

Terracan

Shop Manual

FORWORD

This shop manual is intended for use by service technicians of authorized Hyundai dealers to help them provide efficient and correct service and maintenance on Hyundai vehicles.

To ensure customer satisfaction with Hyundai products, proper service and maintenance by Hyundai technicians is essential. Consequently, it is important that service personnel fully understand the contents of this manual, which should be kept in a handy place for quick and easy reference.

All the contents of this manual, including photographs, drawings, and specifications, are the latest available at the time of printing. As modifications affecting service occur, dealers will be provided technical service bulletins or supplementary volumes. This manual should be kept carefully up-to date upon receipt of the new information.

Hyundai Motor Company reserves the right to make changes in design or to make additions to or improvements in its products without imposing any obligations upon itself to install them on its products previously manufactured.

MAY. 2004, Printed in Korea

Regarding the information which is not provided in this manual, refer to '02 TERRACAN" Shop Manual (Pub. No. : AH1S - EG11A.)

CAUTION:

Severe engine and transaxle damage may result from the use of poor quality fuels and lubricants that do not meet Hyundai specifications. You must always use high quality fuels and lubricants that meet the specifications.

NOTE : Regarding the groups in small characters, refer to Electrical Troubleshooting Manual. (Pub. No : AH1E-EG45C)

CONTENTS

TITLE	GROUP	
Fuel System (G6CV - GSL 3.5)	FL	F
Fuel System (D4BH - DSL 2.5)	FLA	
Fuel System (J3 TCI - DSL 2.9)	FLB	
Transaxle/Transmission	TR	

All rights reserved. No part of this publication may be reproduced, stored in any retrieval system or transmitted in any form or by any means without the prior written permission of Hyundai Motor Company.

Fuel System (G6CV - GSL3.5)

GENERAL

SPECIFICATION	FL-	3
SEALANT	FL-	2
SERVICE STANDARD	FL-	2
TIGHTENING TORQUE	FL-	4
SPECIAL SERVICE TOOLS	FL-	Ę

GASOLINE ENGINE CONTROL SYSTEM

COMPONENT LOCATION	. FL-	6
ECM TERMINAL LAYOUT	FL-	10
AIR FLOW SENSOR	FL-	14
INTAKE AIR TEMPERATURE SENSOR	FL-	17
MANIFOLD ABSOLUTE		
PRESSURE SENSOR	FL-	19
THROTTLE POSITION SENSOR		
ENGINE COOLANT		
TEMPERATURE SENSOR	FL-	25
KNOCK SENSOR	FL-	29
HEATED OXYGEN SENSOR	FL-	32
CAMSHAFT POSITION SENSOR	FL-	37
VEHICLE SPEED SENSOR	FL-	39
CRANKSHAFT POSITION (CKP) SENSOR		
PURGE CONTROL SOLENOID VALVE	FL-	44
IDLE SPEED CONTROL ACTUATOR	FL-	47
INJECTOR		
IGNITION COIL	FL-	54
IGNITION FAILURE SENSOR	FL-	55
MAIN RELAY CONTROL	FL-	57

DTC TROUBLESHOOTING PROCEDURES

DESCRIPTION FL- 58	
INSPECTION CHART FOR	
DIAGNOSTIC TROUBLE CODE	
TROUBLESHOOTING FOR DTC	
P0100 FL- 61	
P0101 FL- 61	
P0102 FL- 61	
P0103 FL- 61	
P0110 FL- 63	
P0112 FL- 63	
P0113 FL- 63	
P0115 FL- 65	
P0116 FL- 65	
P0117 FL- 65	
P0118 FL- 65	
P0120 FL- 66	
P0121 FL- 66	
P0122 FL- 66	
P0123 FL- 66	
P0130 FL- 68	
P0132 FL- 71	
P0133 FL- 73	
P0134 FL- 75	
P0135 FL- 78	
P0136 FL- 71	
P0140 FL- 80	
P0141 FL- 78	
P0150 FL- 68	
P0152 FL- 71	
P0153 FL- 73	
P0154 FL- 75	
P0155 FL- 78	
P0156 FL- 71	
P0160	
P0161 FL- 78	
P0171 FL- 82	
P0172 FL- 82	
P0174 FL- 82	
P0175 FL- 82	
P0201 FL- 85	
P0202	
P0203 FL- 85	
P0204 FL- 85	
1 020 T	

DTC TROUBLESHOOTING PROCEDURES

P0205.	F	=L-	85
P0206.	F	-L-	85
P0300.	F	-L-	86
P0301.	F	-L-	86
P0302.	F	-L-	86
P0303.	F	-L-	86
P0304.	F	-L-	86
	F		
P0306.	F	-L-	86
	F		
	F		
	F		
P0340	F	-L-	94
	F		
	F		
	F		
	F		
	F		
	F		
	F		
	F		105
P0510	F		106
1 0010	······	L	100

GENERAL

. .

SPECIFICATION E47442FB

ITEM		SPECIFICATION							
Fuel Tank	Capacity	75 lit. (18.5 U.S.	gal., 154 Imp.gal.)						
	Туре	Electrical, in-tank type							
Fuel Pump	Fuel Pressure	Vacuum hose disconnection	323 - 343 kPa (3.3 - 3.5 kg/cm, 47 - 50 psi)						
		Vacuum hose connection	264 kPa (2.7 kg/cm², 38.4 psi)						
	Туре	Variable re	esistor type						
Throttle Position Sensor (TPS)	Resistance	3.5 ~	6.5 kΩ						
	Voltago	C.T	0.3 ~ 0.9 V						
	Voltage	W.O.T	1.5 ~ 5.0 V						
Idle Speed Control	Туре	Moto	r Type						
Idle Switch	Туре	Contact type	(Built in TPS)						
Mass Air Flow (MAF) Sensor	Туре	HOT FIL	_M TYPE						
	Туре	Thermistor type							
Intake Air Temperature Sensor (ATS)	Resistance	2.33 ~ 2.97 kΩ at 20℃ (68°F)	0.31 ~ 0.43 ^k Ω at 80℃ (176°F)						
	Voltage	2.5 ~ 2.7 V at 20℃ (68°F)	0.6 ~ 0.8 V at 80 ℃ 176°F)						
	Туре	Thermistor type							
Engine Coolant Temperature Sensor (ECTS)	Resistance	2.33 ~ 2.97 kΩ at 20℃ (68°F)	0.31 ~ 0.43 kΩ at 80℃ (176°F)						
	Voltage	2.5 ~ 2.7 V at 20℃ (68°F)	0.6 ~ 0.8 V at 80℃ (176°F)						
	Туре	Zirconia (ZrO ₂) type							
	Voltage	0 ~	1 V						
Heated Oxygen Sensor (HO2S)	Heater	Front HO2S	3.3 Ω						
	Resistance	Rear HO2S	6.0 Ω						
Vehicle Speed Sensor (VSS)	Туре	Hall IC	sensor						
Camshaft Position (TDC) Sensor	Туре	Hall effe	ct sensor						
Crankshaft Position (CKP) Sensor	Туре	Hall effe	ct sensor						
le'aster	Туре	Electroma	gnetic type						
Injector	Resistance	13 ~	16 Ω						
Purge Control Solenoid	Туре	ON/OFF type							
Valve (PCSV)	Resistance	24.5 ~	24.5 ~ 27.5 Ω						

FL -4

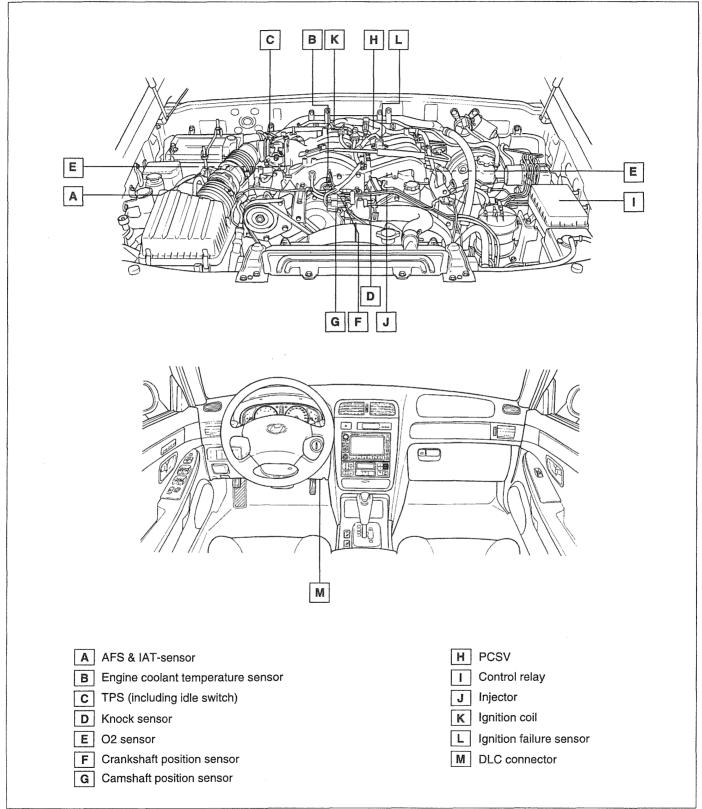
SEALANT

Water Temperature Sensor (WTS)	LOCTITE 962T or equivalent
--------------------------------	----------------------------

SERVICE STANDARD

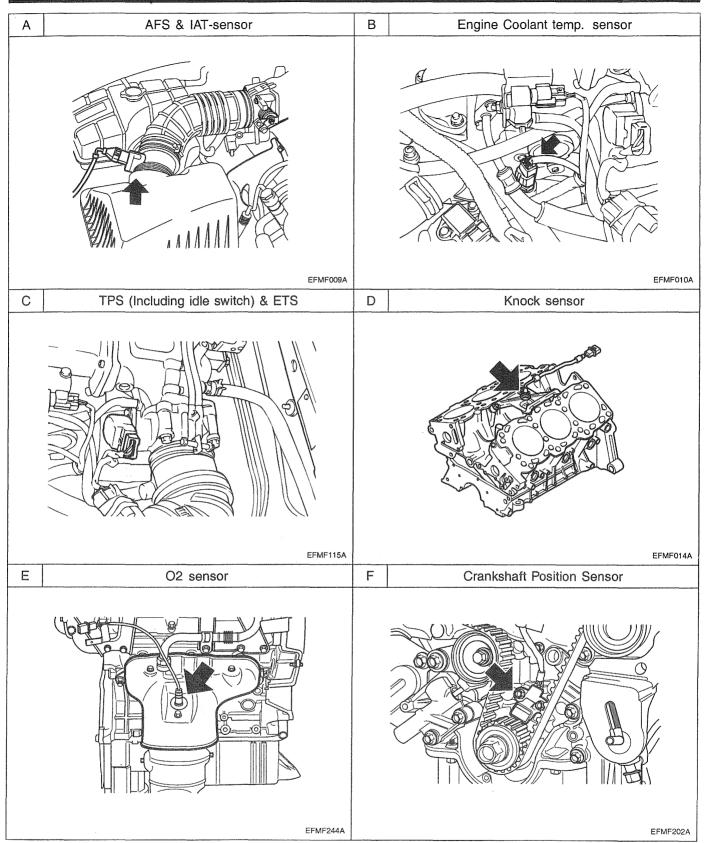
	Actual ignition timing		BTDC 5° ± 2°
	Nixongo	A/CON : OFF	800 ± 100
Quint idle encod	N-range	A/CON : ON	800 ± 100
Curb idle speed	Disance	A/CON : OFF	800 ± 100
	D-range	A/CON : ON	800 ± 100

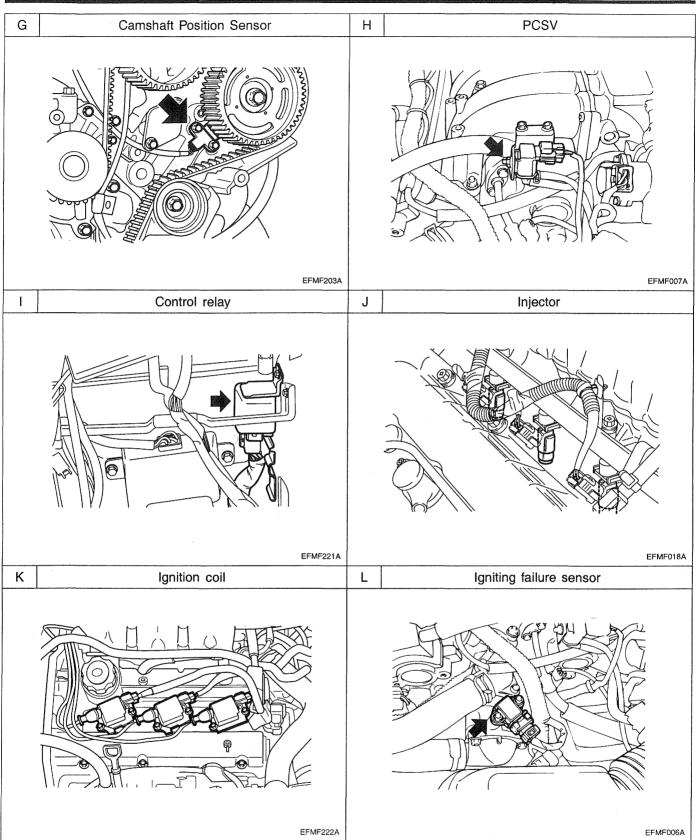
TIGHTENING TORQUE

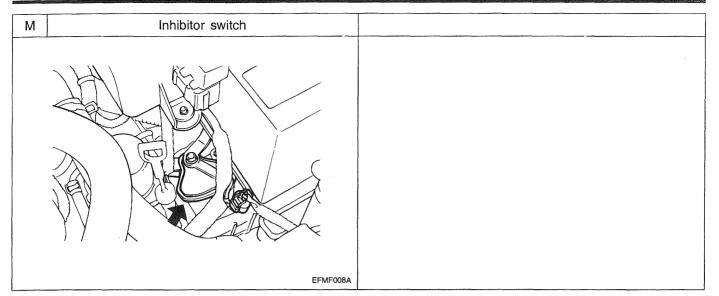

Item	Nm	Kg.cm	lb.ft
Delivery pipe installation bolt	10 - 13	100 - 130	7 - 9
Engine coolant temperature sensor	20 - 40	200 - 400	14 - 29
Heated oxygen sensor	40 - 50	400 - 500	29 - 36
Heated oxygen sensor connector bracket bolt	8 - 12	80 - 120	5.8 - 8.7
Fuel pressure regulator installation bolt	7 - 11	70 - 110	5 - 8
High pressure hose and fuel main pipe	30 - 40	300 - 400	22 - 29
High pressure hose and fuel filter	25 - 35	250 - 350	18 - 25
High pressure hose to delivery pipe	3 - 4	30 - 40	2.2 - 3
Fuel pump assembly to fuel tank	2 - 3	20 - 30	1.4 - 2.2
High pressure hose at fuel tank	30 - 40	300 - 400	22 - 29
Throttle body to surge tank	10 - 13	100 - 130	7.2 - 9
Fuel tank drain plug	15 - 25	150 - 250	11 - 18
Fuel filter mounting bolts	9 - 14	90 - 140	6.5 - 10
Accelerator arm bracket bolts	8 - 12	80 - 120	5.8 - 8.7
ISC motor (stepper motor)	2.5 - 4.5	25 - 45	1.8 - 3.3
Fuel sender to fuel tank	2 - 3	20 - 30	1.4 - 2.2

SPECIAL SERVICE TOOLS EFDAB6FD

Tool (Number and name)	Illustration	Application
09353-24100 Fuel Pressure Gauge		Measuring the fuel line pressure
	EFDA003A	
09353-38000 Fuel Pressure Gage Adapter		Connection between the delivery pipe and fuel feed line
	BF1A025D	
09353-24000 Fuel Pressure Gage Connector		Connection between Fuel Pressure Gage (09353-24100) and Fuel Pressure Gage Adapter (09353-38000)
	EFDA003C	

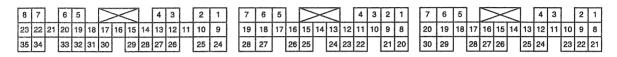

GASOLINE ENGINE CONTROL SYSTEM


COMPONENT LOCATION E2214D84



EFMB029A

GASOLINE ENGINE CONTROL SYSTEM


ECM TERMINAL LAYOUT E3BA7C12

1. ECM CONNECTOR

A. ECM CONNECTOR

\int	1	2		3	4	U		U		U	5	6	U	7	8	1	2	3	4	U		U		IJ	5	6	7	1	2	U	3	4	U		U		U	5	6	7
	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	8	9	10	11	12	13	14	15	16	17	18	19	8	9	10	11	12	13	14	15	16	17	18	19	20
	24	25	ſ	26	27	28	29	\int	30	31	32	33	N	34	35	20	21	\int	22	23	24	\bigcap	25	26	\bigcap	27	28	21	22	23	N	24	ක	\bigcap	26	27	28	\bigcap	29	30

B. HARNESS SIDE CONNECTOR

E200-1

E200-2

E200-3

EFMF001A

2. ECM TERMINAL FUNCTION

[CONNECTOR E200-1]

PIN	SIGNAL	CONNECTED TO	REMARK
1	Injector (Cylinder #1)	Injector (Cylinder #1)	
2	Injector (Cylinder #4)	Injector (Cylinder #4)	
3	Heated Oxygen Sensor [HO2S] Heater (Bank 2, Sensor 1)	Heated Oxygen Sensor [HO2S] (Bank 2, Sensor 1)	Except for LEAD Engine
4	Heated Oxygen Sensor [HO2S] Heater (Bank 1, Sensor 1)	Heated Oxygen Sensor [HO2S] (Bank 1, Sensor 1)	Except for LEAD Engine
5	-		
6	-	-	
7	-	-	
8	Alternator "G" Term	Alternator	
9	Injector (Cylinder #2)	Injector (Cylinder #2)	
10	Injector (Cylinder #5)	Injector (Cylinder #5)	
11	Ignition Coil (Cylinder #1, 4)	Ignition Coil (Cylinder #1, 4)	
12	Ignition Coil (Cylinder #2, 5)	Ignition Coil (Cylinder #2, 5)	
13	Ignition Coil (Cylinder #3, 6)	Ignition Coil (Cylinder #3, 6)	
14	ISC Motor Control	ISC Motor	
15	ISC Motor Control	ISC Motor	
16	Purge Control Sloenoid Control (PWM)	Purge Control Sloenoid Valve	
17	Fan Relay - High (Radiator)	Fan Relay	
18	Fan Relay - Low	Fan Relay	

GASOLINE ENGINE CONTROL SYSTEM

PIN	SIG	N I A I		1
	SIGNAL		CONNECTED TO	REMARK
19	TPS	PWM	TCM, TOD Control Module	
20	Mither the procession of the set	Fuel Pump Relay	Fuel Pump Relay	
21	Without Immobilizer	A/C Relay (Power)	A/C Relay	
20	With Immobilizer	A/C Relay (Power)	A/C Relay	
21	With Immobilizer Fuel Pump Relay		Fuel Pump Relay	
22	Malfunction Indic	ator Lamp (MIL)	Malfunction Indicator Lamp (MIL)	
23	Spark Timing	Adjustment (+)	Check Connector (for Diagnosis)	
24	Injector (Cylinder #3)		Injector (Cylinder #3)	
25	Injector (Cylinder #6)		Injector (Cylinder #6)	
26	Heated Oxygen Sensor [HO2S] Heater (Bank 2, Sensor 2)		Heated Oxygen Sensor [HO2S] (Bank 2, Sensor 2)	Europe Only
27	Heated Oxygen Sensor [HO2S] Heater (Bank 1, Sensor 2)		Heated Oxygen Sensor [HO2S] (Bank 1, Sensor 2)	Europe Only
28	ISC Motor Control		ISC Motor	
29	ISC Moto	or Control	ISC Motor	
30	-		-	
31	-			
32	Variable Intake S	Solenoid Control	Variable Intake Solenoid	·
33			-	
34	Purge Control Sole	noid Valve (PCSV)	Purge Control Solenoid Valve (PCSV)	
35	-			

<u>FL -11</u>

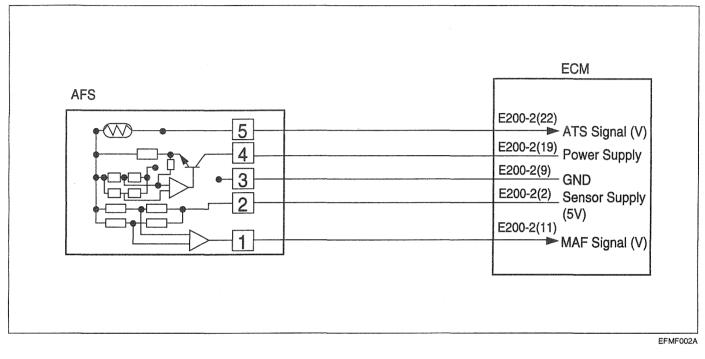
[CONNECTOR E200-2]

PIN	SIGNAL	CONNECTED TO	REMARK
1	Water Temp. Switch	ТСМ	
2	Sensor Power	Sensors	
3	CKP Sensor Signal	CKP Sensor	
4	Engine Coolant Temperature Sensor (ECTS) Signal	Engine Coolant Temperature Sensor (ECTS)	
5	Ignition Detect Signal	Ignition Failure Sensor	
6	Power Ground	Chassis Ground	
7	Battery Voltage	Main Relay	
8	Engine RPM	ТСМ	
9	Sensor Ground	Sensors	
10	CMP Sensor Signal	CMP Sensor	
11	MAFS Signal	MAF Sensor	
12	Alternaotr "FR" Signal	Alternator	
13	A/C Press Switch (HI/LO)	A/C Press Switch	
14	Power Steering Switch (ON/OFF)	Power Steering Switch	
15	-	-	
16	_	-	
17	-	-	
18	Power Ground	Chassis Ground	
19	Battery Voltage	Main Relay	
20	Battery Voltage (Backup)	IG Switch	
21		-	
22	Air Temp. Sensor Signal	Air Temp. Sensor	
23	-	-	
24	-		
25	A/C Pressure SW (MIDDLE)	A/C Press Switch	
26	Torque Control	ТСМ	
27	Neutral Signal	Ignition Switch	AT only
28	Start Signal	Ignition Switch	

[CONNECTOR E200-3]

PIN	SIGNAL	CONNECTED TO	REMARK
	Heated Oxygen Sensor [HO2S] (Bank 2, Sensor 1) Signal	Heated Oxygen Sensor [HO2S] (Bank 2, Sensor 1)	Except for LEAD Engine
1	Variable Resistor Signal	Variable Resistor	LEAD Engine Only
2	Heated Oxygen Sensor [HO2S] (Bank 1, Sensor 1) Signal		
3	Heated Oxygen Sensor [HO2S] (Bank 2, Sensor 2) Signal	Heated Oxygen Sensor [HO2S] (Bank 2, Sensor 2)	Europe Only
4	Heated Oxygen Sensor [HO2S] (Bank 1, Sensor 2) Signal	Heated Oxygen Sensor [HO2S] (Bank 1, Sensor 2)	Europe Only
5	MIL Request	ТСМ	
6	-	-	
7	-	-	
8	Throttle Position Sensor Signal	Throttle Position Sensor (TPS)	
9	Idle Switch (Integrated in TPS)	Throttle Position Sensor (TPS)	
10	Vehicle Speed Sensor (VSS) Signal	Vehicle Speed Sensor (VSS)	
11	-	· -	
12	-	-	
13	A/C Switch	A/C Switch	
14	Ignition Time Adjusting	Multi-purpose Check Connector	
15	Diagnosis Line (K-Line)	DLC Connector	
16	-	-	
17	-	-	
18	-	-	
19	-	-	
20	-		
21	Knock [.] Sensor Signal	Knock Sensor	
22	Manifold Absolute Pressure Sensor Signal	Manifold Absolute Pressure Sensor	
23	Fuel Tank Pressure Sensor Signal	Fuel Tank Pressure Sensor	
24	-	-	
25	-	-	
26	Fuel Temperature Sensor Signal	Fuel Temperature Sensor	
27	Fuel Level Sensor Signal	Fuel Level Sensor	
28	-	-	
29	Ignition Switch (ACC) Signal	Ignition Switch	
30	Flash Power	Multi-purpose Check Connector	

CONNECTOR [D]: TCU Connector (Refer to Gr. "TR")


AIR FLOW SENSOR (AFS): MASS AIR FLOW (MAF) SENSOR & INTAKE AIR TEMPERATURE SENSOR (ATS) EAE3B2CF

This hot film type Air Flow Sensor (AFS) is composed of a hot film sensor, housing and metering duct (hybrid sensor element). Mass air flow rate is measured because the change of the mass air flow rate causes a change in the

[CIRCUIT DIAGRAM (AFS)]

amount of heat being transferred from the hot film probe surface to the air flow. The air flow sensor generates a pulse so it repeatedly opens and closes between the 5V voltage supplied from the ECM.

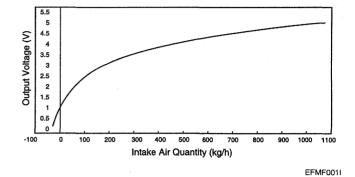
The intake air temperature sensor (ATS), located in the intake air hose, is a resistor-based sensor for detecting the intake air temperature. The intake air temperature information from the sensor helps the ECM provide the necessary fuel injection.

[HARNESS CONNECTOR]

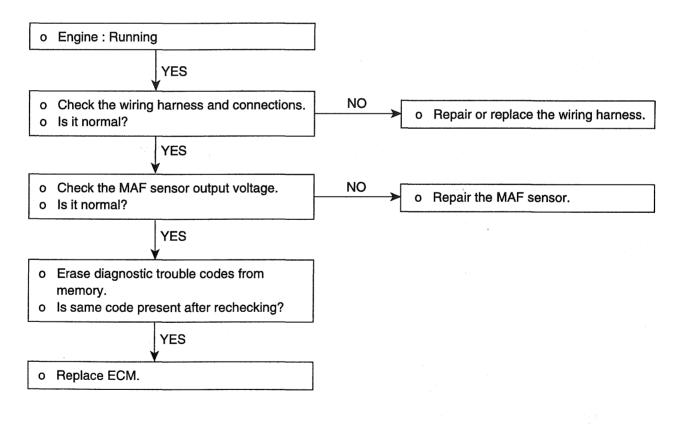
	Pin	Connected to	Function
	1	ECM Terminal 11(E200-2)	MFS Signal Output
F F V V V V V V	2	ECM Terminal 2(E200-2)	Sensor Power
HOLA ASACA JE	3	ECM Terminal 9(E200-2)	GND
	4	ECM Terminal 19(E200-2)	Battery Voltage
	5	ECM Terminal 22(E200-2)	ATS Signal Output

EFMF003A

GASOLINE ENGINE CONTROL SYSTEM


FL -15

[CHARACTERISTIC OF MAF]


Item	Specification	Remark
Supply Voltage	7.5 ~ 16 V	
Operating Temperature Range	-40℃ ~ 125℃	
Range of Air Flow	7 ~ 640 kg/h	
Output Voltage	0 ~ 5 V	

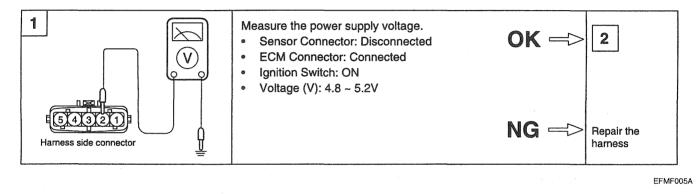
[OUTPUT VOLTAGE OF MAF]

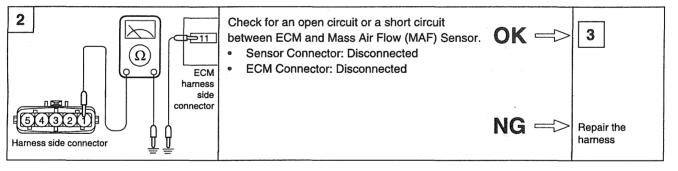
Output Voltage (V)	Intake Air Quantity (kg/h)	Output Voltage (V)	Intake Air Quantity (kg/h)
1.34	15	3.28	250
1.64	30	3.68	370
2.07	60	3.96	480
2.61	120	4.28	640

TROUBLESHOOTING PROCEDURES (MAF)

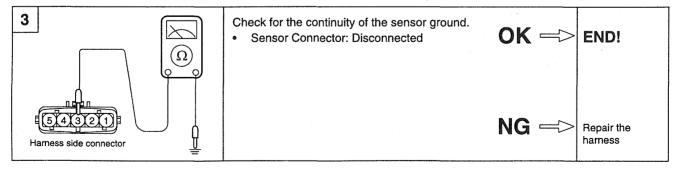
EFMF705G

TROUBLESHOOTING HINTS

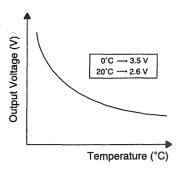

- 1. If the engine stalls occasionally, start the engine and shake the MAF sensor harness. If the engine stalls, check for poor contact at the MAF sensor connector.
- 2. If the MAF sensor output voltage is other than 0 when the ignition switch is turned on (do not start the engine), check for a faulty MAF sensor or ECM.
- 3. If the engine can idle even if the MAF sensor output voltage is out of specification, check for the following conditions;
 - Disturbed air flow in the MAF sensor, disconnected air duct, and clogged air cleaner filter.
 - Poor combustion in the cylinder, faulty ignition plug, ignition coil, injector, and incorrect comparison.


HARNESS INSPECTION PROCEDURES (MAF)

4. Even if no MAF malfunction occurs, check the mounting direction of the MAF.


A CAUTION

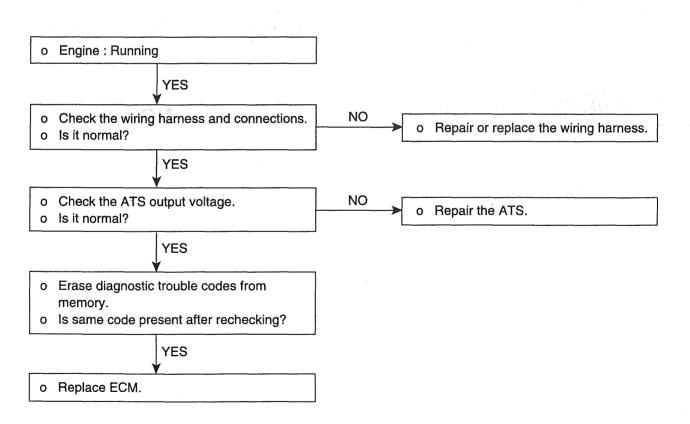
- When the vehicle is new [within initial operation of about 500 km (300 miles)], the Mass Air Flow (MAF) Sensor air quantity will be about 10% higher.
- Use an accurate digital voltmeter.
- Before checking, warm up the engine until the engine coolant temperature reaches 80 to 90 ℃ (176 to 198 °F).


EFMF005B

LFCD005C

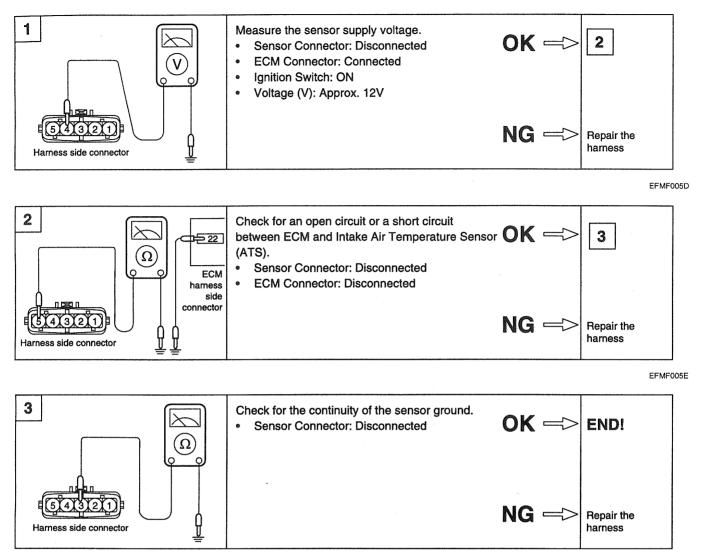
FL -16

[OUTPUT VOLTAGE OF ATS]


LFCD001C

SENSOR INSPECTION

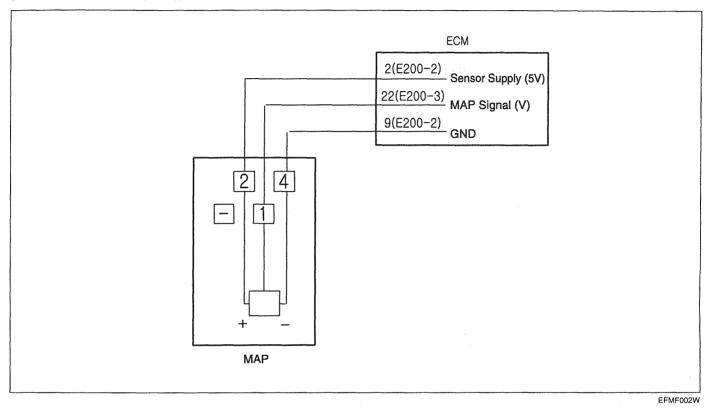
USING OHMMETER


Check Item	Data Display	Check Condition	Intake Air Temp [℃ (°F)]	Resistance ($^{K\Omega}$)
Intake Air	Intake Air	IG ON or Engine	-40 (-40)	33.85 ~ 61.20
Temperature Sensor (ATS)	Temperature Running	Running	20 (68)	2.33 ~ 2.97
			80 (176)	0.31 ~ 0.43

TROUBLESHOOTING PROCEDURE (ATS)

EFMF705H

HARNESS INSPECTION PROCEDURES (ATS)

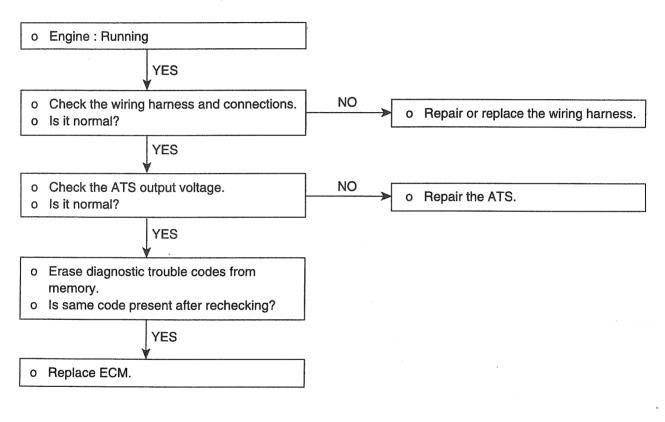

LFCD005F

MANIFOLD ABSOLUTE PRESSURE (MAP)

SENSOR EAC8A462

The Manifold Absolute Pressure (MAP) Sensor converts intake manifold pressure into a voltage signal. ECM uses this signal to determine the condition of the Exhaust Gas Recirculation (EGR).

