BODY
ELECTRICAL SYSTEMReturn To Main Table of Contents
GENERAL 2
LOCATION OF ELECTRICAL COMPONENTS 7
FUSIBLE LINKS AND FUSES 15
IGNITION SWITCH 16
INSTRUMENTS, GAUGES AND WARNING LAMPS 17
MULTIFUNCTION SWITCH 27
LIGHTING SYSTEM 30
AUDIO 43
WINDSHIELD WIPER AND WASHER 64
CLOCK 71
CIGARETTE LIGHTER 72
SLIDING SUN ROOF 73
PASSIVE SEAT BELT 75
HORN 82
DOOR LOCK CONTROL SYSTEM 83
POWER WINDOW REGULATOR SYSTEM 86
REMOTE CONTROL MIRROR 91
FUEL FILLER DOOR OPENER 93
TRUNK LID OPENER 95
E.T.A.C.S 97
AUTOMATIC TRANSAXLE AND KEY LOCK CONTROL SYSTEM 103

GENERAL

SERVICING THE ELECTRICAL SYSTEM

1. When servicing the electrical system, disconnect the, negative cable from the terminal of the battery.

Caution

1. Before connecting or disconnecting the negative cable, be sure to turn off the ignition switch and the lighting switch.
(If this is not done, there is the possibility of electrical parts being damaged.)
2. For MPI-equipped models, after completion of thework steps [when the battery's negative (-) terminal is connected], warm up the engine and allow it to idle for approximately five minutes under the conditions described below.
Engine water temperature: $80-95^{\circ} \mathrm{C}\left(175-203^{\circ} \mathrm{F}\right)$ Lamps. electric fans, accessories: OFF
Transaxle: "N" or "P" position
Steering wheel: neutral (center) position
3. If any section of a wiring harness interferes with the edge of a part or a corner, wrap the section of the harness with tape or something similar in order to protect it from damage.
4. When installing any of the vehicle parts, be careful not to pinch or damage the wiring harnesses.

5. If a fuse is burnt-out, be sure to replace a fuse with the same ampere rating. If a fuse of higher capacity than specified is used, parts may be damaged and the danger of fire also exists.

6. The sensors, relays, etc, must never be subjected to strong shocks.
7. The electronic parts used in the computer, relays, etc. are readily damaged by heat. Never let their temperature exceed $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$.

$90 Y 088$
8. Loose connectors could be troubled. Make sure that the connectors are connected securely.

$90 Y 092$
9. When removing a connector, be sure to pull only the connector, not the harness.

10. Remove connectors which have catches by pressing in the direction indicated by the arrows in the illustration.
11. Join the connectors which have catches by inserting one into the other until a "snap" noise is heard.
12. When using a circuit tester to perform continuity or voltage checks on connector terminals, insert the test probe from the harness side.
If the connector is a sealed connector, insert the test probe in through the hole in the rubber cap for the electrical wires, being careful not to damage the insulation of the wires. Continue to insert the test probe until it contacts the terminal.

CHECKING CABLES AND WIRES

1. Check the terminal for tightness.
2. Check the terminals and wires for corrosion by battery electrolyte, etc.
3. Check the terminals and wires for open circuit or impending open circuit.
4. Check the wire insulation and coating for damage, cracks and deterioration.
5. Check the conductive parts of terminals for contact with other metallic parts (vehicle body and other parts).

6. Check grounding points to verify that there is continuity between attaching bolt(s) and vehicle body.
7. Check for incorrect wiring.
8. Check that the wiring is clamped securely to prevent them from contacting sharp corners of the vehicle body, etc. or hot parts (exhaust manifold, pipe, etc.).
9. Check that the wiring is clamped firmly to keep it away from the fan pulley, fan belt and other moving parts.
10. Check that the wiring between the vehicle body and the engine are made with adequate allowance for vibration.

CHECKING FUSES

A blade type fuse has test tabs that can be used to check the fuse without removing it from the fuse block. The fuse is okay if the test lamp comes on when its one lead is connected to the test tabs (one at a time) and the other lead is grounded. Make sure the key is in the correct position when checking fuses.

90Y096

INSTALLATION OF RADIO EQUIPMENT

The computers of the electronic control system have been designed so that external radio waves will not interfere with their operation.
However, nearby amateur radio transmitters may affect the operation of the computers, even if the output of the transceiver is no more than 25 W .
To protect each of the computers from interference by nearby transmitters, the following items should be observed.

1. Install the antenna on the roof or rear bumper.
2. Because radio waves are emitted from the coaxial cable of the antenna, keep it 200 mm (8 in.) away from the computers and the wiring harness. If the cable must cross the wiring harness, route it so that it runs at right angles to the wiring harness.
3. The antenna and the cable should be well matched, and the standing-wave ratio* should be kept low.
4. A transmitter having a large output should not be installed in the vehicle.
5. After installation of a transmitter, run the engine at idle, turn on the transmitter and make sure that the engine is not affected.

*STANDING-WAVE RATIO

If an antenna and a cable having different impedances are connected, the input impedance Zi will vary in accordance with the length of the cable and the frequency of the transmitter, and the voltage distribution will also vary in accordance with the location.
The ratio between this maximum voltage and minimum voltage is called the standing-wave ratio. It can also be represented by the ratio between the impedances of the antenna and the cable. The amount of radio waves emitted from the cable increases as the standing-wave ratio increases, and this increases the possibility of the electronic components being adversely affected.

LOCATION OF ELECTRICAL COMPONENTS

ENGINE AND TRANSAXLE

ENGINE COMPARTMENT

DASH AND STEERING COLUMN

A. Fuel filler door opener switch	B. Rear heated switch	90 Y 112 C. Reed switch	D. Cruise control main switch
$90 Y 114$ E. Hazard switch	F. Air conditioner switch (manual A/C only)	 G. Glove box lamp switch	H. Blower switch
90Y118 I. Ignition switch	$90 Y 119$ J. Accel switch	90Y120 K. Stop lamp switch	L. Rheostat

PASSENGER COMPARTMENT

DOOR COMPARTMENT

MULTIFUNCTION SWITCH

CONTROL UNIT

A. Electronic control unit (MPI)	B. Air conditioner control unit (manual)	B. Air conditioner control unit (Auto A/C)
C. Transaxle control unit	D. E.T.A.C.B.	E. Auto speed control (cruise) unit
F. Day time running light (Canada)	G. A/T \& key lock control unit	H. DIM DIP unit (U.K.)

RELAY AND SENSOR

A. Relay box

FUSIBLE LINK AND FUSES

A. Main fusible link
B. Fuse box
C. Relay box
D. Sub fusible link
E. Dedicated fuse (located in engine compartment relay box)

A

C

B

D \& E

GROUNDING POINT LOCATIONS

FUSIBLE LINKS AND FUSES

FUSIBLE LINK

SPECIFICATIONS

Items	Specifications							
Main fusible link	Rated capacity		Circuit		Type		Housing color	
	60A		Charging		Screw up		Yellow	
	20A		Cooling		Screw up		Blue	
Sub. fusible link (Located in engine compartment relay box)	Circuit Item		DW	Head lamp	Battery	ECI	Air conditioner	Ignition switch
	Rated capacity			30A	50A	20A	30A	30A
	Housing color			Pink	Green	Blue	Green	Pink
Type	Connector type							

INSPECTION

1. Check for a blown fusible link with an ohmmeter.
2. If a fusible link burns out, there is a short or some other problem in the circuit. Carefully determine the cause and correct it before replacing the fusible link.

NOTE
The fusible link will blow within 15 seconds if a higher current than specified flows through the circuit.

FUSE BOX

INSPECTION

1. Be sure there is no play in the fuse holders, and that the holders hold the fuses securely.
2. Check the fuse capacities for each circuit.
3. Check for any blown fuses.

If a fuse is to be replaced, be sure to use a new fuse of the specified capacity. Always determine why the fuse has blown and eliminate the problem before installing a new fuse.

CAUTION
Never use a fuse of higher capacity than specified.

IGNITION SWITCH

INSPECTION

1. Separate the connector located under the steering column.
2. Inspect the switch continuity between the terminals.
3. If continuity is not as specified, replace the switch.

	peration			ition	sw			$\begin{array}{r} \text { Door } \\ \text { sw } \end{array}$	warning ch		
Switch position	Key	1	2	3	4	5	6	7	8	RO	RE
LOCK	Removed									L	L
	Inserted							$\mathrm{O}=0$		L	F
ACC		\bigcirc								F	F
ON					\bigcirc					F	F
START										F	F

NOTE

$O=$ indicates that there is continuity between the terminal.
RO : Round the locking bar
RE : Return the locking bar
L: Lock

INSTRUMENTS, GAUGES AND WARNING LAMPS

INSTRUMENT CLUSTER

SPECIFICATIONS

Analog Type

Items	Specifications
Speedometer Type Tachometer Type Fuel gauge Pype Temp gauge Type Volt gauge Type Oil gauge Type	Eddy current, push connection type

Indicators and Warning Lamps

Items	Specifications	
	Wattage	Color
Indicator lamps		
Direction indicator (LH. RH) W	1.2	Green
Battery charging W	1.2	Red
Oil pressure W	1.2	Red
Brake failure W	1.2	Red
Door warning W	1.2	Amber
Rear window defogger W	1.2	Amber
Check engine W	1.2	Amber
Low beam W	1.2	Reen
Safety belt W	1.2	Blue
High beam W	1.2	Blue
Low Beam W	1.2	Red
Hazard W	1.2	Amber
Low fuel W	3.0	Amber
Trunk lid opener W	1.2	Amber
Low washer W	1.2	
Illumination	3.2	Amber
A/T position indication		Amber
P	1.2	Green
R	1.2	Green
N	1.2	Green
D	1.2	Green
2	1.2	Amber
L	1.2	
OD OFF	1.2	

SERVICE STANDARD

Items	Specifications								
Speedometer indication error	Standard speed (MPH)	10	20		40	55	75		100
	Allowable error (MPH)	± 1.5	± 1.5		± 1.5	± 1.5	± 1.5		± 1.5
Tachometer indication error	Standard speed (km/h)	20	40	60	80	100	120	140	160
	Tolerace (km/h)	$\begin{array}{\|c} \hline+4 \\ 0 \\ \hline \end{array}$	$\begin{gathered} +3 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} +4 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} +5 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} +5 \\ 0 \end{gathered}$	$\begin{gathered} +5.5 \\ +0.5 \end{gathered}$	$\begin{aligned} & +5.5 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +5.5 \\ +0.5 \end{array}$
	Standard RPM 1000 年	2000	30		4000	500		00	7000
		± 125	± 1		± 150	± 150		180	± 210
Fuel gauge	Fuel tank level	E			1/2			F	
	Standard resistance (0)	95			32.5			6.5	
	Indication error	$2^{\circ} 24$,			± 5			$+2^{\circ} 24^{\prime}$	
Fuel sender	Float position	F			1.2			E	
	Resistance (0)	3			32.5			110	
	Allowable error (0)	± 2			± 4			± 7	
Water temperature gauge	Temperature (${ }^{\circ} \mathrm{C}$)	60		85		110		125	
	Angle	-30°		-7 ${ }^{\circ}$		-7 ${ }^{\circ}$		+30 ${ }^{\circ}$	
	Tolerance			$\pm 3^{\text {2 }}$		$\pm 3^{\text {2 }}$ 。		± 5	
Water temperature sender	Temperature (${ }^{\circ} \mathrm{C}$)	60		85		110		125	
	Resistance (Ω)	125		48.4		24		15.2	
Voltmeter gauge	Voltage (V)	8		10		12	14		16
	Angle	-30°		-16°		$0{ }^{\circ}$	16°	30°	
	Allowable error (V)	± 0.5				± 0.5	± 0.6		

