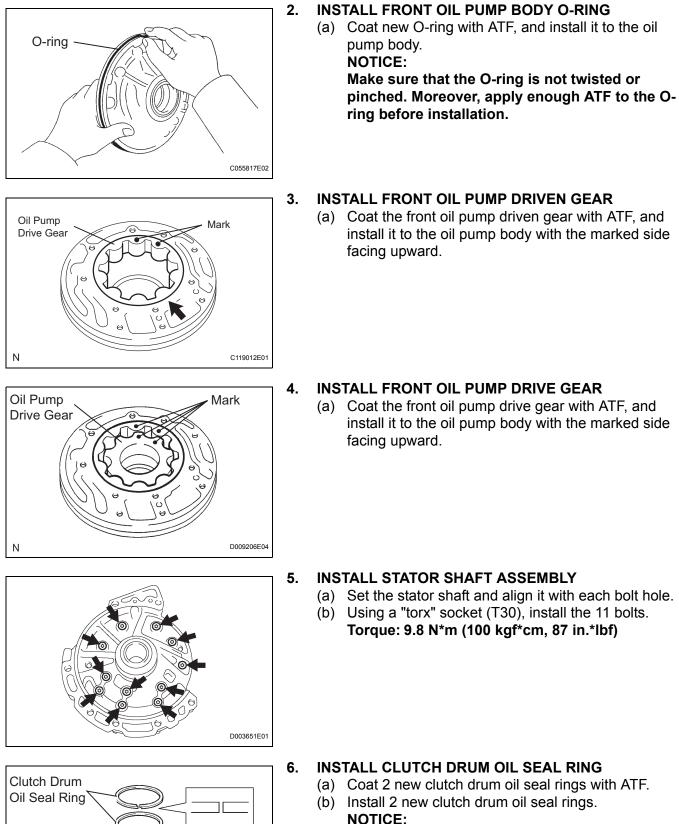
If the inside diameter is greater than the maximum, replace the stator shaft.


REASSEMBLY

- 1. INSTALL FRONT OIL PUMP OIL SEAL
 - (a) Using SST and a hammer, install a new oil seal to the oil pump body.


SST 09350-32014 (09351-32140) HINT:


The seal end should be flat with the outer edge of the oil pump.


(b) Coat the lip of the oil seal with MP grease.

(b) Install 2 new clutch drum oil seal rings.

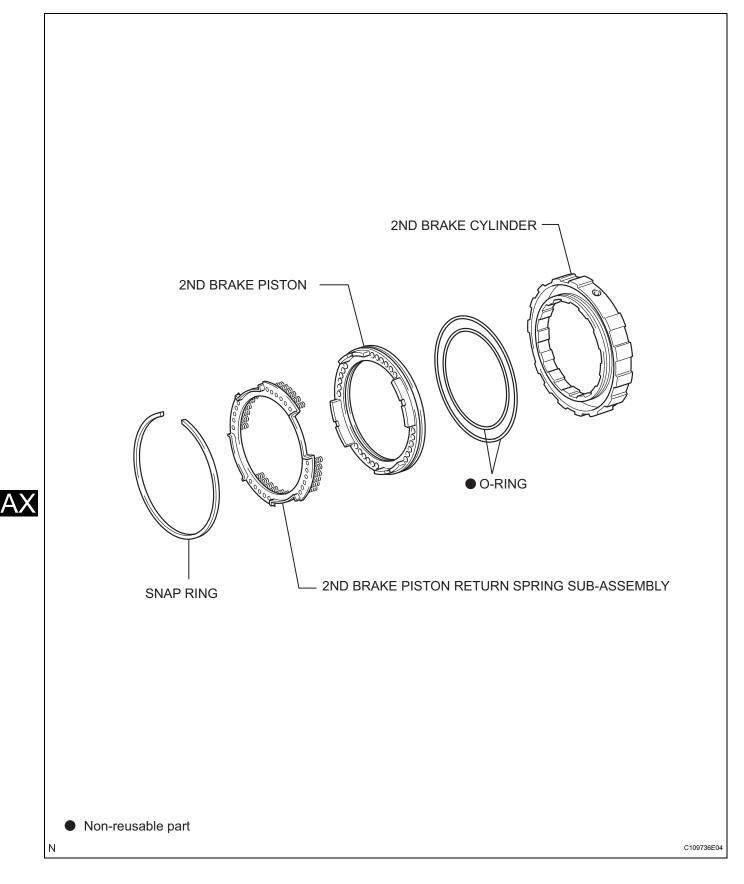
NOTICE: Do not expand the ring ends excessively.

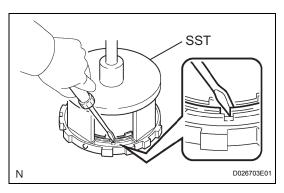
INSPECT OIL PUMP ASSEMBLY 7.

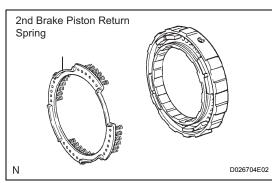
HINT: (See page AX-239)

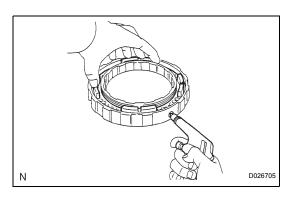
INSTALL FRONT OIL PUMP DRIVEN GEAR

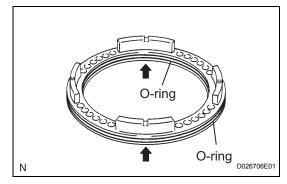
(a) Coat the front oil pump driven gear with ATF, and install it to the oil pump body with the marked side facing upward.

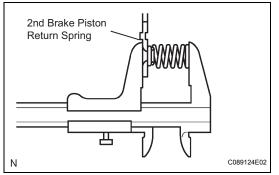

- **INSTALL FRONT OIL PUMP DRIVE GEAR**
 - (a) Coat the front oil pump drive gear with ATF, and install it to the oil pump body with the marked side facing upward.


- INSTALL STATOR SHAFT ASSEMBLY
 - (a) Set the stator shaft and align it with each bolt hole.
 - (b) Using a "torx" socket (T30), install the 11 bolts. Torque: 9.8 N*m (100 kgf*cm, 87 in.*lbf)


D026627E01


SECOND BRAKE PISTON


COMPONENTS

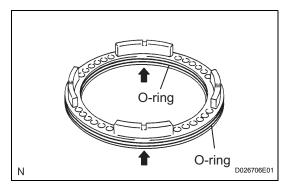


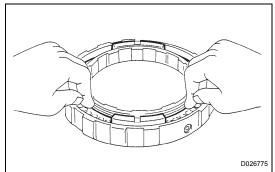
DISASSEMBLY

- 1. REMOVE 2ND BRAKE PISTON RETURN SPRING SUB-ASSEMBLY
 - (a) Place SST on the return spring and compress the return spring with a press.
 SST 09387-00060
 - (b) Using a screwdriver, remove the snap ring.
 - (c) Remove the 2nd brake piston return spring.

- 2. REMOVE 2ND BRAKE PISTON
 - (a) Hold the 2nd brake piston and apply compressed air
 (392 kPa, 4.0 kgf/cm², 57 psi) to the 2nd brake
 cylinder to remove the 2nd brake piston.
 NOTICE:

Hold the piston with a shop rag or a piece of cloth when removing the piston. Failure to do so may result in the piston jumping out from the cylinder.


3. REMOVE 2ND BRAKE PISTON O-RING



(a) Remove the 2 O-rings from the 2nd brake piston.

INSPECTION

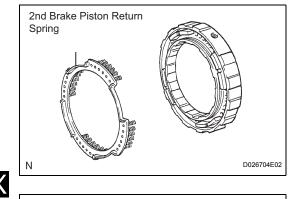
- 1. INSPECT 2ND BRAKE PISTON RETURN SPRING SUB-ASSEMBLY
 - (a) Using vernier calipers, measure the free length of the spring together with the spring seat.
 Standard free length:
 16.61 mm (0.6539 in.)

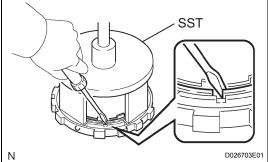
REASSEMBLY

1. INSTALL 2ND BRAKE PISTON O-RING

(a) Coat 2 new O-rings with ATF, and install them in the 2nd brake piston.
 NOTICE:

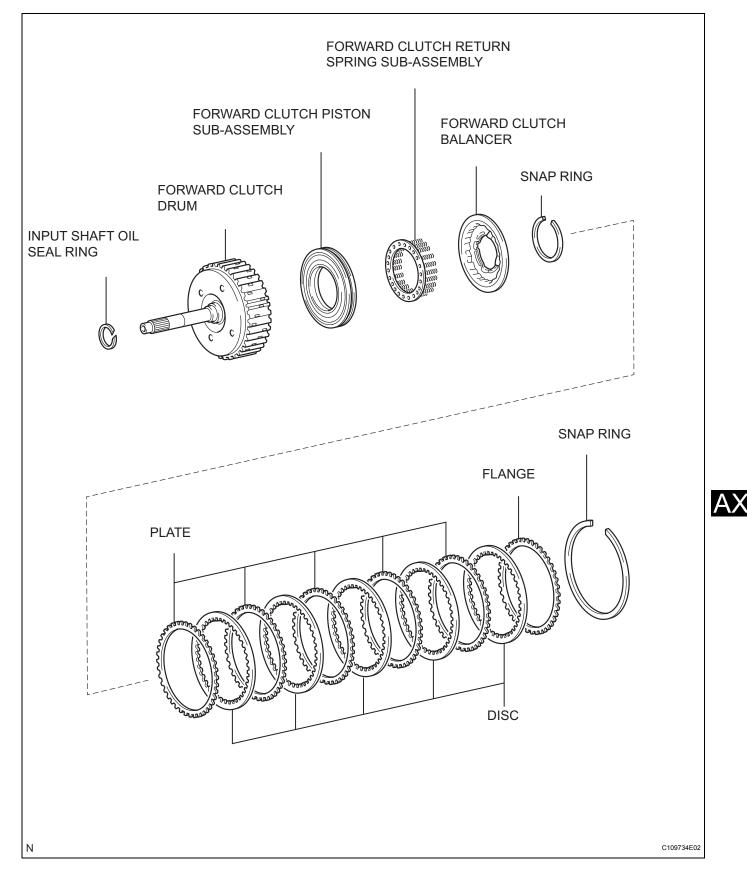
Make sure that the O-ring is not twisted or pinched.