[CIRCUIT DIAGRAM (MAP)]


[HARNESS CONNECTOR]

Pin	Connected to	Function	
1	ECM Terminal 22(E200-3)	MAP Signal Output	
2	ECM Terminal 2(E200-2)	Sensor Supply (5V)	
3 Not used		ed	
4	ECM Terminal 9(E200-2)	GND	
	1 2 3	1 ECM Terminal 22(E200-3) 2 ECM Terminal 2(E200-2) 3 Not us	1ECM Terminal 22(E200-3)MAP Signal Output2ECM Terminal 2(E200-2)Sensor Supply (5V)3Not used

USING HI-SCAN (PRO)

Check Item	Data display	Check conditions	Engine state	Test specification
MAP sensor	Inlet manifold	Engine coolant temperature :	Idle	0.8-2.4 V
	pressure	 18 ℃ (65.4°F) Lamps, electric cooling fan, accessory units : All OFF Transaxle : Neutral (P range for vehicle with A/T) Steering wheel : Neutral 	When the accel. pedal is depressed suddenly at idle	Rise from 0.8-2.4 V

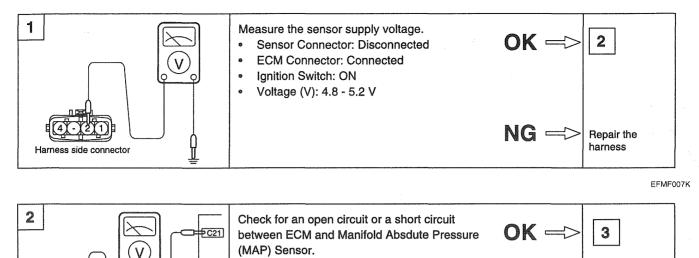
TROUBLESHOOTING PROCEDURES [MAP SENSOR]

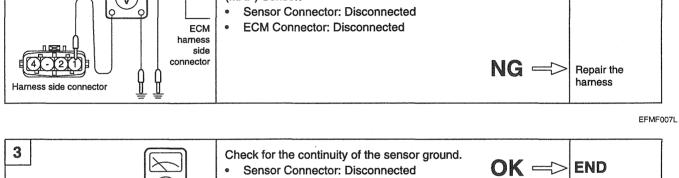
EFMF705H

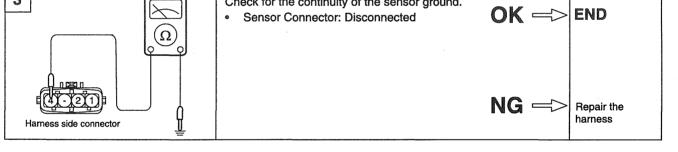
SENSOR INSPECTION

- Connect the voltmeter between 1 and 4 of MAP sensor connector.
 Terminal 4 : MAP sensor ground Terminal 1 : MAP sensor output
- 2. Measure the voltage of terminals.

Engine state	Test specification
Ignition ON	4 - 5 V
At idle	0.8 - 2.4 V

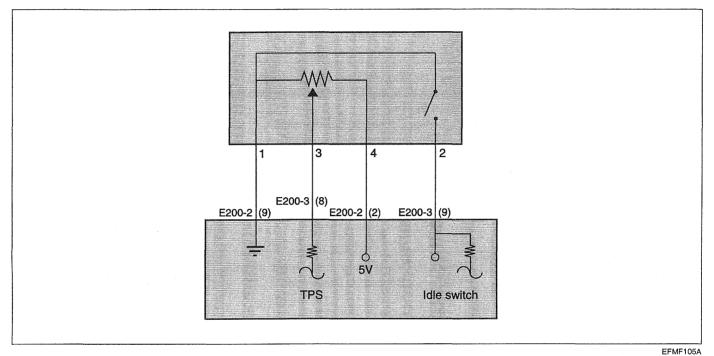

3. If the voltage deviates from the standard value, replace the MAP sensor assembly.


TROUBLESHOOTING HINTS


The MIL (Malfunction Indicator Lamp) is ON (or OFF) or the DTC (Diagnostic Trouble Code) is displayed on the HI-SCAN under the following conditions;

- 1. When the manifold pressure is 4.5 V or more for 4 second.
- 2. When the manifold pressure is 0.2 V or lower for 4 second.

HARNESS INSPECTION TROCEDURES (MAP)

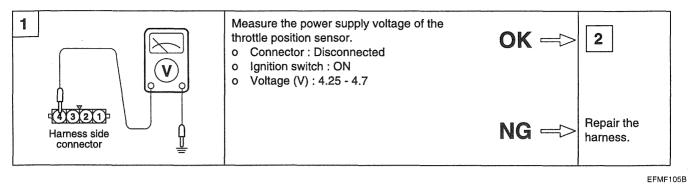

LFCD007M

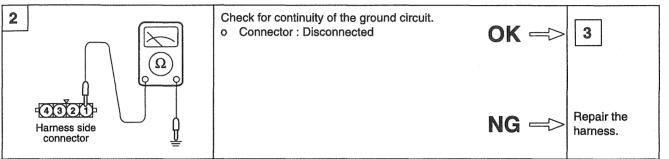
THROTTLE POSITION SENSOR

(TPS) EE3F2D34

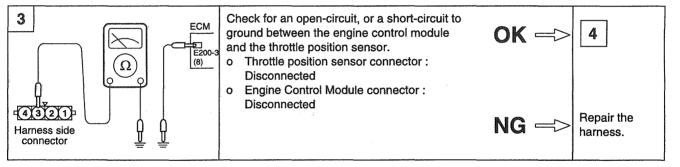
The TPS is a variable resistor type that rotates with the throttle shaft to sense the throttle valve angle. As the throttle shaft rotates, the output voltage of the TPS changes. The ECM detects the throttle valve opening based on this voltage change.

[CIRCUIT DIAGRAM]

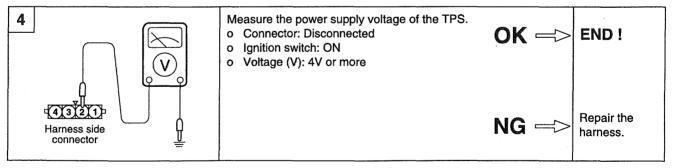



[HARNESS CONNECTOR]

	Pin	Connected to	Function
▽	1	ECM Terminal 9(E200-2)	GND
4 3 2 1	2	ECM Terminal 9(E200-2)	Idle switch
	3	ECM Terminal 8(E200-2)	TPS Signal
	4	ECM Terminal 2(E200-2)	Sensor Power


EFMF071A

HARNESS INSPECTION PROCEDURES



EFMF105C

EFMF105D

EFMF105E

TROUBLESHOOTING HINTS

The TPS signal is important in the control of the automatic transaxle. Shift shock and other trouble will occur if the sensor is faulty.

USING HI-SCAN (PRO)

Check item	Data display	Check conditions	Throttle valve	Test specification
Crankshaft position	Sensor voltage	Ignition switch : ON	At idle position	300-900 mV
sensor			Open slowly	Increases with valve opening
			Open wide	4,250-4,700 mV

SENSOR CHECKING

Tightening torque

Using voltmeter

- Disconnect the throttle position sensor connector. 1.
- 2. Measure resistance between terminal 1 (sensor ground) and terminal 4 (sensor power).

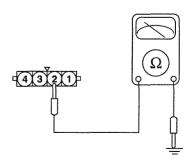
Standard value : 3.5 - 6.5 k Ω

- 3. Connect a pointer type ohmmeter between terminal 1 (sensor ground) and terminal 3 (sensor output).
- Operate the throttle valve slowly from the idle position 4. to the full open position and check that the resistance changes smoothly in proportion with the throttle valve opening angle.
- 5. If the resistance is out of specification, or fails to change smoothly, replace the throttle position sensor.

EFMF105F

SENSOR CHECKING (IDLE SWITCH)

USING HI-SCAN (PRO)

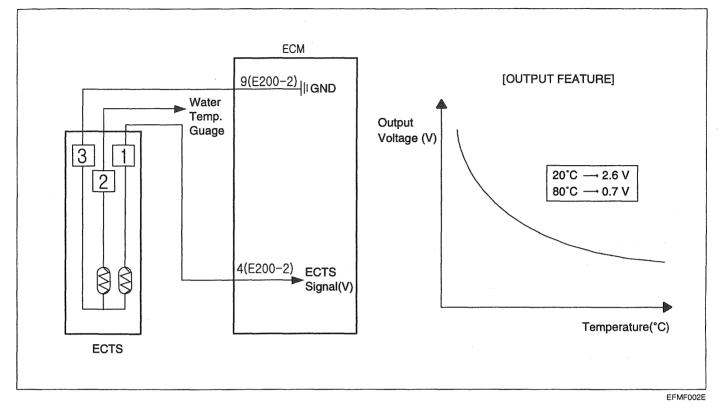

Check item	Data display	Check conditions	Throttle valve	Test specification
Idle position switch	Switch state	Ignition switch : ON	At idle position	ON
Service data item		(check by operating accelerator pedal repeatedly)	Open a little	OFF

Using voltmeter

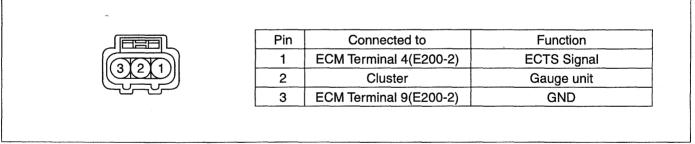
- Disconnect the throttle position sensor connector. 1.
- 2. Check the continuity between terminal 2 and sensor ground.

TPS voltage	Continuity	
Higher than 300-900mV	Non-conductive ($\infty \Omega$)	
300-900mV	Conductive (0 Ω)	

If out of specification, replace the throttle position sen-З. sor.


TP Sensor : 1.5-2.5 Nm (15-25 kg·cm, 1.1-1.8 lb·ft)

WATER TEMPERATURE SENSOR


(WTS) E3CFEC4D

Engine Coolant Temperature Sensor (ECTS) installed in the engine coolant passage of the cylinder head detects the engine coolant temperature and emits signals to the

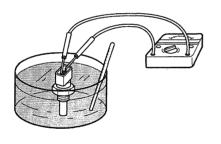
[CIRCUIT DIAGRAM AND OUTPUT FEATURE (ECTS)]

[HARNESS CONNECTOR]

EFMF003D

FL -25

SENSOR INSPECTION (WTS)

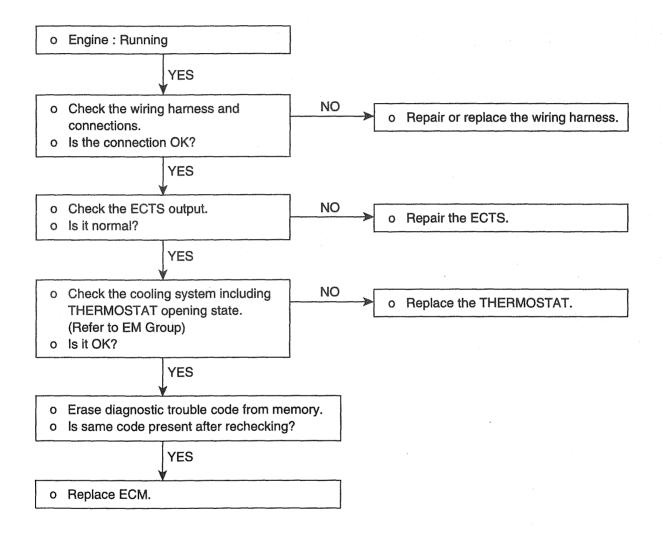

1. USING HI-SCAN (PRO)

Check Item	Data Display	Check Condition	Coolant Temperature [°C (°F)]	Resistance (^k 2)
Engine Coolant Temperature Sensor (ECTS) Engine Coolant Temperature Sensor (ECTS)	IG ON or Engine	-40 (-40)	48.14	
		Running	20 (68)	2.33 ~ 2.97
	Sensor (ECTS)		80 (178)	0.31 ~ 0.43
			110 (230)	0.15

2. USING MULTI-METER

- 1) Remove the Coolant Temperature Sensor (ECTS) from the intake manifold.
- 2) With the temperature sensing portion of Engine Coolant Temperature Sensor (WTS) immersed in hot engine coolant, check the resistance.

Temperature [°C (°F)]	Resistance (^k _Ω)
0 (32)	5.79
20 (68)	2.33 ~ 2.97
40 (104)	0.31 ~ 0.43
80 (176)	0.32


EFMF223A

3) If the resistance deviates from the standard value greatly, replace the sensor.

3. USING VOLT-METER

Check Item	Coolant Temperature [°C (°F)]	Voltage (V)
Engine Coolant Temperature Sensor (ECTS) Signal Output	0 (32)	3.4 - 3.6
	20 (68)	2.5 - 2.7
	40 (104)	1.5 - 1.7
	80 (176)	0.6 - 0.8

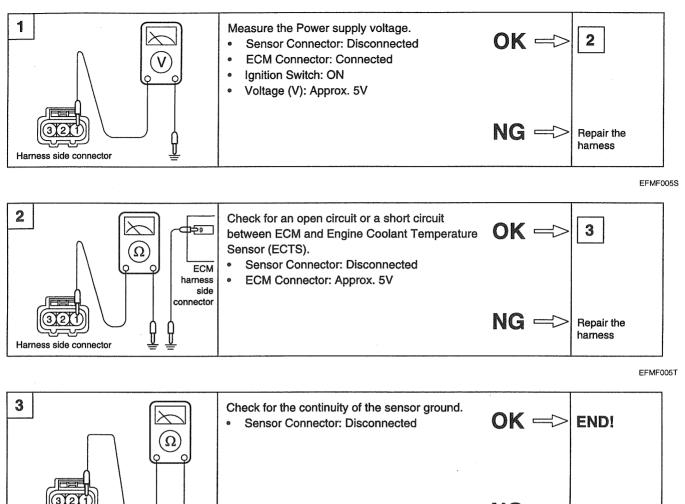
TROUBLESHOOTING PROCEDURES

EFMF030A

TROUBLEHSOOTING HINTS

If the fast idle speed is not adequate or the engine gives off dark smoke during warm-up, the Engine Coolant Temperature Sensor (ECTS) might be the cause.

INSTALLATION


- 1. Apply sealant LOCTITE 962T or the equivalent to the threaded portion.
- 2. Install the Engine Coolant Temperature Sensor (ECTS) and tighten it to the specified torque.

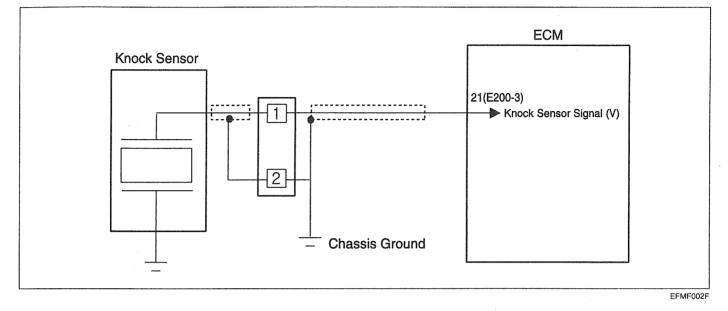
Tightening Torque : 20 ~ 40 N·m (2 ~ 4 kg·m, 14.5 ~ 28.9 lb·ft)

3. Securely connect the harness connector.

Harness side connector

HARNESS INSPECTION PROCEDURES (ECTS)

LFCD005U

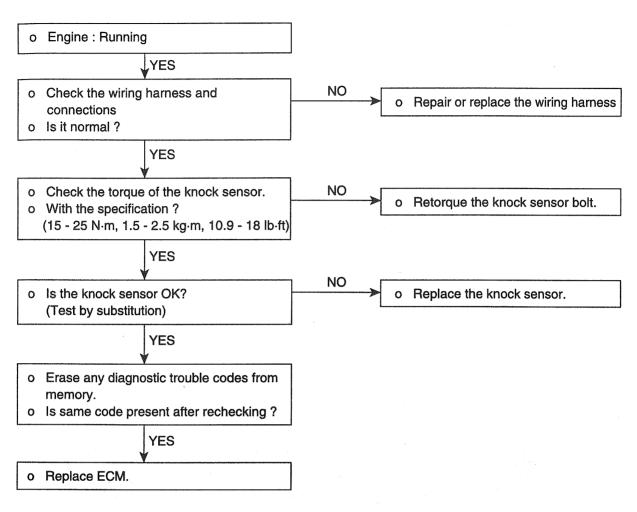

Repair the harness

KNOCK SENSOR EA9D82DF

The knock sensor is a piezoelectric device attached to the cylinder block that senses pressure from engine knock

[CIRCUIT DIAGRAM (KNOCK SENSOR)]

conditions. This vibrational pressure is then converted into a voltage signal which is delivered as output. If engine knock occurs, ignition timing is retarded to suppress it.

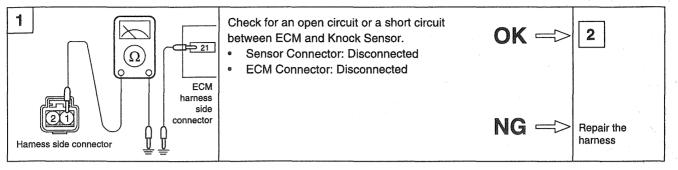


[HARNESS CONNECTOR]

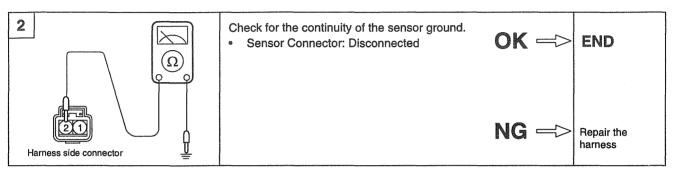
<u>طاقت-تطال</u> م	Pin	Connected to	Function
21	1	ECM Terminal 21(E200-3)	Knock Sensor Signal Output
	2	Chassis Ground	GND (Shield)

EFMF003E

TROUBLESHOOTING PROCEDURES


TROUBLESHOOTING HINTS

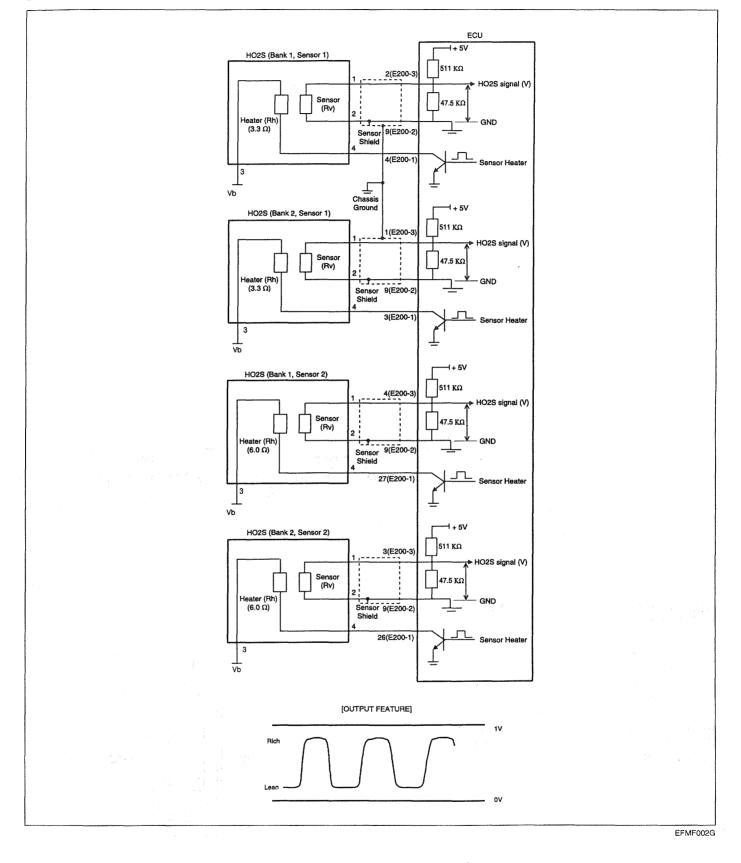
- 1. The MIL is ON or the DTC is displayed on the HI-SCAN (PRO) under the following condition:
 - 1) When the knock sensor signal is not detected, even though the engine is in an overload condition.
 - 2) When the knock sensor signal is abnormally low.


EFMF733B

GASOLINE ENGINE CONTROL SYSTEM

HARNESS INSPECTION PROCEDURES (KNOCK SENSOR)

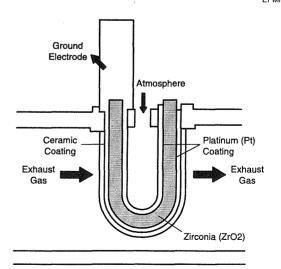
EFMF005V



LFCD005W

The heated oxygen sensor (HO2S) senses the oxygen concentration in exhaust gas and converts it into a voltage that is sent to the ECM. For Zirconium type sensors, the oxygen sensor outputs about 1V when the air fuel ratio is richer than the theoretical ratio, and outputs about 0V when the ratio is leaner (higher oxygen concentration in exhaust gas). The ECM controls the fuel injection ratio based on this signal so that the air fuel ratio is maintained at the stoichiometric ratio. The oxygen sensor has a heating element that ensures sensor performance during all driving conditions.

[CIRCUIT DIAGRAM (HO2S)]


[HARNESS CONNECTOR]

	Pin	Connected to	Function
21	1	ECM Terminal 2(E200-3)	HO2S Signal Outpu
(4)(3)	2	ECM Terminal 9(E200-2)	GND
	3	Main Relay	Battery Voltage
(Bank 1, Sensor 1)	4	ECM Terminal 4(E200-1)	Sensor Heater
	HO2S	(Bank 2, Sensor 1)	
	Pin	Connected to	Function
	1	ECM Terminal 1(E200-3)	HO2S Signal Outpu
43	2	ECM Terminal 9(E200-2)	GND
	3	Main Relay	Battery Voltage
(Bank 2, Sensor 1)	4	ECM Terminal 3(E200-1)	Sensor Heater
	HO2S	(Bank 1, Sensor 2)	
	Pin	Connected to	Function
(2(1))	1	ECM Terminal 4(E200-3)	HO2S Signal Outpu
	2	ECM Terminal 9(E200-2)	GND
Tren	3	Main Relay	Battery Voltage
(Bank 1, Sensor 2)	4	ECM Terminal 27(E200-1)	Sensor Heater
	HO2S	(Bank 2, Sensor 2)	
	Pin	Connected to	Function
	1	ECM Terminal 3(E200-3)	HO2S Signal Outpu
43	2	ECM Terminal 9(E200-2)	GND
	3	Main Relay	Battery Voltage
(Bank 2, Sensor 2)	4	ECM Terminal 26(E200-1)	Sensor Heater

HO2S - ZIRCONIA (Z \mbox{r} O_2) OPERATION PRINCIPLE

The Zirconia (ZrO_2) which is coated with Platinum (Pt) on both sides will generate the voltage if the density of oxygen on atmosphere side and exhaust gas side is different in high temperature.

In other words oxygen ion moves from high-density side (Atmosphere) to low-density side (exhaust gas), at a result Sensor Voltage is generated by Nernst equation between two electrodes.

EFMF004B

GASOLINE ENGINE CONTROL SYSTEM

TROUBLESHOOTING HINTS

- 1. If the HO2S is defective, abnormally high emissions may occur.
- If the HO2S check results are normal, but the sensor output voltage is out of specification, check for the following items (related to air fuel ratio control system):
 - 1) Defective Injector
 - 2) Air leaks in the intake manifold
 - 3) Defective Mass Air Flow (MAF) Sensor

- 4) Defective Intake Air Temperature Sensor (ATS)
- 5) Defective Engine Coolant Temperature Sensor (WTS)
- 6) Defective Manifold Absolute Pressure (MAP) Sensor

SENSOR INSPECTION (HO2S)

1. USING HI-SCAN (PRO)

Check item	Check conditions	Engine state	Test specification
Heated Oxygen Sensor (HO2S)	Engine: Warm-up (make the mixture lean by engine speed	When sudden deceleration from 4,000 rpm	200mV or lower
	reduction, and rich by racing)	When engine is suddenly raced	600-1,000 mV
	Engine: Warm-up (using the heated oxygen sensor signal, check the air/fuel mixture ratio, and also check the condition of control by the ECM).	Idle	Oscillate between less than 300 mV and more than 700 mV
		2,000 rpm	

2. USING VOLTMETER

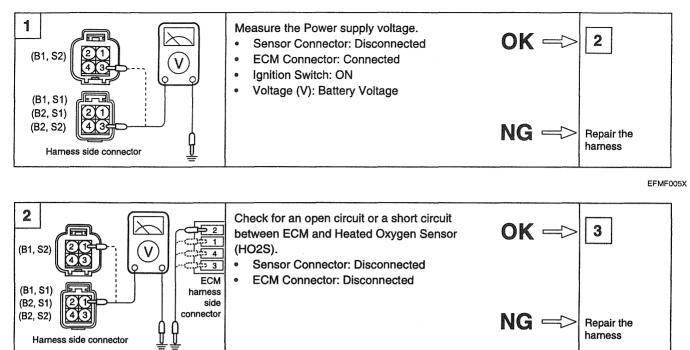
NOTE

- Before checking, warm up the engine until the engine coolant temperature reaches 80 to 95 °C (176 to 205 °F).
- Use an accurate digital voltmeter.
- 1) Disconnect the Heated Oxygen Sensor (HO2S) connector, and measure the resistance of heater between terminal 3 and terminal 4.

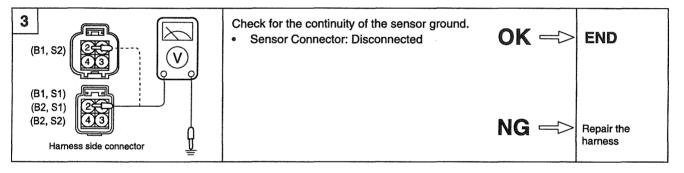
HO2S (Bank 1, Sensor 1): 3.3 Ω	
HO2S (Bank 2, Sensor 1): 3.3 Ω	
HO2S (Bank 1, Sensor 2): 6.0 Ω	
HO2S (Bank 2, Sensor 2): 6.0 Ω	

- 2) Replace the Heated Oxygen Sensor (HO2S) if there is a malfunction.
- 3) Apply battery voltage directly between terminal 3 and terminal 4.

NOTE


Be careful when applying the voltage. Damage will result if terminals 1 and 2 are connected to any voltage.

4) Connect a high-impedance digital-type voltmeter between terminal 1 and terminal 2.

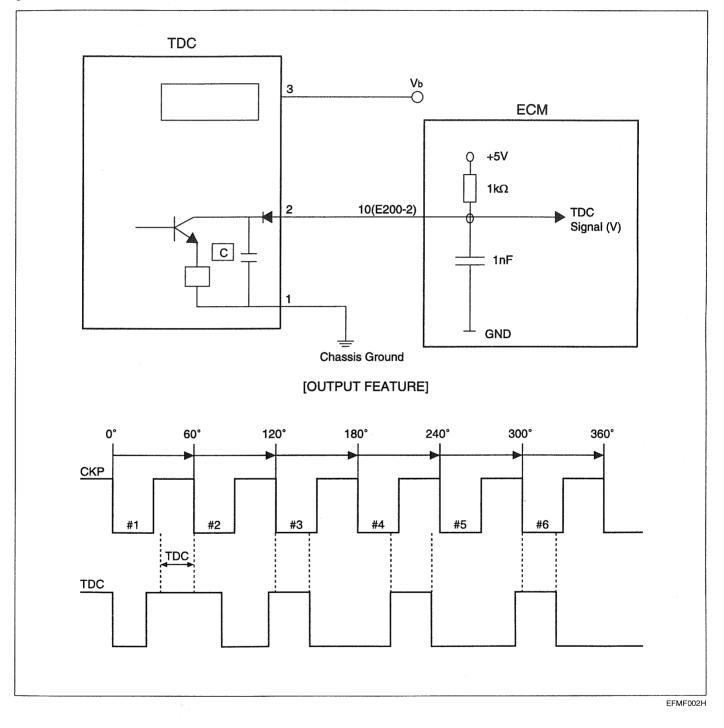

- 5) While repeatedly racing the engine, measure the Heated Oxygen Sensor (HO2S) output voltage.
- 6) If there is a problem, replace the Heated Oxygen Sensor (HO2S).

Tightening torque: 40 - 50 N·m (4 - 5 kg·m, 29 - 36 lb·ft)

HARNESS INSPECTION PROCEDURES (HO2S)

EFMF005Y

LFCD005Z

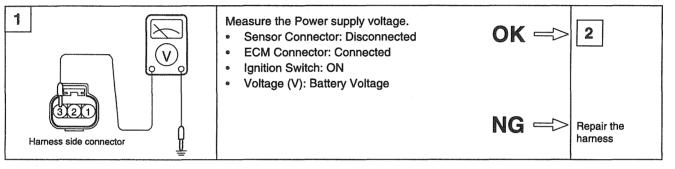

CAMSHAFT POSITION (TDC)

SENSOR EODBCEAA

The TDC Sensor is a Hall-effect sensor that detects the camshaft position on the compression stroke of the No.1

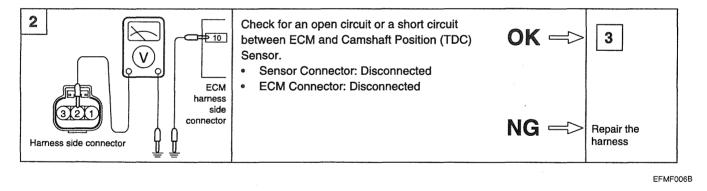
[CIRCUIT DIAGRAM AND OUTPUT FEATURE (TDC)]

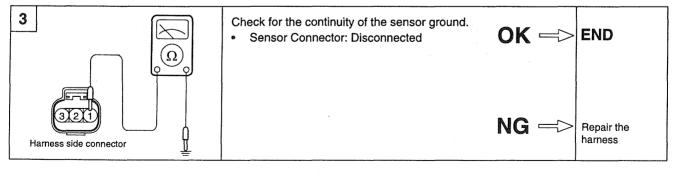
cylinder, converts it into a pulse signal, and inputs it to the ECM. The ECM then computes the fuel injection sequence, etc. based on the input signal.


[HARNESS CONNECTOR]

	Pin	Connected to	Function
	1	Chassis Ground	GND
(31211)	2	ECM Terminal 10(E200-2)	TDC Signal Output
	3	Main Relay	Battery Voltage

TROUBLEHSOOTING HINTS


If the TDC Sensor does not operate correctly, sequential injection is may not occur and the engine may stall or run irregularly at idle or fail to accelerate normally.

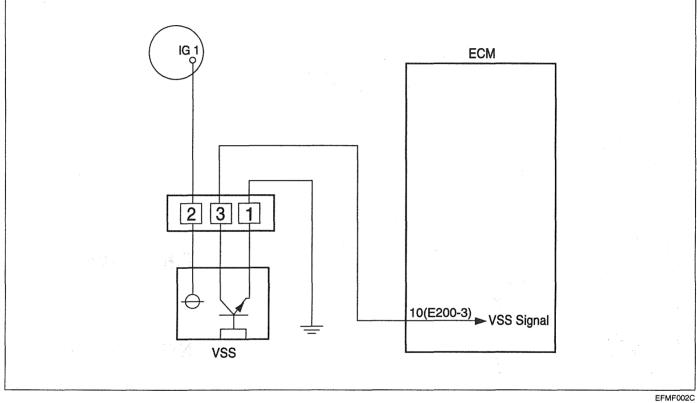

HARNESS INSPECTION PROCEDURES (TDC)

EFMF006Z

EEME003G

LFCD006C

VEHICLE SPEED SENSOR (VSS) E7E3AA92

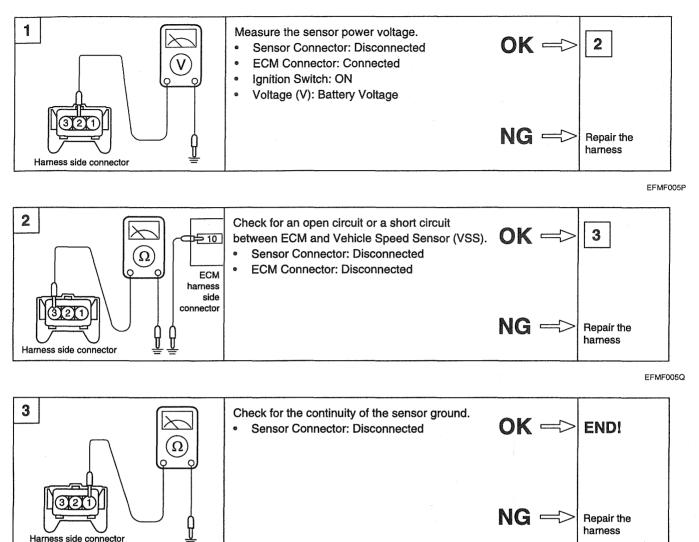

The function of vehicle speed sensor is to sense the TOOTH signal in T/M housing (4 pulses are output per 1 turn) and send relevant signal to ECM. The signal is used for computing the vehicle speed and the speed display on the tachometer as well.

The information is used for idle control correction duty range (the range of correction is limited with the vehicle

[CIRCUIT DIAGRAM (VSS)]

speed and A/C load), cooling fan control, fuel injection prohibition at over vehicle speed, vehicle jerk control and traction control (At the torque being reduced with the exhaust gas modeling).

The action against malfunctions of the sensor is to fix the speed at 0 KPH. (The highest engine revolution should be limited to 2500 rpm).



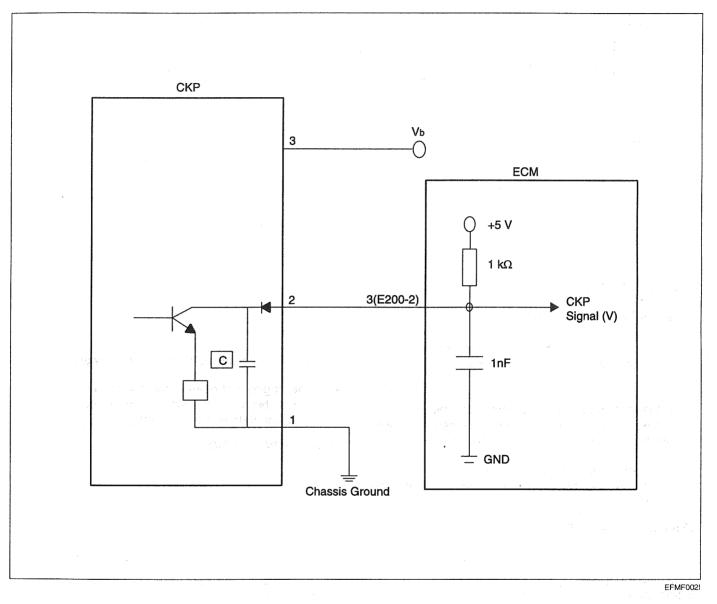
[HARNESS CONNECTOR]

	Pin	Connected to	Function
	1	GND	GND
<u>_</u>	2	Ignition Switch	Battery Voltage
	3	ECM Terminal 10(E200-3)	VSS Signal Output

1 101-0020

HARNESS INSPECTION PROCEDURES (VSS)

EFMF005R

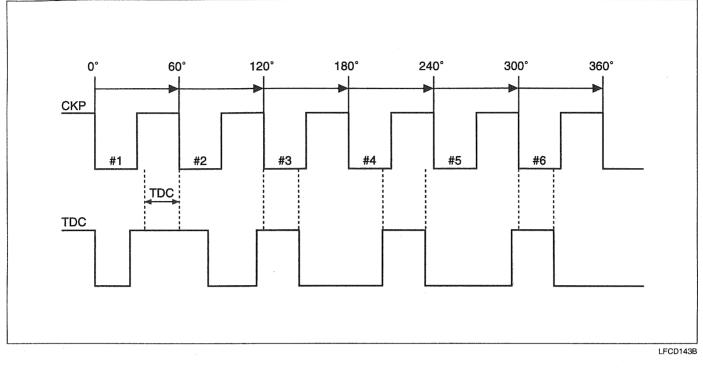

CARACTER AND AND A STREET

CRANKSHAFT POSITION (CKP)

SENSOR ED1AD87A

The Crankshaft Position Sensor is a Hall-effect sensor that senses the Crank angle (piston position) of each cylinder

[CIRCUIT DIAGRAM (CKP)]


[HARNESS CONNECTOR]

Jerel	Pin	Connected to	Function
(2(1))	1	Chassis Ground	GND
3	2	ECM Terminal 3(E200-2)	CKP Signal Output
4	3	Main Relay	Battery Voltage

and converts it into a pulse signal. Based on the input signal, the ECM computes the engine speed and controls the fuel injection timing and ignition timing.