Oil gauge	Pressure ($\mathrm{Kg} / \mathrm{cm}^{2}$)	0.3	2.7	7	10
	Angle	-32.5°	-21.5°	16°	$32.5{ }^{\circ}$
	Resistance (0)	$\pm 3^{\circ}$			± 4
Oil pressure sender	Pressure $\mathrm{KPa}\left(\mathrm{kg} / \mathrm{cm}^{2}, \mathrm{psi}\right)$			677 (7.0, 98)	
	Resistance (Ω)	430 ± 21.5		44 ± 10	

TIGHTENING TORQUE

Items	Specifications		
	Nm	Kg.cm	lb.ft
Coolant temperature sender	$10-12$	$100-120$	$7-9$
Oil pressure sender	$8-12$	$80-120$	$6-9$
Oil pressure switch	$8-12$	$80-120$	$6-9$

TROUBLESHOOTING

Problem	Possible cause	Remedy
Tachometer does not operate	NO. 12 (10A) fuse blown Tachometer faulty Wiring faulty	Replace fuse and check for short Check tachometer Repair as necessary
Fuel gauge does not operate	NO. 12 (10A) fuse blown Fuel gauge faulty Fuel sender faulty Wiring or ground faulty	Replace fuse and check for short Check gauge Check fuel sender Repair as necessary
Fuel level warning lamp does not light	NO. 12 (10A) fuse blown Bulb burned out Fuel level sensor faulty Wiring or ground faulty	Replace fuse and check for short Replace bulb Check switch Repair as necessary
Water temperature gauge does not operate	NO. 12 (10A) fuse blown Water temperature gauge faulty Water temperature sender faulty Wiring or ground faulty	Replace fuse and check for short Check gauge Check sender Repair as necessary
Low oil pressure warning lamp does not light	NO. 12 (10A) fuse blown Bulb burned out Oil pressure sender faulty Wiring or ground faulty	Replace fuse and check for short Replace bulb Check sender Repair as necessary
Brake warning lamp does not light	NO. 12 (1OA) fuse blown Bulb burned out Brake fluid level warning switch faulty Parking brake switch faulty Wiring or ground faulty	Replace fuse and check for short Replace bulb Check switch Check switch Repair as necessary
Open door warning lamp does not light	NO. 8 (10A) fuse blown Bulb burned out Door switch faulty Wiring or ground faulty	Replace fuse and check for short Replace bulb Check switch Repair as necessary
Seat belt warning does not operate	NO. 8 (10A) fuse blown Bulb burned out Door warning switch faulty Buckle switch faulty E.T.A.C.S. faulty Wiring or ground faulty	Replace fuse and check for short Replace bulb Check switch Check switch E.T.A.C.S. Repair as necessary

SERVICE ADJUSTMENT PROCEDURES

SPEEDOMETER

Inspection

1. Using a speedometer tester, inspect the speedometer for allowable indicating error and check the operation of the odometer.

NOTE
Tire wear and tire over or under inflation will increase the indication error.
2. Check the speedometer for pointer vibration and abnormal noises.

NOTE
Pointer vibration can be caused by a loose or dry speedometer cable.

Standard indication (MPH)	10	20	40	55	75
Allowable error (MPH)	± 1.5				

SPEEDOMETER CABLE

Insert the cable until the stopper properly fits into the speedometer groove.

CAUTION

Poor installation of the cable may cause a fluctuating pointer, noise and a damaged harness inside the instrument panel.

TACHOMETER

Inspection

1. Connect a tachometer and start the engine.
2. Compare the tester and tachometer indications.

If the difference is excessive, replace the tachometer.

CAUTION

1) Reversing the connections of the tachometer will damage the transistor and diodes.
2) When removing or installing the tachometer, be careful not to drop it or subject it to severe shock.

rpm	1,000	2,000	3,000	4,000	5,000	6,000	7,000
Temp							
$25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ DC 13.5 V	± 100	± 125	± 150	± 150	± 150	± 180	± 210

FUEL GAUGE AND FUEL SENDER

FUEL GAUGE SIMPLE TEST

1. Lift up the vehicle and disconnect the connector of the fuel gauge from the fuel sender.
2. Ground to the harness side connector via (terminals 3) the 12V, 3.4W bulb.
3. Turn the ignition key to the ON position.
4. Check to be sure that the test bulb flashes and that the indicator moves.

Fuel Sender Resistance Check

1. Measure (with the float at the " F " position and at the " E " position) the resistance between ground and the sender terminal for the fuel gauge.

Standard specification : Point F :
$3 \pm 2 \Omega$
Point E:
$110 \pm 7 \Omega$
2. Also check that the resistance changes smoothly when the float is moved to " F " and " E ".

Fuel Level Sensor Check

1. Connect the sender with a test lamp ($12 \mathrm{~V}, 3,4 \mathrm{~W}$) to the battery and immerse it in water.
2. The lamp should be off while the thermistor is beneath the water, and should illuminate when the sender is taken out of the water.

NOTE
If there is a malfunction, replace the fuel sender as an assembly.

CAUTION

After completing this test, wipe the sender dry and install it in the fuel tank.

WATER TEMPERATURE GAUGE AND WATER TEMPERATURE SENDER

WATER TEMPERATURE GAUGE SIMPLE TEST

1. Disconnect the wiring connector from the water temperature sender in the engine compartment.
2. Ground to the harness side connector via the $12 \mathrm{~V}, 3.4 \mathrm{~W}$ bulb.
3. Turn the ignition key to the ON position.
4. Check to be sure that the test bulb flashes and that the indicator moves.

WATER TEMPERATURE SENDER

1. Using an ohmmeter, measure the resistance between the terminal and ground.
2. If the resistance value is not as shown in the table below, replace the temperature sender.

Temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$60(140)$	$110(230)$
Resistance Ω	125	24

OIL PRESSURE SWITCH AND OIL PRESSURE SENDER

OIL PRESSURE SENDER

1. Check the engine oil level. Add oil if insufficient, or replace it if the connection is bad.
2. Measure the resistance changes by connecting an ohmmeter between a good ground (vehicle body) and the terminal of the sender.
3. Refer to service standard.

OIL PRESSURE SWITCH

Specifications

Type	contact points
Lighting oil pressure	$0.3 \mathrm{~kg} / \mathrm{cm}^{2}(4.27 \mathrm{psi})$

If operation is not as specified, replace the oil pressure switch.

VOLTAGE GAUGE

INSPECTION

1. Connect the voltmeter in parallel with the volt gauge.
2. The voltmeter indication should be equal to the volt gauge.

Indication Tolerance

Standard	Tolerance
10 V	+0.5 V
12 V	+0.5 V
16 V	+0.6 V

$90 Y 156$

BRAKE WARNING LAMP AND SWITCH

The brake fluid level sensor or the parking brake switch is switched ON, and the brake warning lamp illuminates, when, with the ignition switch at the "ON" position, the brake fluid level is at or below the specified level, or the parking brake lever is pulled.

NOTE
The brake fluid level sensor is built into the master cylinder reservoir cap.

Parking Brake Switch

The parking brake switch is a push type and located under the parking brake lever. To adjust, move the switch mount up and down with the parking brake lever released all the way.

DOOR SWITCH

INSPECTION

Remove the door switch and check for continuity between the terminals.
If continuity is not as specified, replace the door switch

Position Lead wire	Ground (Body)	L1 (0.5RB)	L2 (0.5RL)
Free	\bigcirc		
Push			

COMPONENTS

ANALOG TYPE

Trip count reset knob

PRINTED CIRCUIT BOARD

CIRCUIT DIAGRAM

MULTIFUNCTION SWITCH

REMOVAL

1. Remove the steering wheel.
2. Remove the steering column shroud.
3. Remove the multifunction switch mounting screws.
4. Disconnect the multifunction switch wiring terminal.

CAUTION

Make sure the wire leads are not being pulled when you move the lever.
Check that lever works freely without binding.

Switch Attaching Plane

CONNECTOR NO.	PIN NO.	WIRE SIZE, COLOR	CIRCUIT
M03-1	1	0.85 RW	WIPER PARKING
	2	0.85 RY	WIPER HIGH SPEED
	3	0.85 YB	WIPER LOW SPEED
	6	0.5 B	GROUND
	7	0.5 RL	WIPER INT.
	8	0.5 WL	WASHER
	9	0.5 GW	WIPER INT. (T)
	10	0.85 B	GROUND
	11	0.85 GB	HORN
	12	0.3 L	CRUISE (SET)
	13	0.3 LgW	CRUISE (RESUME)
M03-2	1	0.5 YR	TAIL LAMP SW.
	2	0.5 WB	HEAD LAMP SW. (HS1)
	3	1.25 Br	HEAD LAMP SW. (HL)
	4	0.5 RB	TURN SIGNAL SW. (TB)
	5	0.5 RL	TURN SIGNAL SW. (TL)
	6	0.5 RY	TURN SIGNAL SW. (TR)
	7	0.3G	REAR FOG LAMP
	8	0.3 WB	HEAD LAMP SW. (EXCEPT, CANADA, U.K.)
		0.85 B	D.R.L. DIM. DIP (CANADA, U.K.)
	9	1.25 RG	HEAD LAMP SW. (HU)
	10	1.25 B	GROUND
		1.25 YW	D.R.L. (CANADA)

INSPECTION

Operate the switch and check the continuity between the terminals.