- 2. INSTALL 2ND BRAKE PISTON
 - (a) Coat the 2nd brake piston with ATF, and install it to the 2nd brake cylinder.
 NOTICE:

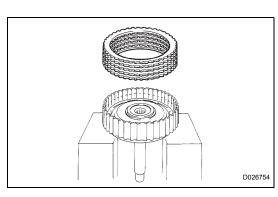

Be careful not to damage the O-ring.

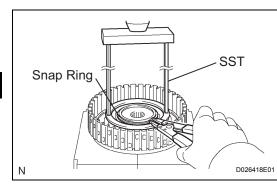
- 3. INSTALL 2ND BRAKE PISTON RETURN SPRING SUB-ASSEMBLY
 - (a) Install the 2nd brake piston return spring. **NOTICE:**

Installing the spring sub- assembly, check that all of the springs are fit in the piston correctly.


- (b) Place SST on the piston return spring, and compress the piston return spring with a press.
 SST 09387-00060
- (c) Using a screwdriver, install the snap ring.
- (d) Be sure that the end gap of the snap ring is not aligned with the spring retainer claw.NOTICE:
 - Stop the press when the spring seat is lowered to the place 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove.
 - This prevents the spring seat from being deformed.

FORWARD CLUTCH

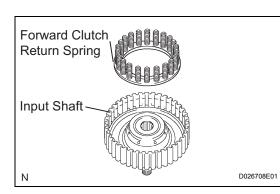

COMPONENTS

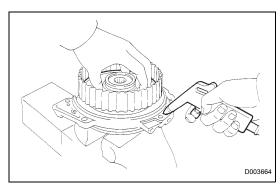

D028753E01

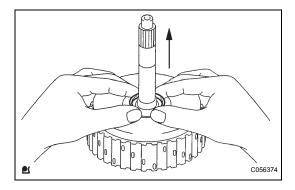
DISASSEMBLY

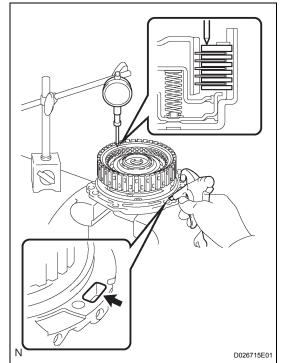
- 1. INSPECT PACK CLEARANCE OF FORWARD CLUTCH HINT: (See page AX-247)
- 2. REMOVE FORWARD MULTIPLE DISC CLUTCH DISC
 - (a) Using a screwdriver, remove the snap ring.

(b) Remove the flange, 5 discs and 5 plates from the input shaft assembly.




AХ


Clutch Balancer


3. REMOVE FORWARD CLUTCH RETURN SPRING SUB-ASSEMBLY

- (a) Place SST on the spring retainer and compress the return spring with a press.
- (b) Using a snap ring expander, remove the snap ring. **NOTICE:**
 - Stop the press when the spring seat is lowered 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove, preventing the spring seat from being deformed.
 - Do not expand the snap ring excessively.
- (c) Remove the clutch balancer from the input shaft.

(d) Remove the forward clutch return spring from the input shaft.

4. REMOVE FORWARD CLUTCH RETURN SPRING SUB-ASSEMBLY

- (a) Place the forward clutch drum onto the oil pump.
- (b) Holding the forward clutch piston by hand, apply compressed air (392 kPa, 4.0 kgf/cm², 57 psi) to the oil pump to remove the forward clutch piston. HINT:

When the piston cannot be removed as it is slanted, blow air again with the protruding side pushed, or remove the piston using the needle nose pliers with vinyl tape on the tip.

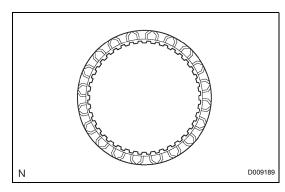
5. REMOVE INPUT SHAFT OIL SEAL RING

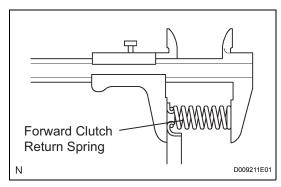
(a) Remove the input shaft oil seal ring from the input shaft.

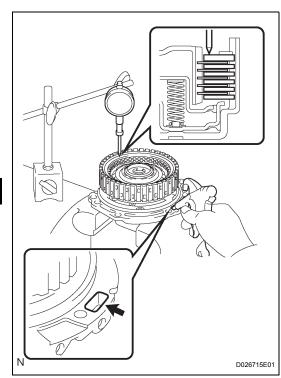
INSPECTION

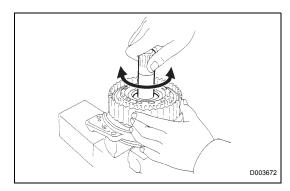
- 1. INSPECT PACK CLEARANCE OF FORWARD CLUTCH
 - (a) Install the forward clutch on the oil pump. **NOTICE:**

Be careful not to damage the oil seal ring of oil pump.


(b) Using a dial indicator, measure the forward clutch pack clearance while applying and releasing compressed air (392 kPa, 4.0 kgf/cm², 57 psi). Pack clearance:


1.00 to 1.25 mm (0.0394 to 0.4921 in.)


If the clearance is not as specified, inspect the discs, plates and flange. HINT:


If the opening is large, cover it with a shop rug or a piece of cloth to prevent the compressed air from being released.

2. INSPECT FORWARD MULTIPLE DISC CLUTCH DISC

- (a) Check if the sliding surface of the disc, plate and flange are worn or burnt.
 If necessary, replace them.
 HINT:
 - If the lining of the disc comes off or discolors, or if a part of the groove is worn, replace all discs.
 - Before installing new discs, immerse them in ATF for at least 15 minutes.

3. INSPECT FORWARD CLUTCH RETURN SPRING SUB-ASSEMBLY

(a) Using vernier calipers, measure the free length of the spring together with the spring seat.
 Standard free length:
 26.74 mm (1.0528 in.)

4. INSPECT PACK CLEARANCE OF FORWARD CLUTCH

(a) Using a dial indicator, measure the forward clutch pack clearance while applying and releasing compressed air (392 kgf/cm², 4.0 kPa, 57 psi).
 Pack clearance:

1.00 to 1.25 mm (0.0394 to 0.4921 in.)

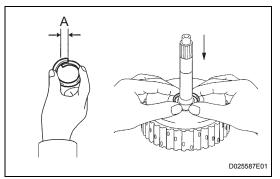
If the piston stroke is less than the minimum, parts may be assembled incorrectly. Check and reassemble the parts again.

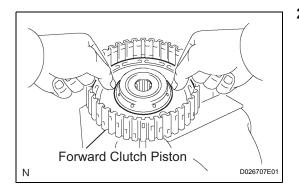
If the clearance is not as specified, select another flange.

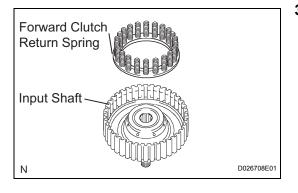
HINT:

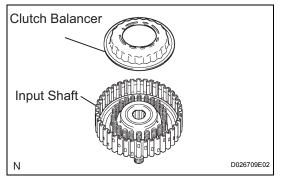
There are 5 different thicknesses of flanges available.

Flange thickness: mm (in.)


No.	Thickness	No.	Thickness
1	3.00 (0.1181)	4	3.45 (0.1358)
2	3.15 (0.1240)	5	3.60 (0.1417)
3	3.30 (0.1299)	-	-


5. INSPECT FORWARD MULTIPLE DISC CLUTCH DISC


(a) Check if the disc lightly rotates when rotating the forward clutch assembly after inserting the multiple disc clutch into it.


NOTICE:

Do not place the forward clutch assembly in a vise.

REASSEMBLY

1. INSTALL INPUT SHAFT OIL SEAL RING

(a) Compress a new input shaft oil seal ring from both sides to reduce dimension A.
 Dimension A:

5 mm (0.197 in.)

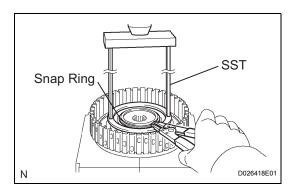
(b) Coat the oil seal ring with ATF and install it to the input shaft.