EFMF003H

[OUTPUT FEATURE OF CKP]

TROUBLEHSOOTING HINTS

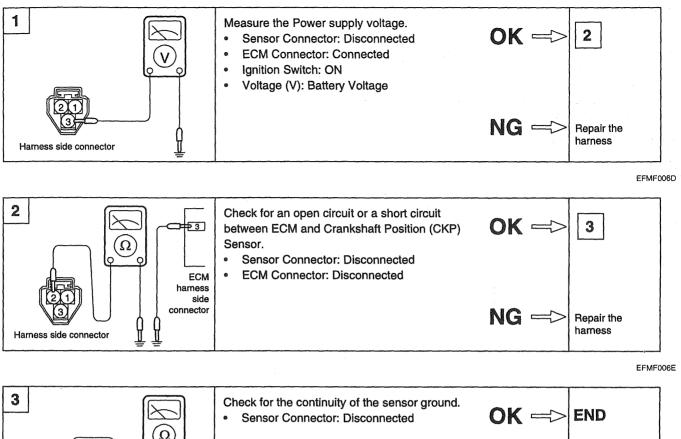
- 1. If unexpected shocks are felt during driving or the engine stalls suddenly, shake the crankshaft position sensor harness. If this causes the engine to stall, check for poor sensor connector contact.
- 2. If the tachometer reads 0 rpm when the engine is cranked, check for faulty crank angle sensor, broken timing belt or ignition system problems.
- 3. If the engine can be run at idle even if the crank angle sensor reading is out of specification, check the following:

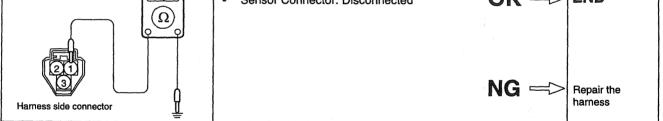
Check conditions

- 1) Faulty Engine Coolant Temperature Sensor (ECTS)
- 2) Faulty Idle Speed Control System
- 3) Poorly adjusted reference idle speed
- 4. The engine will crank without a crank angle sensor signal, but will not start. Once the sensor detects TDC, the data is stored until the next re-start.

Normal state

SENSOR INSPECTION


Check content


USSING	HI-SCAN	(PBO)

Check Item

Crankshaft Position (CKP) Sensor	 Engine cranking Tachometer connected (Check on and off ignition coil by tachometer) 	Compare cranking speed and multi-tester reading	Indicated speed agrees
Check Item	Check conditions	Temperature [°C (°F)]	Test specification (rpm)
Crankshaft Position	Engine: Running at idle	-20 (-4)	1,500 ~ 1,700
(CKP) Sensor	 Idle position switch: ON 	0 (32)	1,350 ~ 1,550
		20 (68)	1,200 ~ 1,400
		40 (104)	1,000 ~ 1,200
		80 (176)	650 ~ 850

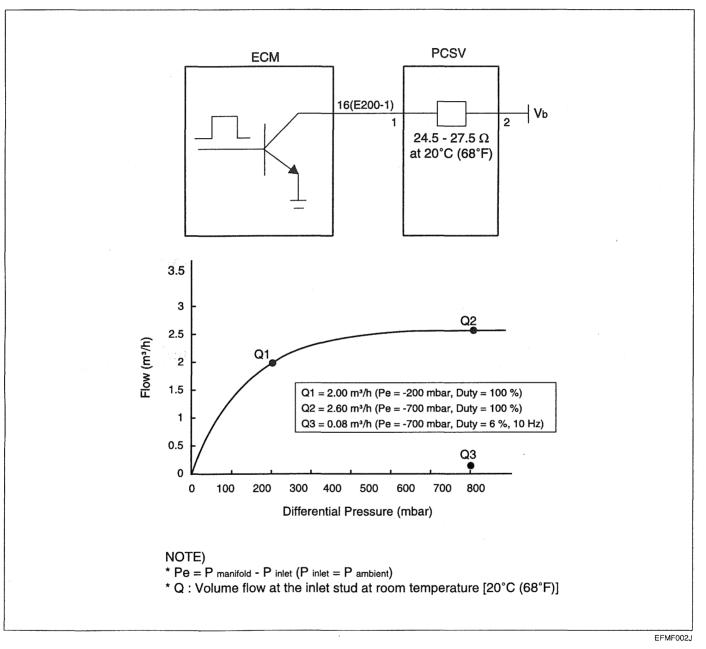
HARNESS INSPECTION PROCEDURES (TDC)

LFCD006F

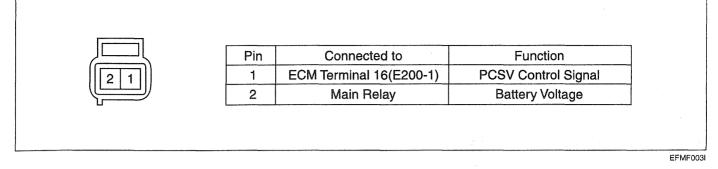
FL -43

PURGE CONTROL SOLENOID VALVE

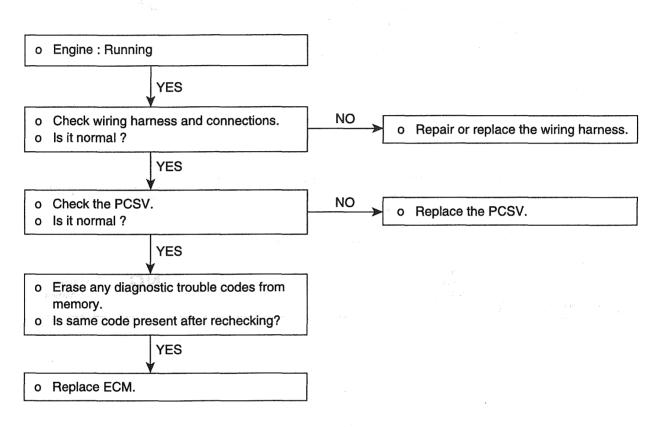
(PCSV) ED4BA670


Purge Control Valve (PCV) controls evaporative gas gathered in canister. It is divided into duty type controlled by ECU and ON/OFF type controlled by vacuum in intake manifold and ECU.

PCV is closed when water temperature is low or engine is idle and is open when water temperature is in normal


[CIRCUIT DIAGRAM AND OUTPUT FEATURE (PCSV)]

temperature. When it is open, evaporative gas in canister is flowed into the intake manifold.


Especially duty type PCV is called Purge Control Solenoid Valve (PCSV). Duty is 0% when it is wholly closed, and 100% when it is wholly open (Generally Idle: 1~3 %, Max: 92%).

[HARNESS CONNECTOR]

TROUBLESHOOTING PROCEDURES

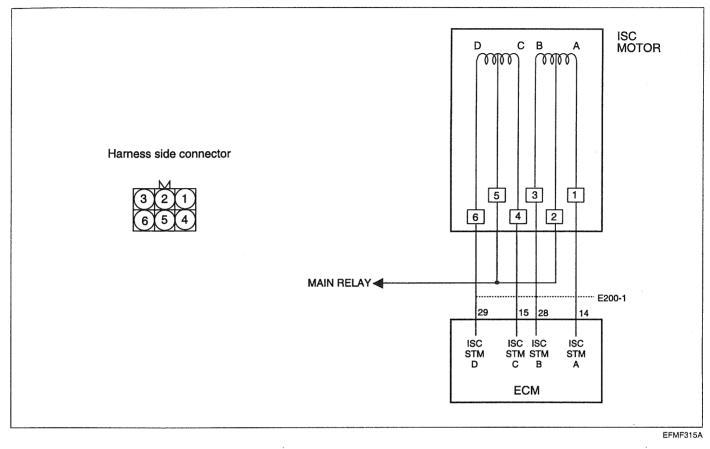

EFMF731D

PCSV INSPECTION

USSING HI-SCAN (PRO)

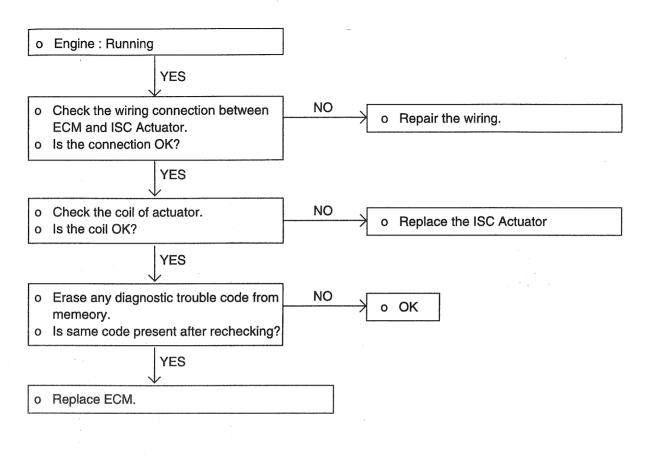
Check Item	Check conditions	Check content	Normal state
Evaporative emission Canister Purge Control So- lenoid Valve (PCSV) • Actuator test	IG ON (Do not start)	PCSV	Activate

HARNESS INSPECTION PROCEDURES (PCSV)


EFMF006H

IDLE SPEED CONTROL ACTUATOR EA81ADAE

The idle speed control actuator is the double coil type and has two coils. The two coils are driven by separate driver


CIRCUIT DIAGRAM

stages in the ECM. Depending on the pulse duty factor, the equilibrium of the magnetic forces of the two coils will result in different angles of the motor.

FL -47

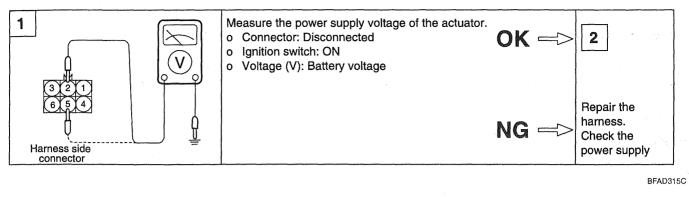
TROUBLESHOOTING PROCEDURES

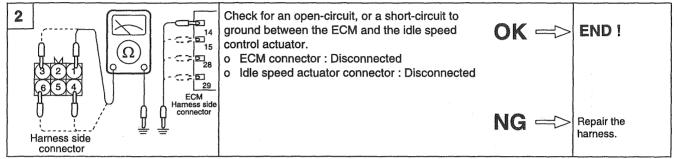
EFMF315B

The ignition closed loop control in ECM is out of order.
Open or short circuit is observed in idle air control

system when ignition switch is turned onl.

TROUBLESHOOTING HINTS

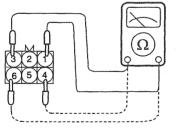

The MIL is ON or the DTC is displayed on the HI-SCAN under the following conditions


• When the primary voltage side in ECM is in short or open circuit.

USING HI-SCAN

Check item	Check condition	HI-SCAN display	Туре
Idle speed control actuator o Actuator	Start the engine	ISC	Activate

HARNESS INSPECTION PROCEDURE



ACTUATOR INSPECTION

- 1. Disconnect the connector at the idle speed control actuator.
- 2. Measure the resistance between terminals.

Standard value

Terminal 1-3, 4-6 : 36.5-39.5Ω [20°C (68°F)]

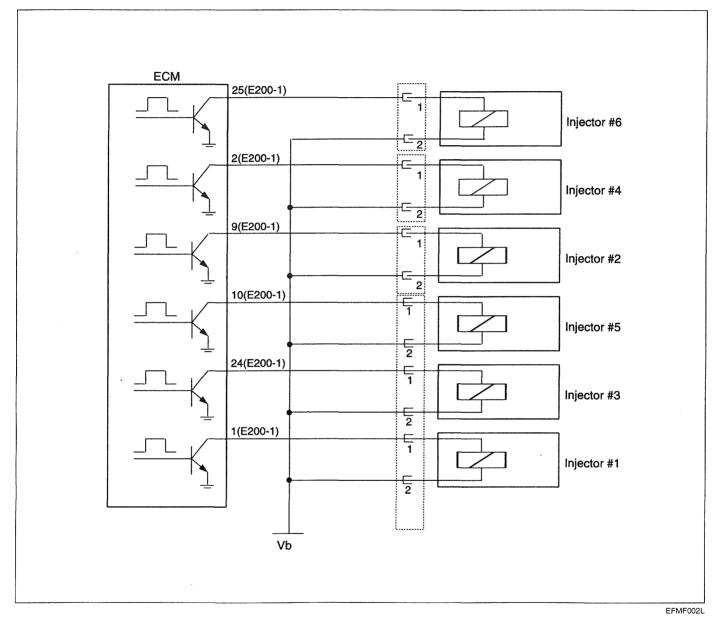
Harness side connector

BFAD315E

3. Connector the connector to the idle speed control actuator.

EEME315D

FUEL INJECTOR EE920467


The injectors inject fuel to cylinders according to the signal, suitable to engine condition, from ECM. The ECM drives the injectors by electric current driving mode.

The basic fuel amount is performed by the mapping value based on the air amount and engine rate, and the fuel amount is corrected in the case of fuel amount correction (Air fuel ratio control signal, fuel evaporative emission

[CIRCUIT DIAGRAM (INJECTOR)]

gas control, learning increase of the fuel amount, warm-up control, catalytic heating control, fuel amount control in deceleration, idle control, fuel amount increase in full load, fuel increase in acceleration and restarting).

The fuel injection is controlled under unavailable state for safety purpose when engine rpm reaches the appropriate engine speed [On driving : 6300 ~ 6800 rpm, Engine stop (N-range) : 4700 rpm]

[HARNESS CONNECTOR]

	Injector	r #1				
	Pin	Connected to	Function			
	1	Main Relay	Injector #1 Power Supply			
	2	ECM Terminal 1(E200-1)	Injector #1 Operation Signal			
	Injector	r #2				
	Pin	Connected to	Function			
	1	Main Relay	Injector #2 Power Supply			
	2	ECM Terminal 9(E200-1)	Injector #2 Operation Signal			
	Injector	Injector #3				
	Pin	Connected to	Function			
	1	Main Relay	Injector #3 Power Supply			
	2	ECM Terminal 24(E200-1)	Injector #3 Operation Signal			
$\left(\left(2 \right) \right)$	Injector	Injector #4				
	Pin	Connected to	Function			
	1	Main Relay	Injector #4 Power Supply			
	2	ECM Terminal 2(E200-1)	Injector #4 Operation Signal			
	Injector	r #5				
	Pin	Connected to	Function			
	1	Main Relay	Injector #5 Power Supply			
	2	ECM Terminal 10(E200-1)	Injector #5 Operation Signal			
	Injector	⁻ #6				
	Pin	Connected to	Function			
	1	Main Relay	Injector#6 Power Supply			
	2	ECM Terminal 25(E200-1)	Injector #6 Operation Signal			

INJECTOR INSPECTION

1. USING HI-SCAN (PRO)

Check Item	Data display	Check conditions	Check content [℃ (°F)]	Test specification (ms)
Injector	Drive time	Engine: Cranking	0 (32)	Approx. 17
	(at staring)		20 (68)	Approx. 35
			80 (176)	Approx. 8.5

EFMF003J

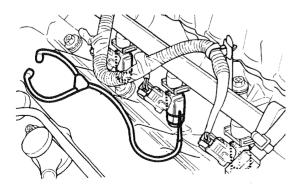
FL -52

FUEL SYSTEM (G6CV)

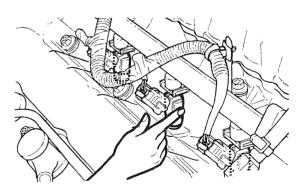
Check Item	Data display	Check conditions	Engine state	Test specification
Injector	Drive time	Engine coolant temperature: 80 to	Idle rpm	2.2~2.9 ms
		95℃ (176 to 205°F) • Lamps, electric cooling fan, accessory	2,000 rpm	1.8~2.6 ms
		 Transaxle: Neutral (P range for vehicle with A/T) Steering wheel: Neutral 	Rapid racing	Increasing

🗊 ΝΟΤΕ

- Drive time indicates the injector activation time when the supply voltage is 11V and the cranking speed is less than 250 rpm.
- When engine coolant temperature is lower than O°C (32°F), the ECM fires all four cylinders simultaneously.
- When the vehicle is new (within initial operation of about 500 km [300 miles]), the injector drive time may be about 10% longer.


Check Item	Item No.	Drive content	Check condition	Normal state
Injector	01	No. 1 injector shut off	Engine: Idling after	Idle should become
 Actuator test 	02	No. 2 injector shut off	warm-up (Shut off the	unstable as injector shuts off.
1001	03	No. 3 injector shut off	and after engine warm-up;	
	04	No. 4 injector shut off	check the idle condition)	
	05	No. 5 injector shut off		
	06	No. 6 injector shut off		

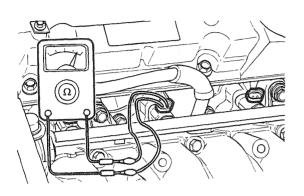
2. USING STETHOSCOPE AND VOLTMETER


- 1) OPERATION SOUND CHECK
 - a. Using a stethoscope, check the injectors for a clicking sound at idle. Check that the sound is produced at shorter intervals as the engine speed increases.

Ensure that the sound from an adjacent injector is not being transmitted along the delivery pipe to an inoperative injector.

b. If a stethoscope is not available, check the injector operation with your finger. If no vibration is felt, check the wiring connector, injector or injection signal from the ECM.

EFMF020A


EFMF019A

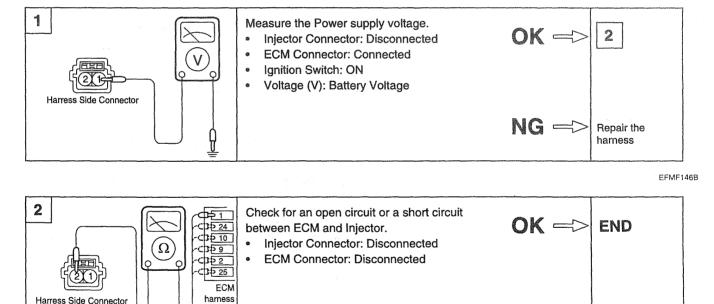
GASOLINE ENGINE CONTROL SYSTEM

- 2) RESISTANCE MEASUREMENT BETWEEN TERMINALS
 - a. Disconnect the connector at the injector.
 - b. Measure the resistance between terminals.

Standard value : 13 - 16 Ω [at 20 ℃ (68°F)]

c. Re-connect the connector to the injector.

side


connecto

TROUBLESHOOTING HINTS

- 1. If the engine is hard to start when hot, check for fuel pressure and injector leaks.
- 2. If the injectors do not operate when the engine is cranked, then check the followings:
 - Defective power supply circuit to the ECM, faulty ground circuit
 - Defective control relay
 - Defective Crankshaft Position (CKP) Sensor or Camshaft Position (TDC) Sensor
- 3. If there is any cylinder whose idle state remains unchanged when the fuel injectors are cut one after another during idling, check for the following items about that a cylinder.
 - · Injector and harness
 - · Ignition plug and high tension cable
 - Compression pressure
- 4. If the injection system is OK but the injector drive time is out of specification, check for the following items.
 - Poor combustion in the cylinder (faulty ignition plug, ignition coil, compression pressure, etc.)

NG = 2

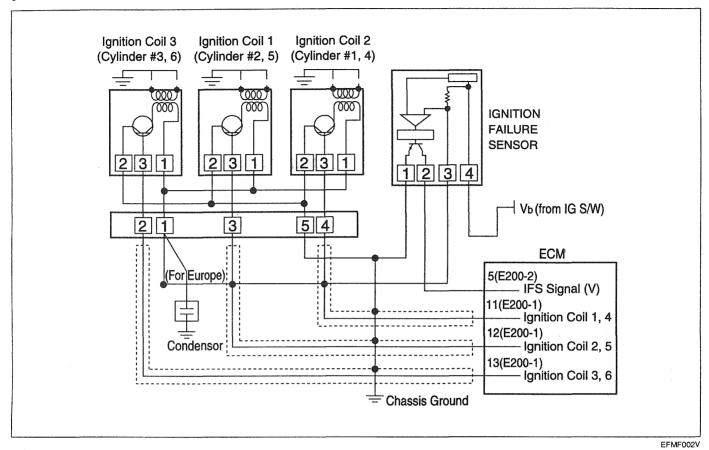
Loose EGR valve seating

EFMF006L

Repair the

harness

EFMF021A

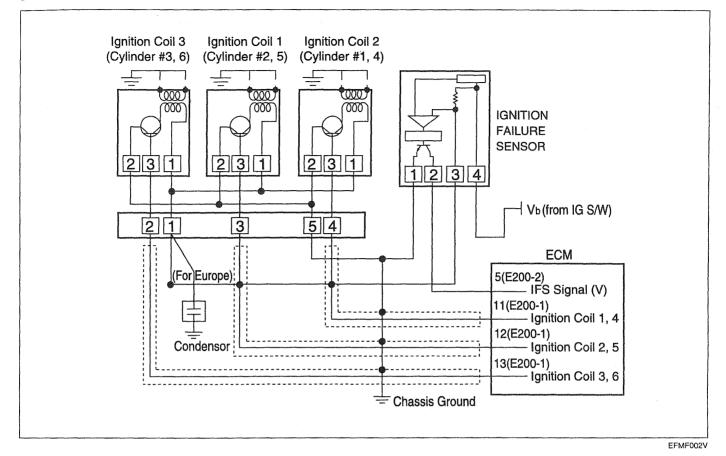

HARNESS INSPECTION PROCEDURES

IGNITION COIL ED1BE4DA

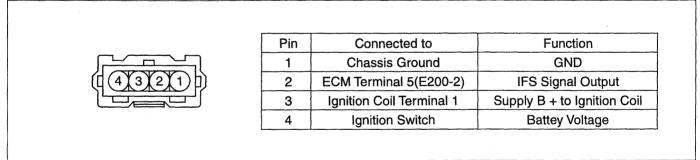
The ignition power transistor functions to control the ignition timing by controlling the ignition coil primary current

[CIRCUIT DIAGRAM (IGNITION COIL)]

through signals from the ECM and the ignition coil is of the type of ignition order of (#1/#4), (#2/#5), (#3/#6) and is controlled by the power TR built in the ECM.


[HARNESS CONNECTOR]

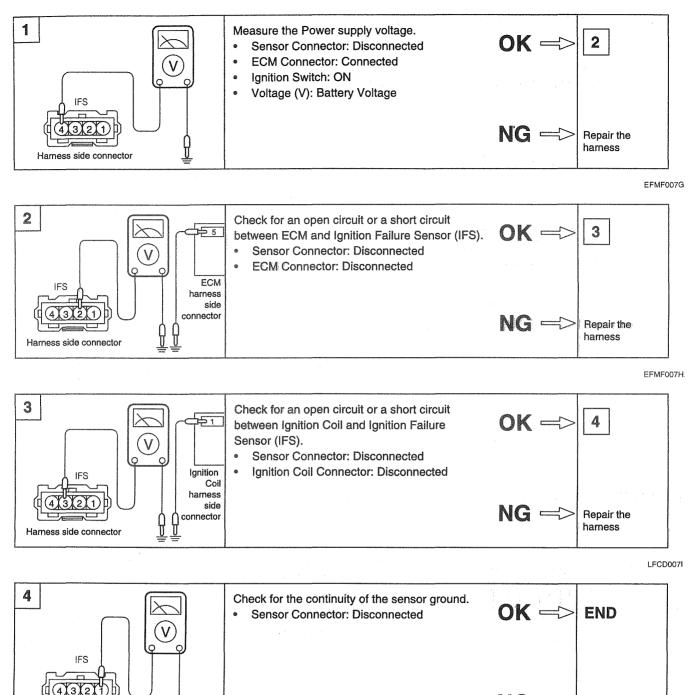
	Pin	Connected to	Function
_E-E-	1	IFS	Power Supply
3(2)1)	2	ECM Terminal 13(E200-1)	Ignition Coil 3 (Cylinder #3, 6)
- 15 4	3	ECM Terminal 12(E200-1)	Ignition Coil 1 (Cylinder #2, 5)
	4	ECM Terminal 11(E200-1)	Ignition Coil 2 (Cylinder #1, 4)
	5	Chassis Ground	Ignition Coil GND


EFMF003L

INGITION FAILURE SENSOR (IFS) E64F46BB

[CIRCUIT DIAGRAM(IGNITION COIL AND IFS)]

[HARNESS CONNECTOR]



EFMF003O

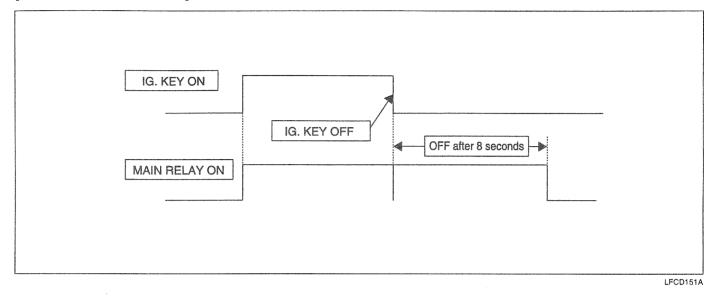
HARNESS INSPECTION PROCEDURES (IFS)

П

Harness side connector

LFCD007J

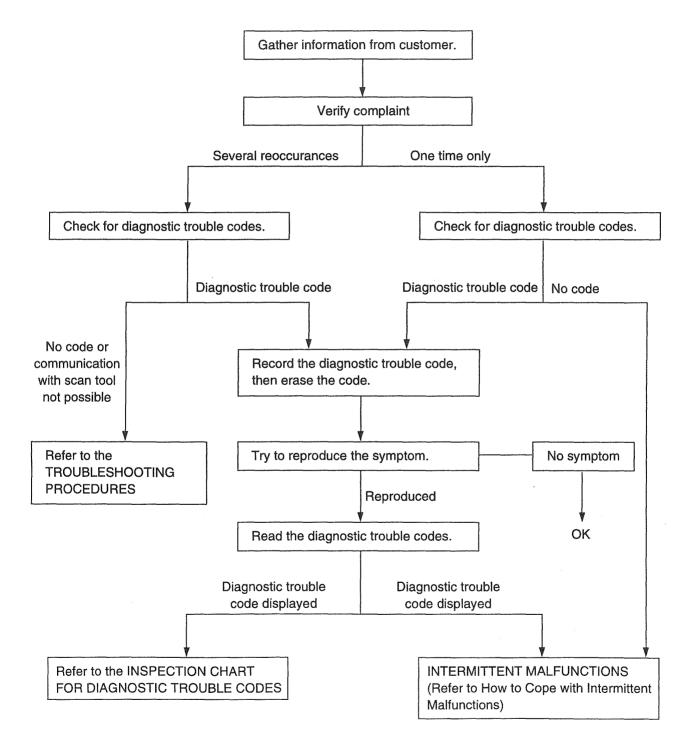
Repair the harness


MAIN RELAY CONTROL E6EB0189

When the ignition switch is turned ON, battery voltage is applied from the ignition switch to the ECM, turning ON the ignition power transistor and energizing the MFI control relay coil. This turns the MFI control relay switch ON, and

[ECM CONTROL DIAGRAM]

supplies power from the battery to the ECM through the MFI control relay switch.


After the ignition switch is turned OFF, battery voltage is supplied to Main relay for 8 seconds. So ECM remembers and calculates the data.

DTC TROUBLESHOOTING PROCEDURES

DESCRIPTION EE517F9E

DIAGNOSTIC TROUBLESHOOTING FLOW

LFCD022A

DTC TROUBLESHOOTING PROCEDURES

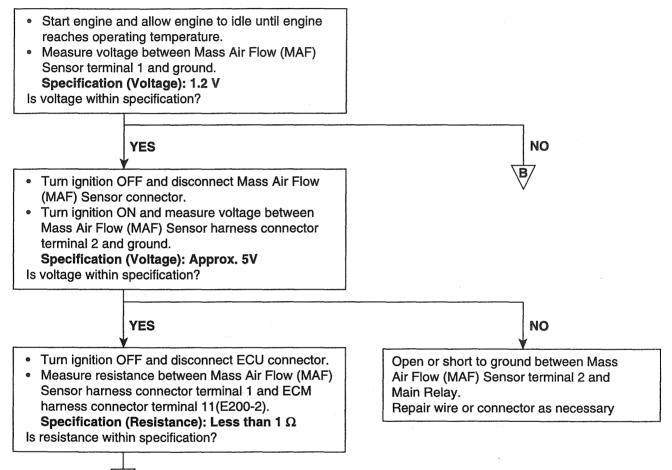
FL -59

INSPECTION CHART FOR DIAGNOSTIC TROUBLE CODE

DTC	CONTENT	MIL / M	EMORY
010	CONTENT	E-OBD	OBD-1
P0100	Mass Air Flow Circuit Malfunction	-	
P0101	Mass Air Flow Circuit Range / Performance	•	-
P0102	Mass Air Flow Circuit Low Input	•	.=
P0103	Mass Air Flow Circuit high Input	0	-
P0110	Intake Air Temperature Sensor 1 Circuit Malfunction	-	
P0112	Intake Air Temperature Sensor 1 Circuit Low Input	0	-
P0113	Intake Air Temperature Sensor 1 Circuit High Input	0	-
P0115	Engine Coolant Temperature Circuit Malfunction	19	۲
P0116	Engine Coolant Temperature Circuit Range / Performance	0	-
P0117	Engine Coolant Temperature Circuit Low Input	0	
P0118	Engine Coolant Temperature Circuit High Input		56
P0120	Throttle / Pedal Position Sensor "A" Circuit Malfunction	-	
P0121	Throttle / Pedal Position Sensor "A" Circuit Range/Performance	. 0	-
P0122	Throttle / Pedal Position Sensor "A" Circuit Low Input		-
P0123	Throttle / Pedal Position Sensor "A" Circuit High Input	۲	-
P0130	O2 Sensor Circuit Malfunction (Bank 1 / Sensor 1)		-
P0132	O2 Sensor Circuit High Voltage(Bank 1 / Sensor 1)	•	-
P0133	O2-Sensor Circuit Slow Response (Bank 1 / Sensor 1)	6	-
P0134	O2 Sensor Circuit No Activity Detected (Bank 1 / Sensor 1)	0	
P0135	O2 Sensor Heater Circuit (Bank 1 / Sensor 1)	•	-
P0136	O2 Sensor Circuit (Bank 1 / Sensor 2)	۲	-
P0140	O2 Sensor Circuit No Activity Detected (Bank 1 / Sensor 2)	0	-
P0141	O2 Sensor Heater Circuit (Bank 1 / Sensor 2)	۲	-
P0150	O2 Sensor Circuit Malfunction (Bank 2 / Sensor 1)		.
P0152	O2 Sensor Circuit High Voltage (Bank 2 / Sensor 1)	۲	-
P0153	O2-Sensor Circuit Slow Response (Bank 2 / Sensor 1)	0	-
P0154	O2 Sensor Circuit No Activity Detected (Bank 2 / Sensor 1)	۲	-
P0155	O2 Sensor Heater Circuit (Bank 2 / Sensor 1)	۲	-
P0156	O2 Sensor Circuit (Bank 2 / Sensor 2)	0	-
P0160	O2 Sensor Circuit No Activity Detected (Bank 2 / Sensor 2)	•	-
P0161	O2 Sensor Heater Circuit (Bank 2 / Sensor 2)	0	-
P0171	System Too Lean (Bank 1)		-

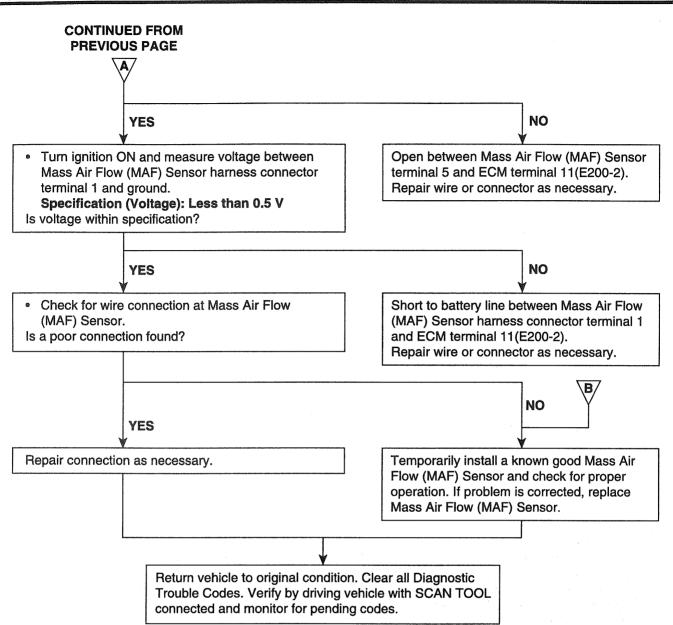
DTC	CONTENT	MIL / M	EMORY
	CONTENT	E-OBD	OBD-1
P0172	System Too Rich (Bank 1)	•	-
P0174	System Too Lean (Bank 2)	۲	-
P0175	System Too Rich (Bank 2)	۲	
P0201	Injector Circuit/Open ? Cylinder 1	۲	
P0202	Injector Circuit/Open ? Cylinder 2		
P0203	Injector Circuit/Open ? Cylinder 3	۲	
P0204	Injector Circuit/Open ? Cylinder 4	•	
P0205	Injector Circuit/Open ? Cylinder 5	۲	
P0206	Injector Circuit/Open ? Cylinder 6	0	
P0300	Multiple Cylinder Misfire Detected	•	-
P0301	Cylinder 1 - Misfire detected	۲	-
P0302	Cylinder 2 - Misfire detected		-
P0303	Cylinder 3 - Misfire detected	0	-
P0304	Cylinder 4 - Misfire detected		-
P0305	Cylinder 5 - Misfire detected		-
P0306	Cylinder 6 - Misfire detected		-
P0320	Ignition Engine Speed Input Circuit		
P0325	Knock Sensor 1 Circuit		
P0335	Crankshaft Position Sensor A Circuit		٨
P0340	Camshaft Position Sensor A Circuit Malfunction(Single Sensor)	۲	٨
P0350	Ignition Coil Primary / Secondary Circuit	•	
P0421	Warm Up Catalyst Efficiency below Threshold (Bank 1)	۲	-
P0431	Warm Up Catalyst Efficiency below Threshold (Bank 2)	•	-
P0441	Evap.Emission System Incorrect Purge Flow		
P0443	Evap. Emission System Incorrect Purge Flow Evap. Emission System - Purge Ctrl. Valve Circuit		-
P0500	Vehicle Speed Sensor Circuit Malfunction -		
P0506	Idle Air Control System - RPM lower than expected		-
P0507	Idle Air Control System - RPM higher than expected		-
P0510	Closed Throttle Position Switch		-
P1330	Spark Timing Adjust	•	A