LIGHTING SWITCH

Terminal	TS	HS(1)	EL	F
OFF				
I	O			
II	Omasition		O	

DIMMER/PASSING SWITCH

Position Terminal	Eb	HL	HU	$\mathrm{Hs}(2)$
HU	O		O	
HL	O	O		
P	O			

TURN SIGNAL SWITCH

Hazard		TB	TL	TR
OFF	L			
	N			
	R			O

WIPER SWITCH

Terminal Position	LO	HI	S	INT	EW	INT(T)
OFF	\bigcirc		0			
INT	\bigcirc		O			No
LO	O				\bigcirc	
HI		O			\bigcirc	
WASHER SWITCH						
Terminal Position		W		EW		
OFF						
ON	O			\longrightarrow		

$90 Y 036$

AUTOMATIC SPEED CONTROL SWITCH (CRUISE)

Position Terminal	RESUME	SET	EA
SET		O	0
OFF			
RESUME	O		O

NOTE
o LIGHTING SW
I = TAIL
II = LIGHTING
o DIMMER/PASSING SW
HU = HEAD LAMP UPPER BEAM
HL = HEAD LAMP LOWER BEAM
$P=P A S S I N G$

LIGHTING SYSTEM

SPECIFICATIONS

Item	Specification	
	U.S.A. \& CANADA	EXCEPT U.S.A. \& CANADA
Front combination lamp		
Headlamp	65/45 W	60/55 W
Turn signal lamp	28/8 W	
Position lamp	-	4W
Front side marker and reflex reflector lamp	5 W	-
Front turn signal lamp	-	21 w
Side repeater lamp		4 W
Rear combination lamp (outside)		
Turn signal lamp	27 W	21 W
Tail and stop lamp	27/8 W	21/5 W
Side marker and reflex reflector lamp	5W	
Rear combination lamp (inside)		
Tail and stop lamp	27/8 W	21/5 W (Except EC)
Back up lamp	27 W	21 W
Rear for lamp (EC only)	-	21 W
Interior lamp		
Luggage and glove box lamp	5 W	\leftarrow
Room lamp	10 W	\leftarrow
Map lamp	8 W	-
Door lamp	5 W	\leftarrow
High mounted stop lamp	17 W	-
License plate lamp	8W	5 W
Flasher unit		
Turn signal blinking frequency	$85 \pm 10 \mathrm{C} / \mathrm{M}$ at 12.8 V	\leftarrow
Hazard warning blinking frequency	$80 \pm 12 \mathrm{C} / \mathrm{M}$ at 12.8 V	\leftarrow

TROUBLESHOOTING

Problem	Possible cause	Remedy
Only one lamp does not light (all exterior)	Bulb burned out Socket, wire or ground faulty	Replace bulb Repair as necessary
Headlamps do not light	Bulb burned out Fusible link blown Headlamp relay faulty Lighting switch faulty Wiring or ground faulty	Replace bulb Replace fusible link Check relay Check switch Repair as necessary
Tail, parking and license lamp do not light	Taillamp fuse blown Fusible link blown Taillamp relay faulty Lighting switch faulty Wiring or ground faulty	Replace fuse and check for short Replace fusible link Check relay Check switch Repair as necessary
Stop lamps do not light	Circuit fuse blown Stop lamp switch faulty Wiring or ground faulty Bulb burned out	Replace fuse and check for short Adjust or replace switch Repair as necessary Replace bulb
Stop lamps stay on	Stop lamp switch faulty	Adjust or replace switch
Instrument lamps do not light (taillamps light)	Lamp control rheostat faulty Wiring or ground faulty	Check rheostat Repair as necessary
Turn signal does not flash on one side	Bulb burned out Turn signal switch faulty Wiring or ground faulty	Replace bulb Check switch Repair as necessary
Turn signal does not operate	Turn signal fuse blown Turn signal flasher faulty Turn signal switch faulty Wiring or ground faulty	Replace fuse and check for short Check flasher Check switch Repair as necessary
Hazard warning lamp does not operate	Hazard fuse blown Turn signal flasher faulty Hazard switch faulty Wiring or ground faulty	Replace fuse and check for short Check flasher Check switch Repair as necessary

HEADLAMP AIMING (FOR U.S.A. CANADA)

PRE-AIMING INSTRUCTIONS

1. Test dimmer switch operation.
2. Observe operation of high beam indicator lamp mounted in the instrument cluster.
3. Inspect for badly rusted of faulty headlamp assemblies. These conditions should be corrected before a satisfactory adjustment can be made.
4. Place the vehicle on a level floor.
5. Bounce the front suspension through three (3) oscillations by applying body weight to the bumper.
6. Check and correct tire inflation pressures.
7. Rock vehicle sideways to allow vehicle to assume its normal position.
8. If the fuel tank is not full, place a weight in the trunk of the vehicle to simulate the weight of a full tank.
9. There should be no other load in the vehicle other than that of the driver or substituted weight of approximately $70 \mathbf{~ k g}$ (150 lbs.) placed in the driver's position.
10. Thoroughly clean the headlamp lenses.

COMPENSATING THE AIMERS FOR FLOOR SLOPE

The floor level offset dial must coincide with the floor slope for accurate aiming. Calibration fixtures are included with the aimers

1. Attach one calibration fixture to each aimer. Fixtures will easily snap into position on the aimer when properly positioned.
2. Place the aimers at the center line of each wheel on one side of the vehicle. Unit A must be placed at the rear wheel with the target facing forward. Unit B must be placed at the front wheel with the target facing rearward.
3. Adjust the thumb screw on each calibration fixture by turning either clockwise or counter-clockwise until the level vial bubble registers in a centered, level position.
4. Look into the top port hole of Unit A. Turn the horizontal knob until the split image is aligned.
5. Transfer the plus or minus reading indicated on the horizontal dial to the floor level offset dial on each aimer. Press the floor level dial inward to set reading.
6. Remove the calibration fixtures from both units.

TESTING AIMER CALIBRATION

The aimer calibration may be off due to extended use. Calibration fixtures used in conjuction with the aimers can be used to check and adjust the aimer.

1. Turn the thumb adjusting screw on each calibration fixture until it is approximately the same distance as the supporting posts.
2. Attach the calibration fixtures to each unit with the level vials on top.
3. Locate a true vertical plate glass window or smooth surface and position the aimers three to five feet apart so that the split image targets can be located in the viewing ports.
4. Set the floor level dial to zero.
5. Rotate the thumb adjusting screws on each calibration fixture until the level vials on the fixtures are centered.
6. With both calibration level vials centered, turn the vertical dial knobs on each aimer until the aimer level vials are centered. If the aimer vertical dial pointers read between $1 / 2$ up and $1 / 2$ down, the aimers are within allowable vertical tolerance, Recalibrate the units if they are beyond these limits.

Vertical dial pointer reading (on each aimer)
$1 / 2$ up to $1 / 2$ down
7. Adjust the horizontal dial knob on each aimer until the split image targets align. If the aimer horizontal dial pointers read between 1 left and 1 right, the aimers are within allowable tolerance limits. Recalibrate the units if beyond these limits.

Horizontal dial pointer reading (on each aimer)
1 left to 1 right

MOUNTING AIMERS

1. Remove the calibration fixture from the each unit.
2. As shown in the figure, install the articulating vacuum cup assembly (A), vacuum extension plate (B) and small universal adaptor (C) to each unit.

3. Mark the length of the adjustable rod as shown in the figure.

4. Position the aimers on the headlamps pushing the piston handle forward, engaging the rubber suction cup. Immediately pull back the piston handle until it is locked in place.

NOTE

Steel inserts are molded into position on the adaptor to insure accuracy. These inserts should be in contact with the three guide points on the lamps when the aimers are properly positioned.

HORIZONTAL ADJUSTMENT

1. Set the horizontal dial to zero.
2. Check to see that the split image target lines are visible in the viewing port. If necessary, rotate each aimer slightly to locate the target.
3. Turn the horizontal screw on the side of the headlamp until

the split image of target line appears in the mirrors as one solid line. To remove "backlash", make the final adjustment by turning adjusting screw in a clockwise direction.
4. Repeat the last three steps on the apposite headlamp.

Split image not aligned

VERTICAL ADJUSTMENT

1. The vertical dial should be set at zero. (For passenger vehicles, " O " setting is generally required. For special settings, consult local state laws.)
2. Turn the vertical adjusting screw until the level bubble is centered between the lines.
3. Repeat the last two steps on the opposite headlamp.
4. Re-check the target alignment on both aimers and readjust the horizontal aimer if necessary.
5. Remove the aimers by pressing "vacuum release" button located on the piston handle.

$90 Y 170$

AIMING WITH SCREEN

HEADLAMP AIMING PREPARATION

Place the vehicle on a level floor 7.6 m (25 feet) apart from the aiming screen or a light-colored wall. Four lines of adhesive tape are required on the screen or wall:

1. Position a vertical piece of tape so that it is aligned with the vehicle center line
2. Position a horizontal piece of tape with reference to the center line of the headlamp.

3. Position a vertical piece of tape on the screen for vertical adjustment, adjust the side screw for horizontal adjustment.

VISUAL HEADLAMP ADJUSTMENT

1. A properly aimed low beam will appear on the aiming screen 7.6 m (25 feet) in front of the vehicle. The shaded area as shown in the illustration indicates a high intensity zone
2. Adjust the low beam headlamps to match the low beam pattern of the right and left headlamps.

NOTE
If the visual headlamp adjustment at low beam is made, the adjustment at high beam is not necessary.

HEADLAMP AIMING (Except U.S.A. \&

Canada)

PRE-AIMING INSTRUCTIONS

The headlamps should be aimed with the proper beam-setting equipment and aimed in accordance with the equipment manufacturers instructs.

NOTE
If there are any regulations pertinent to the aiming of headlamps in the area where the vehicle is to be used,adjust
 so as to satisfy those requirements.

Alternately turn the adjusting bolts to adjust the headlamp aiming. If beam-setting equipment is not available, proceed as follows:

1. Inflate the tires to the specified pressure and remove the load from the vehicle except a driver, spare tire and tools.
2. The vehicle should be placed on the level floor.
3. Draw vertical lines (vertical lines passing through respective headlamp centers) and a horizontal line (horizontal line passing through center of headlamps) on the screen.
4. With the headlamp and battery in normal condition, aim the headlamps.

Make the vertical and horizontal adjustment of the lower beam to the standard values by using the adjusting knobs.

FRONT COMBINATION LAMP

REMOVAL AND INSTALLATION

1. After removing the front side marker and reflex relector lamp (U.S.A. \& Canada), front turn signal lamp (Except U.S.A. \& Canada) mounting nut, remove the lamp.
2. Remove the radiator grille.
3. Remove the front combination lamp mounting nuts. Disconnect the wiring connector.
4. Remove the lamp assembly.
5. Installation is reverse order of the removal.

TIGHTENING TORQUE

Front side marker and reflex reflector lamp (U.S.A., CANADA) Front turn signal lamp (Except U.S.A. \& Canada)	$\begin{aligned} & 2-3 \mathrm{Nm} \\ & (20-30 \mathrm{~kg} . \mathrm{cm}, 1.5-2.2 \mathrm{lb} . \mathrm{ft}) \end{aligned}$
Front combination lamp	$\begin{aligned} & 3-5 \mathrm{Nm} \\ & (30-50 \mathrm{~kg} . \mathrm{cm}, 2.2-3.6 \mathrm{lb} . \mathrm{ft}) \end{aligned}$

REAR COMBINATION LAMP

REMOVAL

Back Panel Side (Outside of rear combination lamp)

1. Remove the trunk inner trim.
2. Remove the rear combination lamp mounting nuts.
3. Disconnect the wiring connector and remove the rear combination lamp assembly

TIGHTENING TORQUE

2-2.5 N.m (20-25 kg cm, 1.5-1.8 lb.ft)

Inside of trunk (Inside of rear combination lamp)

1. Disconnect the wiring connector.
2. Remove the rear combination lamp mounting nuts.
3. Remove the rear combination lamp assembly.