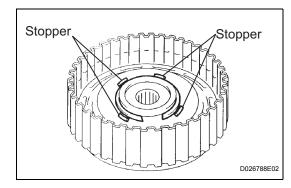
NOTICE:

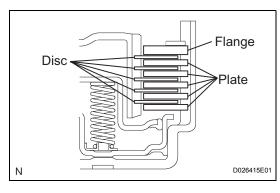
Do not expand the end gap of the oil seal ring too much. Fix the hooks firmly.

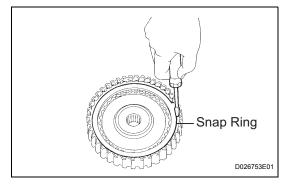
- 2. INSTALL FORWARD CLUTCH PISTON SUB-ASSEMBLY
 - (a) Coat the forward clutch piston with ATF, and install it to the input shaft.
 NOTICE:

Be careful not to damage the lip of the forward clutch piston.


- 3. INSTALL FORWARD CLUTCH RETURN SPRING SUB-ASSEMBLY
 - (a) Install the return spring to the input shaft. **NOTICE:**


Installing the spring sub-assembly, check that all of the springs are fit in the piston correctly.


(b) Coat the clutch balancer with ATF.



- (c) Install the clutch balancer to the input shaft. **NOTICE:**
 - Be careful not to damage the lip of the forward clutch balancer.
 - Make sure that the clutch balancer is not pinched and that there are no other defects at the lip.
 - Apply sufficient ATF to the sealing lip before installation.

(d) Place SST on the clutch balancer, and compress the clutch balancer with a press.

SST 09387-00020

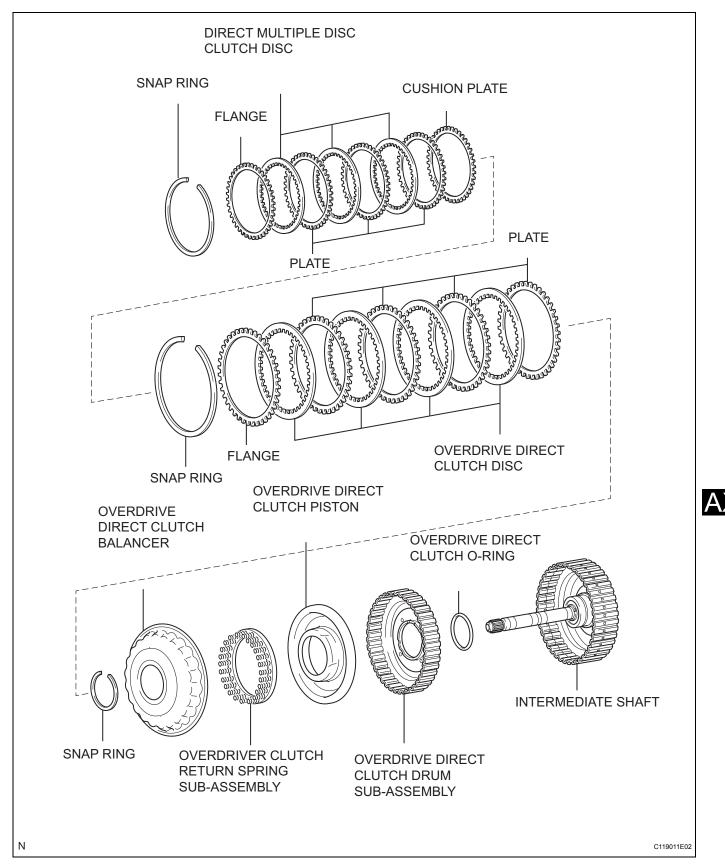
- (e) Install the snap ring with a snap ring expander.
- (f) Be sure that the end gap of the snap ring is not aligned with the spring retainer claw. **NOTICE:**
 - Stop the press when the spring seat is lowered to the place 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove.
 - This prevents the spring seat from being deformed.
 - Do not expand the snap ring excessively.
- (g) Set the end gap of the snap ring in the piston as shown in the illustration.
 NOTICE:

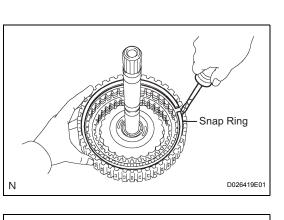
The end gap of the snap ring should not align with any of the stoppers.

- 4. INSTALL FORWARD MULTIPLE DISC CLUTCH DISC (a) Coat the 5 discs with ATE
 - (a) Coat the 5 discs with ATF.
 - (b) Install the 5 plates, 5 discs and flange input shaft. **NOTICE:**

Make sure that the plates, discs, and flange are installed as shown in the illustration.

- (c) Using a screwdriver, install the snap ring.
- (d) Check that the end gap of the snap ring is not aligned with one of the cutouts.
 NOTICE:


The snap ring should be fully engaged in the groove of the drum.


5. INSPECT PACK CLEARANCE OF FORWARD CLUTCH HINT: (See page AX-248)

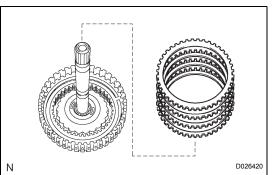
6. INSPECT FORWARD MULTIPLE DISC CLUTCH DISC HINT: (See page AX-248)

DIRECT CLUTCH

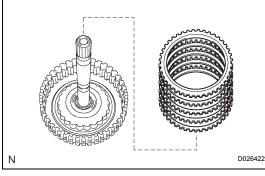
COMPONENTS

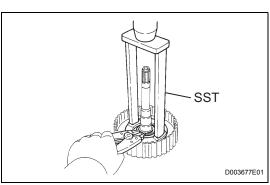
DISASSEMBLY

1. INSPECT PACK CLEARANCE OF REVERSE CLUTCH HINT:

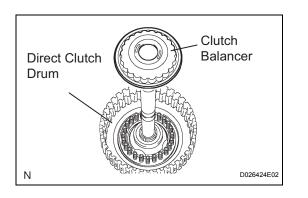

(See page AX-254)

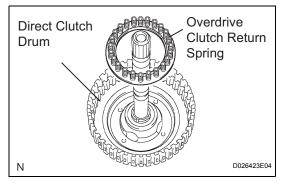
2. INSPECT PACK CLEARANCE OF DIRECT CLUTCH AND OVERDRIVE CLUTCH HINT:

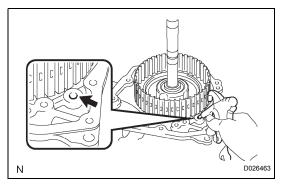

(See page AX-254)

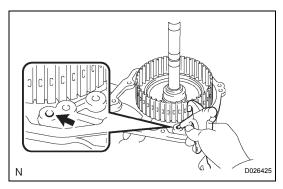

4.

- 3. REMOVE DIRECT MULTIPLE DISC CLUTCH DISC
 - (a) Using a screwdriver, remove the snap ring from the intermediate shaft.

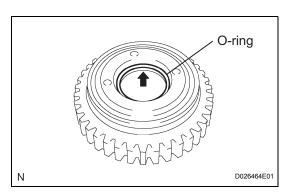

AX



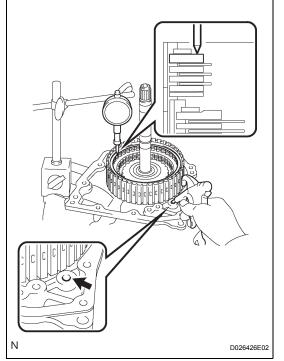



(b) Remove the flange, 3 discs, 3 plates and cushion plate from the intermediate shaft.

- REMOVE OVERDRIVE DIRECT CLUTCH DISC
 - (a) Using a screwdriver, remove the snap ring from the intermediate shaft.
 - (b) Remove the flange, 4 discs and 4 plates from the intermediate shaft.
- 5. REMOVE OVERDRIVE CLUTCH RETURN SPRING SUB-ASSEMBLY
 - (a) Place SST on the clutch balancer and compress the spring with a press.
 SST 09387-00020
 - (b) Using a snap ring expander, remove the snap ring from the direct clutch drum.
 NOTICE:
 - Stop the press when the spring seat is lowered to the place 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove.


- This prevents the spring seat from being deformed.
- Do not expand the snap ring excessively.
- (c) Remove the clutch balancer from the direct clutch drum.

(d) Remove the overdrive clutch return spring from the direct clutch drum.

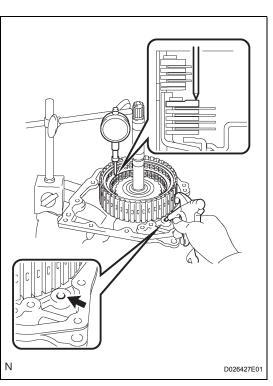

- 6. REMOVE OVERDRIVE DIRECT CLUTCH PISTON
 - (a) Install the intermediate shaft on the transaxle rear cover.
 - (b) Holding the direct clutch piston with your hand, apply compressed air (392 kPa, 4.0 kgf/cm², 57 psi) to the transaxle rear cover to remove the direct clutch piston.

- 7. REMOVE OVERDRIVE DIRECT CLUTCH DRUM SUB-ASSEMBLY
 - (a) Holding the direct clutch drum by hand, apply compressed air (392 kPa, 4.0 kgf/cm², 57 psi) to the transaxle rear cover to remove the direct clutch drum.

- 8. REMOVE OVERDRIVE DIRECT CLUTCH O-RING
 - (a) Using a screwdriver, remove the O-ring from the direct clutch drum.