NOTE


• : MIL ON & FAULT CODE MEMORY

▲ : MIL OFF & FAULT CODE MEMORY

TROUBLESHOOTING FOR DTC E1EEBDOA


DTC	Diagnostic Item
P0100	Mass or Volume Air Flow (MAF) Sensor Circuit
P0101	Mass or Volume Air Flow (MAF) Sensor Circuit Range/Performance Problem
P0102	Mass or Volume Air Flow (MAF) Sensor Circuit Low Voltage
P0103	Mass or Volume Air Flow (MAF) Sensor Circuit High Voltage

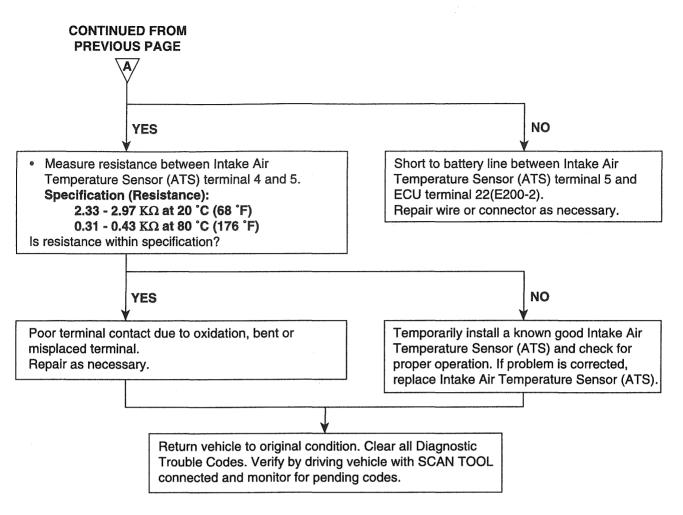
TEST PROCEDURE

NEXT PAGE

EFMF901A


EFMF901B

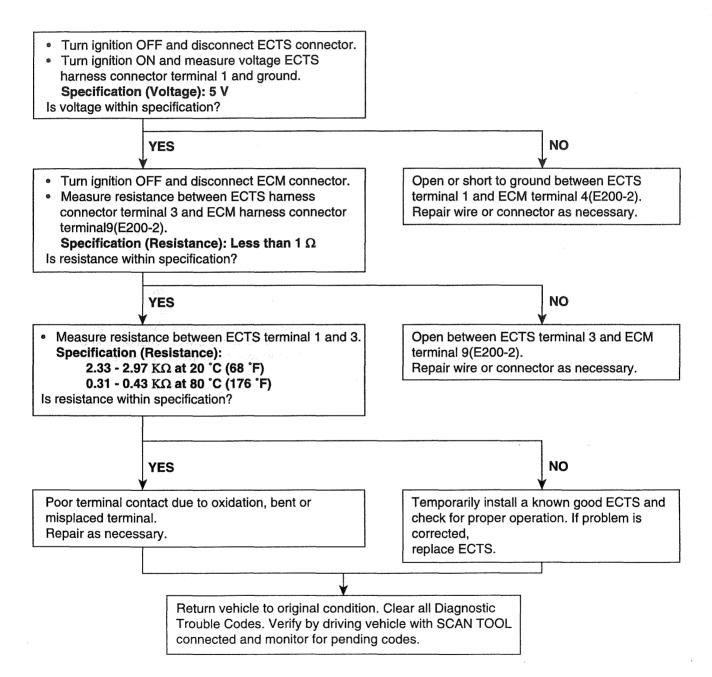
TROUBLESHOOTING FOR DTC E17F537E


NEXT PAGE

DTC	Diagnostic Item
P0110 P0112	Intake Air Temperature Sensor (ATS) Circuit Intake Air Temperature Sensor (ATS) Circuit Low Voltage
P0113	Intake Air Temperature Sensor (ATS) Circuit High Voltage

TEST PROCEDURE

EFMF901D

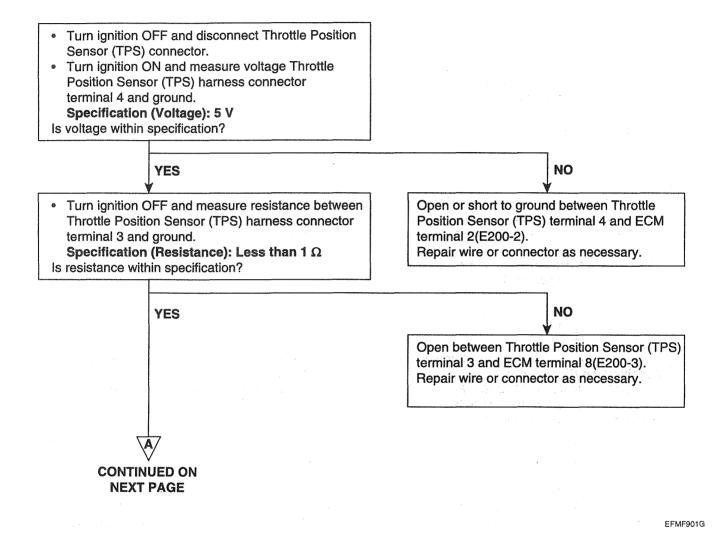


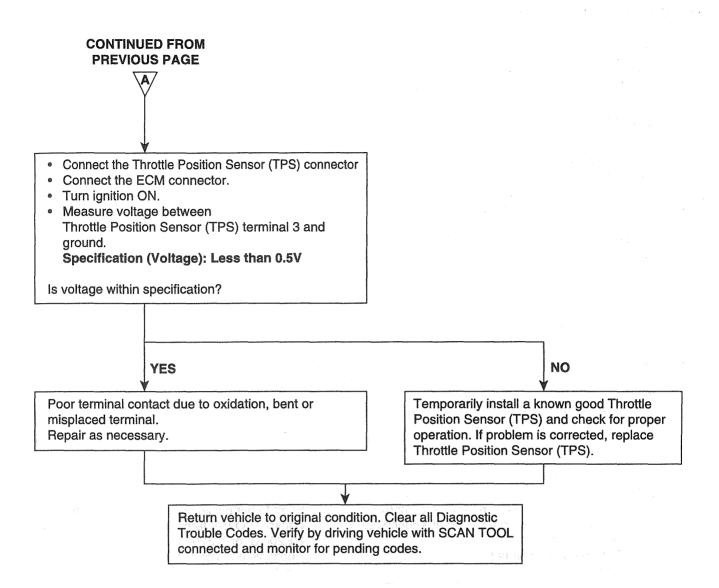
EFMF901E

TROUBLESHOOTING FOR DTC ED5AD9DE

DTC	Diagnostic Item
P0115	Engine Coolant Temperature Circuit
P0116	Engine Coolant Temperature Circuit Range/Performance
P0117	Engine Coolant Temperature Circuit Low Input
P0118	Engine Coolant Temperature Circuit High Input

TEST PROCEDURE

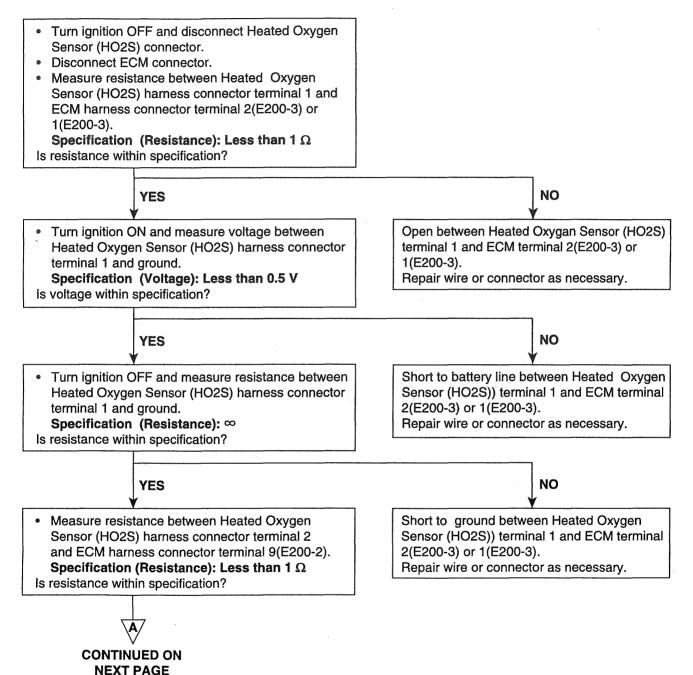



EFMF901F

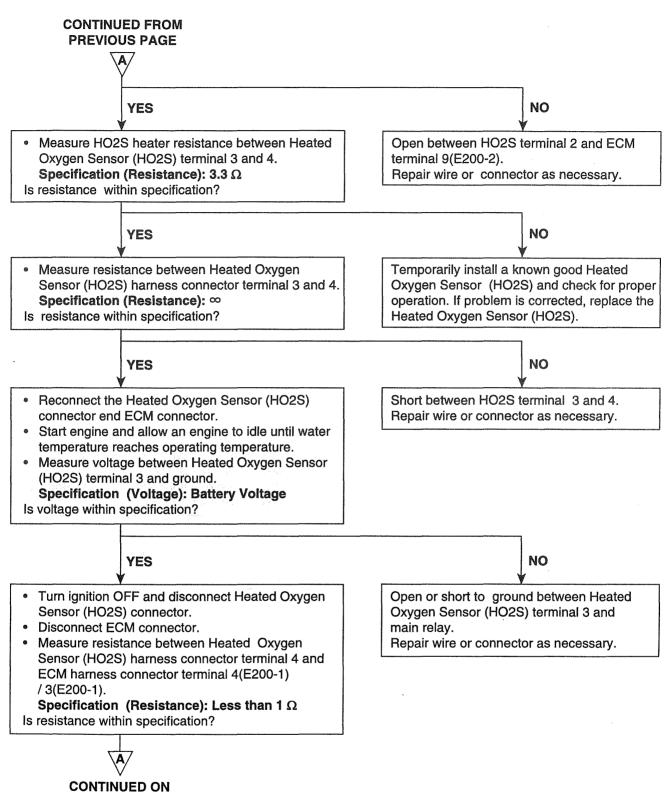
TROUBLESHOOTING FOR DTC EBODE2B5

DTC	Diagnostic Item
P0120	Throttle / Pedal Position A Circuit
P0121 P0122	Throttle / Pedal Position Circuit Range/Performance Throttle / Pedal Position Circuit Low Input
P0123	Throttle / Pedal Position Circuit High Input

TEST PROCEDURE

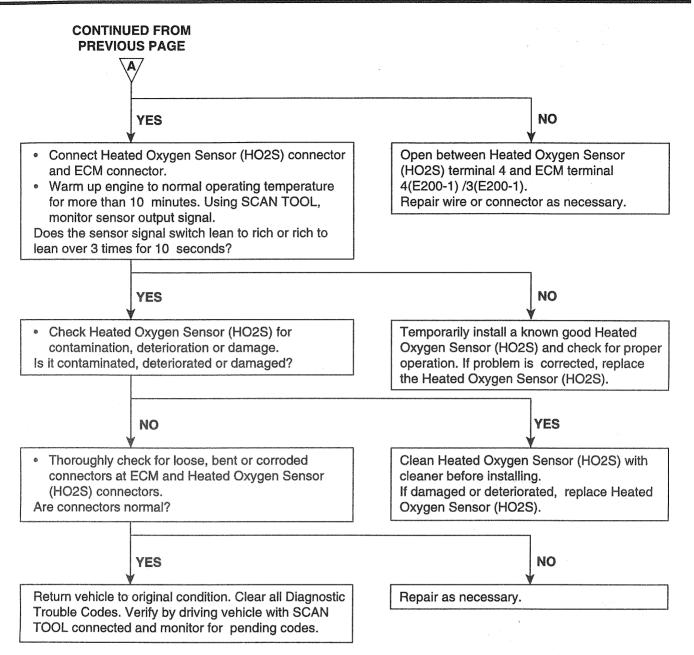


EFMF901H


TROUBLESHOOTING FOR DTC EASABDC3

DTC	Diagnostic Item
	O ₂ Sensor Circuit [Bank 1 / Sensor 1] O ₂ Sensor Circuit [Bank 2 / Sensor 1]

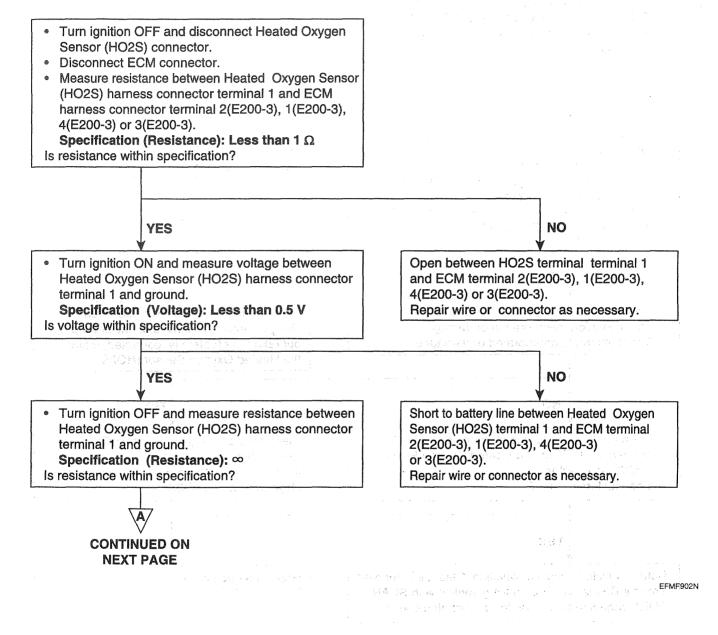
TEST PROCEDURE

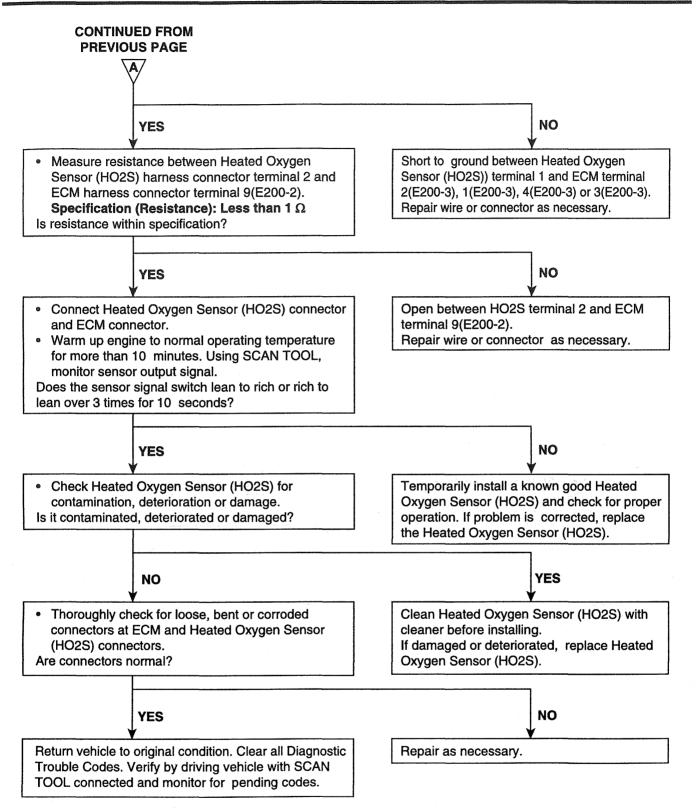


EFMF902K

NEXT PAGE

EFMF902L

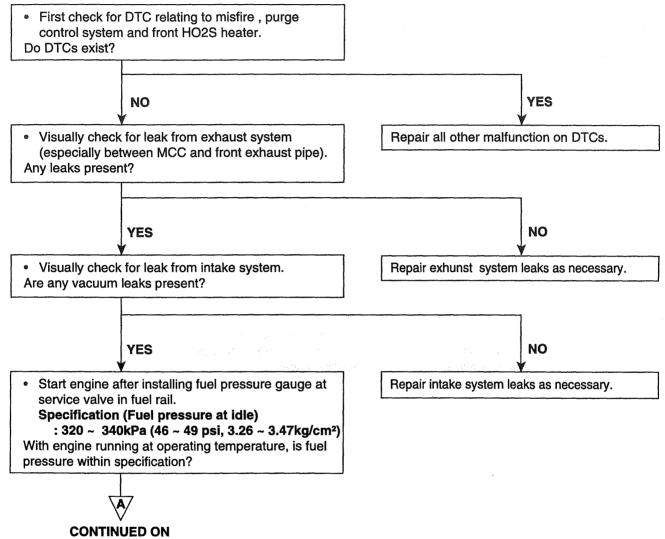



EFMF902M

TROUBLESHOOTING FOR DTC E8A1F5B0

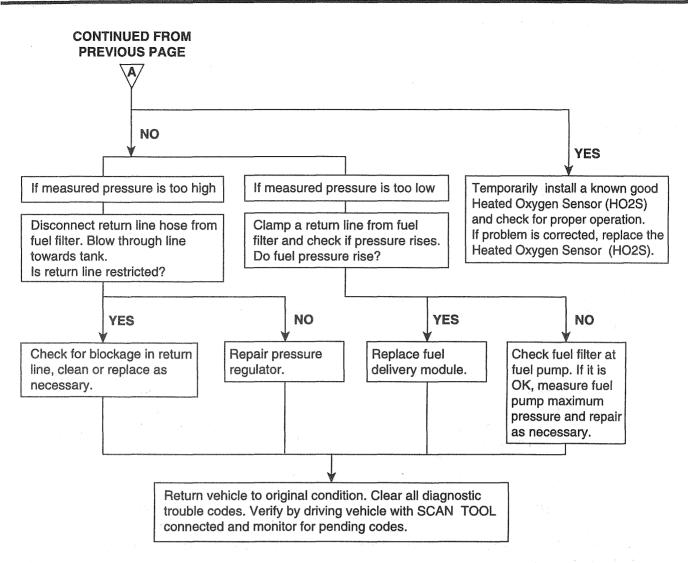
DTC	Diagnostic Item
P0132	O ₂ Sensor Circuit Low Input [Bank 1 / Sensor 1]
P0136	O ₂ Sensor Circuit [Bank 1 / Sensor 2]
P0152	O ₂ Sensor Circuit Low Input [Bank 2 / Sensor 1]
P0156	O ₂ Sensor Circuit [Bank 2 / Sensor 2]

TEST PROCEDURE



EFMF902O

TROUBLESHOOTING FOR DTC E15FE12B

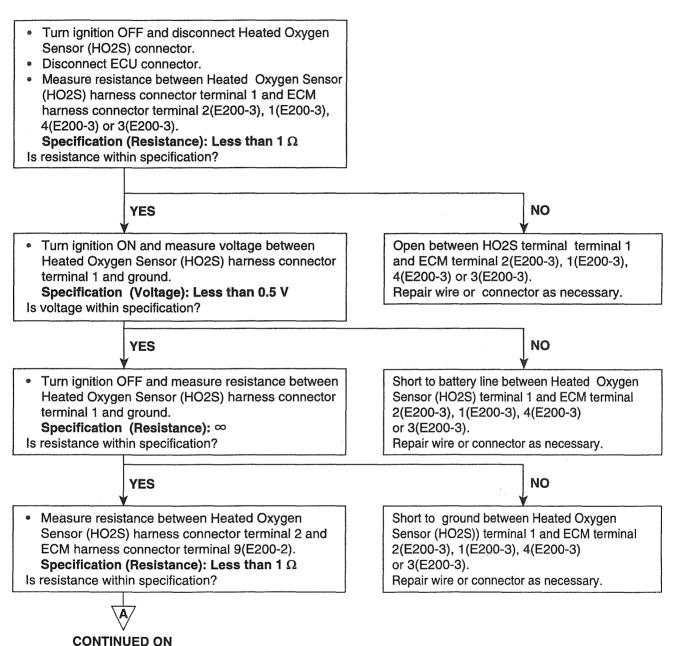

DTC	Diagnostic Item
P0133	O ₂ Sensor Circuit Slow Response [Bank 1, Sensor 1]
P0153	O ₂ Sensor Circuit Slow Response [Bank 2, Sensor 1]

TEST PROCEDURE

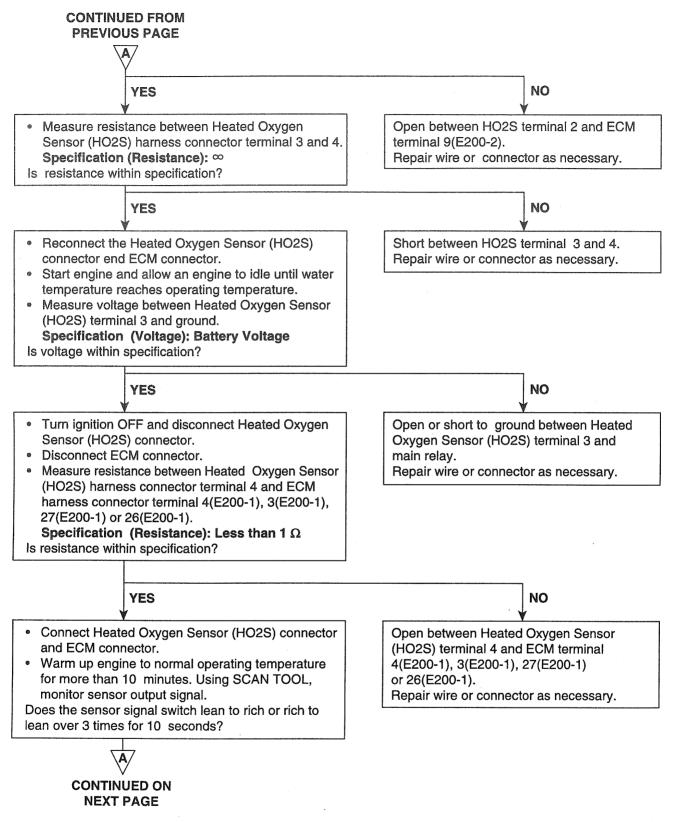
NEXT PAGE

LFCD902P

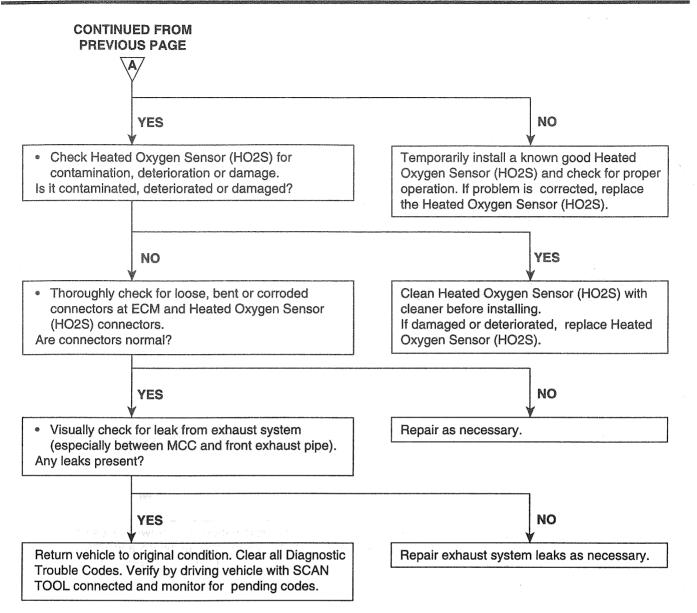
LFCD902Q


DTC TROUBLESHOOTING PROCEDURES

TROUBLESHOOTING FOR DTC E6E3BB9D

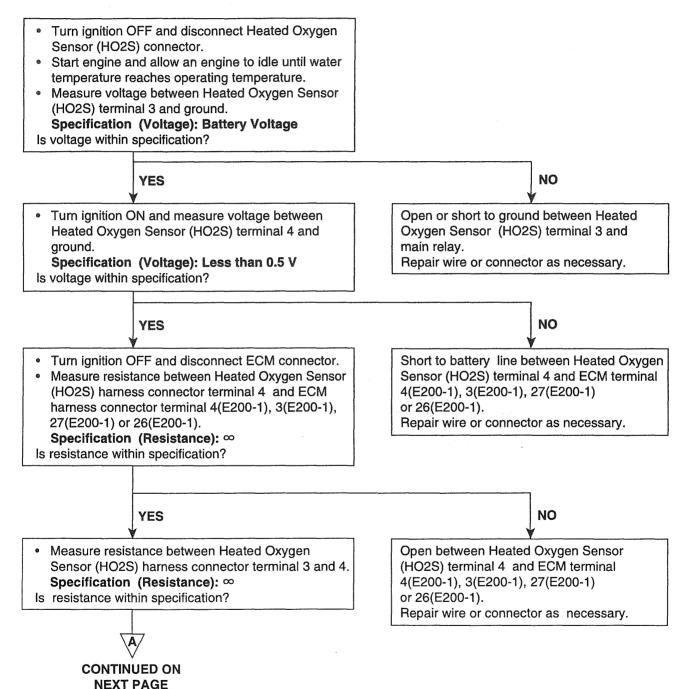

NEXT PAGE

DTC	Diagnostic Item
P0134 P0154	O ₂ Sensor Circuit No Activity Detected [Bank 1 / Sensor 1] O ₂ Sensor Circuit No Activity Detected [Bank 2 / Sensor 1]

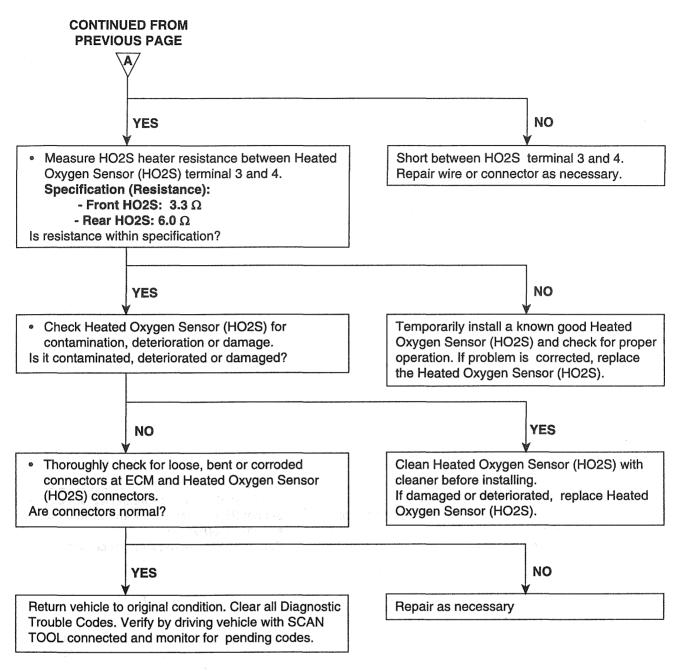

TEST PROCEDURE

EFMF902R

EFMF902S



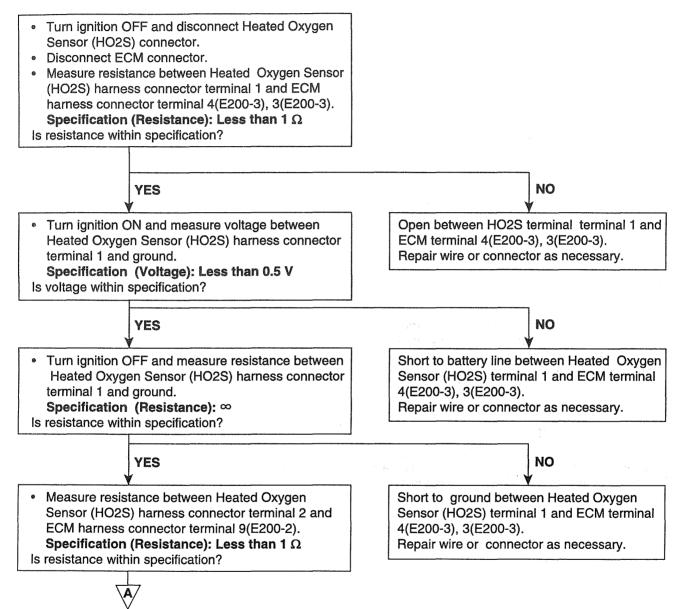
EFMF902T


TROUBLESHOOTING FOR DTC E5COEFCF

DTC	Diagnostic Item
P0135 P0141 P0155 P0161	 O₂ Sensor Heater Circuit [Bank 1 / Sensor 1] O₂ Sensor Heater Circuit [Bank 1 / Sensor 2] O₂ Sensor Heater Circuit [Bank 2 / Sensor 1] O₂ Sensor Heater Circuit [Bank 2 / Sensor 2]

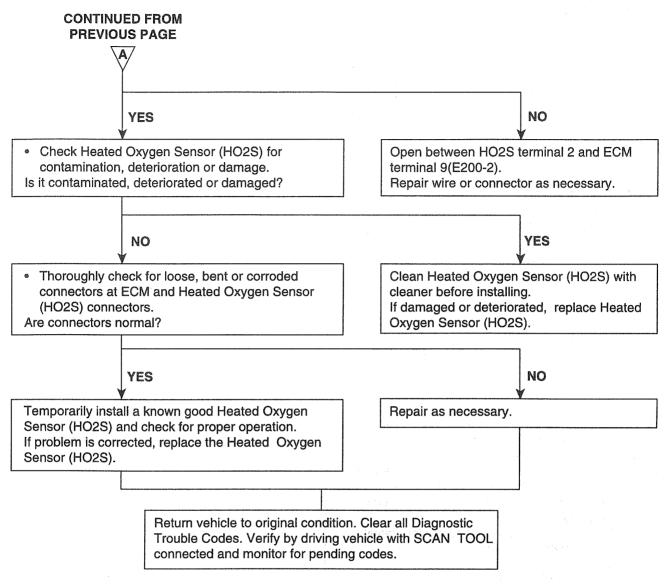
TEST PROCEDURE

EFMF902U



EFMF902V

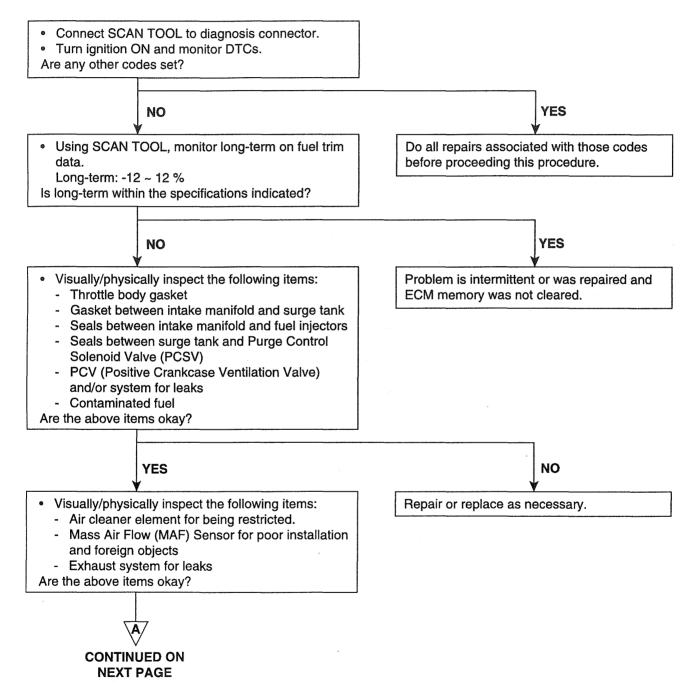
TROUBLESHOOTING FOR DTC E04ED56F


DTC	Diagnostic Item
P0140	O ₂ Sensor Circuit No Activity Detected [Bank 1, Sensor 2]
P0160	O ₂ Sensor Circuit No Activity Detected [Bank 2, Sensor 2]

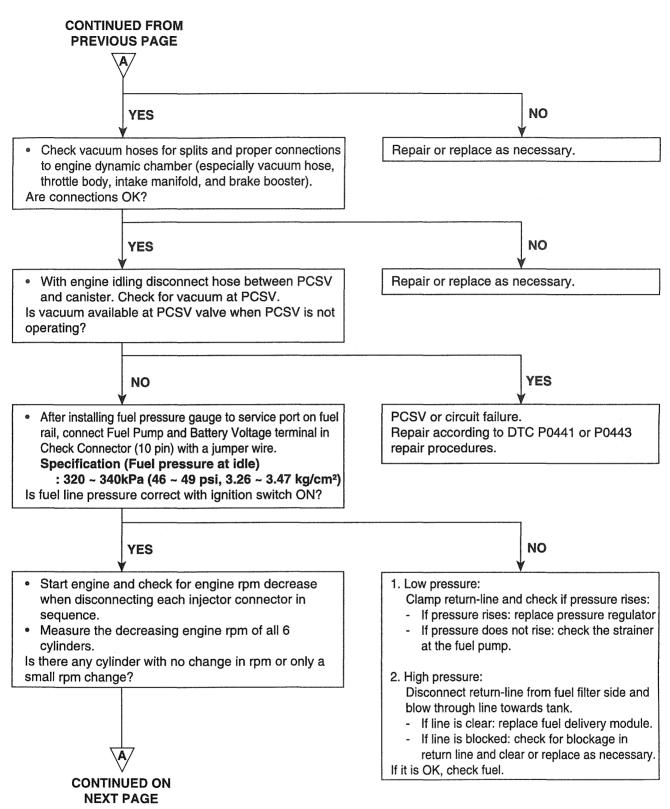
TEST PROCEDURE

CONTINUED ON NEXT PAGE

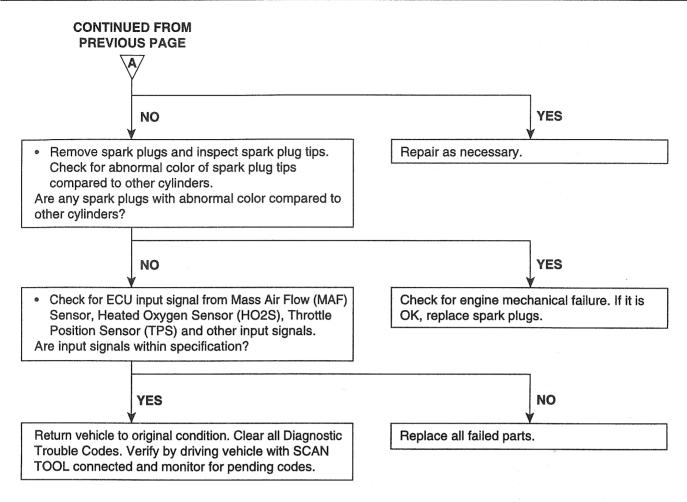
EFMF902W



EFMF902X

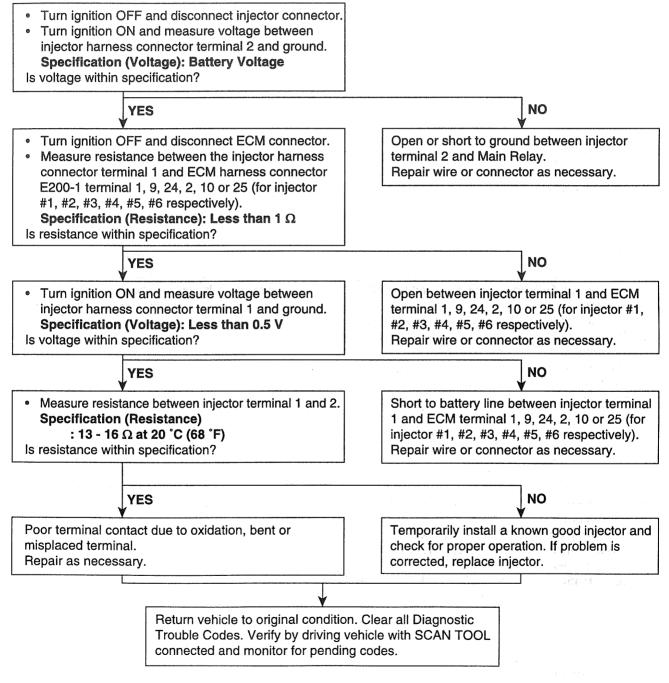

TROUBLESHOOTING FOR DTC E5C8C2CC

DTC	Diagnostic Item
P0171	Fuel System (Bank 1) Too Lean
P0172	Fuel System (Bank 1) Too Rich
P0174	Fuel System (Bank 2) Too Lean
P0175	Fuel System (Bank 2) Too Rich