TIGHTENING TORQUE

2-2.5 Nm (20-25 kg cm, 1.5-1.8 lb.ft)

HIGH MOUNTED STOP LAMP

INDIVIDUAL PART INSPECTION

HEADLAMP AND TAILLAMP RELAY

1. Remove the headlamp relay and taillamp relay.
2. Check for continuity between the terminals.

HEADLAMP RELAY

Tendition	B	S_{2}	L	$\mathrm{~S}_{1}$
When de-energized		O		
When energized	O	Θ	0	

TAILLAMP RELAY

Terminal Condition	B	S	L
When de-energized		0	
When energized		- - mor	0

NOTE

1. $\Theta \operatorname{man} \theta$ indicates that there is continuity between the terminals.
2. $\Theta \boxplus \Theta$ indicates power supply connection.

TURN SIGNAL FLASHER UNIT

1. Connect the positive (+) lead from the battery to terminal B and the negative (-) lead to terminal E.
2. Connect the two turn signal lamps parallel to each other to terminal L and E, check that the bulbs turn on and off.

NOTE
The turn signal lamps should flash 60 to 120 times per minute.
If one of the front or rear turn signal lamps has an open circuit, the number of flashes will be more than 120 per minute.
If the operation is not as specified, replace the flasher unit.

HAZARD SWITCH

1. Remove the hazard switch located in the cluster housing.
2. Operate the switch and check continuity between the terminals by using an ohmmeter.

DAYTIME RUNNING LIGHT (For CANADA) SPECIFICATIONS

Items	Specifications
Electronic control unit	
Rated voltage	DC 12 V
Operating voltage range	DC $8 \sim 16 \mathrm{~V}$
Rated load	7.5 A (lamp load)
Operating temperature range	$-30 \sim+95^{\circ} \mathrm{C}\left(-22 \sim 203^{\circ} \mathrm{F}\right)$
Insulation resistance	MIN. $1 \mathrm{M} \Omega$ (at DC 500 V megger)

TIMING CHART

AUDIO

SPECIFICATIONS

AM/FM RADIO WITH CASSETTE

BASE GRADE

Items	C-420	H-510	HC-700
Radio			
Receiving band	AM/FM1/FM2	AM/FM1/FM2	AM/FM
Tuning type	E.T.R.	E.T.R.	E.T.R.
Memory (AM/FM)	6/12	6/12	6/6
Frequency range	AM : 530-1620 KHz	AM : 530-1620 KHz	AM : 530-1620 KHz
	FM : 87.5-108 MHz	FM : 87.5-108 MHz	FM : 87.5-108 MHz
Amplifier			
Output power	MAX. 6W x 4CH	MAX. 20W x 2CH	MAX. 25W x 2CH
Volume type	Rotary	Rotary	Rotary
Tape player			
Deck type	Mechanical	Mechanical	Mechanical
Reproducing type	Auto reverse	Auto reverse	Auto reverse

MEDIUM GRADE

Items	H 450	H-560	HC-800
Radio			
Receiving band	AM/FM1 /FM2	AM/FM1 /FM2	AM/FM1 /FM2
Turning type	E.T.R.	E.T.R.	E.T.R.
Memory (AM/FM)	6/12	6/12	6/12
Frequency range	AM : 530-1610 KHz	AM : 530-1710 KHz	AM : 530-1620 KHz
	FM : 87.9-108 MHz	FM : 87.9-108 MHz	FM : 87.9-108 Mhz
Amplifier			
Output power	MAX. 25W x 2CH	MAX. 25W x 4CH	MAX. 25W x 2CH
Volume type	Rotary	Rotary	Rotary
Tape player			
Deck type	Full logic	Full logic	Full logic
Eject type	Key off release	Key off release	Key off release
Reproducing type	Auto reverse	Auto reverse	Auto reverse

DELUXE GRADE

Items	H-600	H-565
Radio		
Receiving band	AM/FM1 /FM2	
Turning type	E.T.R.	
Memory (AM/FM)	6/12	
Frequency range	AM : 530-1620 KHz	AM : 530-1710 KHz
	FM : 87.9 - 107.9 MHZ	FM : 87.9-107.9 MHz
Tape player		
Deck type	Full logic	
Eject type	Key-off eject	Key-off release
Reproducing type	Auto reverse	
Amplifier		
Output power	MAX. 25W x 4CH	
input impedance	MON. 10 K Ω (8-12ת)	
Sound dimensional array	S.D.A.-H3	
Compact disc player		
Frequency response		$5 \mathrm{HZ}-20 \mathrm{KHz} \pm 1.0 \mathrm{~dB}$
Signal to noise ratio		NOM. 85 dB (with IHF-A)

PREMIUM GRADE

Items	H-700	H-590
Radio		
Receiving band	AM/FM1/FM2	
Tuning type	E.T.R.	
Memory (AM/FM)	6/12	
Frequency range	AM : 530 - 1620 KHz	AM : 530-1710 KHz
Tape player		
Deck type	Full logic	
Eject type	Key-off eject	Key-off release
Reproducing type	Auto reverse	
Amplifier		
Output power	MAX. 60W x 4CH	MAX. 40W x 4CH
Input impedance	NOM. $10 \mathrm{~K} \Omega(8-1$	
Sound dimentional array	S.D.A.-H4	
Compact disc player		
Frequency response	$5 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1.0 \mathrm{~dB}$	
Current	NOM. 0.8A	

SPEAKER

BASE AND MEDIUM GRADE

Items	Specifications
Front speaker Input power Rated impedance Distortion Size Rear speaker Woofer Input power Rated impedance Distortion Size Tweeter Input power Rated impedance Distortion Size	NOM. 20W (MAX. 40W) $4 \pm 0.6 \Omega$ (at $400 \mathrm{~Hz}, 1 \mathrm{~V})$ MAX. 5\% (at $400 \mathrm{~Hz}, 20 \mathrm{~W}$) 10 cm (4 in.) NOM. 20W (MAX. 40W) $4 \pm 0.6 \Omega$ (at $400 \mathrm{~Hz}, 1 \mathrm{~V})$ MAX. 5\% (at $400 \mathrm{~Hz}, 20 \mathrm{~W}$) 16 cm (6.5 in.) NOM. 5W (MAX. 7W) $4 \pm 0.6 \Omega$ (at $3 \mathrm{KHz}, 1 \mathrm{~V}$) 5\% MAX. (at 100 KHz , 5W) 5 cm (2 in.)

DELUXE GRADE

AUDIO

PREMIUM GRADE

Items	Specifications
Front speaker	
Mid-woofer	
Input power	NOM. 10W RMS (MAX. 20W RMS)
Rated impedance	$4.0 \pm 0.5 \Omega$ (at $400 \mathrm{~Hz}, 1 \mathrm{~V})$
Distortion	MAX. 5\% (at $400 \mathrm{~Hz}, 2 \mathrm{~V}$)
Size	10 cm (4 in.)
Tweeter	
Input power	NOM. 10W RMS (MAX. 20W RMS)
Rated impedance	$4.0 \pm 0.5 \Omega$ (at $1 \mathrm{KHz}, 1 \mathrm{~V})$
Distortion	MAX. 2.5% (at 4.3 KHz, 2V)
Size	5 cm (2 in.)
Rear speaker	
Woofer (coaxial)	
Input power	NOM. 15W RMS (MAX. 30W RMS)
Rated impedance	$3.0 \pm 0.5 \Omega$ (at $400 \mathrm{~Hz}, 1 \mathrm{~V})$
Distortion	MAX. 3\% (at $400 \mathrm{~Hz}, 2 \mathrm{~V}$)
Size	16 cm (6.5 in.)
Door speaker, sub woofer speaker	
Woofer (single)	
Input power	NOM. 15W RMS (MAX. 30W RMS)
Rated impedance	$3.0 \pm 0.5 \Omega$ (at $400 \mathrm{~Hz}, 1 \mathrm{~V})$
Distortion	MAX. 1.5\% (at $400 \mathrm{~Hz}, 2 \mathrm{~V}$)
Size	16 cm (6.5 in.)

ANTENNA

Items	Specifications
Manual antenna	
Type	Telescopic rod
Insulating resistance	MIN. $100 \mathrm{M} \Omega$ (at DC 500V megger)
Electrostatic capacity	$80 \pm 8 \mathrm{PF}$
Operating force	$0.3 \sim 6 \mathrm{~kg}$
Power antenna	
Rated voltage	DC 12V
Operating amperage	MAX. 6A (Lock current MAX 15A)
Insulating resistance	MIN. 100 M (at DC 500V megger)
Electrostatic capacity	$80 \pm 8 \mathrm{PF}$
Operating force	5 kg

TROUBLESHOOTING

There are 5 areas where a problem can occur the wiring harness, the radio, cassette tape deck, the speaker, and the antenna.
Your job in troubleshooting is to isolate the problem to a particular area.

CHART 1

2. Tape player ok but no sound from radio

CHART 2

CHART 3

CHART 4

1. RADIO

2. TAPE

CHART 5

CHART 6

CHART 7

Seek/scan problem

CHART 8

COMPACT DISC PLAYER

TROUBLESHOOTING

Symptoms	Cause	Solution
o Skips o Stuck on one track o Disc ejects during play	o Scratches o Fingerprint marks or dust (Unclean surfaces)	o Handle disc by edge only. o Keep disc clean by using a cleaning kit specifically designed for compact discs.
	o Pin holes	o Check for pin holes by holding disc up to a light aspect and observing it. o Defective disc should not be used in player.
o Disc loads but ejects after a few seconds	o Disc is not centered on clamping mechanism.	o Disc center hole can be defective during manufacturing process. o Defective disc should not be used in player.
	o Rough edges	o Rough edges may touch mechanism parts and can be corrected by lightly sanding disc edges.
o Disc loads but function switch won't operate and display is erratic.	o Battery voltage drop or a momentary loss of $\mathrm{B}+$.	o When replacing or charging vehicle battery, reset button should be depressed to restore normal function.
o Error indication	o Laser diode protection circuit is being activated due to excessive scratches or environmental heat.	o An excessive scratched disc may cause the tracking servo to move more than necessary, resulting in internal heat build up. o Remove disc and allow C.D. player to return to a safe operating temperature before re-inserting.

AUDIO

SERVICE ADJUSTMENT PROCEDURES

FUSE REPLACEMENT

Be sure to use the specified fuse when making a replacement.