INSPECTION

1. INSPECT PACK CLEARANCE OF REVERSE CLUTCH


- (a) Install the intermediate shaft and needle roller bearing onto the transaxle rear cover.
- (b) Using a dial indicator, measure the reverse clutch pack clearance while applying and releasing

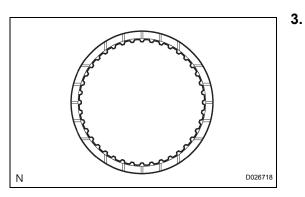
compressed air (392 kPa, 4.0 kgf/cm², 57 psi). **Pack clearance:**

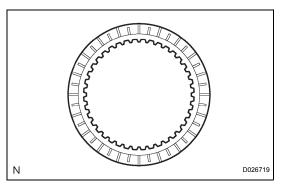
0.60 to 0.82 mm (0.02362 to 0.03228 in.)

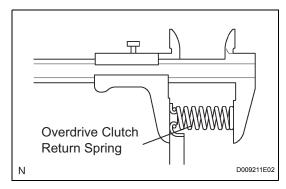
If the pack clearance is not as specified, inspect the discs, plates and flange.

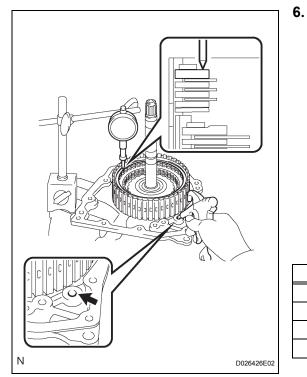
AX

2. INSPECT PACK CLEARANCE OF DIRECT CLUTCH AND OVERDRIVE CLUTCH


 (a) Using a dial indicator, measure the direct clutch and overdrive clutch pack clearance while applying and releasing compressed air (392 kPa, 4.0 kgf/cm², 57 psi).


Pack clearance:


0.61 to 0.83 mm (0.02401 to 0.03268 in.)


If the pack clearance is not as specified, inspect the discs, plates and flange.

INSPECT DIRECT MULTIPLE DISC CLUTCH DISC

- (a) Check if the sliding surfaces of the disc, plate and flange are worn or burnt.
 If necessary, replace them.
 HINT:
 - If the lining of the disc comes off or discolors, or if a part of the groove is worn, replace all discs.
 - Before installing new discs, immerse them in ATF for at least 15 minutes.

4. INSPECT OVERDRIVE DIRECT CLUTCH DISC

- (a) Check if the sliding surface of the disc, plate and flange are worn or burnt.
 If necessary, replace them.
 HINT:
 - If the lining of the disc comes off or discolors, or if a part of the groove is worn, replace all discs.
 - Before installing new discs, immerse them in ATF for at least 15 minutes.

5. INSPECT OVERDRIVE CLUTCH RETURN SPRING SUB-ASSEMBLY

(a) Using vernier calipers, measure the free length of the spring together with the spring seat.
 Standard free length:

25.91 mm (1.0201 in.)

INSPECT PACK CLEARANCE OF REVERSE CLUTCH

- (a) Install the intermediate shaft onto the transaxle rear cover.
- (b) Using a dial indicator, measure the direct clutch pack clearance while applying and releasing compressed air (392 kPa, 4.0 kgf/cm2, 57 psi). Clearance:

0.60 to 0.82 mm (0.02362 to 0.03228 in.) If the pack clearance is less than the minimum, parts may have been assembled incorrectly, so check and reassemble again. If the clearance is not as specified, select another flange. HINT:

There are 7 flanges of different thickness. **Flange thickness: mm (in.)**

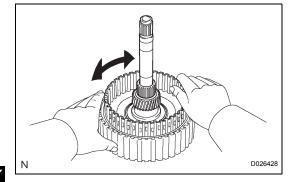
No.	Thickness	No.	Thickness
1	3.0 (0.118)	5	3.4 (0.134)
2	3.1 (0.122)	6	3.5 (0.138)
3	3.2 (0.126)	7	3.6 (0.142)
4	3.3 (0.130)	-	-

- 7. INSPECT PACK CLEARANCE OF DIRECT CLUTCH AND OVERDRIVE CLUTCH
 - (a) Using a dial indicator, measure the direct clutch & overdrive clutch pack clearance while applying and releasing compressed air (392 kPa, 4.0 kgf/cm², 57 psi).

Clearance:

0.61 to 0.83 mm (0.02401 to 0.03268 in.)

If the pack clearance is less than the minimum, parts may have been assembled incorrectly, so check and reassemble again. If the clearance is not as specified, select another flange. HINT:


There are 7different thicknesses of flanges available.

Flange thickness: mm (in.)

No.	Thickness	No.	Thickness
0	2.5 (0.098)	4	2.9 (0.114)
1	2.6 (0.102)	5	3.0 (0.118)
2	2.7 (0.106)	6	3.1 (0.122)
3	2.8 (0.110)	-	-

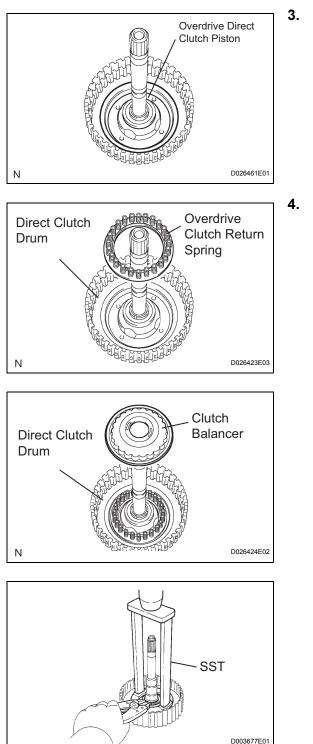
(b) Check that the disc rotates when rotating the disc after inserting the rear planetary sun gear.
 NOTICE:

Do not place the rear planetary sun gear in a vise.

O-ring

D026464E01

REASSEMBLY


- 1. INSTALL OVERDRIVE DIRECT CLUTCH O-RING
 - (a) Coat an O-ring with ATF, and install it to the direct clutch drum.
 NOTICE:

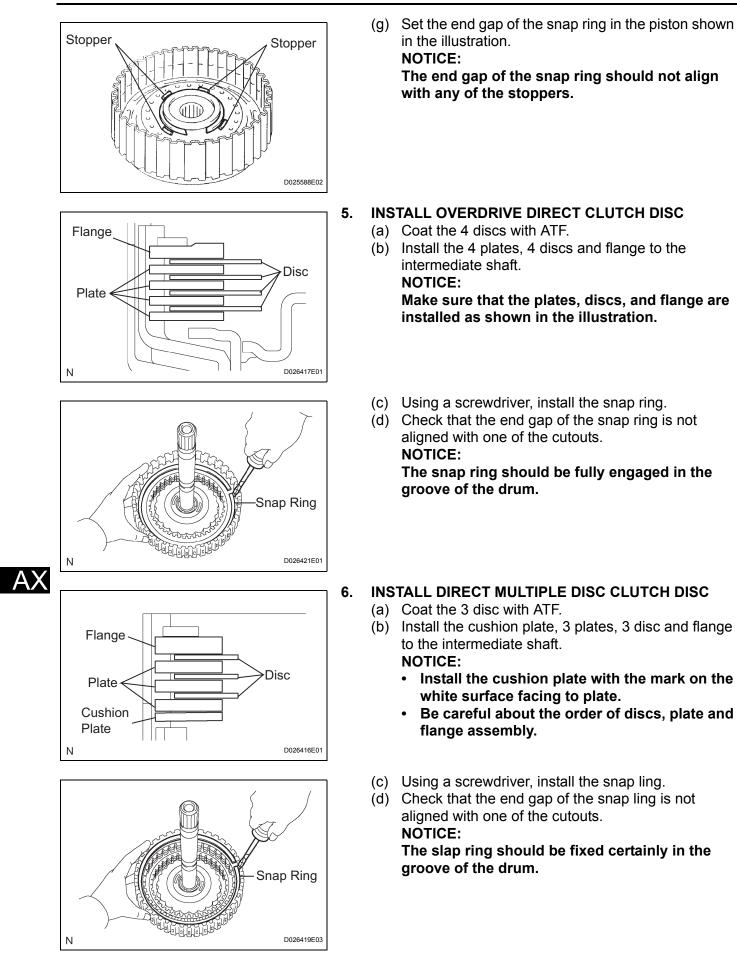
Make sure that the O-ring is not twisted or pinched when it is installed.

N Direct Clutch Drum Direct Clutch Drum

Ν

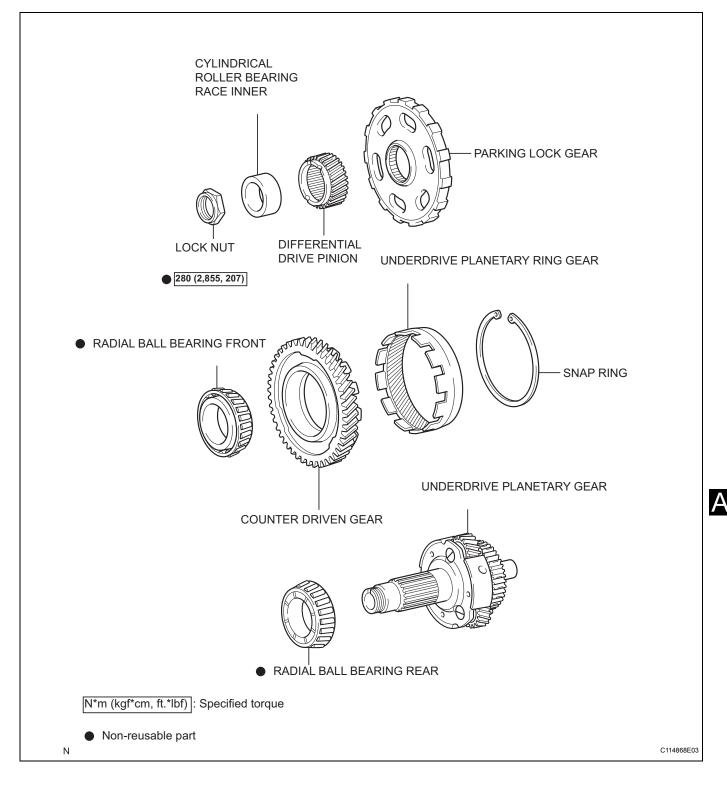
- 2. INSTALL OVERDRIVE DIRECT CLUTCH DRUM SUB-ASSEMBLY
 - (a) Coat the direct clutch drum with ATF, and install it to the intermediate shaft.
 NOTICE:
 - Be careful not to damage the O-ring.
 - Be careful not to damage the lip of the direct clutch drum.