TEST PROCEDURE

EFMF901I

EFMF901J

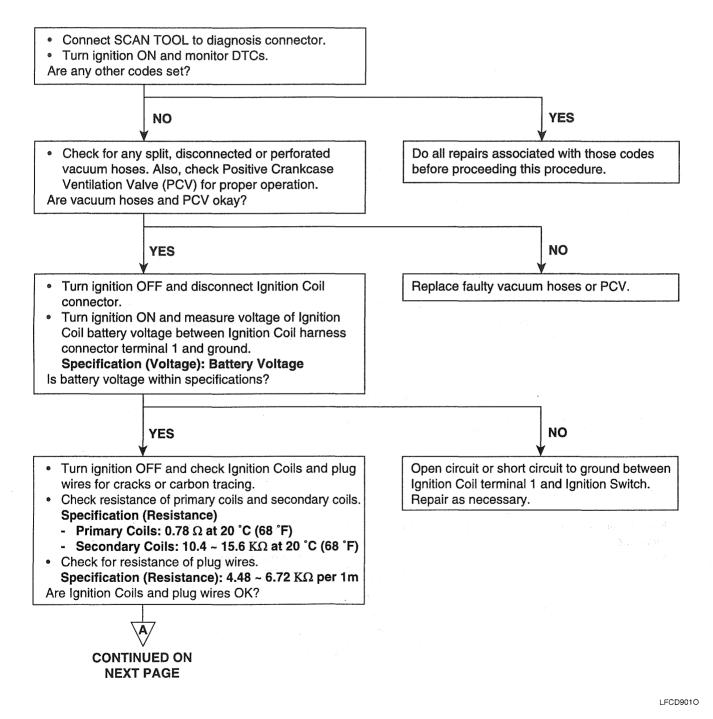


LFCD901K

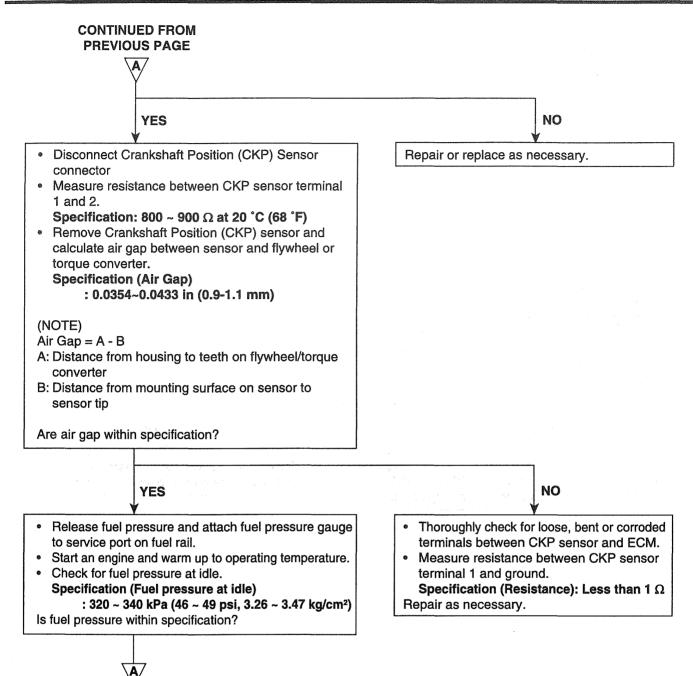
TROUBLESHOOTING FOR DTC EFC2674C

DTC	Diagnostic Item	
P0201	Cylinder 1 Malfunction	
P0202	Cylinder 2 Malfunction	
P0203	Cylinder 3 Malfunction	
P0204	Cylinder 4 Malfunction	
P0205	Cylinder 5 Malfunction	
P0206	Cylinder 6 Malfunction	

TEST PROCEDURE



EFMF901L

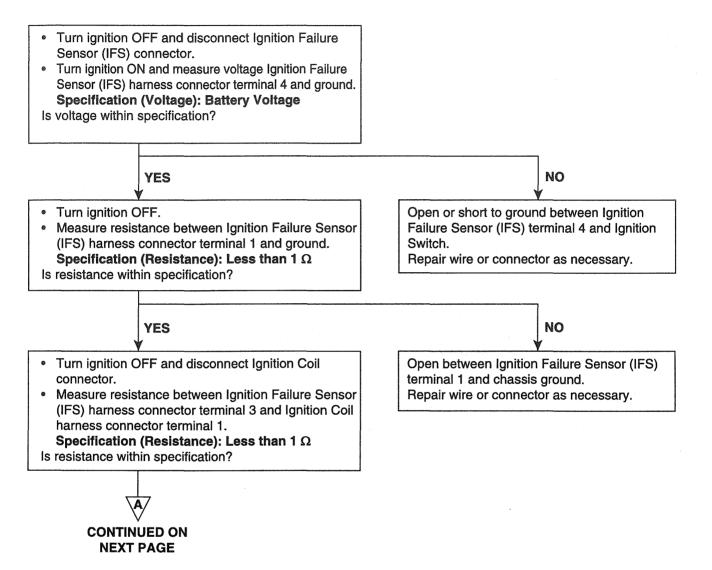

TROUBLESHOOTING FOR DTC E34DACA2

DTC	Diagnostic Item
P0300	Multiple Cylinder Misfire Detected
P0301	Cylinder 1 - Misfire detected
P0302	Cylinder 2 - Misfire detected
P0303	Cylinder 3 - Misfire detected
P0304	Cylinder 4 - Misfire detected
P0305	Cylinder 5 - Misfire detected
P0306	Cylinder 6 - Misfire detected

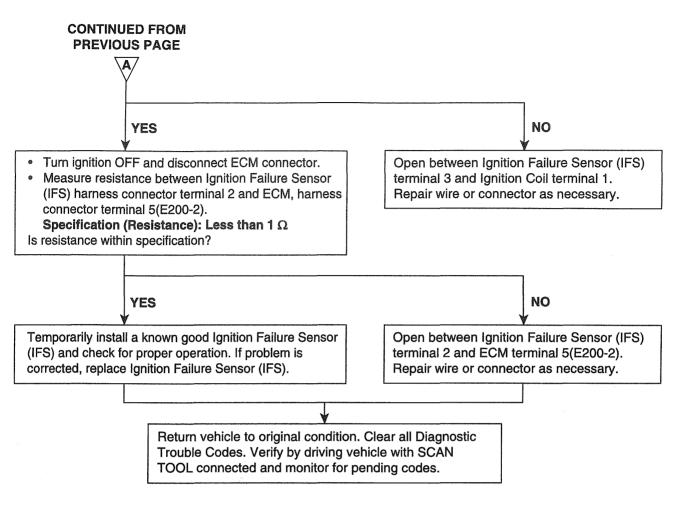

TEST PROCEDURE

CONTINUED ON NEXT PAGE

EFMF901P


LFCD902B

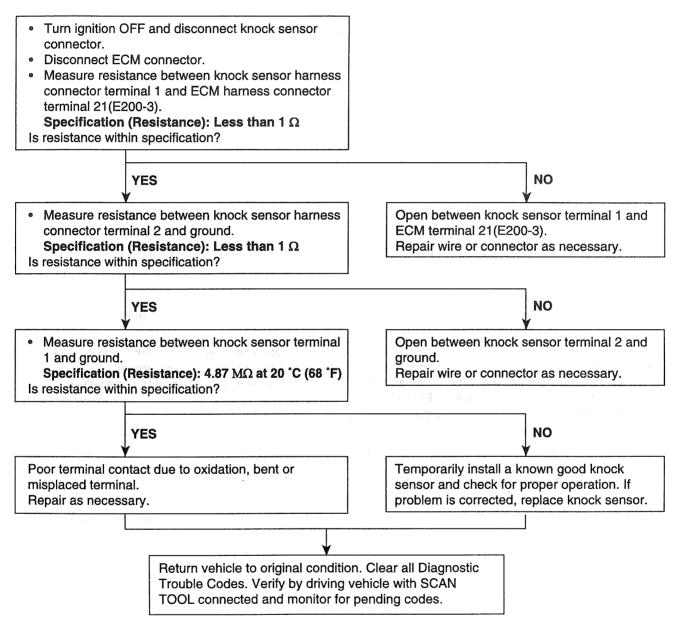
FL -89


TROUBLESHOOTING FOR DTC E89B77DB

DTC	Diagnostic Item
P0320	Ignition Failure Sensor 1 Open / Short

TEST PROCEDURE

LFCD901Q

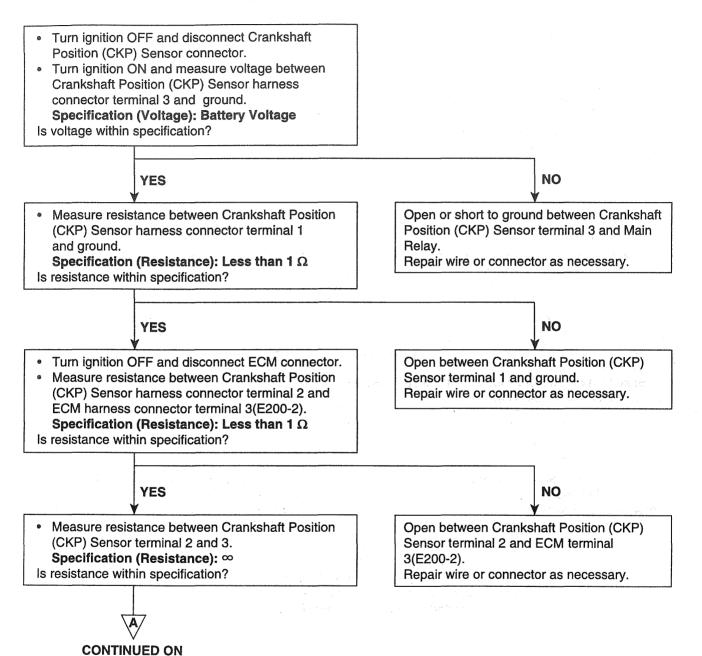


EFMF902C

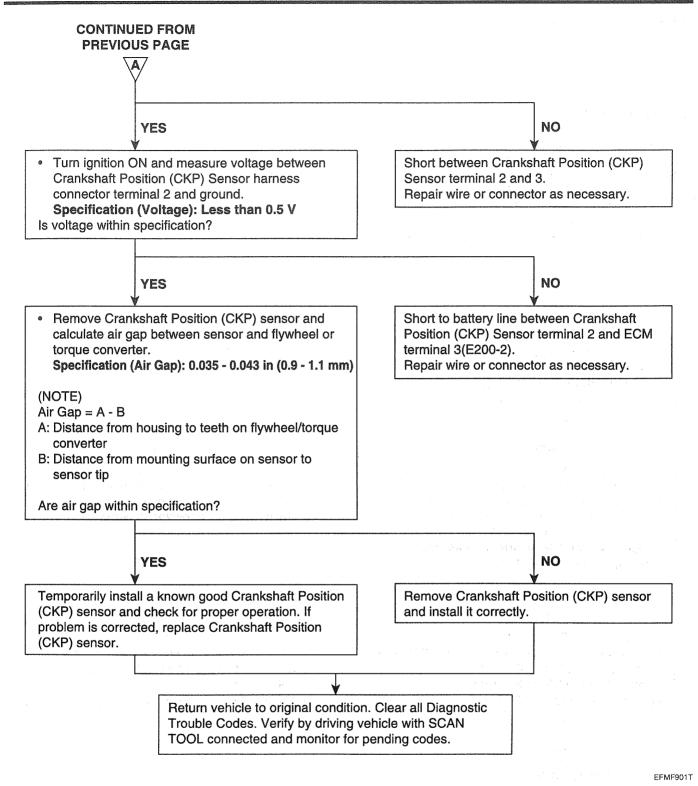
TROUBLESHOOTING FOR DTC EDB8D071

DTC	Diagnostic Item	
P0325	Knock Sensor Circuit Malfunction	Knock Sensor Circuit Malfunction

TEST PROCEDURE

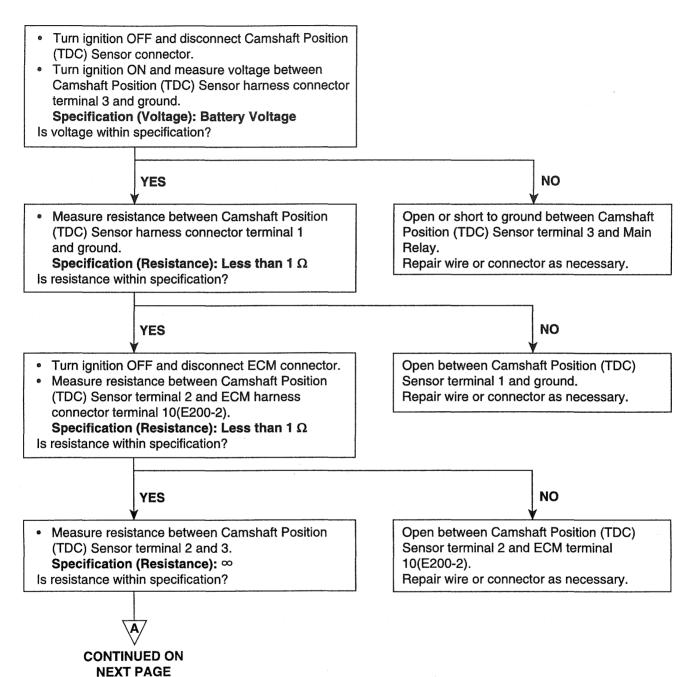

EFMF901R

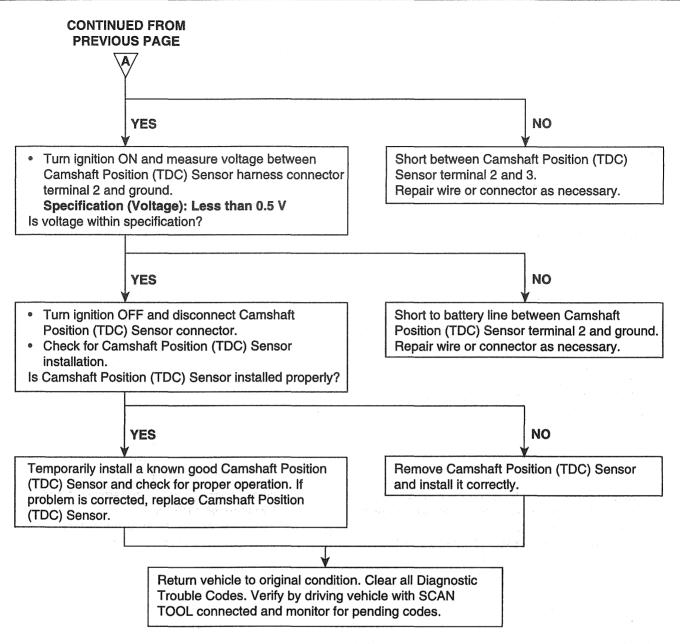
TROUBLESHOOTING FOR DTC EEE49BA6


NEXT PAGE

DTC	Diagnostic Item	
P0335	Crankshaft Position Sensor Circuit Malfunction	

TEST PROCEDURE

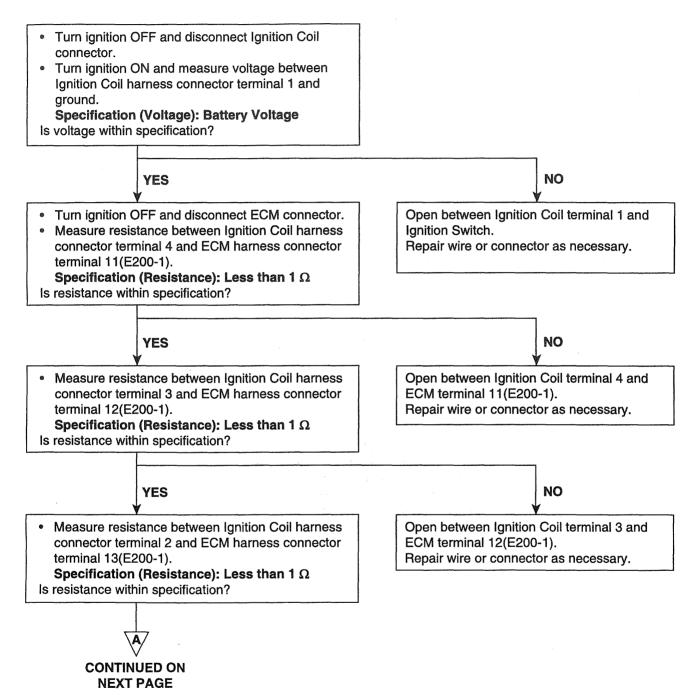

EFMF901S


TROUBLESHOOTING FOR DTC E7B0700E

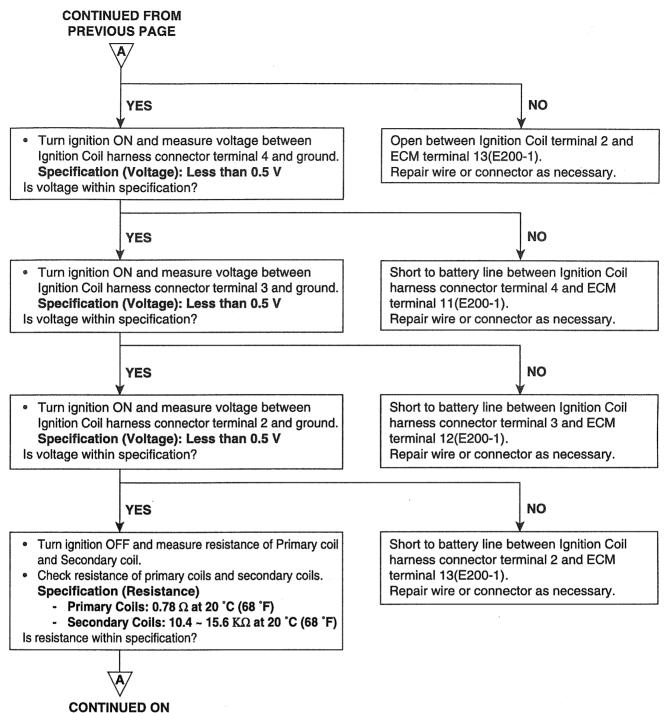
DTC	Diagnostic Item
P0340	Camshaft Position Sensor Circuit Malfunction

TEST PROCEDURE

EFMF901U

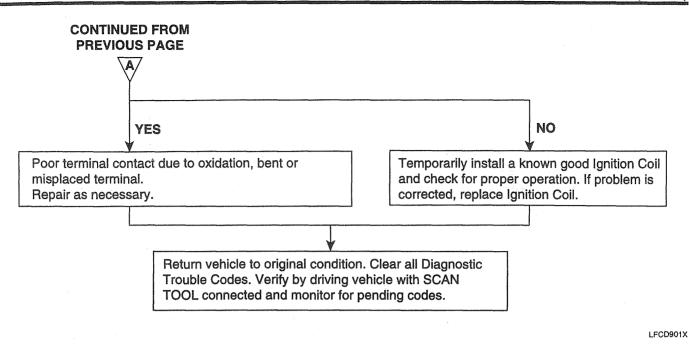


LFCD901V


TROUBLESHOOTING FOR DTC EAD3D773

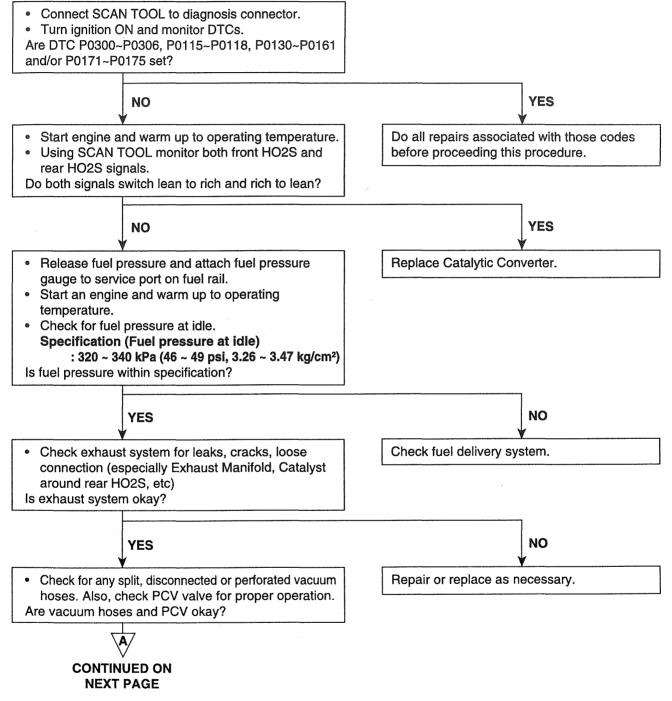
DTC	Diagnostic Item
P0350	Ignition Coil Primary / Secondary Circuit Malfunction

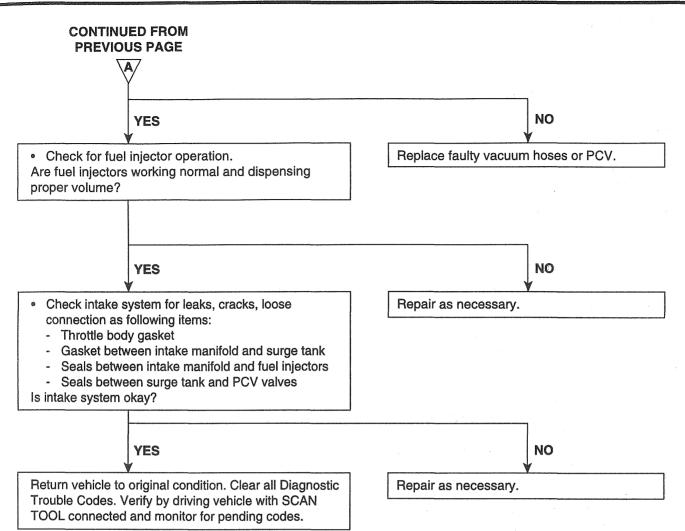
TEST PROCEDURE



EFMF901W

NEXT PAGE

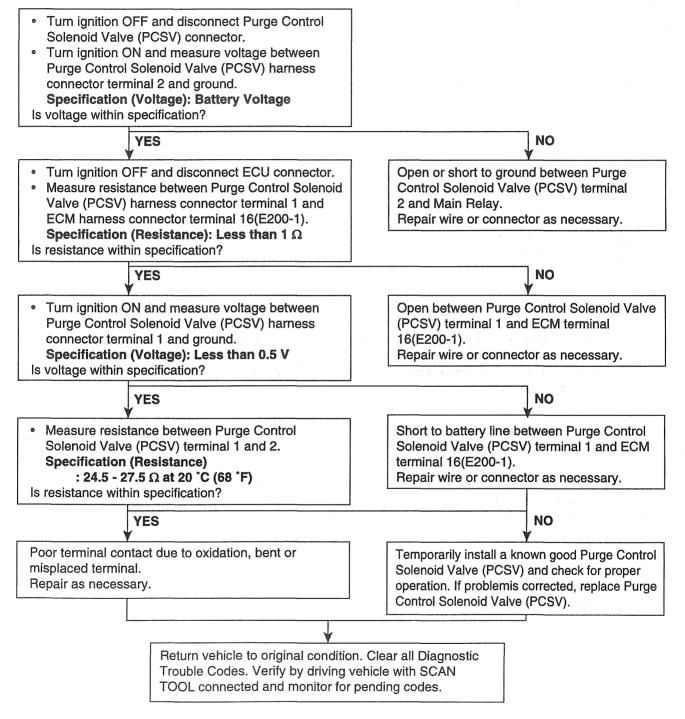

EFMF902D


TROUBLESHOOTING FOR DTC E42B0BB2

DTC	Diagnostic Item
P0421	Warm Up Catalyst Efficiency below Threshold [Bank 1]
P0431	Warm Up Catalyst Efficiency below Threshold [Bank 2]

TEST PROCEDURE

EFMF901Z

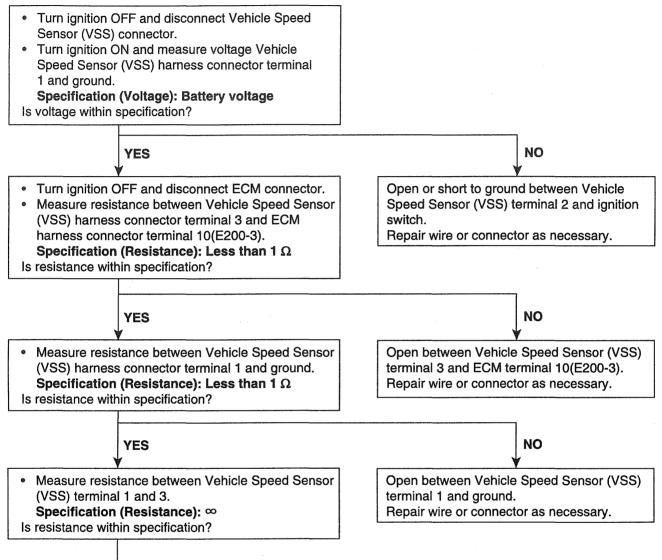


LFCD902A

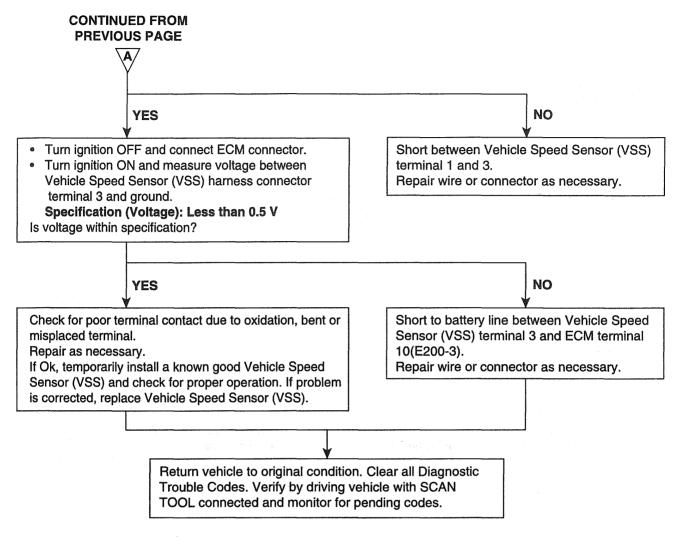
TROUBLESHOOTING FOR DTC E4542E51

DTC	Diagnostic Item
P0441	Evap. Emission Ctrl. System Incorrect Purge Flow
P0443	Evap. Emission Ctrl. System - Purge Ctrl. Valve Circuit

TEST PROCEDURE



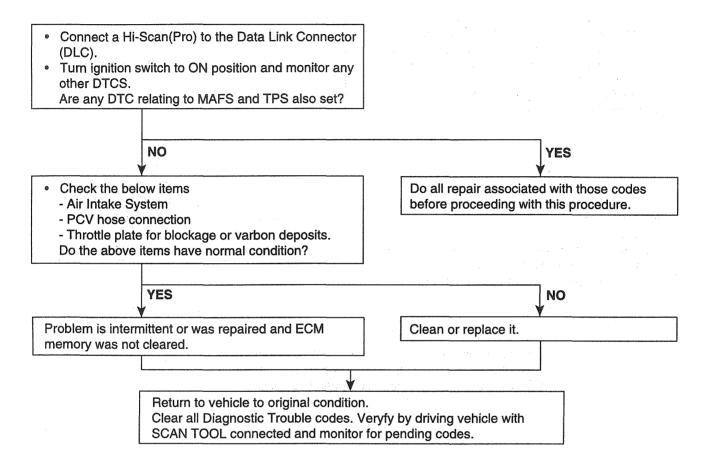
EFMF902E


TROUBLESHOOTING FOR DTC ECBEBBB

DTC	Diagnostic Item
P0500	Vehicle Speed Sensor (VSS) Circuit Malfunction

TEST PROCEDURE

EFMF902F

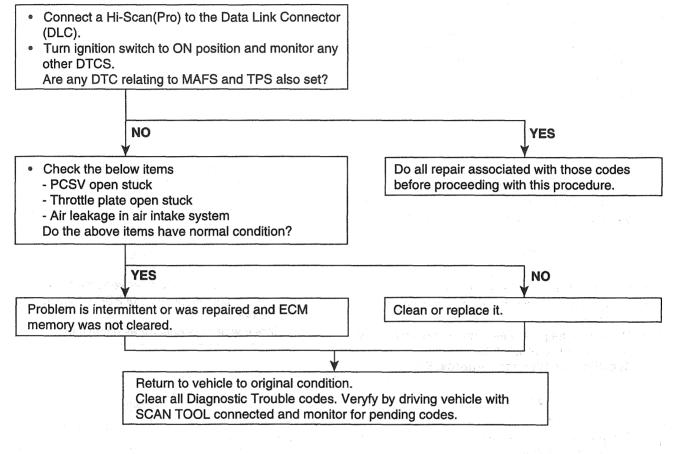


EFMF902G

TROUBLESHOOTING FOR DTC E3E9BBE8

DTC	Diagnostic Item	
P0506	Idle Air Control System - RPM lower than expected	ž

TEST PROCEDURE

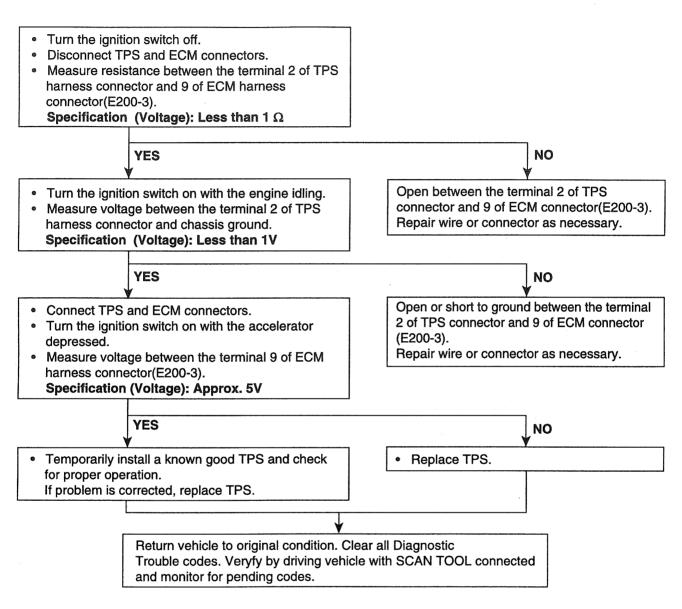


EFMF401B

TROUBLESHOOTING FOR DTC EECOCAF5

DTC	Diagnostic Item
P0507	Idle Air Control System - RPM higher than expected

TEST PROCEDURE



EFMF401C

TROUBLESHOOTING FOR DTC E89B7724

DTC	Diagnostic Item
P0510	Closed Throttle Position Switch

TEST PROCEDURE

EFMF401A

Fuel System (D4BH - DSL2.5)

GENERAL

SPEC	IFICATION	FLA-2	2
TIGHT	ENING TORQUES	FLA -	5
SPEC	IAL SERVICE TOOLS	FLA-6	6
BASIC	TROUBLESHOOTING		
BA	SIC TROUBLE SHOOTING GUIDE	FLA-7	1
CU	ISTOMER PROBLEM		
AN	IALYSIS SHEET	FLA-9)
BA	SIC INSPECTION PROCEDURE	FLA-1	0
SY	MPTOM TROUBLESHOOTING		
GL	JIDE CHART (I)	FLA-1	5
SY	MPTOM TROUBLESHOOTING		
GU	IIDE CHART (II)	FLA-1	8
SY	MPTOM TROUBLESHOOTING		
GU	IIDE CHART (III)	FLA-2	2

DIESEL ENGINE CONTROL SYSTEM

SCHEMATIC DIAGRAM	FLA-25
SYSTEM OVERVIEW	FLA-26
COMPONENTS LOCATION	FLA-29
ECM CONNECTOR	FLA-31

DTC TROUBLESHOOTING PROCEDURE

INSPECTION CHART FOR DIAGNOSTIC	
TROUBLE CODES (DTC)	. FLA-34
TROUBLESHOOTING FOR DTC	
P0105	. FLA-35
P0110	. FLA-36
P0115	. FLA-41
P0120 P0121	. FLA-46
P0180	. FLA-51
P0320	. FLA-55
P0335	. FLA-60
P0500	. FLA-64
P0605	. FLA-68
P1116	FLA-70
P1120	FLA-76
P1122	FLA-81
P1123	
P1127	FLA-88
P1131	FLA-94
P1135	FLA-100
P1324	FLA-106
P1522	FLA-110
P1525	FLA-114
P1613	FLA-120
P1621	FLA-121

INJECTION PUMP-ELECTRONIC

COMPONENTS	FLA-125
REMOVAL	FLA-126
INSTALLATION	FLA-128
FUEL DELIVERY SYSTEM-DIESEL	
INJECTION NOZZLE	
COMPONENTS	FLA-130
REMOVAL	FLA-131
DISASSEMBLY	FLA-131
INSPECTION	
REASSEMBLY	FLA-133
INSTALLATION	FLA-133
FUEL TANK	
COMPONENTS	FLA-134
FUEL FILTER	
INSPECTION	FLA-135

GENERAL

SPECIFICATION E2BOB1EC

ENGINE INFORMATION	Engine	D4BH
	Displacement Volume	2476 cc
	Number of Cylinders	4-Cylinders, in-line
	Valve Mechanism	SOHC
	Fuel	Diesel