Radio unit	Permissible current
LOW GRADE	$1 \mathrm{~A} \& 3 \mathrm{~A}$
MEDIUM GRADE	$3 \mathrm{~A} \& 5 \mathrm{~A}$
DELUXE GRADE	$3 \mathrm{~A} \& 5 \mathrm{~A}$
PREMIUM GRADE	$3 \mathrm{~A} \& 5 \mathrm{~A}$

CAUTION

Substituting with a higher capacity fuse. or connection without a fuse may result in damage to the unit.

TAPE HEAD AND CAPSTAN CLEANING

1. To obtain optimum performance, clean the head and capstan as often as necessary, depending upon frequency of use and tape cleanliness.
2. To clean the tape head and capstan, use a cotton swab dipped in ordinary rubbing alcohol.
 Wipe the head and capstan.

SPEAKER CHECKING

1. Check the speaker by using an ohmmeter.

If an ohmmeter indicates the impedance of the speaker when checking between the speaker (+) and speaker (-) of the same channel, the speaker is ok.
2. If clicking sound is emitted from the speaker when the ohmmeter plugs touch the speaker terminals, the speaker is ok.

ANTENNA (AUTOMATIC)

INSPECTION

Connect the motor terminals directly to the battery and check that the motor operates smoothly. Next, reverse the polarity and check that the motor operates smoothly in the reverse direction.

STRUCTURAL VIEW

13P Connector (M34-1)

No.	Circuit	No.	Circuit
1	Speaker rear LH (+)	8	Speaker front LH (+)
2	Speaker front LH (+)	9	Battery (+)
3	Accessory power (+)	10	Power antenna
4	Speaker front RH (+)	11	Speaker front RH (-$)$
5	Speaker rear RH $(+)$	12	Speaker rear RH (-$)$
6	ILL (+)	13	ILL (-1
7	Speaker rear LH $(-)$		

STRUCTURAL VIEW (BASE GRADE)

STRUCTURAL VIEW (MEDIUM GRADE)

-FRONT SIDE-

H 450

-BACK SIDE-

13P Connector (M34-1)

No.	Circuit	No.	Circuit
1	Speaker rear LH (+)	8	Speaker front LH (+)
2	Speaker front LH (+)	9	Battery (+)
3	Accessory power (+)	10	Power antenna
4	Speaker front RH (+)	11	Speaker front RH (-)
5	Speaker rear RH (+)	12	Speaker rear RH (-)
6	ILL (+)	13	ILL (-)
7	Speaker rear LH (-)		

14P Connector (M34-3)

No.	Circuit	No.	Circuit
1	ILL (-)	8	Speaker rear LH (+)
2	Speaker rear RH (-)	9	Speaker front LH (+)
3	Speaker front RH (-)	10	ACC
4	Speaker rear RH (+)	11	B+
5	Speaker rear LH (-)	12	Speaker front RH (+)
6	Power antenna	13	Speaker rear RH (-)
7	ILL (+)	14	Ground

STRUCTURAL VIEW (DELUXE GRADE)

-FRONT SIDE-

H-600

H-565

-BACK SIDE-

13P Connector (M34-1)

No.	Circuit	No.	Circuit
1	Speaker rear LH (+)	8	Speaker front LH (+)
2	Speaker front LH (+)	9	Battery (+)
3	Accessory power (+)	10	Power antenna
4	Speaker front RH (+)	11	Speaker front RH (-)
5	Speaker rear RH (+)	12	Speaker rear RH (-)
6	ILL $(+)$	13	ILL $(-)$
7	Speaker rear LH $(-)$		

14P Connector (M34-3)

No.	Circuit	No.	Circuit
1	ILL (-)	8	Speaker rear LH (+)
2	Speaker rear RH (-)	9	Speaker front LH (+)
3	Speaker front RH (-)	10	ACC
4	Speaker rear RH (+)	11	B+
5	Speaker rear LH (-)	12	Speaker front RH (+)
6	Power antenna	13	Speaker rear RH (-)
7	ILL (+)	14	Ground

STRUCTURAL VIEW (PREMIUM GRADE)

-FRONT SIDE-

H-700

H-590

-BACK SIDE-

5P Connector (M34-2)

No.	Circuit
1	Battery ($($)
2	Accessory power $(+)$
3	Ground
4	Illumination (+)
5	Power antenna

AUDIO

REMOVAL AND INSTALLATION

RADIO UNIT

1. Remove the center lower crash pad facia panel.
2. Unscrew the mounting screws and remove the radio unit from the mounting bracket.
3. Replace in reverse order of preceding steps.

SPEAKER

FRONT SPEAKER

1. Remove the front speaker grille.
2. Remove the speaker mounting bolts.
3. Remove the speaker assembly.
4. Replace in reverse order of the preceding steps.

REAR SPEAKER

1. Remove the speaker mounting nuts.
2. Disconnect the wiring connector.
3. Replace in reverse order of the preceding steps.

ANTENNA (AUTOMATIC)

REMOVAL

1. Remove the luggage side trim.

2. Remove the antenna mounting nuts and tapping screw for ground.
3. Disconnect the wiring connector and antenna cable.
4. Remove the antenna assembly.
5. Replace in reverse order of the preceding steps.

WINDSHIELD WIPER AND WASHER

SPECIFICATIONS

Items	Specifications
Wiper motor	
Rated voltage	DC 12V
Testing voltage	13.5 V (terminal voltage)
Starting voltage	MAX. 8V
Operating voltage range	DC 10~15 V
Load speed (10 kg.cm)	
Low	48 ~ $56 \mathrm{rpm} / \mathrm{MAX}$. 3.5 A
High	64 ~ $78 \mathrm{rpm} / \mathrm{MAX}$. 4.5 A
Load speed (40 kg.cm)	
Low	40 ~ $48 \mathrm{rpm} / \mathrm{MAX}$. 5.5 A
High	$56 \sim 68 \mathrm{rpm} / \mathrm{MAX} .7$ A
Wiper blade	
Wiping angle	
Driver's side	$87.2^{\circ}+1$
Passenger's side	$100^{\circ}-5$
Wiper blade length	510 mm
Intermittent wiper relay	
Rated voltage	DC 12 V
Operating voltage range	DC 9 ~ 16 V
Load capacity range	MAX. 60 A
Windshield washer	
Motor type	DC ferrite magnet type
Pump type	Centrifugal pump
Rated voltage	DC 12 V
Current	MAX. 3.9 A
Discharge pressure	$1.2 \mathrm{~kg} / \mathrm{cm}^{2}$
Flow rate	Min. $1320 \mathrm{cc} / \mathrm{min}$.
Over load capacity (continuous operation)	
With water	MAX. 60 sec
Racing	MAX. 20 sec

COMPONENTS

TROUBLESHOOTING

Problem	Possible cause	Remedy
Wipers do not operate or return to off position	Wiper fuse blown Wiper motor faulty Wiper switch faulty Wiring or ground faulty	Replace fuse and check for short Check motor Check switch Repair as necessary
Wipers do not operate in INT position	Intermittent relay faulty Wiper switch faulty Wiper motor faulty Wiring or ground faulty	Check intermittent relay. Check switch Check motor Repair as necessary
Washers do not operate	Washer hose or nozzle clogged Washer motor faulty Washer switch faulty Wiring faulty	Repair as necessary Replace motor Check switch Repair as necessary

SERVICE ADJUSTMENT PROCEDURES

WIPER MOTOR

Speed operation check

1. Remove the connector from the wiper motor.
2. Attach the positive (+) lead from the battery to terminal 5 and the negative (-) lead to terminal 3.
3. Check that the motor operates at low speed.
4. Connect the positive (+) lead from the battery to terminal 6 and the negative (-) lead to terminal 3.

5. Check that the motor operates at high speed.

Automatic stop operation check

1. Operate the motor at low speed.
2. Stop the motor operation anywhere except at the off position by disconnecting terminal 5.
3. Connect terminals 5 and 2.
4. Attach the positive (+) lead from the battery to terminal 1.
5. Check that the motor stops running at the off position.

SERVICE POINTS OF REMOVAL

REMOVAL OF FRONT DECK PANEL

Unscrew the mounting screws to pry up the front deck panel and remove the front deck panel.

WINDSHIELD WASHER

COMPONENTS

INSPECTION

WASHER MOTOR

1. With the washer motor installed to the washer tank, fill the washer tank with water.
2. Connect battery positive (+) and negative (-) cables to terminals 2 and 1 respectively to see that the washer motor runs and water is pumped.

SERVICE ADJUSTMENT PROCEDURES

1. Check the washer fluid contact point.
2. Adjust the washer fluid contact point by using a metal wire to move the washer nozzle ball.
3. If the amount of washer fluid ejected is too small, check for clogged, bent or crushed washer piping. Check the clipped points too, because the tube might be crused.

WINDSHIELD WIPER AND WASHER SWITCH INSPECTION

Inspect the switch continuity between the terminals.

Terminal Position	LO	HI	S	INT	EW	INT(T)
OFF	\bigcirc		0			
INT	O		\bigcirc	$\bigcirc-0=10$		
LO	O				O	
HI		\bigcirc			O	
Terminal Position	W			EW		
OFF						
ON	O			0		

If continuity is not as specified, replace the switch.

INTERMITTENT WIPER RELAY

INSPECTION

The intermittent relay operating time is controlled by variable resistance.
When the wiper system has been troubleshooted, replace the intermittent relay with other new one. And then the system is completely operated, the relay is faulty.

WIPER BLADE RUBBER REPLACEMENT

1. Pull out the rubber and backing blade from the stopper side.
2. Remove the backing blade from the rubber.
3. To attach a new rubber, assemble the rubber and backing blade, insert from the direction opposite the stopper, and secure by the stopper. Note that, because the backing blade is curved, installation should be as shown in the figure.

CLOCK

CLOCK

SPECIFICATIONS

Items	Specifications
Rated voltage	DC 12V
Operating voltage range	DC $10 \sim 16 \mathrm{~V}$
Time accuracy	Within $\sim 2 \mathrm{sec} . /$ day (at DC 13V)
Operating temperature range	$-30 \sim+80^{\circ} \mathrm{C}\left(-22 \sim+176^{\circ} \mathrm{F}\right)$
Current consumption (with DC 13V)	MAX. 150 mA

REMOVAL

1. Remove the 4 screws and pull out the cluster.

2. Disconnect the wiring connector.
3. Remove the digital clock assembly by unscrewing the 2 screws.

CAUTION

The clock is composed of delicate electronic components containing a crytal oscillator, transistor, etc. and should be handled with care. Specialized technical skill is needed to repair the internal mechanism of this clock. Do not attempt to disassemble it. If the clock itself is malfunctioning, replace the entire assembly.

CIGARETTE LIGHTER

SPECIFICATIONS

Items	Specification
Max. input	120 W
Insulation resistance	$\mathrm{MIN} .5 \mathrm{M} \Omega$ (at the 500 V megger)
Return time	$13 \pm 5 \mathrm{sec}$. (after pushing the lighter in)
Break temperature of fuse ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$138 \sim 151^{\circ} \mathrm{C}\left(278.4 \sim 303.4^{\circ} \mathrm{F}\right)$

INSPECTION

1. Take out the plug.
2. Examine the element spot connection for remnants of tobacco and other meterials.
3. Using an ohmmeter, check for the continuity of the element.