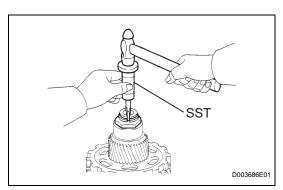
INSTALL OVERDRIVE DIRECT CLUTCH PISTON

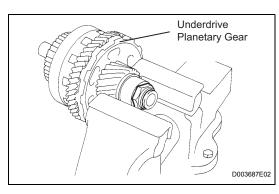

(a) Coat the overdrive direct clutch piston with ATF, and install it to the direct clutch drum.

- INSTALL OVERDRIVE CLUTCH RETURN SPRING SUB-ASSEMBLY
 - (a) Install the overdrive clutch return spring to the direct clutch drum.
 NOTICE:

Installing the spring sub-assembly, check that all of the springs are fit in piston correctly.

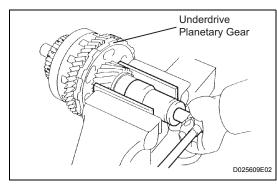

- (b) Coat the clutch balancer with ATF.
- (c) Install the clutch balancer to the direct clutch drum. **NOTICE:**
 - Be careful not to damage the lip of the direct clutch balancer.
 - Make sure that the lip of the seal is not pinched and that it has no other defects.
 - Apply sufficient ATF to the sealing lip before installing the clutch balancer.
- (d) Place SST on the clutch balancer and compress the overdrive clutch return spring with a press.
 SST 09387-00020
- (e) Using a snap ring expander, install the snap ring to the direct clutch drum.
- (f) Be sure that the end gap of the snap ring is not aligned with the spring retainer claw.
 NOTICE:
 - Stop the press when the spring seat is lowered to the place 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove.
 - This prevents the spring seat from being deformed.
 - Do not expand the snap ring excessively.

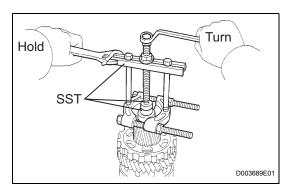




UNDERDRIVE PLANETARY GEAR

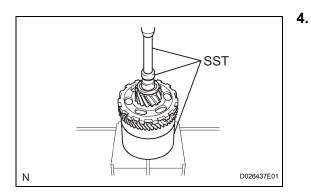
COMPONENTS

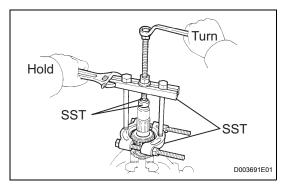


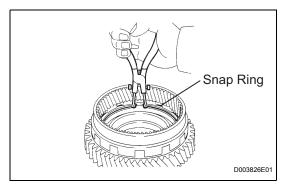

(b) Place the underdrive planetary gear in a soft jaw vise. NOTICE:

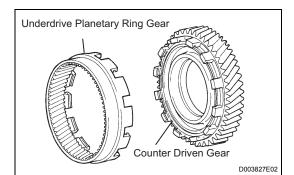
Be careful not to damage the differential drive pinion.

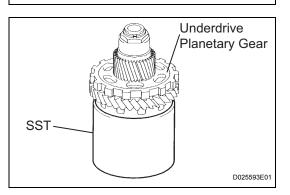
(c) Using a socket wrench, remove the lock nut.


AХ

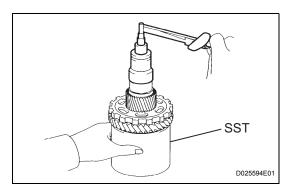


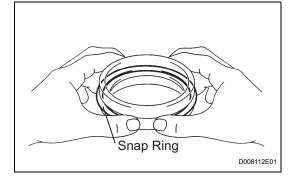

- 3. REMOVE CYLINDRICAL ROLLER BEARING RACE INNER
 - (a) Using SST, remove the cylindrical roller bearing race inner.
 - SST 09950-00020, 09950-00030, 09950-60010 (09951-00320, 09957-04010)

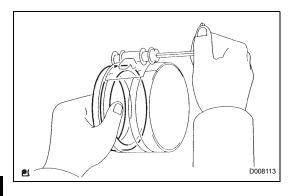

DISASSEMBLY

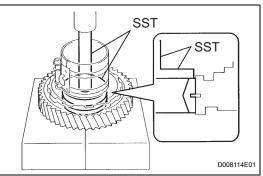

- 1. INSPECT UNDERDRIVE PLANETARY GEAR PRELOAD HINT: (See page AX-261)
- 2. REMOVE FRONT PLANETARY GEAR NUT
 - (a) Using SST, loosen the staked part of the lock nut. **SST** 09930-00010 (09931-00010, 09931-00020), 09387-00050

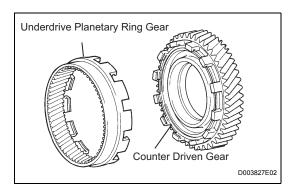
REMOVE UNDERDRIVE PLANETARY GEAR ASSEMBLY


- (a) Using SST and a press, remove the differential drive pinion, parking lock gear, counter driven gear with underdrive planetary ring gear and radial ball bearing front.
 - SST 09950-60010 (09951-00320), 09387-00050, 09950-00020, 09950-00030, 09950-40011 (09957-04010)
- (b) Place the underdrive planetary gear in a soft jaw vise.
- (c) Using SST, remove the radial ball bearing rear from the underdrive planetary gear.
 - SST 09950-60010 (09951-00320), 09950-00030, 09950-40011 (09957-04010)
- 5. REMOVE UNDERDRIVE PLANETARY RING GEAR
 - (a) Using a snap ring pliers, remove the snap ring.


(b) Remove the underdrive planetary ring gear from the counter driven gear.


AX


INSPECTION


- 1. INSPECT UNDERDRIVE PLANETARY GEAR PRELOAD
 - (a) Using SST, fix the underdrive planetary gear assembly.
 SST 09387-00050

(b) Using SST and a torque wrench, measure the turning torque of the underdrive planetary gear assembly while rotating the torque wrench at 60 rpm.

SST 09387-00050

Turning torque at 60 rpm.:

0.50 to 1.42 N*m (5.1 to 14.5 kgf*cm, 4.4 to 12.6 in.*lbf)

HINT:

Use a torque wrench with a fulcrum length of 160 mm (6.3 in.).

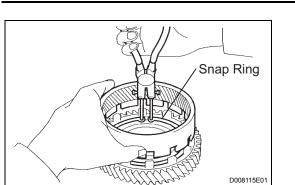
REASSEMBLY

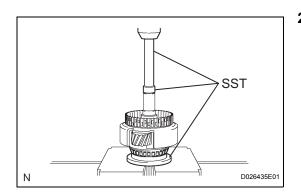
1. INSTALL UNDERDRIVE PLANETARY RING GEAR

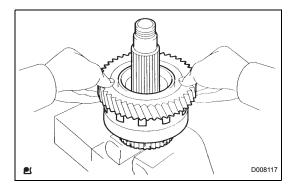
 (a) Install a new snap ring to the outer race of the radial ball bearing rear. HINT:

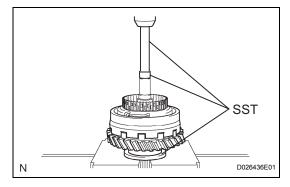
When replacing the bearing, also replace the counter driven gear with a new one.

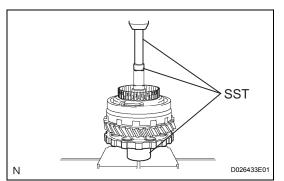
(b) Using a piston ring compressor, squeeze the snap ring.


(c) Using SST and a press, press in the outer race of the radial ball bearing rear.


SST 09950-60020 (09951-00890), 09950-70010 (09951-07100)


NOTICE:


Be sure not to damage the snap ring during outer race installation.


(d) Install the underdrive planetary ring gear to the counter driven gear.

(e) Using a snap ring pliers, install the snap ring.

- 2. INSTALL UNDERDRIVE PLANETARY GEAR ASSEMBLY
 - (a) Using SST and a press, press the radial ball bearing rear in the underdrive planetary gear.
 - SST 09502-12010, 09950-60010 (09951-00260), 09950-70010 (09951-07100)

NOTICE:

Press the bearing until it becomes flat at the bottom.