	Items		Specification			
SENSORS	Manifold Absolute Pressure	Туре	Piezo-Res	istive Sensor		
	Sensor (MAPS)	Output	20 kPa	0.32 ~ 0.48V (23℃)		
		Voltage	100 kPa	1.82 ~ 1.94V (23℃)		
			190 kPa	3.48 ~ 3.60V (23℃)		
			250 kPa	4.57 ~ 4.73V (23℃)		
	Intake Air Temperature	Туре	Therm	ister Type		
	Sensor (IATS)	Resistance	-40 ℃	40.93 ~ 48.35 ^{kΩ}		
			-20℃	13.89 ~ 16.03 ^k Ω		
			0°C	5.38 ~ 6.09 kΩ		
			20°C	2.31 ~ 2.56 ^k Ω		
			40 ℃	1.07 ~ 1.21 kΩ		
			30℃	0.29 ~ 0.34 kΩ		
	Accelerator Position Sensor	Output	C.T	0.33 ~ 0.43V		
	(APS)	Voltage	W.O.T	3.8 ~ 4.4V		
	Crankshaft Position Sensor (CKPS)			Туре	Variable Reluctanc	e (VR) Speed Sensor
	Fuel Temperature Sensor (FTS)	Туре	Therm	ister Type		
		Resistance	-40 ℃	52.97 kΩ		
			-20℃	16.15 ^k Ω		
			0°C	5.86 ^k Ω		
			· 20°C	2.44 kΩ		
			40 ℃	1.14 kΩ		
			60 ℃	0.58 kΩ		

GENERAL

	Items		Specification	
SENSORS	Engine Coolant Temperature	Туре	Thermis	ster Type
	Sensor (ECTS)	Resistance	-40 °C	48.14 ^k Ω
			-20℃	14.13 ~ 16.83 ^k Ω
			0℃	5.79 kΩ
			20 ℃	2.31 ~ 2.59 ^k Ω
			40℃	1.15 ^{kΩ}
			30℃	0.32 ^k
	Timing Position Sensor (TPS)	Resistance	MDL ~ OSC [+]	76.3 ~ 87.7kΩ
			MDL ~ OSC [-]	(25 ± 10 °C)
	Control Sleeve Position	Resistance	OSC [+] ~ OSC [-]	11.2 ~ 12.4Ω (23 ℃)
	Sensor (CSPS)		MDL ~ OSC [+]	
			MDL ~ OSC [-]	5.6~6.2Ω (23 °C)
	Compensation Resistor	No.(Distin- guishing num-	No.1 (945)	0.18 kΩ
		ber) and re-	No.2 (946)	0.30 kΩ
	sistanc	sistance	No.3 (947)	0.43 kΩ
			No.4 (948)	0.62 kΩ
			No.5 (949)	0.82 kΩ
			No.6 (950)	1.10 kΩ
			No.7 (951)	1.50 kΩ
			No.8 (952)	2.00 kΩ
			No.9 (953)	2.70 kΩ
			No.10 (954)	3.90 kΩ
			No.11 (955)	5.60 kΩ
			No.12 (956)	8.20 kΩ
			No.13 (957)	15.00 kΩ
	NP Sensor	Resistance	1.5 ~ 1.8kΩ	(25 ± 5 ℃)
		Gap	0.8 ~	1.2mm
ACTUATORS	Timing Control Valve (TCV)	Resistance	10.3 ~ 11.7Ω (20 ℃)	
	Fuel Cut Valve (FCV)	Resistance	7.5 ~ 9.7 Ω	(23 ± 10 ℃)
	GE Actuator	Resistance	0.55 ~ 0.8	1Ω (23 ℃)
	EGR Solenoid Valve 1	Туре	Duty Cor	ntrol Type
	EGR Solenoid Valve 2	Туре	ON/OFF C	ontrol Type

FLA -4

FUEL SYSTEM (D4BH)

Items		Specification
FUEL TANK	Capacity	75l
INJECTION	Туре	COVEC-F (COmputed VE pump Control system - Full)
PUMP	Number of cylinders	4
	Maximum Speed (Injection Pump)	Approximately 3,000 rpm
	Direction of rotation	Clockwise viewed from driven end
	Governor type	Electronic (GE Actuator)
	Injection timing control	TCV duty ratio control on the base of feed back TPS
	Injection quantity control	Electronic control of control sleeve position on the base of feed-back CSPS
	Prevention of reverse rotation	Constructed so that fuel injection is not performed at reverse rotation
	Injection timing	ATDC 9° ± 0.5°
	Plunger stroke	1 ± 0.03 mm
	Opening pressure	14.7 MPa (150 kgf/㎡, 2,132 psi)
AND HOLDER	Initial opening pressure	15.2 ~ 16.2 MPa (155 ~ 165 kgf/㎡, 2,204 ~ 2,346 psi)
	Spring constant	21 kgf/mm

TIGHTENING TORQUES E51E9B79

Items	Nm	kgf⋅cm	lbf·ft
Injection pipe clamp bolts	4 ~ 6	40 ~ 60	3 ~ 4
Injection pipe union nuts	23 ~ 37	230 ~ 370	17 ~ 27
Pump bracket-to-cylinder block bolts	18 ~ 25	180 ~ 250	13 ~ 18
Injection pump-to-pump bracket bolts	20 ~ 27	200 ~ 270	14 ~ 19
Injection pump mounting nuts	15 ~ 22	150 ~ 220	11 ~ 16
Fuel return pipe nuts	30 ~ 40	300 ~ 400	22 ~ 29
Injection nozzle	50 ~ 60	500 ~ 600	36 ~ 43
Retaining nut-to-nozzle body	35 ~ 40	350 ~ 400	25 ~ 29
Pump sprocket nut	80 ~ 90	800 ~ 900	58 ~ 65
Fuel filler neck mounting bolt	4 ~ 6	40 ~ 60	3 ~ 4
Fuel filter bracket mounting bolts	4 ~ 6	40 ~ 60	3 ~ 4
Injection pump wire harness bracket mounting bolt	8 ~ 10	80 ~ 100	6 ~ 7
Fuel pump opening nut	30 ~ 40	300 ~ 400	22 ~ 29

SPECIAL SERVICE TOOL EBEC04F7

Tool (Number and name)	Illustration	Application
09310-43000 Prestroke measuring adapter		Injection timing adjustment
	LF9E018A	
09314-43000 Injection pump sprocket puller		Removal of injection pump sprocket
00014 40100	LF9E019A	
09314-43100 Nozzle holder socket		Removal of nozzle holder
	LF9E020A	

BASIC TROUBLESHOOTING E72D5A2A

BASIC TROUBLESHOOTING GUIDE

1 Bring Vehicle to Workshop

2 Analyze Customer's Problem

 Ask the customer about the conditions and environment relative to the issue (Use CUS-TOMER PROBLEM ANALYSIS SHEET).

3 Verify Symptom, and then Check DTC and Freeze Frame Data

· Connect Hi-Scan (Pro) to Diagnostic Link Connector (DLC).

• Record the DTC and freeze frame data.

To erase DTC and freeze frame data, Refer to Step 5.

4 Confirm the Inspection Procedure for the System or Part

 Using the SYMPTOM TROUBLESHOOTING GUIDE CHART, choose the correct inspection procedure for the system or part to be checked.

5 Erase the DTC and Freeze Frame data

(WARNING)

6

NEVER erase DTC and freeze frame data before completing Step 2 MIL/DTC in " CUS-TOMER PROBLEM ANALYSIS SHEET".

Inspect Vehicle Visually

· Go to Step 11, if you recognize the problem.

7 Recreate (Simulate) Symptoms the DTC

• Try to recreate or simulate the symptoms and conditions of the malfunction as described by customer.

If DTC(s) is/are displayed, simulate the condition according to troubleshooting procedure for the DTC.

8 Confirm Symptoms of Problem

• If DTC(s) is/are not displayed, go to Step 9.

• If DTC(s) is/are displayed, go to Step 11.

9 Recreate (Simulate) Symptom

• Try to recreate or simulate the condition of the malfunction as described by the customer.

10 Check the DTC

12

• If DTC(s) does(do) not occur, refer to BASIC INSPECTION in INTERMITTENT PROBLEM PROCEDURE.

• If DTC(s) occur(s), go to Step 11.

11 Perform troubleshooting procedure for DTC

Adjust or repair the vehicle

13	Confirmation test	Ĩ.s.	· · · ·	· ·	<u> </u>	
14	END					

CUSTOMER PROBLEM ANALYSIS SHEET

1. VEHICLE INFORMATION

(I) VIN:

(II) Production Date:

(III) Odometer Reading: (miles/km)

2. SYMPTOMS

Unable to start	 Engine does not turn over Incomplete combustion Initial combustion does not occur
Difficult to start	Engine turns over slowly Other
□ Poor idling	 Rough idling <a>Incorrect idling Unstable idling (High: rpm, Low:rpm) Other
Engine stall	 Soon after starting After accelerator pedal depressed After accelerator pedal released During A/C ON Shifting from N to D-range Other
□ Others	 Poor driving (Surge) Knocking Poor fuel economy Back fire After fire Other

3. ENVIRONMENT

Problem frequency	Constant Sometimes () Once only Other)
Weather	Fine Cloudy Rainy Snowy Other
Outdoor temperature	Approx °C/°F
Place	 □ Highway □ Suburbs □ Inner City □ Uphill □ Downhill □ Rough road □ Other
Engine temperature	□ Cold □ Warming up □ After warming up □ Any temperature
Engine operation	 Starting Just after starting (min) Idling Racing Driving Constant speed Acceleration Deceleration A/C switch ON/OFF Other

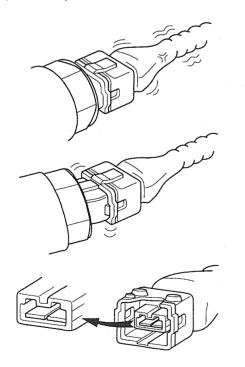
4. MIL/DTC

MIL (Malfunction Indicator Lamp)		□ Remains ON □ Sometimes lights up □ Does not light	
DTC	Normal check (Pre-check)	Normal DTC (Freeze Frame data)
	Check mode	Normal DTC (Freeze Frame data)

BASIC INSPECTION PROCEDURE

MEASURING CONDITION OF ELECTRONIC PARTS' RESISTANCE

The measured resistance at high temperature after vehicle running may be high or low. So all resistance must be measured at ambient temperature (20° C, 68° F), unless there is any notice.



The measured resistance in except for ambient temperature (20°C, 68°F) is reference value.

INTERMITTENT PROBLEM INSPECTION PROCEDURE

Sometimes the most difficult case in troubleshooting is when a problem symptom occurs but does not occur again during testing. An example would be if a problem appears only when the vehicle is cold but has not appeared when warm. In this case, technician should thoroughly make out a "CUSTOMER PROBLEM ANALYSIS SHEET" and recreate (simulate) the environment and condition which occurred when the vehicle was having the issue.

- 1. Clear Diagnostic Trouble Code (DTC).
- Inspect connector connection, and check terminal for poor connections, loose wires, bent, broken or corroded pins, and then verify that the connectors are always securely fastened.

- 3. Slightly shake the connector and wiring harness vertically and horizontally.
- 4. Repair or replace the component that has a problem.
- 5. Verify that the problem has disappeared with the road test.
- SIMULATING VIBRATION
- a. Sensors and Actuators
 : Slightly vibrate sensors, actuators or relays with finger.

😮 WARNING

Strong vibration may break sensors, actuators or relays

 b. Connectors and Harness
 : Lightly shake the connector and wiring harness vertically and then horizontally.

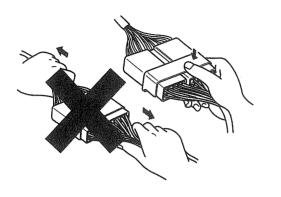
SIMULATING HEAT

a. Heat components suspected of causing the malfunction with a hair dryer or other heat sourre.

🕲 WARNING

- DO NOT heat components to the point where they may be damaged.
- DO NOT heat the ECM directly.
- SIMULATING WATER SPRINKLING
- a. Sprinkle water onto vehicle to simulate a rainy day or a high humidity condition.

😮 WARNING


DO NOT sprinkle water directly into the engine compartment or electronic components.

- SIMULATING ELECTRICAL LOAD
- a. Turn on all electrical systems to simulate excessive electrical loads (Radios, fans, lights, etc.).

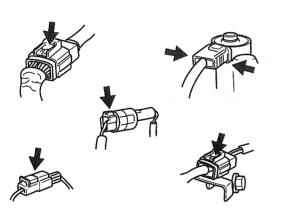
BFGE321A

CONNECTOR INSPECTION PROCEDURE

- 1. Handling of Connector
 - a. Never pull on the wiring harness when disconnecting connectors.

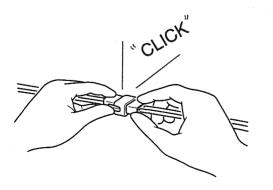
d. When a tester is used to check for continuity, or to measure voltage, always insert tester probe from wire harness side.

Check waterproof connector terminals from the

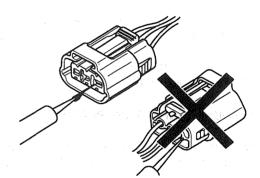

connector side. Waterproof connectors cannot

BFGE015I

BFGE015F


e.

b. When removing the connector with a lock, press or pull locking lever.

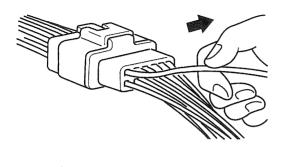


BFGE015G

c. Listen for a click when locking connectors. This sound indicates that they are securely locked.

BFGE015H

be accessed from harness side.


BFGE015J

🗊 ΝΟΤΕ

- Use a fine wire to prevent damage to the terminal.
- Do not damage the terminal when inserting the tester lead.
- 2. Checking Point for Connector
 - While the connector is connected: Hold the connector, check connecting condition and locking efficiency.
 - When the connector is disconnected: Check missed terminal, crimped terminal or broken core wire by slightly pulling the wire harness. Visually check for rust, contamination, deformation and bend.
 - c. Check terminal tightening condition: Insert a spare male terminal into a female terminal, and then check terminal tightening conditions.

FUEL SYSTEM (D4BH)

d. Pull lightly on individual wires to ensure that each wire is secured in the terminal.

BFGE015K

- 3. Repair Method of Connector Terminal
 - a. Clean the contact points using air gun and/or shop rag.

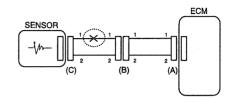
NOTE

Never use sand paper when polishing the contact points, otherwise the contact point may be damaged.

b. In case of abnormal contact pressure, replace the female terminal.

WIRE HARNESS INSPECTION PROCEDURE

- 1. Before removing the wire harness, check the wire harness position and crimping in order to restore it correctly.
- 2. Check whether the wire harness is twisted, pulled or loosened.
- 3. Check whether the temperature of the wire harness is abnormally high.
- 4. Check whether the wire harness is rotating, moving or vibrating against the sharp edge of a part.
- 5. Check the connection between the wire harness and any installed part.
- 6. If the covering of wire harness is damaged; secure, repair or replace the harness.


ELECTRICAL CIRCUIT INSPECTION PROCEDURE

CHECK OPEN CIRCUIT

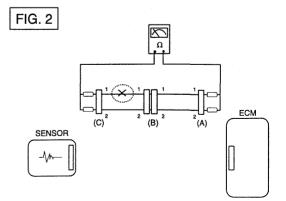
- 1. Procedures for Open Circuit
 - Continuity Check
 - · Voltage Check

If an open circuit occurs (as seen in [FIG. 1]), it can be found by performing Step 2 (Continuity Check Method) or Step 3 (Voltage Check Method) as shown below.

FIG. 1

BFGE501A

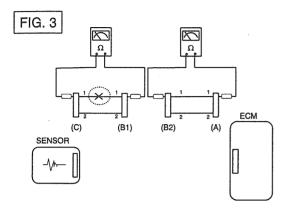
2. Continuity Check Method



When measuring for resistance, lightly shake the wire harness above and below or from side to side.

Specification (Resistance) 1Ω or less \rightarrow Normal Circuit $1^{M\Omega}$ or Higher \rightarrow Open Circuit

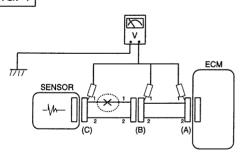
a. Disconnect connectors (A), (C) and measure resistance between connector (A) and (C) as shown in [FIG. 2].


In [FIG.2.] the measured resistance of line 1 and 2 is higher than $1^{M\Omega}$ and below 1 Ω respectively. Specifically the open circuit is line 1 (Line 2 is normal). To find exact break point, check sub line of line 1 as described in next step.

BFGE501B

b. Disconnect connector (B), and measure for resistance between connector (C) and (B1) and between (B2) and (A) as shown in [FIG. 3].

In this case the measured resistance between connector (C) and (B1) is higher than $1M\Omega$ and the open circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).

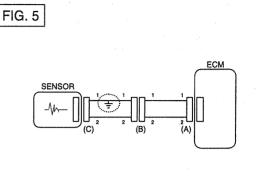


BFGE501C

- 3. Voltage Check Method
 - a. With each connector still connected, measure the voltage between the chassis ground and terminal 1 of each connectors (A), (B) and (C) as shown in [FIG. 4].

The measured voltage of each connector is 5V, 5V and 0V respectively. So the open circuit is between connector (C) and (B).

FIG. 4



BFGE501D

CHECK SHORT CIRCUIT

Test Method for Short to Ground Circuit
 Continuity Check with Chassis Ground

If short to ground circuit occurs as shown in [FIG. 5], the broken point can be found by performing below Step 2 (Continuity Check Method with Chassis Ground) as shown below.

BFGE501E

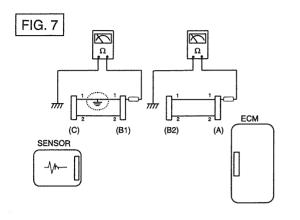
2. Continuity Check Method (with Chassis Ground)

NOTE

Lightly shake the wire harness above and below, or from side to side when measuring the resistance.

Specification (Resistance) 1Ω or less \rightarrow Short to Ground Circuit $1^{M\Omega}$ or Higher \rightarrow Normal Circuit

a. Disconnect connectors (A), (C) and measure for resistance between connector (A) and Chassis Ground as shown in [FIG. 6].


The measured resistance of line 1 and 2 in this example is below 1 Ω and higher than 1^{MQ} respectively. Specifically the short to ground circuit is line 1 (Line 2 is normal). To find exact broken point, check the sub line of line 1 as described in the following step.

BFGE501F

b. Disconnect connector (B), and measure the resistance between connector (A) and chassis ground, and between (B1) and chassis ground as shown in [FIG. 7].

The measured resistance between connector (B1) and chassis ground is 1Ω or less. The short to ground circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).

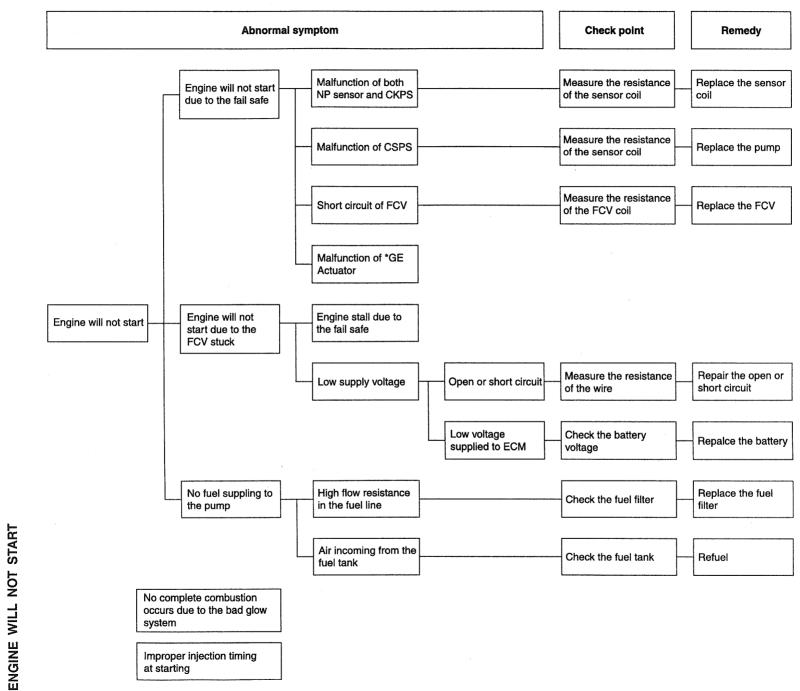
BFGE501G

ECM PROBLEM INSPECTION PROCEDURE

1. TEST ECM GROUND CIRCUIT: Measure resistance between ECM and chassis ground using the backside of ECM harness connector as ECM side check point. If the problem is found, repair it.

Specification (Resistance): 1Ω or less

- TEST ECM CONNECTOR: Disconnect the ECM connector and visually check the ground terminals on ECM side and harness side for bent pins or poor contact contact pressure. If the problem is found, repair it.
- 3. If problem is not found in Step 1 and 2, the ECM could be faulty. If so, replace the ECM with a new one, and then check the vehicle again. If the vehicle operates normally then the problem was likely with the ECM.
- RE-TEST THE ORIGINAL ECM : Install the original ECM (may be broken) into a known-good vehicle and check the vehicle. If the problem occurs again, replace the original ECM with a new one. If problem does not occur, this is intermittent problem (Refer to INTERMITTENT PROBLEM PROCEDURE in BASIC INSPECTION PROCEDURE).

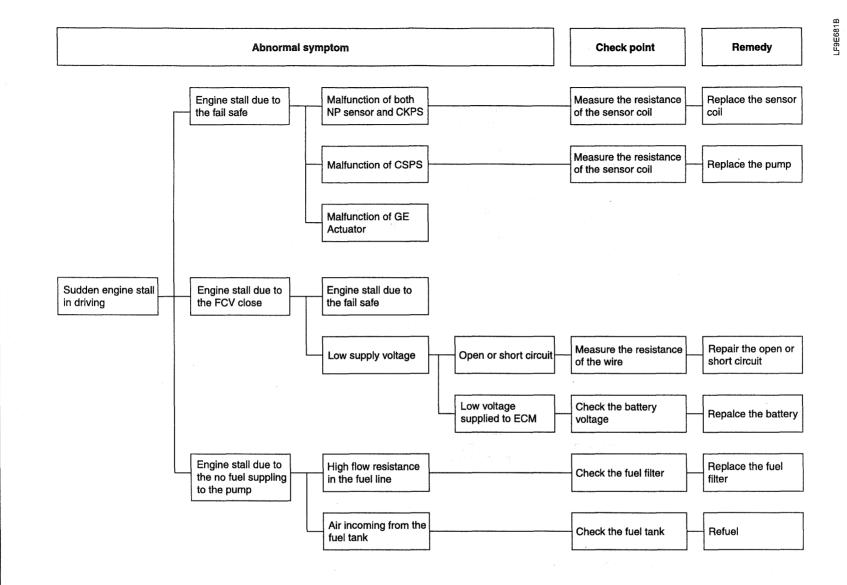

SYMPTOM TROUBLESHOOTING GUIDE CHART (I)

Symptom	Probable cause	Remedy
Engine does not start	Cranking speed too low	Repair starting system or charge or replace battery so that engine cranks at a minimum of 150 rpm.
	No voltage at fuel cut valve on injection pump	Check for voltage with test light. If necessary, replace fuse or faulty wires.
	Fuel cut valve on injection pump loose or faulty	Tighten solenoid. Check that the valve clicks when key is turned off and on. Replace faulty solenoid.
	No voltage at glow plug bus	If test light shows no voltage at bus with key at "ON" position, test relay and wiring.
	Glow plug faulty	Test and, if necessary, replace glow plug.
	Air in fuel system	Bleed fuel system.
	Injection pump not delivering fuel	If no fuel emerges from a looseness injection pipe during cranking, check timing belt and fuel supply from filter.
	Injection pipes misconnected	Connect pipes in correct location.
	Injection timing incorrect	Adjust injection timing.
	Faulty injection nozzles	Check and, if necessary, repair or replace nozzles.
	Engine mechanical faults, as described earlier under this heading	Test compression and, if necessary, repair engine.
	Faulty injection pump	Try to start engine with new pump installed. If necessary, replace pump permanently
Idle speed	Idle speed incorrectly adjusted	Check and, if necessary, adjust the idle speed.
incorrect or idle rough irregular	Accelerator control binding	Check that accelerator lever on pump is not loose, then adjust accelerator cable.
	Loose fuel hose between filter and injection pump	Replace hose or secure with clamps, bleed air from system.
	Air in fuel system	Bleed fuel system.
	Inadequate fuel supply owing to clogged fuel filter, or fuel returnline and injection pipes leaking, dirty, kinked, or squeezed at connections	Inspect and, if necessary, replace lines and hoses or replace fuel filter.
	Faulty injection nozzles	Check and, if necessary, repair or replace injection nozzles.
	Injection timing incorrect	Adjust injection timing.
	Engine mechanical faults, as described earlier under this heading	Test compression and, if necessary, repair engine.
	Faulty injection pump	Try engine at idle with new pump installed. If necessary, replace pumppermanently
	Engine lugging in too high a gear	Observe correct shift speeds.

Symptom	Probable cause	Remedy
Smoky exhaust (black, blue or	Engine not reaching correct operating temperature	Check and, if necessary, replace cooling system thermostat.
white)	Maximum rpm incorrect	Check and if necessary, replace injection pump.
	Faulty injection nozzles	Check and, if necessary, repair or replace injection nozzles.
	Injection timing incorrect	Adjust injection timing.
	Restricted exhaust system	Check exhaust system for dents and obstructions.
	Engine mechanical faulty, as described earlier under this heading	Test compression and, if necessary, repair engine.
	Faulty injection pump	Observe exhaust with new pump installed if necessary, replace pump permanently.
Poor power output, slow	Injection pump accelerator lever loose or not reaching maximum rpm adjustingscrew	Tighten lever, check that accelerator pedal travel is not restricted, then adjust accelerator cable.
acceleration (speedometer	Maximum rpm incorrect	Check and, if necessary, replace injection pump.
accurate, clutch	Air cleaner filter dirty	Clean or replace air cleaner filter.
not slipping)	Inadequate fuel supply owing to clogged fuel filter, or fuel return line and injection pipes leaking, dirty, kinked, or squeezed at connections	Inspect and, if necessary, replace lines and hoses, replaced fuel filter.
	Air in fuel system	Bleed fuel system.
	Ice or solidified wax in fuel lines. (winter time only)	Move car to a warm garage until ice or wax has become liquid, then bleed fuel system.
	Faulty injection nozzles	Check and, if necessary, repair or replace injection nozzles.
	Injection timing incorrect	Adjust injection timing.
	Engine mechanical faults, as described earlier under this heading	Test compression and, if necessary, repair engine.
	Faulty injection pump	Check acceleration and speed with new pump installed. If necessary, replace pump permanently.
Excessive fuel	Air cleaner filter dirty	Clean or replace air cleaner filter.
consumption	Fuel leaks	Check and, if necessary, replace or tighten all pipes, hoses and connections.
	Return pipe and hose blocked	Check return line for kinks and dents. Replace faulty lines. If line is clogged, blow it out with compressed air, then bleed fuel system.
	Idle speed too fast or maximum rpm too high	Check and, if necessary, adjust idle speed or replace injection pump.
•	Faulty injection nozzles	Check and, if necessary, repair or replace injection nozzles.
	Injection timing incorrect	Adjust injection timing.
	Engine mechanical fault, as described earlier under this heading	Test compression and, if necessary, repair engine.
	Faulty injection pump	Check fuel consumption with new pump installed, if unnecessary, replacepump permanently.

GENERAL

Symptom	Probable cause	Remedy				
Excessive	Rusty pedal arm	Clean and lubricate.				
accelerator pedal effort required (Incomplete pedal	Incorrect routing	Ensure bending radius of 150 mm or more and correct excessively bent portion.				
return included)	Rusty cable	Replace				
	Shift throttle cable	Lubricate link and shaft.				
Broken	Binding cable end	Remove rust and burrs from cable end.				
accelerator control cable	Incorrect perpendicularity of cable end mounting point	Correct ends on the lever side.				
	Incorrect perpendicularity between cable end and cable	Correct or replace parts.				
Engine does	Faulty starting switch operation	Correct or replace part.				
not stop	Broken harness between starting switch and fuel cut solenoid	Replace harness				



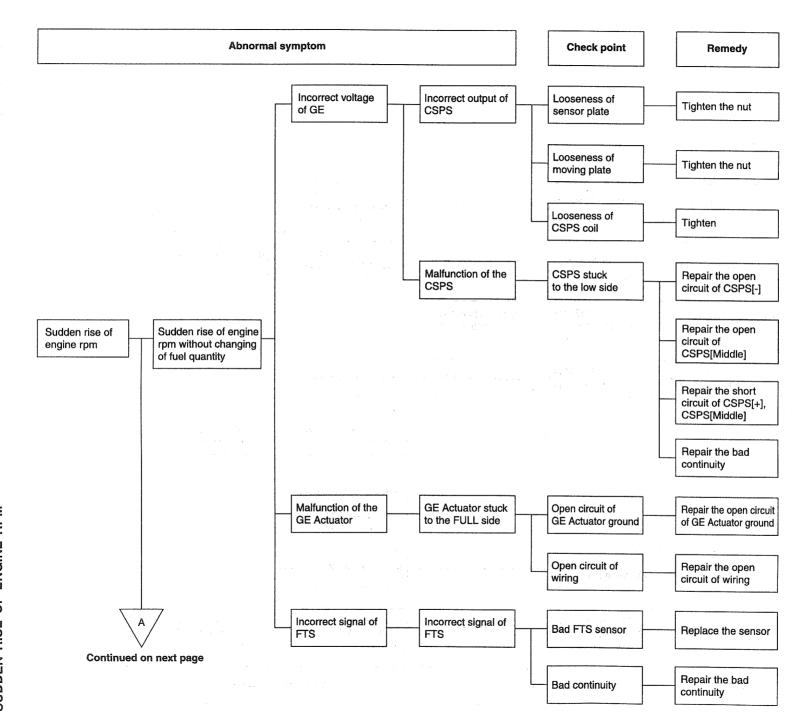
LF9E681A

FUEL SYSTEM (D4BH)

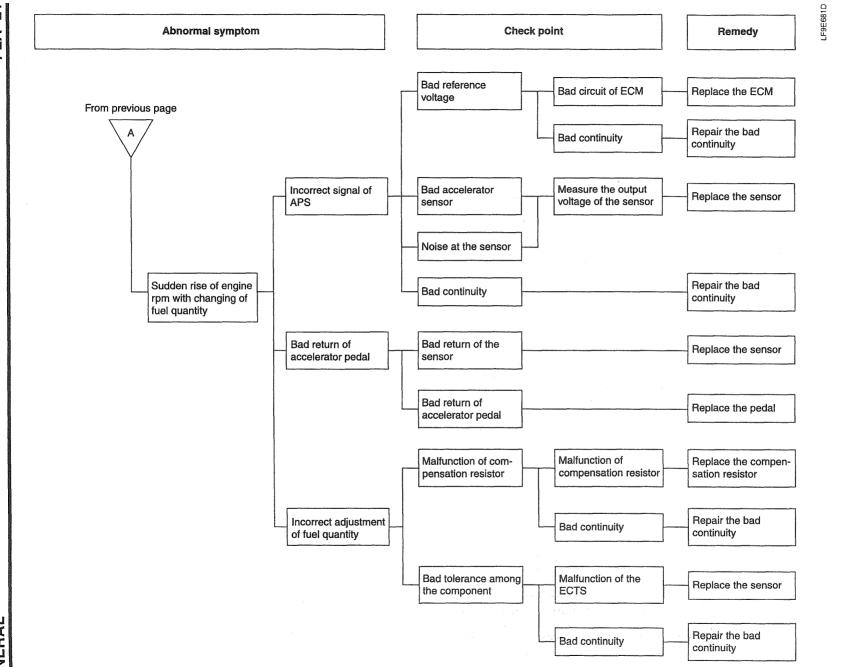
SYMPTOM TROUBLESHOOTING GUIDE CHART (II)

FLA -18

GENERAL


ENGINE STALL

FLA -19


FUEL SYSTEM (D4BH)

SUDDEN RISE OF ENGINE RPM

FLA -20

LF9E681C

FLA -21

GENERAL

SYMPTOM TROUBLESHOOTING GUIDE CHART (III)

													\bigcirc : Effect much \triangle : Effect little	
ITEM	Symptom Main cause	Hard to start	Rough idling	Lack of power/ poor accelera- tion	Bad return of overrun rpm	Engine stop	Much black smoke	Much white smoke	Knocking and vibrtion	Poor fuel economy	Impossible to stop the engine	Sudden rise of engine rpm	Check point	
FCV	Poor connection or looseness of terminal	0		-		0			Δ				Tightening torque : 2.0-2.5kg·m	
	Valve fail (Open or being stuck)	0				0					0		Check the resistance or output signal Inspect the part after removal	
	Poor connection or looseness of connector	0	0	0	Δ	Δ	0	0	0	0			Check the installation condition	
тсv	Malfunction of TCV (Open or being stuck)	0	0	0	Δ	Δ	0	0	0	0			Check the resistance or	
	TCV filter clogged (O-ring torn)	0	0	0	Δ	Δ	0	0	0	0			output signal	
CSPS	Bad output of CSPS	0	0	0	0	0	0	0	0	0		0	Check the resistance or	
	Malfunction of CSPS (open or short)	0	0	0	0	0	0	0	0	0			output signal	
GE	Bad output of GE Actuator coil	0	0	0	0	0	0	0	0	0	Δ	Δ	Check the resistance or	
actuator	Malfunction of GE Actuator coil (open or short)	0	0	0	0	0	0	0	0	0	Δ		output signal	
FTS	Malfunction of fuel temp. sensor	0	0				0	0		0			Check the resistance or output signal	
	Bad output of sensor	0	0		Δ		0	0		0			Check the characteristic of resistance for temp. range	
Compensation	Compensation resistor poor connection	0	0	0	Δ	Δ	0	0	Δ	0			Check the open or short	
resistor	Wrong resistor	0	0	0	Δ	Δ	0	0	Δ	0			Check the compensation resistor	
NP sensor (CKPS is good)	Bad installation noise				0								Tightening torque : 2.0-2.5kg·m Compensation resistor	

LF9E681E

FLA -22

FLA -23

ITEM	Symptom Main cause	Hard to start	Rough idling	Lack of power/ poor accelera- tion	Bad return of overrun rpm	Engine stop	Much black smoke	Much white smoke	Knocking and vibrtion	Poor fuel economy	Impossible to stop the engine	Sudden rise of engine rpm	Check point
NP sensor (CKPS is good)	Malfunction of sensor (open or short)		-		0				Δ				Check the resistance and output signal
NP sensor (with faulty	Bad installation, noise		0			0							Tightening torque:2.0-2.5kg·m Check the output signal
CKPS)	Malfunction of sensor (open or short)					0							Check the resistance and output signal
TPS	Bad installation and output signal	0	0	0	Δ	Δ	0	0	0	0			Tightening torque:0.7-0.9kg·m Check the output signal
	Malfunction of sensor (open or short)	0	0	0	Δ	Δ	0	0	0	0			Check the resistance
MAPS	Bad installation and output signal			0			Δ	Δ		Δ			Inspect the installation condition
MAFO	Malfunction of sensor (open or short)			0			Δ	Δ		Δ			Check the output signal's characteristic
CKPS (with good NP sensor)	Bad installation, noise Malfunction of sensor (open or short)		0	0			0	0	0	0		0	Inspect the installation condition and fly wheel
CKPS (with faulty NP sensor)	Bad installation, noise Malfunction of sensor (open or short)		0	0	0	0	0	0	0	0			Check the output signal's characterstic
ECTS	Bad installation and output signal	0	0	Δ			0	0	Δ	0		Δ	Inspect the installation condition
	Malfunction of sensor (open or short)	Δ	0	Δ			0	0	Δ	0		Δ	Check the output signal's characteristic
VSS	Bad installation and output signal			0					0				Check the output signal's characteristic
	Malfunction of sensor (open or short)		,	0					0				Check the wiring harness
APS	Malfunction of sensor (open or short)	Δ	0	0	0		0	0		0		0	Check the output signal's characteristic

LF9E681F

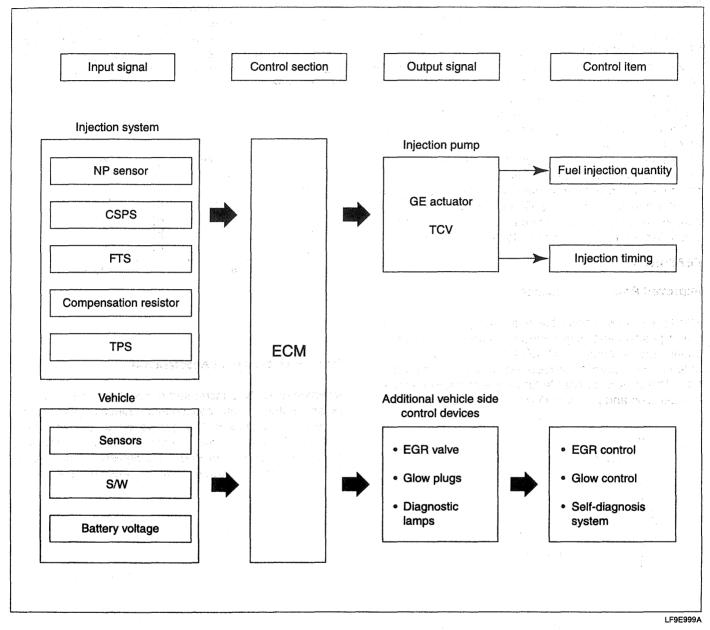
FUEL SYSTEM (D4BH)

	Symptom	Hard to	Deuch	Lack of power/	Bad	F ^a	Much	Much	Knocking	Poor	Impossible	Sudden	- Maria Maria Indonesia Antonia di Antonia di Antonia di Antonia Antonia di Antonia di A
ITEM	Main cause	start	Rough idling	poor accelera- tion	return of overrun rpm	Engine stop	black smoke	white smoke	and vibrtion	fuel economy	to stop the	rise of engine rpm	Check point
IDLE switch	Open or short		0		0					Δ		0	Check the resistance and output signal
Neutral switch	Bad installation and output signal (open and short)					Δ							Tightening torque:2.0-2.5kg m Check the output signal
	Power system (open or short)	0							·				Check the resistance and output signal
ECM	Bad output signal of PWM signal for TCM (open or short)			Ö					0				Tightening torque:0.7-0.9kg m Check the output signal
LOW	Bad output signal of barometric pressure sensor			0			0	0		0			Check the resistance
	Bad communication for Immobilizer (open or short)	0				0							Inspect the installation condition
Turbo Charger waste gate (boost hose)	Malfunction (stuck)			0			0			Ö			Check the output signal's characteristic
Glow relay	Open or short	0	0					0				-	Inspect the installation condition and fly wheel
EGR solenoid valve	Being stuck, bad operation		· •	0			0			0			Check the output signal's characterstic

LF9E681G

NOTE

NP Sensor : Injection Pump Speed Sensor CSPS : Control Sleeve Position Sensor FCV : Fuel Cut Valve GE Actuator : Electronic Governor Actuator FTS : Fuel Temperature Sensor APS : Accelerator Position Sensor ECTS : Engine Coolant Temperature Sensor VSS : Vehicle Speed Sensor MAPS : Manifold Absolute Pressure Sensor CKPS : Crankshaft Position Sensor


TCV : Timing Control Valve

FLA -24

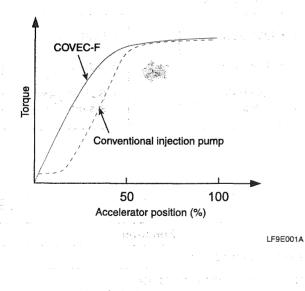
FLA -25

DIESEL CONTROL SYSTEM

SCHEMATIC DIAGRAM E38402C5

Part name	Function			
NP sensor	Detects pump speed			
Control Sleeve Position Sensor (CSPS)	Detects control sleeve position			
Fuel Temperature Sensor (FTS)	Detects fuel temperature			
Compensation Resistor	Compensation			
Timing Position Sensor (TPS)	Detects timing pistong position			
Timing Control Valve (TCV)	Adjusts injection timing			

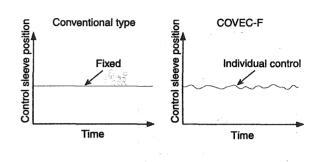
SYSTEM OVERVIEW


This manual consists of two parts, service manual for construction & operation and self-diagnosis system. The first part, describes construction and operation of the micro-computor controlled fuel injection quantity and injection timing control system, COVEC-F (Computed VE pump Control system Full). And the second part, describes the self-diagnosis system of the microcomputer controlled fuel injection quantity and injection timing control system, COVEC-F (Computed VE pump Control system-Full). This is intended for use by vehicle maintenance technicians or people with an adequate knowledge of injection pumps.