Cautions for use of the cigarette lighter socket as anxiliary power

1. When using a "plug-in" type of accessory, do not use anything with a load of more than 120 W .
2. It is recommended that only the lighter be inserted into the holder.

SLIDING SUN ROOF
 SPECIFICATIONS

Items	Specifications
Sun roof motor	
Rated voltage	DC 12V
Operating voltage	D C 9~15V
Testing voltage	DC $13 \pm 0.2 \mathrm{~V}$
No load rotation and electric current	MAX 180 rpm, MAX. 6 A
Restriction torque and electric current	MIN $50 \mathrm{~kg} . \mathrm{cm}$, MAX 35 A
Clutch quality for output shaft	
Early days torque	$30 \sim 40 \mathrm{~kg} . \mathrm{cm}$
20,000 cycle test	$25 \sim 50 \mathrm{~kg} . \mathrm{cm}$
Insulating resistance	MIN $1 \mathrm{M} \Omega$ (with 200 V megger)
Sun roof relay	
Rated voltage	DC 12 V
Rated load	Motor 6 A
	Lock 15 A
Operating voltage	DC 9-15 V
Operating temperature	-40-100 ${ }^{\circ} \mathrm{C}\left(40 \sim 212{ }^{\circ} \mathrm{F}\right)$
Excitation current	MAX. 250 mA
Voltage drop (between both terminals)	MAX. 0.15 V
Sun roof motor switch	
Rated load	DC $12 \mathrm{~V}, 1 \mathrm{~A}$
Type of operation	Push ON and self return
Operating force	$0.5 \sim 1.0 \mathrm{~kg}$

INSPECTION

MOTOR

1. Disconnect the motor connector.
2. Apply DC 12 V to the 0.85 YR wire and ground the 0.85 Y wire.
3. Check that the motor turns in the direction to tilt up and closed position.
4. Reverse the connections and check that the motor turns from open, to closed, to tilt up position.

RELAY

1. Check the continuity between the terminals " A " and " B ", " C " and " F " by using an ohmmeter.
2. Apply DC 12 to the terminal "A".
3. Ground the terminal "B".
4. Check for continuity between the terminals " C " and " E ".

SWITCH

Use an ohmmeter to check the continuity of the switch. If the continuity is not as specified, replace the switch.

Terminal	SO	SC	TU	TD	E		
	OFF						
Slide switch	Open	Close					

PASSIVE SEAT BELT (FOR U.S.A.)

SPECIFICATIONS

Items	Specifications
Electronic control unit	
Rated voltage	DC 12 V
Operating voltage	DC $9-16 \mathrm{~V}$
Testing voltage	DC $13.5 \sim 14.5 \mathrm{~V}$
Operating temperature	$-40 \sim+85^{\circ} \mathrm{C}\left(-40 \sim+185^{\circ} \mathrm{F}\right)$
Motor	DC 12 V
Rated voltage	D C $9-16 \mathrm{~V}$
Operating voltage	$-35 \sim+85^{\circ} \mathrm{C}\left(-31 \sim+185^{\circ} \mathrm{F}\right)$
Operating temperature	

SPECIAL SERVICE TOOL

Tool (Number and name)	Illustration	Use
09888-33000		Reading diagnosis
Diagnostic controller		

COMPONENTS

TORQUE : Nm (kg.cm, lb.ft)

DEFINITION
$\left.\begin{array}{|l|l|}\hline \text { ITEMS } & \text { DEFINITIONS } \\ \hline \text { A PILLAR } & \begin{array}{l}\text { This is the forward pillar of the front door. The Diagonal belt should be at or } \\ \text { moving to this position when the ECU is in the "STOWED MODE". }\end{array} \\ \hline \text { B PILLAR } & \begin{array}{l}\text { This is the rear pillar of the front door. The diagonal belt should be at or moving } \\ \text { to this position when the ECU is in the "LATCHED MODE". }\end{array} \\ \hline \text { STOWED MODE } & \begin{array}{l}\text { This is the output mode of the ECU which commands the Diagonal belt to be } \\ \text { at or moving to the "A PILLAR". }\end{array} \\ \hline \text { LATCHED } & \begin{array}{l}\text { This is the output mode of the ECU which commands the Diagonal belt to be } \\ \text { at or moving to the "B PILLAR". }\end{array} \\ \hline \begin{array}{l}\text { RETRACTOR INHIBITOR } \\ \text { MODE }\end{array} & \begin{array}{l}\text { This is the output mode of the ECU which commands the Diagonal belt to stay } \\ \text { in the current "STOWED" or "LATCHED" mode and activate the RETRACTOR } \\ \text { INHIBIT SOLENOID. }\end{array} \\ \hline \begin{array}{l}\text { RETRACTOR INHIBITOR } \\ \text { SOLENOID }\end{array} & \begin{array}{l}\text { The solenoid is used to keep the retractor from locking while the Diagonal belt } \\ \text { is moving to or from the "A or B PILLAR". }\end{array} \\ \hline \text { DIAGONAL TIMEOUT } & \begin{array}{l}\text { A DIAGONAL TIMEOUT will stop the motor if the Diagonal belt does not reach } \\ \text { the correct position within a period of } 15 \text { seconds. This is used to keep the motor } \\ \text { from running during a MOTOR and RAIL failure. A DIAGONAL TIMEOUT causes } \\ \text { a warning if the ignition is on. The ECU will recognize a DIAGONAL TIMEOUT } \\ \text { until the output mode changes to or from STOWED or LATCHED. }\end{array} \\ \hline \text { VERSION 1 } & \text { Version 1 (KEY IN type) ECU's use the KEY IN switch to drive the motor logic. }\end{array}\right\}$

WARNING LOGIC

The warnings are listed in order of priority thus a higher priority warning will always occur over a lower priority warning. If a higher priority warning occurs while in a lower priority warning, the higher output will occur until no longer needed, then the lower warning will resume. All warnings are off when the IGN is off except FMVSS114 chime which is only activated when the IGN is off. All oscillating 1 Hz outputs have a 50% duty cycle.

ITEMS	DESCRIPTION	WARNING
SOLENOID WARNING	Activated if RTR INH SOLENOID is grounded externally and IGN ON.	LAMP ON BUZZER OFF CHIME OFF
DIAGONAL TIMEOUT WARNING	Activated if seat belt transport is not at the correct position for a period of 15 seconds and delayed 15 seconds after IGN ON.	LAMP [1 Hz] BUZZER [1 Hz] (60 SEC TIMEOUT) CHIME OFF
DIAGONAL DISCONNECT WARNING	Activated if DIAGONAL DISCONNECT INPUT is active and IGN ON.	LAMP [1 Hz] BUZZER [1 Hz] (6 SEC TIMEOUT)
LAP DISCONNECT WARNING (drivers only)	Activated if LAP CONNECT INPUT is not active during the first 6 seconds after IGN ON.	LAMP ON BUZZER OFF CHIME [1 Hz]
OK WARNING	Always activated during the first 6 seconds after IGN ON unless a higher priority warning is active.	LAMP ON BUZZER OFF CHIME OFF
LATCHED WARNING	Activated if (IGN ON) and (LATCHED MODE) and (B SWITCH NOT ACTIVE).	LAMP ON BUZZER OFF
CHIME OFF		

DIAGNOSIS

The Diagnostic Controller receives the serial information from the Seatbelt ECU and displays this information on 16 red LEDs. This information is useful for diagnosis and testing.

The Diagnostic Controller is plugged into the Passive Seatbelt ECU through the B pillar of the car with a 5 pin connector.

When the Diagnostic Controller is plugged into the ECU, it performs a 3 second LED test. All 16 LEDs should turn on for 3 seconds. If all 16 LEDs do not turn on during the first 3 seconds, the ECU does not have power applied to it or the Diagnostic Controller does not work correctly.

After the 3 second LED test, the LED should be continuously updated with the current input signals and output mode. If all LEDs stay on after the lamp test, the ECU is not communicating with the Diagnostic Controller and may not be working correctly.

When the ECU is working properly, it should be in only one of the 3 modes (STOWED, LATCHED, RTR INHIBIT). This mode is determined from the following input signals (SPEED, IGN ON, DOOR CLOSED, REVERSE).

If the STOWED MODE is active, the Diagonal belt should be at or move to the "A PILLAR". If the Diagonal belt is moving to the "A PILLAR", the "A SWITCH LED" will be OFF. If the Diagonal belt is at the "A PILLAR" then both the "STOWED MODE LED" and "A SWITCH LED" are ON.

If the LATCHED MODE is active, the Diagonal belt should be at or move to the "B PILLAR". If the Diagonal belt is moving to the "B PILLAR". the "B SWITCH LED" will be OFF. If the Diagonal belt is at the "B PILLAR", both the "LATCHED MODE LED" and "B SWITCH LED" are ON.

If the STOWED MODE is active but the B SWITCH is active or the LATCHED MODE is active but the A SWITCH is active, then check if a DIAG TOUT has occurred.

If the Diagonal belt is stopped between the A PILLAR and B PILLAR, check if a DIAG TOUT has occurred. The DIAG TOUT will cause the motor to stop after 15 seconds if the Diagonal belt did not reach the appropriate position.

LED OUTPUT (DIAGNOSIS OUTPUT)

ITEMS	DESCRIPTIONS
STOWED	This LED is ON if the ECU is in the STOWED mode. The STOWED mode indicates that the seatbelt transport should be moving to the STOWED position or already at the STOWED position. The only exception to this is a failure such as a motor STALL or a DIAGONAL TOUT.
A SW	This LED corresponds to the "A SWITCH" on the motor and rail (J3-3). This LED is $O N$ if the " $A S W$ " is active which indicates that the motor transport is at the STOWED position. The STOWED LED should be ON when the "A SW" LED is ON unless a STALL or a DIAGONAL TOUT has occurred.
LATCHED	This LED is ON if the ECU is in the LATCHED mode. The LATCHED mode indicates that the seatbelt transport should be moving to the LATCHED position or already at the LATCHED position. The only exception to this is a failure such as a motor STALL or a DIAGONAL TOUT.
B SW	This LED corresponds to the "B SWITCH" on the motor and rail (J3-4). This LED is $O N$ if the " $B S W$ " is active which indicates that the motor transport is at the LATCHED position. The LATCHED LED should be ON when the " B SW" is ON unless a STALL or a DIAGONAL TOUT has occurred.
SPEED	This LED is ON if the vehicle speed is greater than 3 MPH. This LED corresponds to the speed input signal on (J1-12). KEY IN This LED is ON if the key is inserted in the ignition switch. This corresponds to the KEY IN SWITCH on (J1-4).
IGN	This LED is ON if the ignition switch is on. This corresponds to the Ignition switch (J1-2).
DOOR CLOSED	This LED is ON if the door is closed. This corresponds to the DOOR CLOSED SWITCH on (J1-3).
REVERSE	This LED is ON if the transaxle is in reverse gear. This corresponds to the REVERSE SWITCH on (J1-1).
RTR INH	This LED is ON if the ECU Retractor Inhibit Mode is selected. This occurs if the IGN SWITCH ON DOOR OPEN REVERSE
KEY IN	This LED is ON if the KEY IN SWITCH is on. This corresponds to the KEY IN SWITCH (J1-4).
SOLENOID WARN	This LED is ON if the SOLENOID warning is active. This indicates that the Retractor Inhibit solenoid is shorted to ground.
VER 1	This LED is ON if the ECU is a Version 1 ECU. The Version 1 (KEY IN type) ECU's use the KEY IN switch to drive the motor logic. The Version 2 (IGN ON type) ECU's use the IGN switch to drive the motor logic.