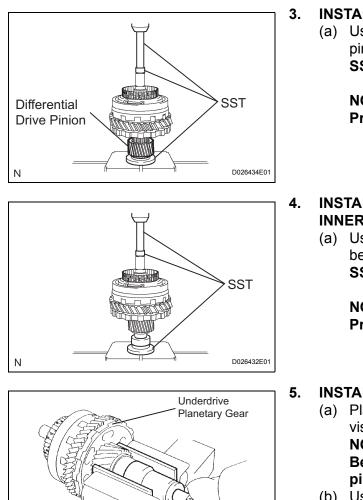
(b) Install the counter driven gear with planetary ring gear to the underdrive planetary gear.

(c) Using SST and a press, press in the radial ball bearing front.

SST 09502-12010, 09950-60010 (09951-00260), 09950-70010 (09951-07100)

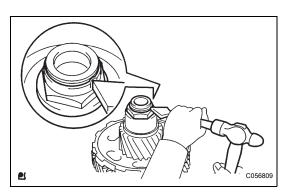
NOTICE:

Press the counter driven gear while rotating it.


(d) Using SST and a press, press in the parking lock gear.

SST 09502-12010, 09950-60010 (09951-00260), 09950-70010 (09951-07100)

NOTICE:


Press the counter driven gear while rotating it.

D025609E02

AX

INSTALL DIFFERENTIAL DRIVE PINION

(a) Using SST and a press, press the differential drive pinion.

SST 09726-40010, 09950-60010 (09951-00260), 09950-70010 (09951-07100)

NOTICE:

Press the counter driven gear while rotating it.

- INSTALL CYLINDRICAL ROLLER BEARING RACE
 - (a) Using SST and a press, press the cylindrical roller bearing race inner.
 - SST 09506-35010, 09950-60010 (09951-00260), 09950-70010 (09951-07100)

NOTICE:

Press the counter driven gear while rotating it.

. INSTALL FRONT PLANETARY GEAR NUT

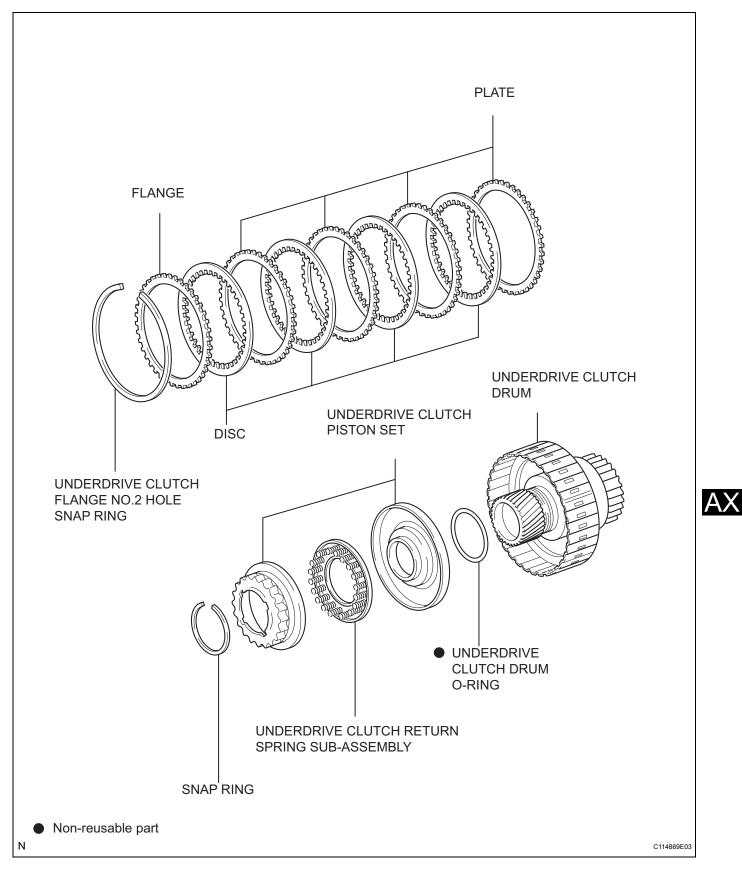
- (a) Place the underdrive planetary gear in a soft jaw vise.
 - NOTICE:

Be careful not to damage the differential drive pinion.

 (b) Using a socket wrench, install a new lock nut.
 Torque: 280 N*m (2,885 kgf*cm, 207 ft.*lbf) HINT:

Use a torque wrench with a fulcrum length of 750 mm (29.53 in.).

(c) Using a pin punch and hammer, stake the lock nut. **CAUTION:**

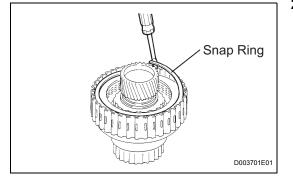

Be sure that there are no cracks on the nut.

6. INSPECT UNDERDRIVE PLANETARY GEAR PRELOAD

HINT: (See page AX-261)

UNDERDRIVE CLUTCH

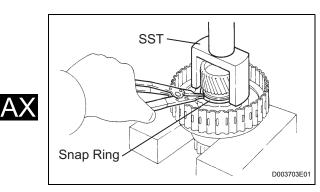
COMPONENTS

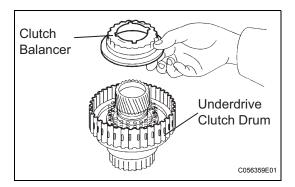


DISASSEMBLY

1. INSPECT UNDERDRIVE PACK CLEARANCE HINT:

(See page AX-267)

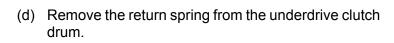

- 2. REMOVE UNDERDRIVE CLUTCH FLANGE NO.2 HOLE SNAP RING
 - (a) Using a screwdriver, remove the underdrive clutch flange No.2 snap ring.



N Dogedageent

3. REMOVE UNDERDRIVE CLUTCH DISC NO.1

(a) Remove the flange, 4 discs and 4 plates from the underdrive clutch drum.



4. REMOVE UNDERDRIVE CLUTCH RETURN SPRING SUB-ASSEMBLY

(a) Place SST on the clutch balancer and compress the spring with a press.

SST 09350-32014

- (b) Using a snap ring expander, remove the snap ring. **NOTICE:**
 - Stop the press when the spring seat is lowered to the place 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove.
 - This prevents the spring seat from being deformed.
 - Do not expand the snap ring excessively.
- (c) Remove the clutch balancer from the underdrive clutch drum.

5. REMOVE UNDERDRIVE CLUTCH PISTON SET

(a) Install the underdrive clutch to the transaxle case. **NOTICE:**

Be careful not to damage the oil seal ring.

(b) Holding the underdrive clutch piston by hand, apply compressed air (392 kPa, 4.0 kgf/cm², 57 psi) to the transaxle case to remove the underdrive clutch piston.

6. REMOVE UNDERDRIVE CLUTCH DRUM O-RING

(a) Using a screwdriver, remove the O-ring from the underdrive clutch drum.

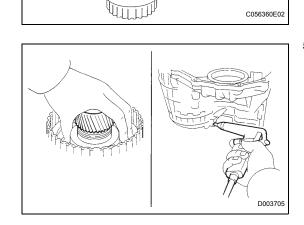
INSPECTION

- 1. INSPECT UNDERDRIVE PACK CLEARANCE
 - (a) Install the underdrive clutch to the transaxle case. **NOTICE:**

Be careful not to damage the oil seal rings.

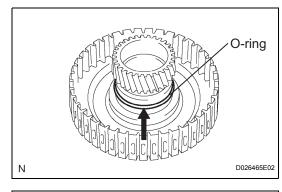
- (b) Install a dial indicator as shown in the illustration.
- (c) Measure the underdrive clutch pack clearance while applying and releasing compressed air (392 kPa,

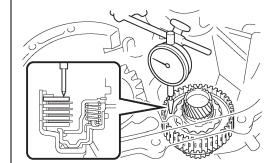
4.0 kgf/cm², 57 psi). **Pack clearance:**

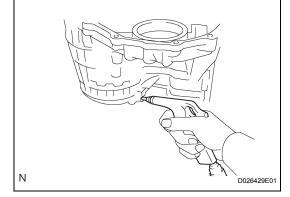

1.51 to 1.71 mm (0.0594 to 0.0673 in.)

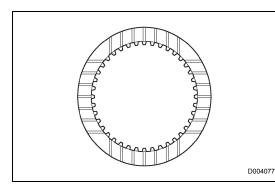
If the pack clearance is not as specified, inspect the discs, plates and flange.

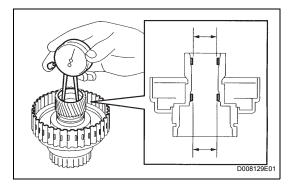
HINT:

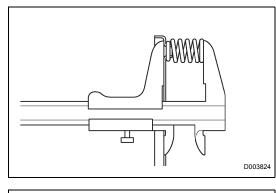

There are 5 flanges in different thickness. Flange thickness: mm (in.)

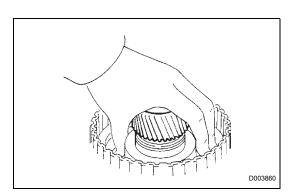

Mark	Thickness	Mark	Thickness
1	3.0 (0.118)	4	3.6 (0.122)
2	3.2 (0.126)	5	3.8 (0.130)
3	3.4 (0.134)	-	-




Underdrive Clutch Drum


Underdrive Clutch Return Spring





O-ring D026465E01

Ν

INSPECT UNDERDRIVE CLUTCH DISC NO.1 2.