The COVEC-F fuel injection system (Computed VE pump Control system-Full) is a distributor type fuel injection system that uses a micro-computor to control fuel injection quantity and injection timing. COVEC-F was developed to improve the power performance and the driving comfort of small diesel engines, as well as to decrease pollution.

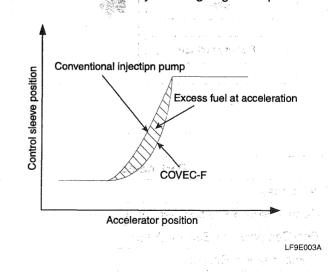
FEATURES

Improved Power Performance


The figure below shows the relationship between accelerator position and output torque. Compared to conventional injection pumps, COVEC-F provides the most suitable injection quantity corresponding to accelerator position. This makes it possible for torque at a lower accelerator position and power performance to improve.

FUEL SYSTEM (D4BH)

Increased Comfort


On conventional injection pumps, minute variations of control sleeve position are not performed. COVEC-F, however, detects variations just like each engine combustion at idling, and in response to this, controls the control sleeve position by increasing as decreaing the fuel injection quantity. In this way, each cylinder's injection quantity is controlled for each injection to decrease engine vibration and improve comfort.

Decreased Smoke at Acceleration

Injection quantity is increased at acceleration to increase engine output. With conventional injection pumps, this excess fuel results in the generation of smoke. With COVEC-F, however, fuel injection quantity is precisely controlled, even at acceleration, to prevent the generation of smoke without adversely affecting engine response.

DIESEL CONTROL SYSTEM

Additional Devices Unnecessary

dditional devices such as a boost compensator, aneroid compensator, or injection timing compensation devices are unnecessary as compensation is performed electronically in response to signals from the various sensors. Because of this, the exterior of the injection pump is greatly simplified, enabling better utilization of space around the injection pump.

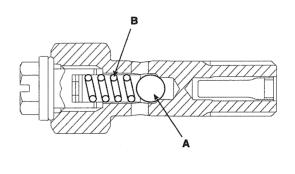
SYSTEM CONTROL

COVEC-F detects electrical signals from physical signals by sensors and switches. The control unit processes this information to control injection timing and injection quantity electronically.

Informational signals detected by sensors and switches are input to the micro-computer in the control unit. Based on these informational signals, characteristic data as well as compensation data recorded in the ROM(read only memory) are read in the CPU(central processing unit). Comparative calculations are then performed utilizing this data and informational signals are output.

The control signals output by the micro-computor are then converted to the drive signals. These are then input to the GE actuator and the TCV(Timing Control Valve) to control fuel injection quantity and timing.

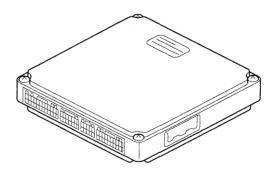
In addition COVEC-F also has a function that continually compensates real values with target ones(feedback control) to perform optimum control of the diesel engine and ensure precision and endurance.


Fuel intake and pressure delivery by COVEC-F is done in the same way as that of the conventional injection pump. The inside of the pump is devided into a governor chamber, where fuel injection quantity control is performed, and a pump chamber, where fuel intake and delivery are performed.

The conventional injection pump is controlled by a centrifugal governor. COVEC-F, however, utilizes an electronic governor (ie, a GE actuator). Flyweights are not used. Therefore, there is no control lever at the upper cover. Instead, the control unit cable is connected to the upper part of the injection pump. Also, the conventional injection pump utilizes a flyweight holder gear (with 23 teeth) to detect pump speed. COVEC-F, however, utilizes sensing gear plates provided on the drive shaft to detect pump speed. The number of projections on the gear plate corresponds to the number of engine cylinders.

A TCV (timing control valve) is provided at the lower part of the pump body between the timer's high pressure and low pressure chambers to adjust pressure for the necessary timing advanced. The conventional injection pump is equipped with a check valve partly inside the overflow valve. With COVEC-F, however, the overflow valve is totally equipped with a check valve to prevent it from overflow until a fixed pressure is reached. COVEC-F is provided with a TPS (timing position sensor) at the lower part of the injection pump to detect timer piston position.

Overflow Valve (With Check Valve)

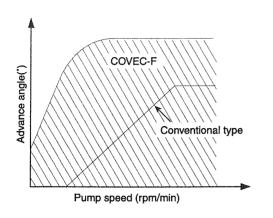

The overflow valve is installed on the end face of the GE actuator cover (ie, on the distributor head side). The check valve is constructed with a ball(A) and spring(B) to prevent overflow until the pump chamber pressure reaches a specified value.

LF9E009A

ECM

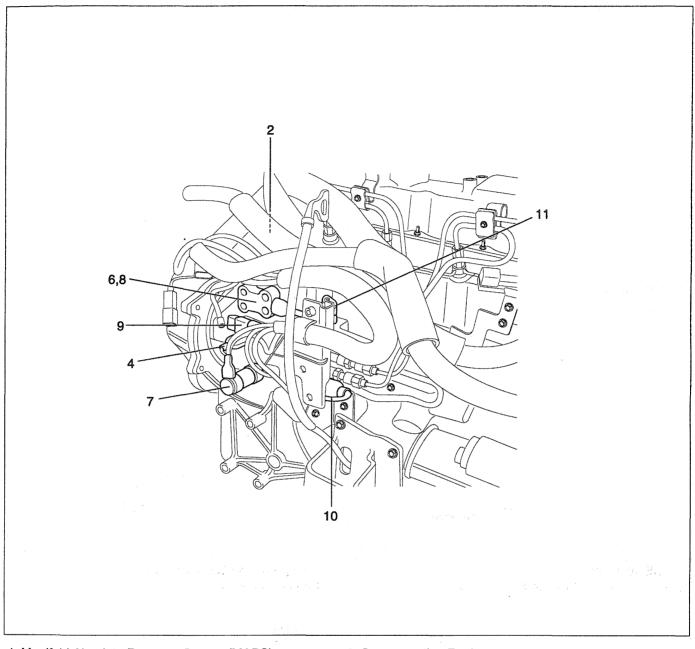
The ECM is installed on the vehicle. The ECM receives information signals detected by each sensor. Based on this information, the ECM then performs comparative calculations using programmed set values, and then instantaneously outputs optimum control signals to each control section. The ECM also includes a fault diagnosis system.

LF9E010A


FLA -28

Check Valve

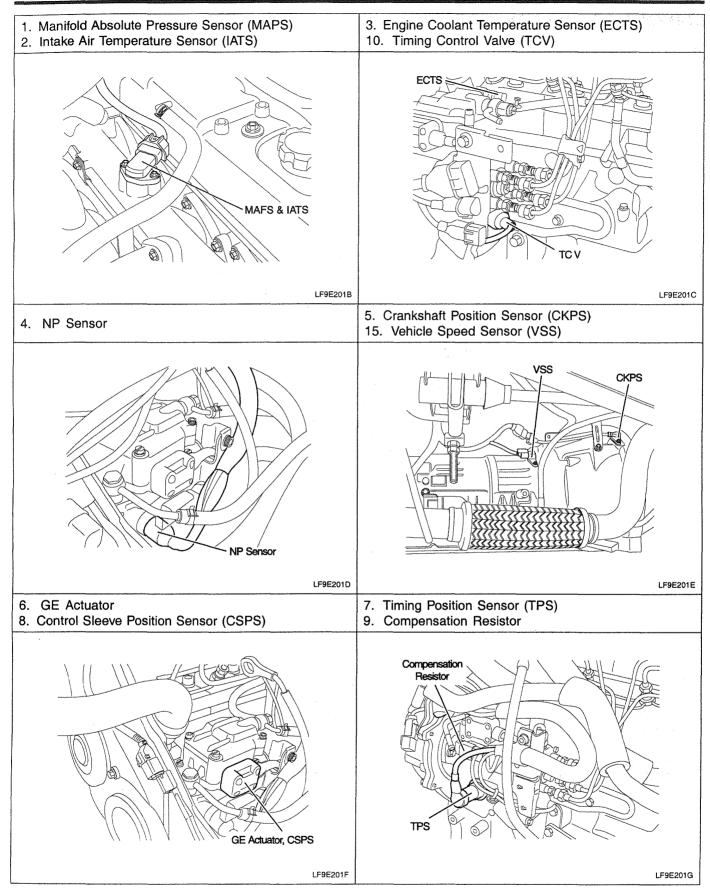
The graph shows the advance characteristics of the conventional injection pump and the possible range of advance control of COVEC-F.


With the conventional VE type injection pump, fuel pressure is increased in accordance with increases in speed to obtain advance characteristics.

With COVEC-F, the overflow valve is equipped with a check valve so that even at starting rotation, there is sufficient pressure to control advance. Therefore, as shown at left, the possible control range is much wider.

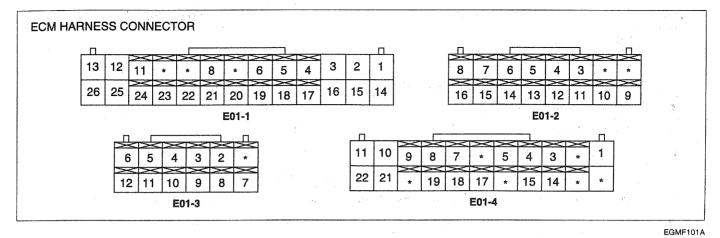
LF9E017A

COMPONENTS LOCATION EDUAB909



- 1. Manifold Absolute Pressure Sensor (MAPS)
- 2. Intake Air Temperature Sensor (IATS)
- 3. Engine Coolant Temperature Sensor (ECTS)
- 4. NP Sensor
- 5. Crankshaft Position Sensor (CKPS)
- 6. GE Actuator
- 7. Timing Position Sensor (TPS)8. Control Sleeve Position Sensor (CSPS)

- 9. Compensation Resistor
- 10. Timing Control Valve (TCV) 11. Fuel Cut Valve (FCV) 12. EGR Solenoid Valve


- 13. Accelerator Position Sensor (APS) 14. Fuel Temperature Sensor (FTS)
- 15. Vehicle Speed Sensor (VSS)

LF9E201A

ECM CONNECTOR EA0B62CB

CONNECTOR [E01-1]

PIN	FUNCTION	CONNECTED TO		
1	GE Actuator (+) control output	GE Actuator		
2	GE Actuator (-) control output	GE Actuator		
3	Battery Voltage Supply after Main Relay	Main Relay		
4	"START" Switch signal	Ignition Switch		
5	A/C Switch signal	Triple Switch		
6	M/T: Neutral Switch Signal, A/T: P/N Signal	M/T: Neutral Switch, A/T: Inhibitor Switch		
7	Memory Clear Switch signal	Memory Switch		
8	Idle Switch signal	Accelerator Position Sensor (APS)		
9	Not connected	-		
10	Not connected			
11	Not connected			
12	Ground			
13	Timing Control Valve control output	Timing Control Valve (TCV)		
14	GE Actuator (+) control output	GE Actuator		
15	GE Actuator (-) control output	GE Actuator		
16	Battery Voltage Supply after Main Relay	Main Relay		
17	Engine Coolant Temperature Sensor signal input	Engine Coolant Temperature Sensor (ECTS)		
18	Fuel Temperature Sensor signal input	Fuel Temperature Sensor (FTS)		
19	Intake Air Temperature Sensor signal input	Intake Air Temperature Sensor (IATS)		
20	Compensation Resistor signal input	Compensation Resistor		
21	Ignition Switch signal	Ignition Switch		
22	Immobilizor Switch 1	With Immobilizer: B+, Without Immobilizer : Open		
23	Glow Plug Check line	Glow Plug and Glow Relay		
24	Immobilizer Switch 2	With Immobilizer: Open, Without Immobilizer: B+		
25	Ground			
26	Fuel Cut Valve control output	Fuel Cut Valve (FCV)		

CONNECTOR [E01-2]

PIN	FUNCTION	CONNECTED TO				
1	Not connected					
2	Not connected					
3	Crankshaft Position Sensor signal input	Crankshaft Position Sensor (CKPS)				
4	NP Sensor signal input	NP Sensor				
5	Torque Control	тсм				
6	Sensor Supply (+5V)	Accelerator Position Sensor (APS)				
7	Sensor Supply (+5V)	Manifold Absolute Pressure Sensor (MAPS)				
8	Manifold Absolute Pressure Sensor signal input	Manifold Absolute Pressure Sensor (MAPS)				
9	Intercooler Fan Relay control output	Intercooler Fan Relay				
10	Engine Speed signal output	Tachometer				
11	Sensor Ground	Crankshaft Position Sensor (CKPS)				
12	Sensor Ground	NP Sensor				
13	Sensor Ground	Accelerator Position Sensor (APS)				
14	Accelerator Position Sensor signal input	Accelerator Position Sensor (APS)				
15	Sensor Ground	MAPS, IATS, ECTS, FTS and Compen- sation Resistor				
16	Sensor Ground	MAPS, IATS, ECTS, FTS and Compen- sation Resistor				

CONNECTOR [E01-3]

PIN	FUNCTION	CONNECTED TO
1	Control Sleeve Position Sensor [+] signal input	Control Sleeve Position Sensor (CSPS)
2	Control Sleeve Position Sensor [Middle] signal input	Control Sleeve Position Sensor (CSPS)
3	Control Sleeve Position Sensor [-] signal input	Control Sleeve Position Sensor (CSPS)
4	Timing Position Sensor signal [+] input	Timing Position Sensor (TPS)
5	MT/AT auto recognition signal	AT: Open, MT: IG1
6	Not connected	
7	Control Sleeve Position Sensor [+] signal input	Control Sleeve Position Sensor (CSPS)
8	Control Sleeve Position Sensor [Middle] signal input	Control Sleeve Position Sensor (CSPS)
9	Control Sleeve Position Sensor [-] signal input	Control Sleeve Position Sensor (CSPS)
10	Timing Position Sensor signal [Middle] input	Timing Position Sensor (TPS)
. 11	Timing Position Sensor signal [-] input	Timing Position Sensor (TPS)
12	L-Line	Data Link Connector (DLC)

DIESEL CONTROL SYSTEM

CONNECTOR [E01-4]

PIN	FUNCTION	CONNECTED TO
1	Glow Relay control output	Glow Relay
2	Not connected	
3	Water Temperature Signal	ТСМ
4	EGR Solenoid Valve 1 (Duty) control output	EGR Solenoid Valve 1 (Duty)
5	A/C Fan Relay control output	A/C Fan Relay
6	Not connected	
7	K-Line	Data Link Connector (DLC)
8	Malfunction Indicator Lamp control output	Malfunction Indicator Lamp (MIL)
9	Glow Lamp control output	Glow Lamp
10	Battery Voltage Supply after Main Relay	Main Relay
11	Ground	-
12	Not connected	
13	Not connected	
14	EGR Solenoid Valve 2 (ON/OFF) control output	EGR Solenoid Valve 2 (ON/OFF)
15	TPS (PWM) Signal Output	ТСМ
16	Not connected	
17	Vehicle Speed Sensor (VSS) signal input	Vehicle Speed Sensor (VSS)
18	A/C Compressor Relay control output	A/C Compressure Relay
19	Main Relay control output	Main Relay
20	Not connected	
21	Battery Voltage Supply after Main Relay	Main Relay
22	Ground	-

DTC TROUBLESHOOTING PROCEDURES

INSPECTION CHART FOR DIAGNOSTIC

TROUBLE CODES ED4BB080

DTC	DESCRIPTION	MIL
P0105	Barometric Pressure Sensor Range/Performance Problem	
P0110	Intake Air Temperature Sensor Range/Performance Problem	
P0115	Engine Coolant Temperature Sensor Range/Performance Problem	
P0120	Accelerator Position Sensor Malfunction - Irregular Sensor Output	A
P0120	Accelerator Position Sensor Malfunction - Learning Error	
P0121	Accelerator Position Sensor Range/Performance Problem	
P0180	Fuel Temperature Sensor Range/Performance Problem	
P0320	NP Sensor Range/Performance Problem	
P0335	Crankshaft Position Sensor Range/Performance Problem	
P0500	Vehicle Speed Sensor Range/Performance Problem	
P0600	Immobilizer Communication Malfunction	
P0605	Internal Control Module Read Only Memory (ROM) Error	
P1116	Manifold Absolute Pressure Sensor Range/Performance Problem	•
P1120	GE Actuator Circuit Malfunction	۲
P1122	Manifold Absolute Pressure Too High	۲
P1123	Timing Position Sensor Range/Performance Problem	
P1127	Control Sleeve Position Sensor Range/Performance Problem	۲
P1131	Compensation Resistor Range/Performance Problem	
P1135	Injection Timing Control System Malfunction	
P1324	Glow Relay Circuit Malfunction	
P1522	Battery Voltage Malfunction	۲
P1525	Sensor Supply Voltage (+5V) Malfunction	A
P1613	ECM Error (A/D Converter)	
P1621	Fuel Cut Valve Circuit Malfunction	•

- **NOTE**
- : Memory & MIL ON
- ▲ : Memory & MIL OFF

Refer to the Group "BE" for the troubleshooting procedures of the DTC P0600.

DTC TROUBLESHOOTING PROCEDURES

TROUBLESHOOTING FOR DTC EF4DDF84

-	DTC	P0105	Barometric Pressure Sensor Range/Performance Problem	

DESCRIPTION

The barometric pressure sensor is mounted in the internal of ECM. It senses the atmospheric pressure and converts it to the voltage, and it is sent to the ECM. Using this signal, the ECM calculates the altitude of the vehicle location and corrects the fuel injection timing and the fuel quantity. This barometric pressure sensor ensures the improved driveability at high altitudes.

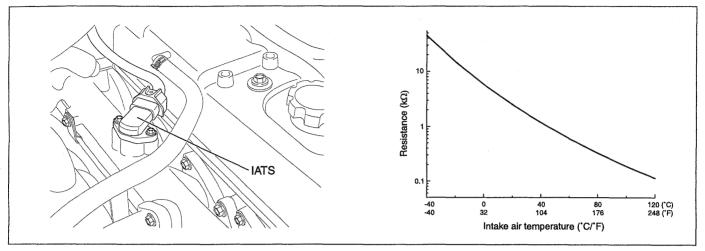
DTC DETECTING CONDITION

DTC No	Detecting Condition & Limp Home	Suspect area
P0105	 Detecting Condition DTC Strategy Rationality Check Voltage range check Enable condition IG ON or engine running Threshold Value Barometric pressure sensor signal < 0.2V or barometric pressure sensor signal > 4.8V or for 1 second Limp-Home Function 	• ECM
	 Barometric pressure = 101.325 kPa EGR CUT 	

INSPECTION PROCEDURES

• Because this sensor is in the internal of ECM, there is no inspection of service possible for this diagnostic trouble code.

- Cancel the fault memory and perform test drive.
- If the fault cannot be cancelled, temporarily install a good ECM and check for proper operation.


LWGE004E

TROUBLESHOOTING FOR DTC EBC94ABE

DTC

P0110 Intake Air Temperature Sensor Range/Performance Problem

COMPONENT LOCATION

LF9E5051

DESCRIPTION

The Intake Air Temperature Sensor (IATS) is installed into the Manifold Absolute Pressure Sensor (MAPS). The IATS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the IATS decreases as the temperature increases, and increases as the temperature decreases. The 5 V power source in the ECM is supplied to the IATS via a resistor in the ECM. That is, the resistor in the ECM and the thermistor in the IATS are connected in series. When the resistance value of the thermistor in IATS changes according to the intake air temperature, the signal voltage also changes. Using this signal, the information of the intake air temperature, the ECM corrects basic fuel injection duration and ignition timing.

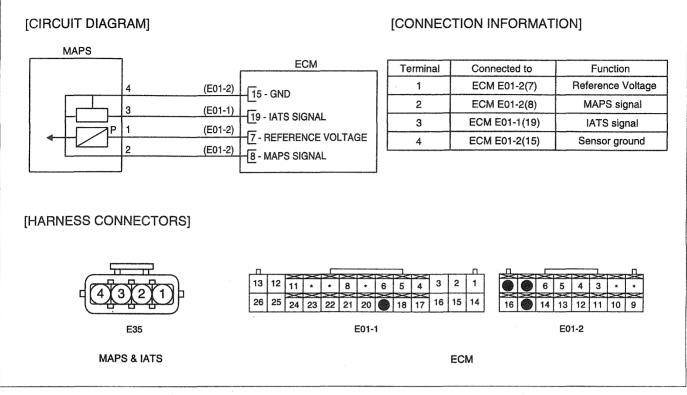
DTC TROUBLESHOOTING PROCEDURES

FLA -37

DTC DETECTING CONDITION

1. DTC Description

ECM sets DTC P0110 if the ECM detects signal voltage higher or lower than the possible range of a properly operating IATS.


2. Conditions for Setting the DTC

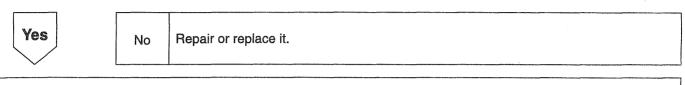
DTC No	Detecting Condition & Limp Home	Suspect area	
P0110	 Detecting Condition DTC Strategy Rationality Check Voltage range check Enable condition IG ON or engine running Threshold Value IATS signal < 0.1V or IATS signal > 4.6V for 5 seconds Limp-Home Function When ECTS has normal condition, Engine coolant temperature < 25 °C: intake air temperature = engine coolant temperature Engine coolant temperature ≥ 25 °C: intake air temperature = 25 °C When ECTS is out of order, Intake air temperature = 25 °C 	 Open or short in IATS circuit IATS ECM 	

SPECIFICATION

Temperature		IATS Resistance	Temperature		IATS Resistance
-40 °C	-40 °F	40.93 ~ 48.35 kΩ	40 °C	104 °F	1.07 ~ 1.21 kΩ
-20 °C	-4 °F	13.89 ~ 16.03 kΩ	60 °C	140 °F	0.54 ~ 0.62 kΩ
0 °C	32 °F	5.38 ~ 6.09 kΩ	80 °C	176 [.] °F	0.29 ~ 0.34 kΩ
20 °C	68 °F	2.31 ~ 2.56 kΩ			

SCHEMATIC DIAGRAM

EGMF4010


 \mathcal{S}

INSPECTION PROCEDURE

1. CHECK IATS AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

OFF

IATS

E01-2 E01-2 E01-2 E01-1 (8)

(15) (19)

ECM

cзÌ Â

ې 1 21

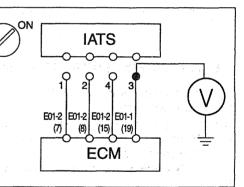
m

2. CHECK IATS RESISTANCE

- 1. Turn ignition switch to OFF position and disconnect IATS connector.
- 2. Measure resistance between terminals 3 and 4 of the IATS connector. • Specification (IATS resistance):

Temp	erature	Resistance	Temperature		Resistance
40 °C	-40 °F	40.93 - 48.35	40 °C	104 °F	1.07 ~ 1.21
20 °C	-4 °F	13.89 ~ 16.03	60 °C	140 °F	0.54 ~ 0.62
0°C	32 °F	5.38 ~ 6.09	80 °C	176 °F	0.29 ~ 0.34
20 °C	68 'F	2.31 ~ 2.56			

Is resistance within specification?

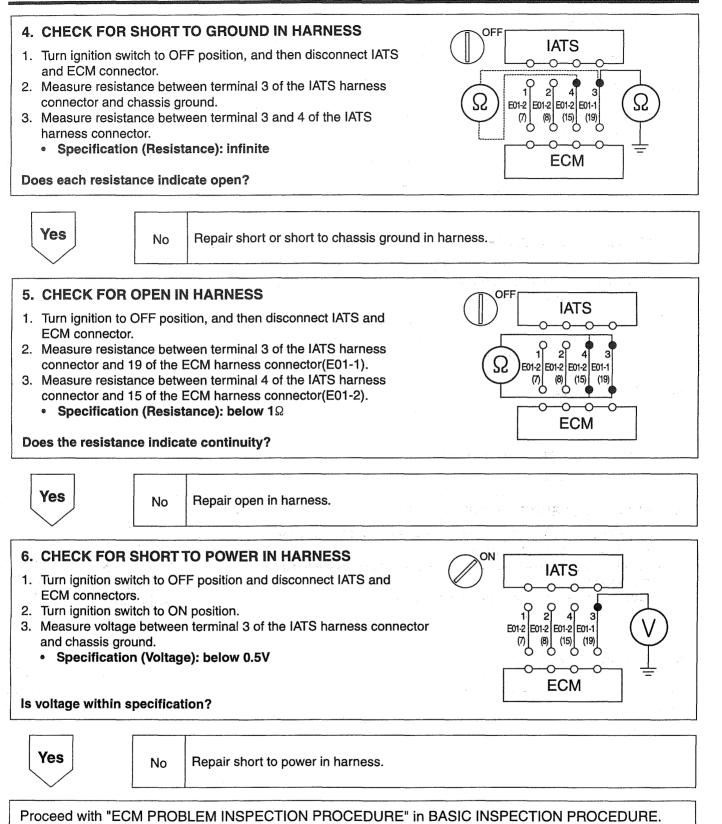

Yes

Replace IATS. No

3. CHECK REFERENCE VOLTAGE TO IATS

- 1. Turn ignition switch to OFF position and disconnect IATS connector.
- 2. Turn ignition switch to ON position.
- 3. Measure voltage between terminal 3 of the IATS harness connector and chassis ground.
 - Specification (Voltage): approximately 5V

No

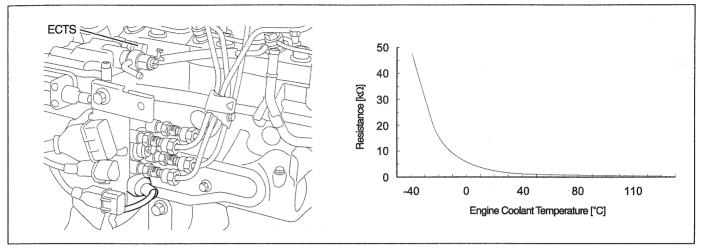

Is voltage within specification?

Repair open or short to chassis ground in harness.

EGMF601X

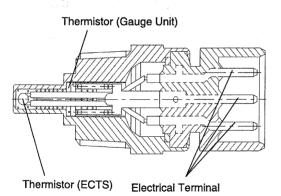
FUEL SYSTEM (D4BH)

FLA -40


EGMF601Y

TROUBLESHOOTING FOR DTC EF021F0B

DTC P0115


Engine Coolant Temperature Sensor Range/Performance Problem

COMPONENT LOCATION

DESCRIPTION

The Engine Coolant Temperature Sensor (ECTS) is located in the engine coolant passage of the cylinder head for detecting the engine coolant temperature. The ECTS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the ECTS decreases as the temperature increases, and increases as the temperature decreases. The reference 5 V in the ECM is supplied to the ECTS via a resistor in the ECM. That is, the resistor in the ECM and the thermistor in the ECTS are connected in series. When the resistance value of the thermistor in the ECTS changes according to the engine coolant temperature, the output voltage also changes. During cold engine operation the ECM increases the fuel injection duration and controls the ignition timing using the information of engine coolant temperature to avoid engine stalling and improve drivability.

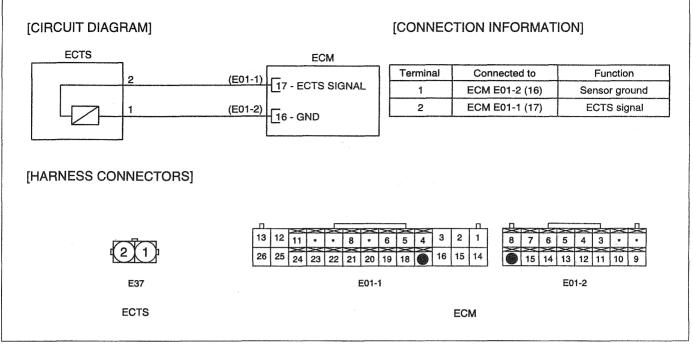
BFGE505K

LF9E0622

DTC DETECTING CONDITION

1. DTC Description

ECM sets DTC P0115 if the ECM detects signal voltage higher or lower than the possible range of a properly operating ECTS.


2. Conditions for Setting the DTC

DTC No	Detecting Condition & Limp Home	Suspect area
P0115	 Detecting Condition DTC Strategy Rationality Check Voltage range check Enable condition IG ON or engine running Threshold Value ECTS signal < 0.1V or ECTS signal > 4.6V for 5 seconds 	 Open or short in ECTS circuit ECTS ECM
	 Limp-Home Function Engine coolant temperature = 80 °C During starting, engine coolant temperature = fuel temperature When FTS is out of order, engine coolant temperature = -20 °C 	

SPECIFICATION

Tempe	rature	ECTS Resistance	Tempo	erature	ECTS Resistance
-40 °C	-40 °F	48.14 kΩ	40 °C	104 °F	1.15 kΩ
-20 °C	-4 °F	14.13 ~ 16.83 kΩ	60 °C	140 °F	0.59 kΩ
0 °C	32 °F	5.79 kΩ	80 °C	176 °F	0.32 kΩ
20 °C	68 °F	2.31 ~ 2.59 kΩ			

SCHEMATIC DIAGRAM

EGMF401L

INSPECTION PROCEDURE

1. PROBLEM VERIFICATION

- 1. Connect a Hi-Scan (Pro) to the data link connector.
- 2. Start the engine and monitor the ECTS signals while warming up engine to normal operating temperature.

Scanned temperature on the Hi-Scan (Pro) should be close to actual engine coolant temperature, shouldn't it?

Yes Problem is intermittent or was repaired and ECM memory was not cleared. Yes Refer to "INTERMITTENT PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

OFF

2. CHECK ECTS AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Yes

No Repair or replace it.

3. CHECK ECTS RESISTANCE

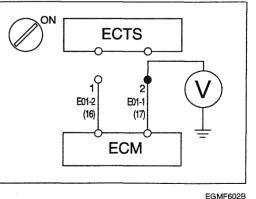
- 1. Turn ignition switch to OFF and disconnect ECTS connector.
- 2. Measure resistance between the terminals 1 and 2 of ECTS connector.

• Specification (ECTS resistance):

Temp	erature	ECTS Resistance	Temperature		ECTS Resistance
-40 °C	-40 °F	48.14 kΩ	40 °C	104 °F	1.15 kΩ
-20 °C	-4 °F	14.13 - 16.83 kΩ	60 °C	140 °F	0.59 kΩ
0°C	32 °F	5.79 kΩ	80 °C	176 °F	0.32 kΩ
20 °C	68 °F	2.31 - 2.59 kΩ			

Is resistance within specification?