LED OUTPUT (Diagnosis output) (Continued)

ITEMS	DESCRIPTIONS
DIAG TOUT	This LED is ON if a DIAGONAL TIMEOUT has occurred. A diagonal timeout is defined as the motor transport not at the correct position(STOWED or LATCHED) within a period of 15 seconds. When a diagonal timeout occurs, the motor stops and waits for the output mode to change (STOWED, LATCHED). The ECU will output a DIAG TOUT WARNING if a DIAGONAL TIMEOUT occurs and if the Ignition has been on for a period of 15 seconds.
DIAGONAL DISCONNECT	This LED is ON if the DIAGONAL DISCONNECT SWITCH is active (J1-10). The ECU will output a DIAG DISC WARNING if the DIAGONAL DISCONNECT SWITCH is active and if the Ignition switch is on.
LAP DISC	This LED is ON if the LAP BELT SWITCH is 'active (J1-6). The ECU will output a LAP DISC WARNING during the first 6 seconds after the ignition is turned on if the LAP DISCONNECT SWITCH is active.
FMVSS114 WARNING	This LED is ON if KEY IN IGN OFF DOOR OPEN
The ECU will output a FMVSS114 WARNING if this LED is ON.	

HORN

SPECIFICATIONS

Items	Specifications
Type	Plate type
Rated voltage	DC 12V
Current consumption	MAX. 3.5 A (at DC 12 V)
Sound level	$105 \pm 5 \mathrm{~dB}$ (at DC 12 V, 2 m)
Operating voltage range	$\mathrm{DC} 11 \mathrm{~V} \sim \mathrm{DC} 14.5 \mathrm{~V}$
Insulating resistance	MIN. $5 \mathrm{M} \Omega$ (By 500 V megger)
Basic frequency	
Low pitch	$360 \pm 20 \mathrm{~Hz}$ (at DC 12 V)
High pitch	$420 \pm 20 \mathrm{~Hz}$ (at DC 12 V)

REMOVAL

1. Disconnect the negative cable of the battery.
2. Remove the horn attaching bolt (on the radiator support panel).
3. Disconnect the horn connector.
4. Remove the horn.

ADJUSTMENT

Operate the horn, and adjust the tone to a suitable level (by turning the adjusting screw).

CAUTION

After the adjustment, apply a small amount paint around the screw head to keep it from loosening.

DOOR LOCK CONTROL SYSTEM

SPECIFICATIONS

items	Specifications	
Door lock actuator		
Rated voltage	DC 12 V	
Operating voltage range	D C $9-15 \mathrm{~V}$	
Lock current	MAX. 4.5 A	
Switch		
Contact resistance	MAX. 100Ω (at 1 mA)	
Insulating resistance	MIN $1 \mathrm{M} \Omega$	
Manual operating force	MAX. 0.4 kg (at rod type)	
	MAX. 0.5 kg (at lever type)	
Push/Pulling force	MIN. 2 kg (at DC 9V)	
Door lock control relay	DC 12 V	
Rated voltage	DC $9 \sim 16 \mathrm{~V}$	
Operating voltage range	$500+250 \mathrm{~ms}$	
Time interval (T)	\mid	

COMPONENTS

DOOR LOCK CONTROL ACTUATOR

CIRCUIT DIAGRAM

INSPECTION

1. Disconnect the actuator connector from the wiring harness.
2. Apply battery voltage (DC 12 V) to each terminal as shown in the below table and confirm that the actuator makes corresponding operation.

Front actuator

Operation	PUSH	
Terminal	UNLOCK	PULL
A	+	-
B	-	+

Rear actuator

Operation	PUSH LOCK	PULL UNLOCK
\mathbf{A}	+	-
B	-	+

NOTE : Energized (+), ground (-)

DOOR LOCK CONTROL RELAY

INSPECTION

1. After tracing the problem to the control relay, replace it with a new one. Check for proper operation.
2. If system operates properly, the original control relay is faulty.

POWER WINDOW REGULATOR SYSTEM

SPECIFICATIONS

Items	Specifications
Power window motor	
Rated voltage	DC 13.5 V
Rated current	6 A or less
Environment of use	
Temperature	- $4 \sim 80^{\circ} \mathrm{C}\left(40 \sim+176{ }^{\circ} \mathrm{F}\right)$
Electrical source (Motor terminal voltage)	DC 11 ~ 15 V
Power window relay	
Rated voltage	DC 12 V
Range of voltage used	DC $10 \sim 15 \mathrm{~V}$
Rated load current	20 A
Exciting coil rated current	MAX. 150 mA (at $24^{\circ} \mathrm{C}$)
Voltage drop between terminal	0.3 V or less
Power window switch (Main)	
Rated voltage	DC 12 V
Range of voltage used	DC 10~16 V
Operating temperature	$-30 \sim+80^{\circ} \mathrm{C}\left(-22 \sim+176{ }^{\circ} \mathrm{F}\right)$
Rated load current	20 A
Voltage drop	0.4 V or less
Insulating resistance	$1 \mathrm{M} \Omega$ or more (by DC 500 V megger)
Consumption current	0.35 A or less
Power window switch (Sub.)	
Rated voltage	DC 13V
Rated current	10 A
Voltage drop	0.3 V or less
Insulating resistance	$100 \mathrm{M} \Omega$ or more (by DC 500 V megger)
Operating force	$0.3 \sim 1.0 \mathrm{~kg}$
Operating temperature	$-30 \sim+80^{\circ} \mathrm{C}\left(-22 \sim+176{ }^{\circ} \mathrm{F}\right)$

COMPONENTS

POWER WINDOW MOTOR

REMOVAL

1. Detach the regulator assembly.
2. Disconnect the power window motor from the regulator assembly.

CAUTION

When loosening the connecting screws of the regulator and the motor assembly, the compressed force of the regulator spring may cause the regulator arm to spring up.

INSPECTION

Connect the motor terminals directly to the battery and check that the motor operates smoothly. Next reverse the polarity and check that the motor operates smoothly in the reverse direction. If the operation is abnormal, replace the motor.

POWER WINDOW RELAY

INSPECTION

Check for continuity between the terminals.

While power is not supplied
Between terminal L_{1} - B : no continuity
Between terminal $\mathrm{S}_{1}-\mathrm{S}_{2}$: Continuity
While power is supplied
Between terminal L_{1} - B : Continuity

POWER WINDOW SWITCH (MAIN)

CIRCUIT DIAGRAM

POWER WINDOW SWITCH (SUB.)

CIRCUIT DIAGRAM

INSPECTION

Operate the switch, and check for the continuity between the terminals.
If continuity is not as specified, replace the switch.

Terminal name Switch position	B	D	U	MD	MU	ILL $(+)$	ILL(-)
UP	$\mathrm{O}-\mathrm{O}-\mathrm{O}$						
OFF							
DOWN	O					\bigcirc	δ

INSPECTION

1. Disconnect the power window main switch.
2. Operate the switch, and check for continuity between the
terminals.
3. If continuity is not as specified, replace the switch.

REMOTE CONTROL MIRROR

SPECIFICATIONS

Items	Specifications
Remote control mirror actuator	
Rated voltage	DC 12 V
Rated current	60 mA
Travel speed	$3^{\circ} \pm 1^{\circ} / \mathrm{sec}$ (at DC 13.5 V)
Current consumption	MAX 150 mA
Adjustment angle	9° (up. down. right. left)
Remote control mirror switch	DC 12 V
Rated voltage	0.2 A (MAX. 0.5 A$)$
Rated current	

COMPONENTS

MIRROR SWITCH

Inspection

1. Disconnect the mirror switch connector from the wiring harness.
2. Operate the switch and check for continuity between the terminals. If continuity is not as specified, replace the mirror switch.

Class	Terminal No.	2	3	1	6	5	7	4
	Direction	VL	HL	VR	HR	C	B(+)	$E(-)$
LH	Up	O°					mom	\cdots
	Down	O	nama				max	+
	Off							
	Left		\bigcirc	masm	ck		0	
	Right		O	пия	x			mo
RH	Up			O			no	mio
	Down			On	Sex		O	\square
	Off							
	Left					Com	0	\cdots
	Right					O	\square	\cdots

REMOVAL

1. Remove the outside mirror switch on the rear console.
2. Disconnect the connector.

MIRROR ACTUATOR

Inspection

Apply battery voltage to each terminal as shown in the table and confirm that the mirror makes corresponding operation.

	Power supply	Ground	1	2	3
Up	Onma		5		
	\bigcirc	,)
Down		\bigcirc	-		
Left	\bigcirc	\%aman	-	1趗	
		\bigcirc			5
	○	-	zaxack		-
Right		\bigcirc	\%	1,	

NOTE

VL : Vertical Left
VR : Vertical Right
HL : Horizontal Left
HR : Horizontal Right

FUEL FILLER DOOR OPENER

SPECIFICATIONS

Items	Specifications
Fuel filler door opener switch	
Rated voltage	DC 12 V
Voltage drop	0.15 V or less
Insulating resistance	MIN. $5 \mathrm{M} \Omega$ (With 500 V megger)
Operating force	$0.3 \sim 1.0 \mathrm{~kg}$
Fuel filler door opener	
Rated voltage	DC 12 V (short time, rating)
Exciting current	MAX. 15 A (at 12 V)
Operating voltage	DC $10 \sim 15 \mathrm{~V}$
Operating temperature	$-41 \sim+80^{\circ} \mathrm{C}\left(40 \sim+107^{\circ} \mathrm{F}\right)$.

FUEL FILLER OPENER SWITCH

INSPECTION

Operate the switch, and check continuity between the terminals. If continuity is not as specified, replace the switch.

Position	1	2
ON	Terminal	
OFF		

FUEL FILLER OPENER
 INSPECTION

Check continuity between terminals 1 and 2 . If there is no continuity, replace the fuel filler opener.

REMOVAL

1. Remove the luggage compartment side trim.
2. Open the fuel filler door.
3. Loosen the three bolts securing the fuel filler opener and then disconnect the wiring connector.