- (a) Check if the sliding surface of the disc, plate and flange are worn or burnt. If necessary, replace them. HINT:
 - If the lining of the disc comes off or discolors, or if a part of the groove is worn, replace all discs.
 - Before installing new discs, immerse them in ATF • for at least 15 minutes.

INSPECT UNDERDRIVE CLUTCH DRUM SUB-3. ASSEMBLY

(a) Using a dial indicator, measure the inside diameter of the underdrive clutch drum bushing. Standard drum bushing:

37.06 to 37.08 mm (1.4591 to 1.4598 in.) Maximum drum bushing:

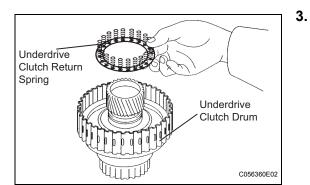
37.13 mm (1.4618 in.) If the inside diameter is greater than the maximum,

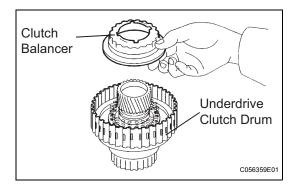
replace the underdrive clutch drum.

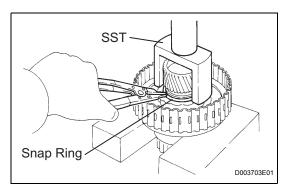
- **INSPECT UNDERDRIVE CLUTCH RETURN SPRING** 4. SUB-ASSEMBLY
 - (a) Using a vernier calipers, measure the free length of the spring together with the spring seat. Standard free length:

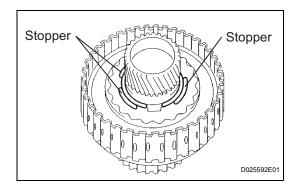
17.14 mm (0.6752 in.)

REASSEMBLY


INSTALL UNDERDRIVE CLUTCH DRUM O-RING 1.


(a) Coat a new O-ring with ATF, and install it to the underdrive clutch drum. NOTICE:


Make sure that the O-ring is not twisted or pinched.


INSTALL UNDERDRIVE CLUTCH PISTON SET 2.

- (a) Coat the underdrive clutch piston with ATF, and install it to the underdrive clutch piston drum. NOTICE:
 - · Be careful not to damage the O-ring.
 - Be careful not to damage the lip of the piston.

INSTALL UNDERDRIVE CLUTCH RETURN SPRING SUB-ASSEMBLY

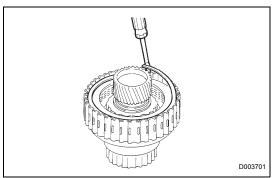
(a) Install the return spring to the underdrive clutch drum.

NOTICE:

Installing the spring sub-assembly, check that all of the springs are fit in the piston correctly.(b) Coat the clutch balancer with ATF.

(c) Install the clutch balancer to the underdrive clutch drum.

NOTICE:


Be careful not to damage the lip of the clutch balancer.

- (d) Place SST on the clutch balancer and compress the piston return spring with a press.
 SST 09350-32014 (09351-32070)
- (e) Using a snap ring expander, install the snap ring to the underdrive clutch drum.
- (f) Be sure that the end gap of the snap ring is not aligned with the spring retainer claw.
 NOTICE:
 - Stop the press when the spring seat is lowered to the place 1 to 2 mm (0.039 to 0.078 in.) from the snap ring groove.
 - This prevents the spring seat from being deformed.
 - Do not expand the snap ring excessively.
- (g) Set the end gap of the snap ring in the underdrive clutch drum as shown in the illustration. **NOTICE:**

The end gap of the snap ring should not align with any of the stoppers.

INSTALL UNDERDRIVE CLUTCH DISC NO.1

- (a) Coat the 4 discs with ATF.
- (b) Install the 4 plates, 4 discs and flange to the underdrive clutch drum. **NOTICE:**

Make sure that the plates, discs, and flange are installed as shown in the illustration.

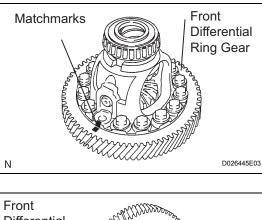
- 5. INSTALL 1ST & REVERSE BRAKE RETURN SPRING SHAFT SNAP RING
 - (a) Using a screwdriver, install the underdrive clutch flange No.2 hole snap ring.
 - (b) Check that the end gap of snap ring is not aligned with one of the cutouts.NOTICE:

The snap ring should be fully engaged in the groove of the drum.

6. INSPECT UNDERDRIVE PACK CLEARANCE HINT:

(See page AX-267)

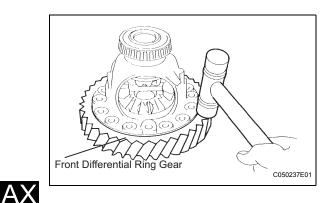
DIFFERENTIAL CASE


COMPONENTS

Ν

Hold

SST

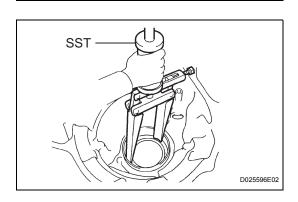


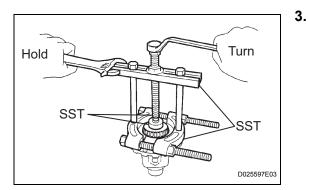
DISASSEMBLY

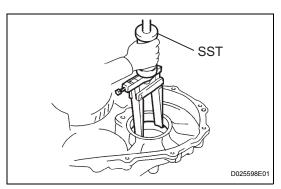
(b) Remove the 14 bolts.

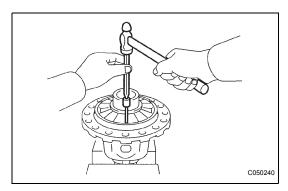
- **REMOVE FRONT DIFFERENTIAL RING GEAR** 1.
 - (a) Place matchmarks on the front differential ring gear and differential case.

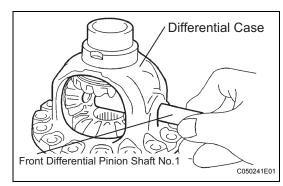
Differential **Ring Gear** D026446E01

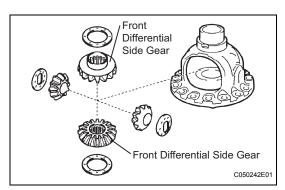

Turn


SST


D025595E01


(c) Using a plastic hammer, tap on the front differential ring gear to remove it from the case.


- 2. **REMOVE FRONT DIFFERENTIAL CASE FRONT TAPERED ROLLER BEARING**
 - (a) Using SST, remove the front differential case front differential tapered roller bearing from the differential case.
 - SST 09950-00020, 09950-00030, 09950-60010 (09951-00490), 09950-40011 (09957-04010)
 - (b) Using SST, remove the front differential case front tapered roller bearing outer race. SST 09308-00010



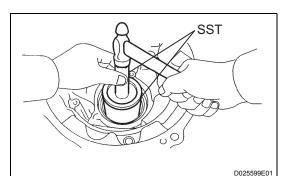
REMOVE FRONT DIFFERENTIAL CASE REAR TAPERED ROLLER BEARING

- (a) Using SST, remove the front differential case rear tapered roller bearing from the differential case.
 - SST 09950-00020, 09950-00030, 09950-60010 (09951-00490), 09950-40011 (09957-04010), 09308-00010
- (b) Using SST, remove the front differential case rear tapered roller bearing outer race.
 SST 09308-00010

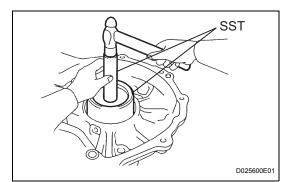
- 4. REMOVE FRONT DIFFERENTIAL PINION SHAFT STRAIGHT PIN
 - (a) Using a pin punch and hammer, install the straight pin.

NOTICE:

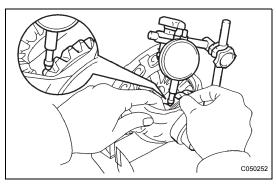
Before removing the straight pin, unstake it with a pin punch.


5. REMOVE FRONT DIFFERENTIAL PINION SHAFT NO.1

(a) Remove the front differential pinion shaft No.1 from the differential case.


6. REMOVE FRONT DIFFERENTIAL SIDE GEAR

 (a) Remove the 2 front differential pinions, 2 pinion thrust washers, 2 front differential side gears and 2 side gear thrust washers from the differential case.

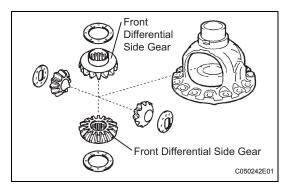


7. REMOVE TRANSAXLE HOUSING OIL SEAL

(a) Using SST and a hammer, remove the oil seal. **SST** 09950-70010 (09951-07100), 09215-00013 (09215-00471)

- 8. REMOVE DIFFERENTIAL SIDE BEARING RETAINER OIL SEAL
 - (a) Using SST, remove the oil seal.
 - SST 09950-70010 (09951-07100), 09608-10010

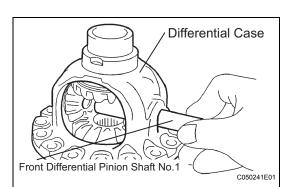
INSPECTION

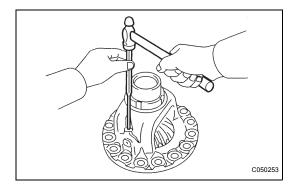

- 1. INSPECT BACKLASH
 - (a) Using a dial indicator, inspect the backlash of the side gear.