TRUNK LID OPENER

SPECIFICATIONS

Items	Specifications
Trunk lid opener	DC 12 V
Rated voltage	Min. $1 \mathrm{M} \Omega$ (with 500 V megger)
Insulating resistance	Max. 12 A
Rated current	Min. 3.6 kg
Initial pulling torque	
Circuit breaker (at 7.5 A)	$4 \sim 9 \mathrm{sec}$.
Trip time	5 sec.
Recovery time	
Trunk lid opener switch	DC 12 V
Rated voltage	21 A
Current consumption	$0.5 \sim 1.1 \mathrm{~kg}$
Operating force	Min. $5 \mathrm{M} \Omega$ (with 500 V megger)
Insulating resistance	

COMPONENTS

INSPECTION

TRUNK LID OPENER SWITCH

Remove the trunk lid opener switch and check contunuity between the terminals

	T	B
L		
OFF		
ON	O	O

TRUNK LID OPENER

Remove the trunk lid opener and check continuity between the terminal "a" and "b". If there is no continuity, replace the opener assembly.

E.T.A.C.S. (Electronic Time and Alarm Control System)
 SPECIFICATIONS

Items	Specifications
Rated voltage	DC 12 V
Operating voltage range	DC $9-16 \mathrm{~V}$
Voltage drop	MAX. 0.25V
Before durability	MAX. 0.4 V
After durability	$100 \mathrm{M} \Omega$ with 500 V megger
Insulation resistance	$-30 \sim+80^{\circ} \mathrm{C}$ (-22 $\sim+176^{\circ} \mathrm{F}$)
Operating temperature range	
Rated load	DC 12V, 6A (Inductive load)
Variable intermittent wiper	DC 12V.200mA (Inductive load)
Rear defogger timer	DC 12V, 1.2W (Lamp load)
Seat belt warning	DC 12V, 1.2W, 10W (Lamp load)
Key illumination \& delay out room lamp	DC 12V, 200mA (Inductive load)
Door lock actuator (lock, unlock)	DC 13.5V.350mA (Inductive load)
Chime bell	

COMPONENTS

INSPECTION

VARIABLE INTERMITTENT WIPER

1. Operating characteristic: Fig. 1
2. Time specification
T_{1} : MAX. 0.5 sec.
T_{2} : Time of wiper motor 1 rotation.
$T_{3}: 1.5 \pm 0.7 \mathrm{sec}$. $(V R=0 k \Omega \gamma 10.5 \pm 3 \mathrm{sec}$. $(V R=50 \mathrm{k} \Omega$
3. Variable resistance (VR) : $0 \sim 50 \mathrm{k} \Omega$

WASHER

1. Operating characteristic: Fig. 2
2. Time specification
T_{1} : $0.4 \sim 1.2 \mathrm{sec}$
T_{2} : 2.0~4.7 sec
3. This function should be operated preferentially even though the variable intermittent wiper is operating.

REAR DEFOGGER (HEATED) TIMER

1. Operating characteristic: Fig. 3
2. Time specification
T_{1} : MIN. 0.5 sec .
$\mathrm{T}_{1}: 10 \pm 3 \mathrm{~mm}$

SEAT BELT WARNING

1. Operating characteristic: Fig. 4
2. Time specification
$\mathrm{T}_{1}: 6 \pm 1 \mathrm{sec}$.
T_{2} : MAX. $6 \pm 1 \mathrm{sec}$.
$\mathrm{T}_{3}: 0.3 \pm 0.1 \mathrm{sec}$.

DOOR LOCK ACTUATOR

1. Operating characteristic: Fig. 5
2. Time specification
T_{1} : 0.5 sec .

IGN KEY HOLE ILLUMINATION

1. Operating characteristic: Fig. 6
2. Time specification
T_{1} : 6 sec.
T_{2} : 0~ sec.

DELAY OUT ROOM LAMP

1. Operating characteristic: Fig. 7
2. Time specification
T_{1} : 2 sec.
T_{2} : 4 sec .
T_{3} : 0~4 sec.

DOOR WARNING

1. Operating characteristic: Fig. 8
2. Time specification
T_{1} : $0.3 \pm 0.1 \mathrm{sec}$.

IGN KEY REMINDER

1. Operating characteristic: Fig. 9
2. Time specification

$$
\mathrm{T}_{1}: 5 \mathrm{sec} .
$$

CONTROL UNIT

1. After tracing the problem to the control unit, replace it with a new one. Check for proper operation.
2. If system operates properly, the original control unit is faulty.

REAR WINDOW DEFOGGER (HEATED GLASS)

SPECIFICATIONS

Items	Specifications
Rear window defogger (heated) switch	
Rated voltage	DC 12 V
Operating force	$0.3 \sim 1.0 \mathrm{~kg}$
Insulating resistance	MIN. $5 \mathrm{M} \Omega$ (DC 500 V megger)
Indicator lamp	1.2 W
Rear window heated glass	
Rated voltage	DC 12 V
Power comsumption	$185 \pm 10 \mathrm{~W}$ (per sheet)

REAR WINDOW DEFOGGER SWITCH

INSPECTION

Disconnect the defogger switch connector from the wiring harness. Operate the switch, and check the continuity between the terminals

Position Terminal	B	E	ILL $(+)$	ILL (-)
OFF				
ON	O	O	O	

If continuity is not as specified, replace the switch.

PRINTED HEATER LINE CHECK

CAUTION,

Wrap tin foil around the end of the voltmeter test lead to prevent damaging the heater line. Apply finger pressure on the tin foil, moving the tin foil along the grid line to check for open circuits.

1. Turn on the defogger switch and use a voltmeter to measure the voltage of each heater line at the glass center point. If a voltage of approximately 6 V is indicated by the voltmeter, the heater line of the rear window is considered satisfactory.

2. If a heater line is burned out between the center point and $(+)$ terminal, voltmeter indicates 12 volts.

3. If a heater line is burned out between the center point and $(-)$ terminal, the voltmeter indicates 0 volt.

4. To check for open circuits, slowly move the test lead in the direction that the open circuit seems to exist. Try to find a point where a voltage is generated or changes to OV. The point where the voltage has changed is the open-circuited point.

Defogger OFF

5. Use an ohmmeter to measure the resistance of each heater line between a terminal and the center of a grid line and between the same terminal and the center of one adjacent heater line after another. The section involving a broken heater line indicates resistance twice as that in other section. In the affected section, move the test lead to a position where resistance sharply changes.

Repair

Provide the following items:

1. Conductive paint
2. Paint thinner
3. Masking tape.
4. Silicone remover
5. Thin brush

Wipe the glass adjacent to the broken heater line, clean with silicone remover and attach the masking tape as shown. Shake the conductive paint container well, and apply three coats with a brush at intervals of about 15 minutes apart. Remove the tape and allow sufficient time for drying before applying power.
For a better finish, scrape away excess deposits with a knife after completely dried. (allow 24 hours)

CAUTION

After repairing, clean the glass with a soft dry cloth or wipe along the grid line with a slightly moistened cloth.

$90 Y 192$

AUTOMATIC TRANSAXLE AND KEY LOCK CONTROL SYSTEM SPECIFICATION

Items	Specifications
Control unit	
Rated voltage	DC 12V
Operating voltage range	DC $9 \sim 16 \mathrm{~V}$
Operating temperature range	$-30^{\circ} \sim+80^{\circ} \mathrm{C}$ (-22 $\left.{ }^{\circ} \mathrm{F} \sim+176{ }^{\circ} \mathrm{F}\right)$
Rated load	MAX. 1A (A/T solenoid)
	MAX. 0.8A (Key lock solenoid)
A/T solenoid	
Rated voltage	DC 12V
Rated current	1A (MAX. 2A)
Operating voltage range	DC $9 \sim 16 \mathrm{~V}$
Operating temperature range	$-30^{\circ} \sim+80^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \sim+176{ }^{\circ} \mathrm{F}\right)$
Operating force	
Initial pull in force	0.4 kg.cm (at $12 \mathrm{~V}, 20^{\circ} \mathrm{C}$)
Spring force	$0.2 \mathrm{~kg} . \mathrm{cm}$ (at $12 \mathrm{~V}, 20^{\circ} \mathrm{C}$)
Holding force	$1.5 \mathrm{~kg} . \mathrm{cm}$ (at $12 \mathrm{~V}, 20^{\circ} \mathrm{C}$)
Key lock solenoid	
Operating voltage range	DC $9 \sim 16 \mathrm{~V}$
Operating temperature range	$-30^{\circ} \sim+80^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \sim+176{ }^{\circ} \mathrm{F}\right)$
Exciting current	MAX. 0.9A
Operating force	
Pull in force	MIN. $0.17 \mathrm{~kg} . \mathrm{cm}$ (at DC $7.5 \pm 0.1 \mathrm{~V}$)
Holding force	MIN. $0.25 \mathrm{~kg} . \mathrm{cm}$ (at DC $6 \pm 0.1 \mathrm{~V}$)
Parking position switch	
Rated load	1 A (resistance load, at DC 12V)
Operating force	$0.8 \pm 0.2 \mathrm{kgf}$
Operating temperature range	$-30^{\circ} \sim+80^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \sim+176{ }^{\circ} \mathrm{F}\right)$

COMPONENTS LAYOUT

A. Below front of center console
B. Shift lever assembly
C. Ignition key
D. Shift lever assembly
A. Control unit

C. Key lock solenoid

B. A/T solenoid

D. P/position switch

SYSTEM CHECK

KEY LOCK SYSTEM

1. Check that the ignition key cannot be turned to "LOCK (OFF)" position, when the position of the shift lever is not in "P" position.

2. Check that the ignition key turns to the "LOCK (OFF)" position, when the shift lever is set to the " P " position.

SHIFT LOCK SYSTEM

1. Check that under the following conditions, the shift lever cannot be moved from the "P" position to any other position.

IGNITION KEY POSITION : "ON"
BRAKE PEDAL : NOT DEPRESSED
BUTTON : PRESSED

2. Check that under the following conditions, the shift lever can be moved from the "P" position to other position.

IGNITION KEY POSITION : "ON"
BRAKE PEDAL : DEPRESSED
BUTTON : PRESSED

INSPECTION

TIMING CHART

AUTOMATIC TRANSAXLE SOLENOID

1. Remove the solenoid connector.
2. Using an ohmmeter, measure the resistance between terminals.

Standard resistance : 12-16

3. Attach the positive (+) lead from the battery to terminal 1. and the negative (-) lead to terminal 2.
4. Check that an operation noise can be heard from the solenoid.

KEY LOCK SOLENOID

1. Remove the solenoid connector.
2. Using an ohmmeter, measure the resistance between terminals.

Standard resistance : 12.5-1 6.5

3. Attach the positive (+) lead from the battery to terminal 2. and the negative (-) lead to terminal 1.
4. Check that an operating noise can be heard from the solenoid.