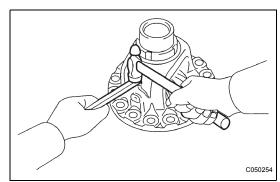
Standard backlash:

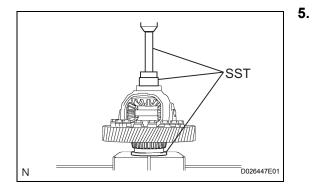
```
0.05 to 0.20 mm (0.0020 to 0.0079 in.)
Thrust washer thickness
```

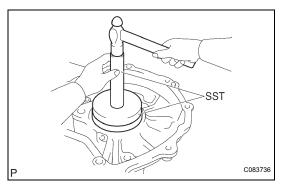
Mark	Thickness	
-	1.625 mm (0.0640 in.)	
-	1.725 mm (0.0679 in.)	
-	1.825 mm (0.0719 in.)	


AX




REASSEMBLY


1. INSTALL FRONT DIFFERENTIAL SIDE GEAR


(a) Apply ATF to the 2 front differential side gears, 2 side gear thrust washers, 2 front differential pinions and 2 pinion thrust washers and install them to the differential case.

2. INSTALL FRONT DIFFERENTIAL PINION SHAFT NO.1

- (a) Coat the front differential pinion shaft No.1 with ATF, and install it to the differential case.
- 3. INSPECT BACKLASH HINT:

(See page AX-274)

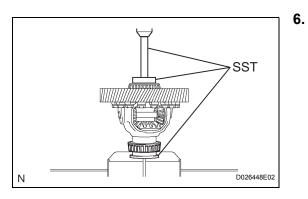
- 4. INSTALL FRONT DIFFERENTIAL PINION SHAFT STRAIGHT PIN
 - (a) Using a pin punch and a hammer, install the pinion shaft straight pin.

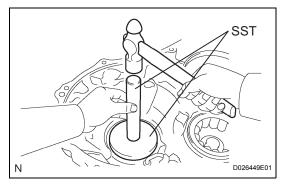
(b) Using a chisel and a hammer, stake the differential case.

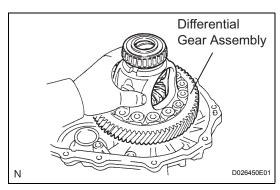
NOTICE:

Stake the differential case after adjusting the backlash.

INSTALL FRONT DIFFERENTIAL CASE FRONT TAPERED ROLLER BEARING


- (a) Using SST and a press, install the front differential case front tapered roller bearing to the differential case.
 - SST 09316-12010, 09550-60010 (09951-00490), 09950-70010 (09951-07100)


NOTICE:


Do not damage the bearing cage when installing the bearing inner race.

- (b) Using SST and a hammer, install the front differential case tapered roller bearing front outer race to the transaxle housing.
 - SST 09550-60010 (09951-00490), 09950-60020 (09951-00910)

D026384E02 N

INSTALL FRONT DIFFERENTIAL CASE REAR TAPERED ROLLER BEARING

(a) Using SST and a press, install the front differential case front tapered roller bearing to the differential case.

SST 09316-12010, 09550-60010 (09951-00490), 09950-70010 (09951-07100, 09951-07150) NOTICE:

Do not damage the bearing cage when installing the bearing inner race.

- (b) Using SST and a hammer, install the front differential case tapered roller bearing rear outer race to the transaxle housing.
 - 09950-70010 (09951-07100, 09951-07150), SST 09950-60020 (09951-00890)

NOTICE:

No clearance is allowed between the bearing and transaxle housing.

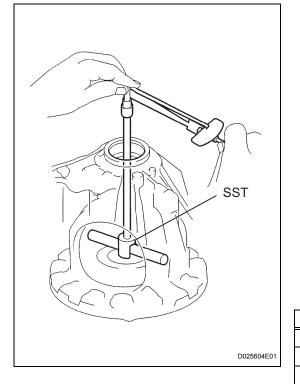
ADJUST DIFFERENTIAL SIDE BEARING PRELOAD 7.

(a) Install the differential assembly to the transaxle case.

- (b) Clean the mating surfaces of the transaxle case and transaxle housing.
- (c) Install the transaxle housing to the transaxle case and tighten them with the 16 bolts.

Torque: Bolt A 25 N*m (255 kgf*cm, 18 ft.*lbf) Bolt B 33 N*m (337 kgf*cm, 24 ft.*lbf) Bolt C 29 N*m (295 kgf*cm, 21 ft.*lbf) Bolt D 22 N*m (226 kgf*cm, 16.0 ft.*lbf)

HINT:


Apply seal packing or equivalent to bolts A and D. Seal packing:

THREE BOND 2403 or equivalent Bolt length:

Bolt A: 50 mm (1.969 in.)

```
Bolt B:
 50 mm (1.969 in.)
```

```
Bolt C:
```


NSA	XLE – DIFFERENTIAL CASE
	42 mm (1.654 in.) Bolt D: 72 mm (2.835 in.) HINT:
	Usually, bolt A is non-reusable. In this case, however, the bolt can be used after cleaning it.
(d)	Using SST, turn the differential assembly to the right and left 2 or 3 times to settle the bearing. SST 09564-32011

(e) Using SST and a torque wrench, measure the turning torque of the differential.

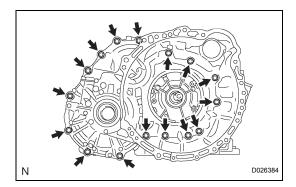
SST 09564-32011

Turning torque at 60 rpm:

New bearing:

0.20 to 0.69 N*m (2.0 to 7.0 kgf*cm, 1.8 to 6.1 in.*lbf)

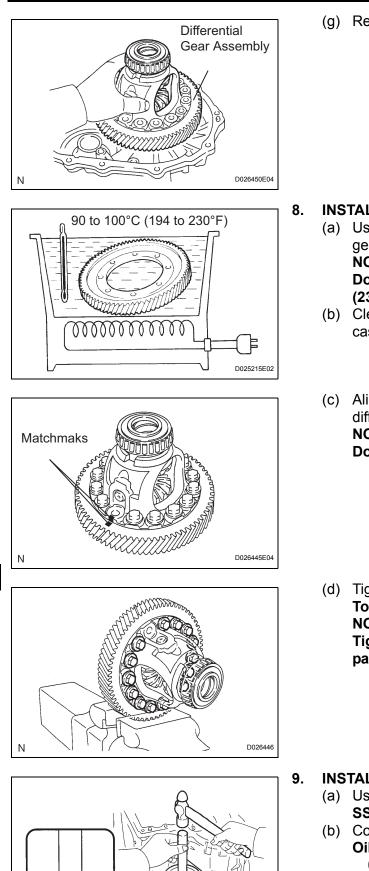
Used bearing:


0.10 to 0.35 N*m (1.0 to 3.6 kgf*cm, 0.9 to 3.1 in.*lbf)

HINT:

If the turning torque is not as specified, refer to the table below to select a thrust washer so that the specified value is achieved.

Flange thickness: mm (in.)


Mark	Thickness	Mark	Thickness	
0	2.00 (0.0787)	9	2.45 (0.0965)	
1	2.05 (0.0807)	А	2.50 (0.0984)	
2	2.10 (0.0827)	В	2.55 (0.1004)	
3	2.15 (0.0846)	С	2.60 (0.1024)	
4	2.20 (0.0866)	D	2.65 (0.1043)	
5	2.25 (0.0886)	E	2.70 (0.1063)	
6	2.30 (0.0906)	F	2.75 (0.1083)	
7	2.35 (0.0925)	G	2.80 (0.1102)	
8	2.40 (0.0945)	Н	2.85 (0.1122)	

(f) Remove the 16 bolts and the transaxle housing.

N

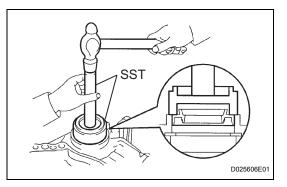
D026451E01

(g) Remove the differential assembly.

. INSTALL FRONT DIFFERENTIAL RING GEAR

(a) Using ATF and heater, heat the front differential ring gear to 90 to 110°C (194.0 to 230.0°F).
 NOTICE:

Do not heat the ring gear to more than 110°C (230.0°F).


- (b) Clean the contact surface of the front differential case.
- (c) Align the matchmarks, and install the front differential ring gear case quickly.
 NOTICE:
 Do not install the bolts while the ring gear is hot.

(d) Tighten the 14 bolts.
 Torque: 95.0 N*m (970 kgf*cm, 70 ft.*lbf)
 NOTICE:
 Tighten the bolts a little at a time in a diagonal pattern.

. INSTALL TRANSAXLE HOUSING OIL SEAL

- (a) Using SST and a hammer, install a new oil seal. SST 09223-15020, 09950-70010 (09951-07150)
- (b) Coat the lip of oil seal with a little MP grease. **Oil seal installation depth:**

0 +- 0.5 mm (0 +- 0.0197 in.)

- 10. INSTALL DIFFERENTIAL SIDE BEARING RETAINER OIL SEAL
 - (a) Using SST and a hammer, install a new oil seal. SST 09710-30050, 09950-70010 (09951-07150)
 - (b) Coat the lip of the oil seal with a little MP grease. **Oil seal installation depth:**

0 +- 0.5 mm (0 +- 0.0197 in.)