Yes


Replace ECTS.

4. CHECK REFERENCE VOLTAGE TO ECTS

No

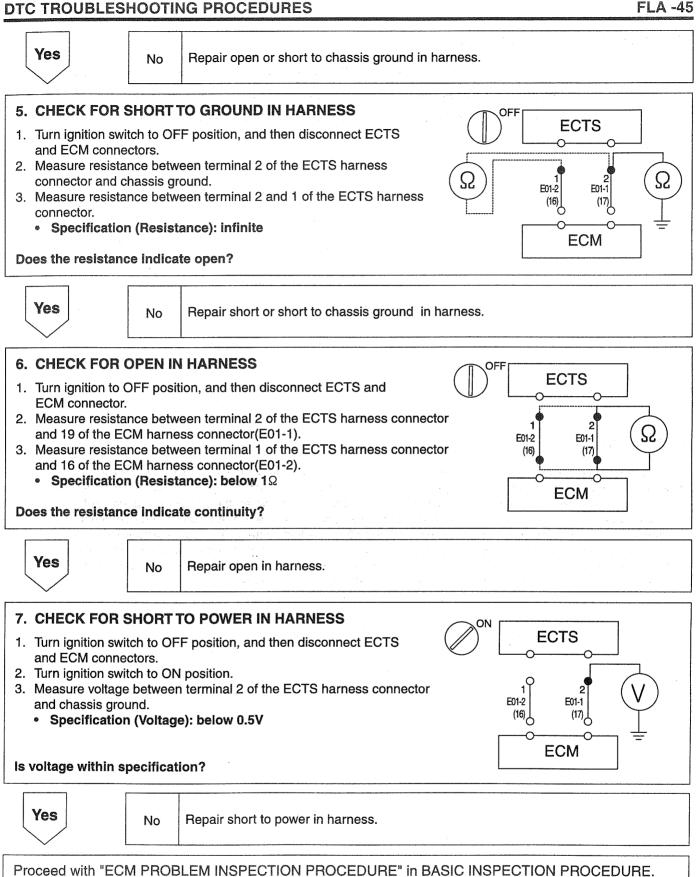
- 1. Turn ignition switch to OFF position and disconnect ECTS connector.
- 2. Turn ignition switch to ON position.
- 3. Measure voltage between terminal 2 of the ECTS harness connector and chassis ground.
 - Specification (Voltage): approximately 5V

Is voltage within specification?

ECTS

21

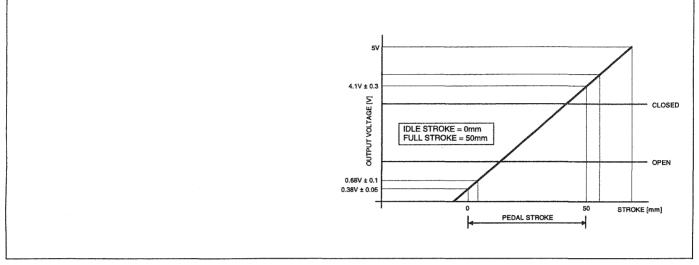
E01-1


ECM

(17)

 \cap

E01-2


(16)

EGMF602C

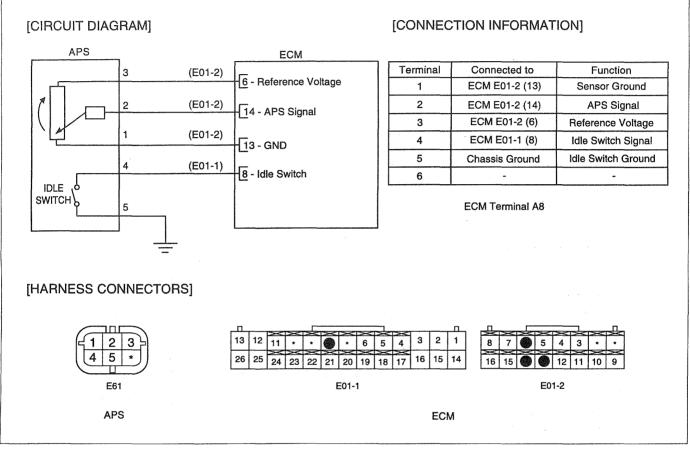
TROUBLESHOOTING FOR DTC E030E617

	P0120	Accelerator Position Sensor Malfunction - Irregular Sensor Output
DTC	P0120	Accelerator Position Sensor Malfunction - Learning Error
	P0121	Accelerator Position Sensor Range/Performance Problem

LF9E0633

DESCRIPTION

On electronic injection systems, there is no longer a load lever that mechanically controls the fuelling. The flow is calculated by the ECM depending on a number of parameters, including pedal position, which is measured using a potentiometer. The absence of a mechanical link between the accelerator pedal and the injection system presents a risk of loss of control of the engine in the event of a failure of the component in charge of providing the driver's request information to the injection system. The pedal sensor therefore has a potentiometers whose slides are mechanically solid. A voltage is generated across the potentiometer in the acceleration position sensor as a function of the accelerator-pedal setting. Using a programmed characteristic curve, the pedal's position is then calculated from this voltage.


DTC DETECTING CONDITION

DTC No	Detecting Condition & Limp Home	Suspect area
	 Detecting Condition DTC Strategy Irregular sensor output Enable condition Idle switch = ON Idle switch = ON No failure on VSS Vehicle speed ≤ 0km/h Threshold Value Engine speed > 2,000 rpm for 3 seconds 	
P0120	Limp-Home Function Back-up idle state (Accelerator angle = 0%) Idle Switch = OFF: Sensor output is increased to 30% slowly Idle Switch = ON: Sensor output is decreased to 0% slowly Detecting Condition DTC Strategy APS learning error 	 Open or short in APS circuit APS ECM
	 Enable condition Idle switch = ON Threshold Value APS signal < 0.2V or APS signal > 0.56V 	
	 Limp-Home Function APS signal 0.38V = 0% (If the APS outputs 0.38V, the ECM will recognize that the accelerator angle is 0%) 	
P0121	 Detecting Condition DTC Strategy Rationality Check Voltage range check Enable condition IG ON or engine running Threshold Value APS signal < 0.2V or APS signal > 4.8V for 0.5 second 	 Open or short in APS circuit APS ECM
	Limp-Home Function Back-up idle state Idle Switch = OFF: Sensor output is increased to 30% slowly Idle Switch = ON: Sensor output is decreased to 0% slowly 	

SPECIFICATIONS

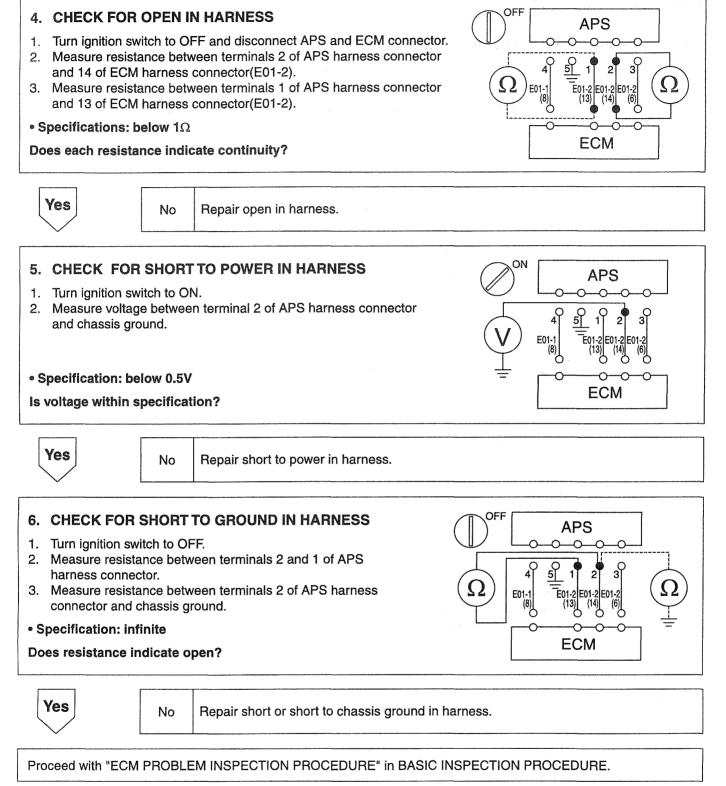
Pedal Stroke	APS Output Voltage
Idle Stroke	0.33 ~ 0.43 V
Full Stroke	3.8 ~ 4.4 V

SCHEMATIC DIAGRAM

EGMF0634

INSPECTION PROCEDURES

1. CHECK APS AND ECM CONNECTORS 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. • Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE. Are all connectors good? Yes Repair or replace it. No ON 2. CHECK REFERENCE VOLTAGE OF APS APS 1. Turn ignition switch to OFF and disconnect APS connector. \cap \sim 2. Turn ignition switch to ON. 49 ې 2' 5 ้ง 3. Measure voltage between terminal 3 of APS harness connector and chassis ground. E01-1 E01-2 E01-2 E01-2 (8) (13) (14) (6) Specification: approximately 5V ECM Is voltage within specification? Yes Repair open or short to chassis ground in harness. No 3. CHECK APS SIGNAL 1. Turn ignition switch to OFF and reconnect APS connector. 2. Connect Hi-Scan (Pro) to APS. 3. Turn ignition switch to ON. 4. Using Hi-Scan (Pro), monitor APS signal while slowly stepping the accelerator position. • Specification (APS signal voltage): 0.33 ~ 0.43 V at Idle Stroke 3.8 ~ 4.4 V at Full Stroke Is sensor output voltage within specification?

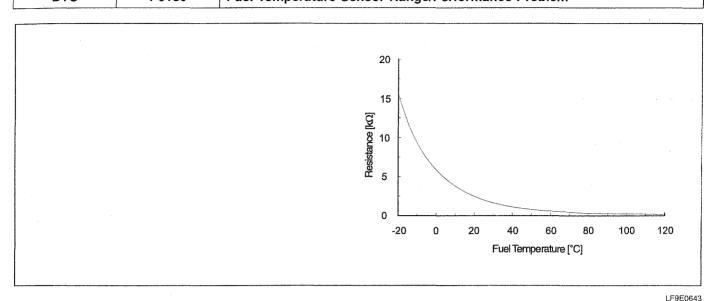


No Replace APS.

EGMF002I

FUEL SYSTEM (D4BH)

EGMF002J


FLA -51

TROUBLESHOOTING FOR DTC E627850A

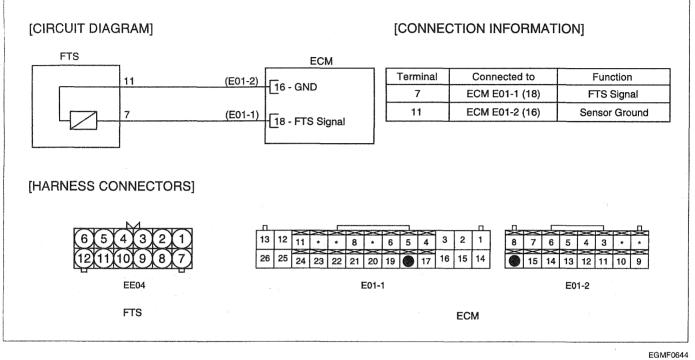
DTC

P0180

Fuel Temperature Sensor Range/Performance Problem

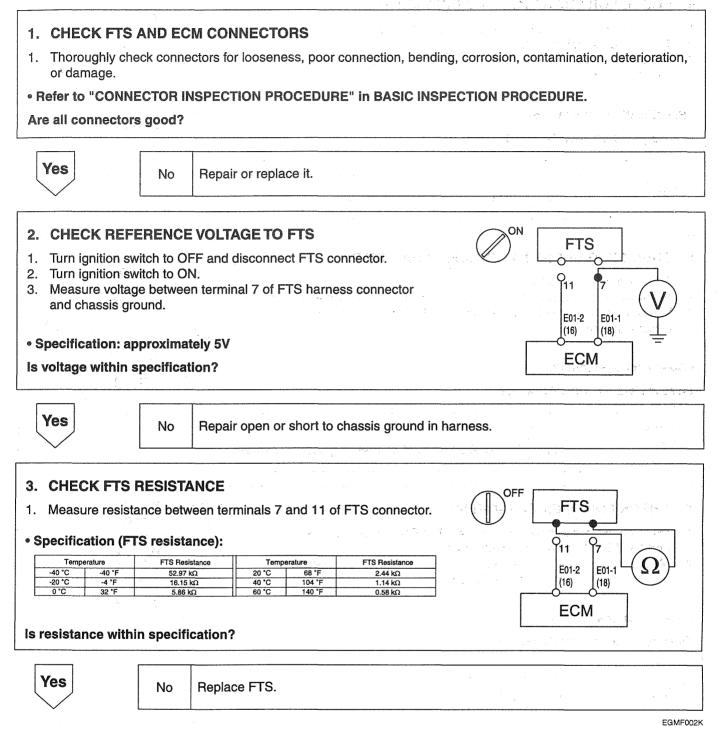
DESCRIPTION

The fuel temperature sensor (FTS) is located in the fuel-Inlet line to measure the fuel temperature. The FTS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the FTS decreases as the fuel temperature increases, and increases as the fuel temperature decreases. The 5 V power source in the ECM is supplied to the FTS via a resistor in the ECM. That is, the resistor in the ECM and the thermistor in the FTS are connected in series. When the resistance value of the thermistor in FTS changes according to the fuel temperature, the signal voltage also changes. This information of fuel temperature is used in correcting fuel quantity.

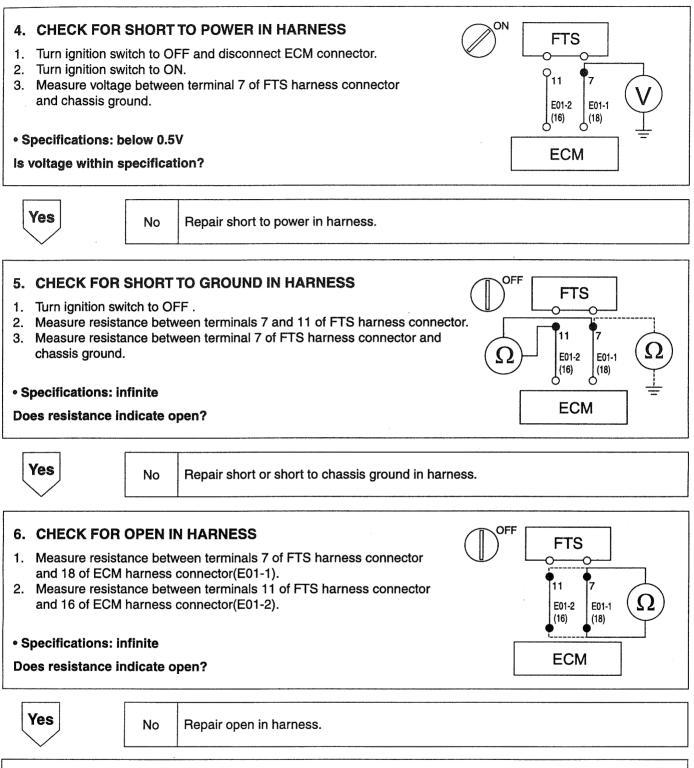

DTC DETECTING CONDITION

DTC No	Detecting Condition & Limp Home	Suspect area
P0180	 Detecting Condition DTC Strategy Rationality Check Voltage range check Enable condition IG ON or engine running Threshold Value FTS signal < 0.1V or FTS signal > 4.6V for 5 seconds Limp-Home Function Fuel temperature = 50 ℃ 	 Open or short in FTS circuit FTS ECM

SPECIFICATIONS


Tempe	erature	FTS Resistance	Tempo	erature	FTS Resistance
-40 °C	-40 °F	52.97 kΩ	20 °C	68 °F	2.44 kΩ
-20 °C	-4 °F	16.15 kΩ	40 °C	104 °F	1.14 kΩ
0 °C	32 °F	5.86 kΩ	60 °C	140 °F	0.58 kΩ

SCHEMATIC DIAGRAM



.

INSPECTION PROCEDURES

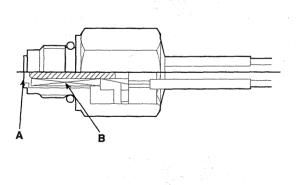
FUEL SYSTEM (D4BH)

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

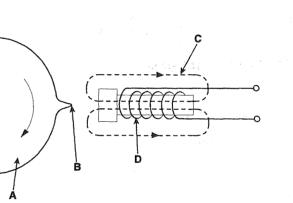
EGMF002L


P0320

TROUBLESHOOTING FOR DTC ECD8FFCB


NP Sensor Range/Performance Problem

COMPONENT LOCATION


DESCRIPTION

The Np sensor detects pump speed necessary for the various controls, and outputs signals to the control unit. The Np sensor is constructed of a permanent magnet(A) and an iron pole, and a coil(B). The magnetic field is varied by sensing gear movement, and the voltage generated is detected as a speed signal.

LF9E007A

When the drive shaft rotates, the sensing gear plate(A) projections(B) pass through the pump speed sensor's magnetic field(C) to generate AC voltage at the coil(D). This voltage is input to the control unit, converted to a pulse signal, and used as a pump speed signal.

LF9E015A

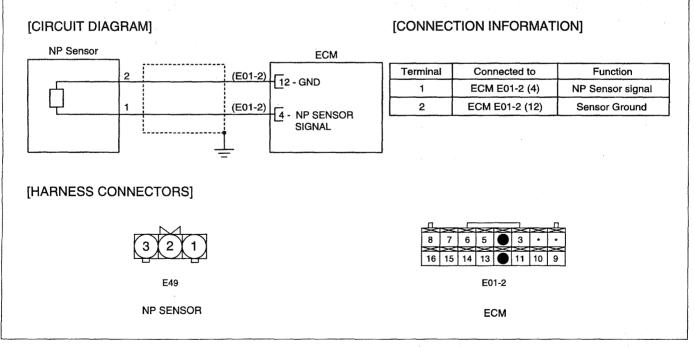
LF9E0156

FLA -55

FLA -56

DTC DETECTING CONDITION

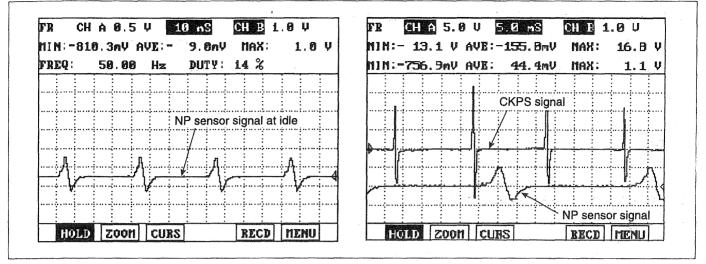
1. DTC Description


The ECM monitors the range of the analog input signal from NP sensor to check sensor failure that is short circuit or open circuit.

If the ECM detects abnormal NP snesor operation, it sets DTC P0320.

2. Conditions for Setting the DTC

DTC	Detecting Condition & Limp Home	Possible Cause
P0320	 Detecting Condition DTC Strategy Monitoring NP sensor signal Enable condition Engine speed ≥ 400 rpm No failure on CKPS Threshold Value No consecutive 40-pulses for 10 engine revolution 	 Open or short in NP Sensor circuit Air gap out of specification NP Sensor interfered with electrical noise NP Sensor ECM
	Limp-Home Function Using CKPS signal 	


SCHEMATIC DIAGRAM

EGMF402C

FLA -57

SIGNAL WAVE FORM

LF9E0021

ECM

NPS

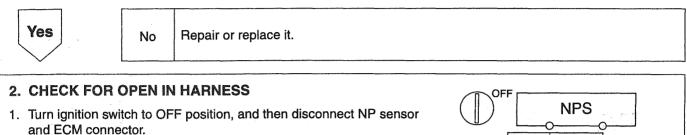
E01-2

ECM

(12)

OFF

E01-2


(4)

INSPECTION PROCEDURE

1. CHECK NP SENSOR AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

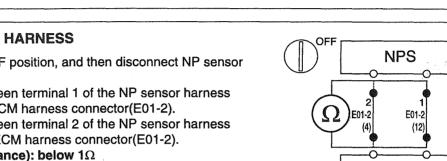
Are all connectors good?

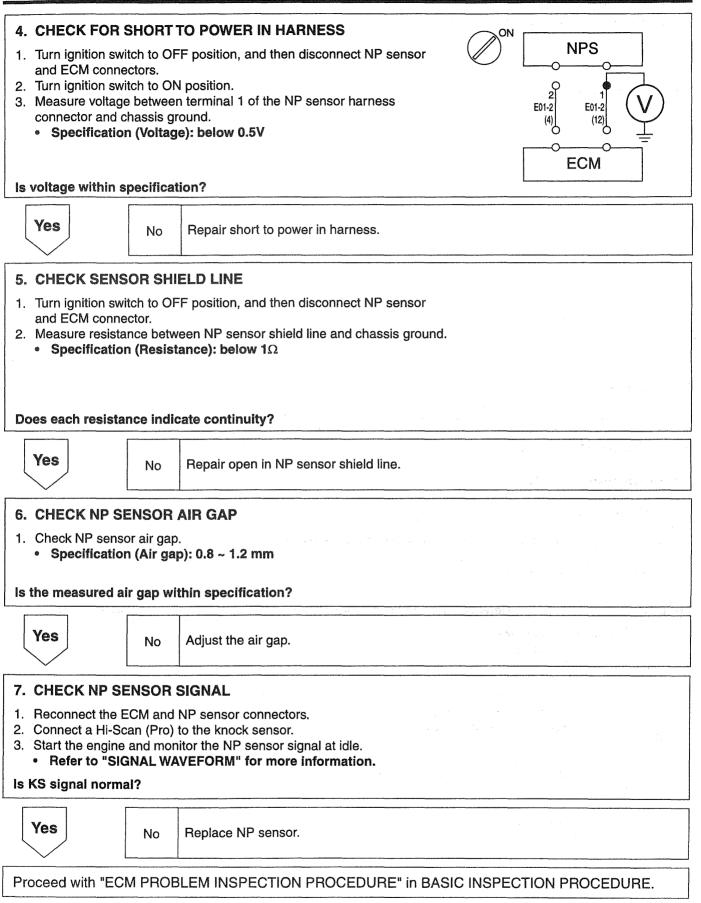
- 2. Measure resistance between terminal 1 of the NP sensor harness connector and 4 of the ECM harness connector(E01-2).
- 3. Measure resistance between terminal 2 of the NP sensor harness connector and 12 of the ECM harness connector(E01-2).
 - Specification (Resistance): below 1Ω

Does each resistance indicate continuity?

Repair open in harness. No

3. CHECK FOR SHORT TO GROUND IN HARNESS

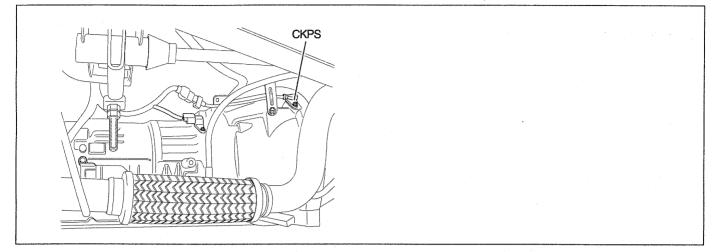

- 1. Turn ignition switch to OFF position, and then disconnect NP sensor and ECM connector.
- 2. Measure resistance between terminal 1 of the NP sensor harness connector and chassis ground.
- 3. Measure resistance between terminal 1 and 2 of the NP sensor harness connector.
 - Specification (Resistance): infinite


Does each resistance indicate open?

Repair short or short to chassis ground in harness. No

EGMF603N

EGMF603O


TROUBLESHOOTING FOR DTC EEC20AAC

DTC

P0335

Crankshaft Position Sensor Range/Performance Problem

COMPONENT LOCATION

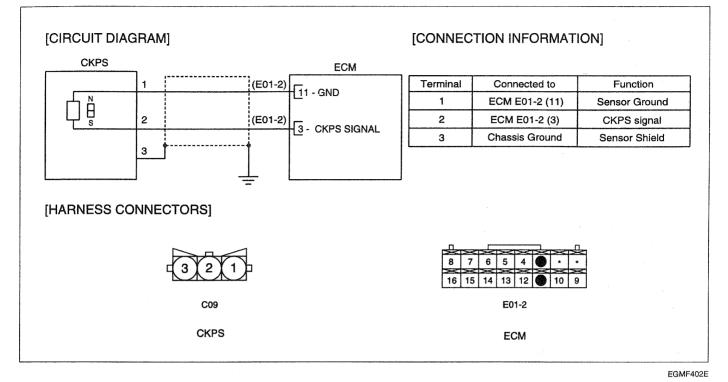
DESCRIPTION

The Crankshaft Position Sensor (CKPS) is a Variable Reluctance (VR) type sensor that generates voltage using a sensor and a target wheel mounted on the crankshaft; there are 36 slots in the target wheel. The ECM calculates engine RPM by using the sensor's signal and controls injection timing.

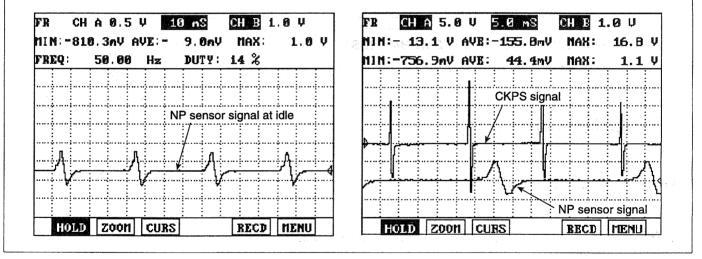
DTC DETECTING CONDITION

1. DTC Description

The ECM sets DTC P0335 when there is abnormal CKPS operation.


2. Conditions for Setting the DTC

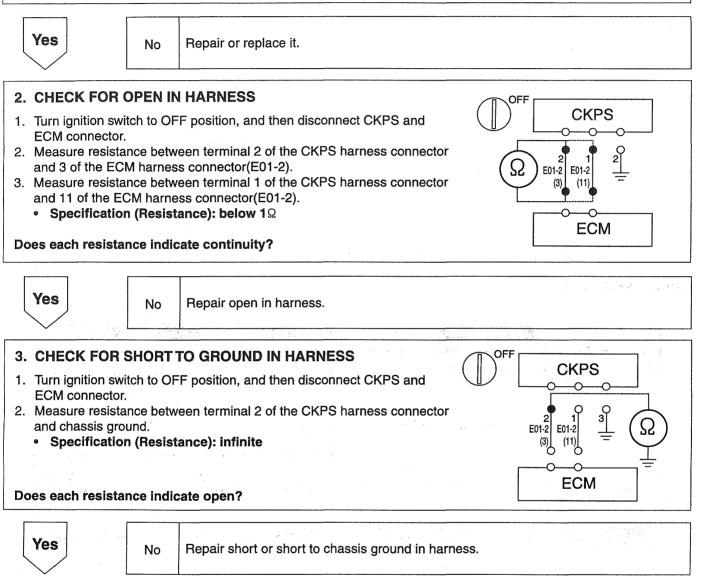
DTC No	Detecting Condition & Limp Home	Suspect area	
	Detecting Condition • DTC Strategy - Monitoring CKPS signal • Enable condition	Open or short in CKPS circuit	
P0335	 Engine speed ≥ 400 rpm No failure on NP sensor 	 Air gap out of specification CKPS interfered with 	
	 Threshold Value No consecutive 20-pulses for 10 engine revolution 	electrical noise • CKPS • ECM	
	Limp-Home Function Using NP sensor signal 		


LF9E9232

FLA -61

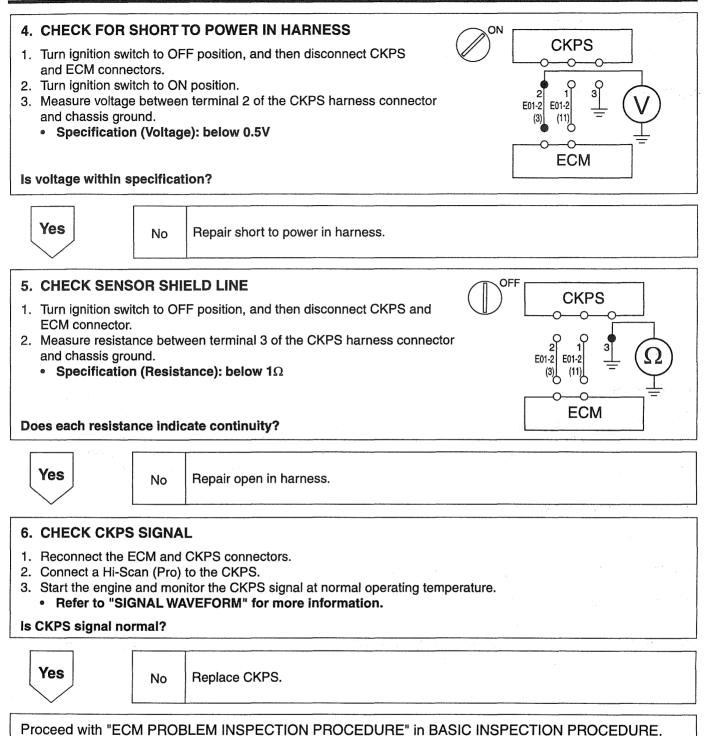
SCHEMATIC DIAGRAM

SIGNAL WAVE FORM


LF9E0021

INSPECTION PROCEDURE

1. CHECK CKPS AND ECM CONNECTORS


- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

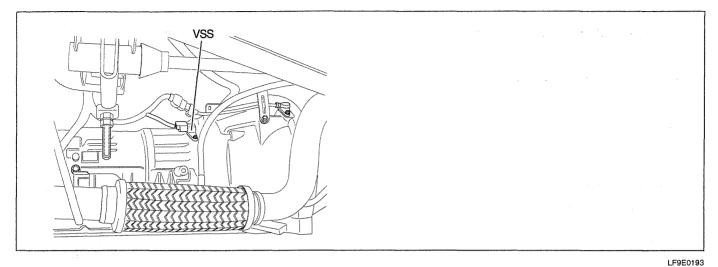
Are all connectors good?

EGMF603P

FLA -62

EGMF603Q

FLA -63


TROUBLESHOOTING FOR DTC E230E548

DTC

P0500

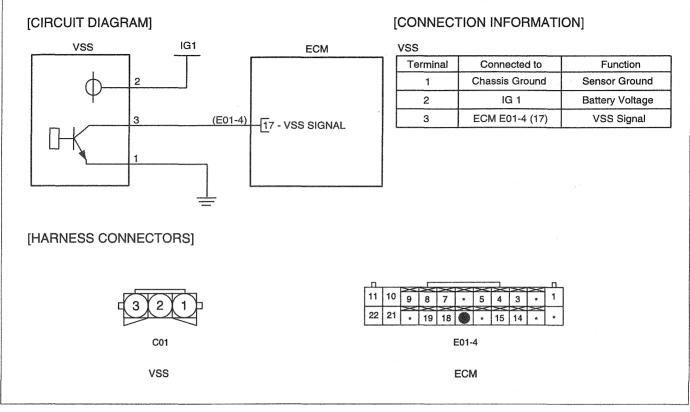
Vehicle Speed Sensor Range/Performance Problem

COMPONENT LOCATION

DESCRIPTION

The vehicle Speed Sensor (VSS) generates a waveform with a frequency according to the speed of the vehicle. The signal generated by the VSS informs the ECM not only if the vehicle speed is low or high but also is stopped the vehicle or not. The ECM uses this signal to control the fuel injection, ignition timing, transmission/transaxle shift scheduling and torque converter clutch scheduling. Also the VSS signal is used to detect rough road driving condition.

DTC DETECTING CONDITION

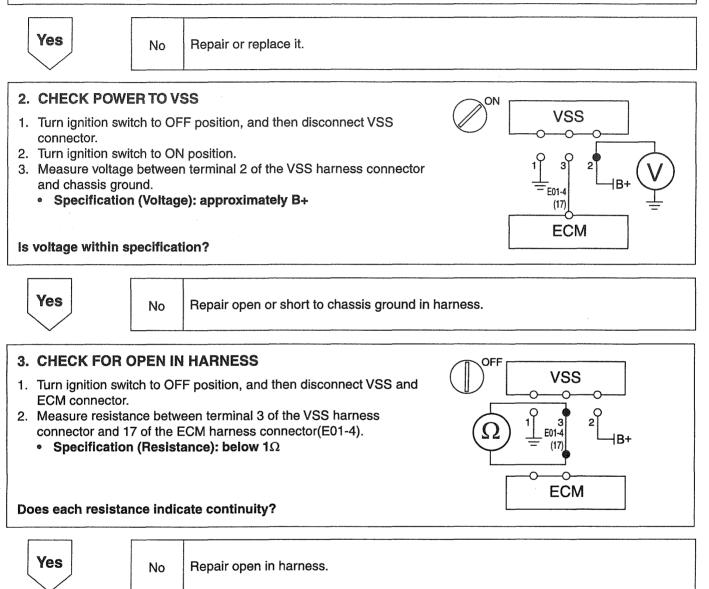

1. DTC Description

The ECM sets DTC P0500 if signal from VSS is abnormal.

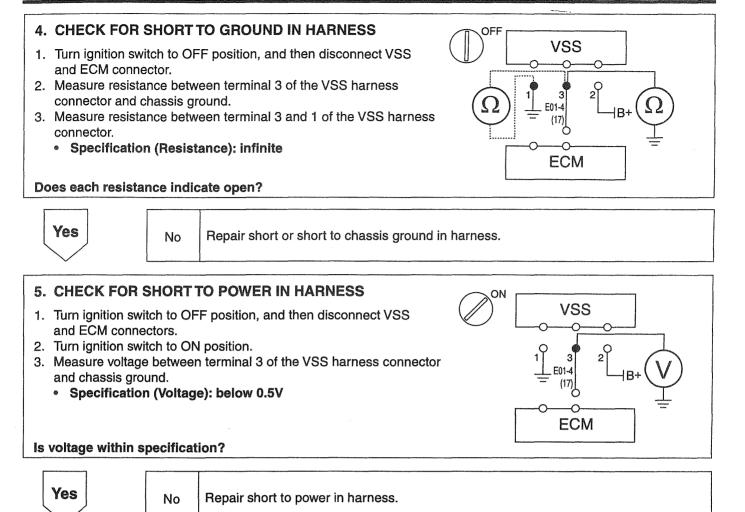
2. Conditions for Setting the DTC

DTC No	Detecting Condition & Limp Home	Suspect area
	Detecting Condition DTC Strategy Vehicle speed sensor monitoring 	
P0500	 Enable condition Engine running Engine speed > 2500 rpm Accelerator angle > 30% Neutral switch = OFF Threshold Value Vehicle speed ≤ 5km/h for 10 seconds 	 Open or short in VSS circuit VSS ECM
	 Limp-Home Function Vehicle operates normally but it is impossible to change the vehicle speed according to the fuel quantity dumping map. 	

SCHEMATIC DIAGRAM


EGMF402M

INSPECTION PROCEDURE


1. CHECK VSS AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

EGMF001E

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EGMF001F

FLA -67

TROUBLESHOOTING FOR DTC E4C4C7DD

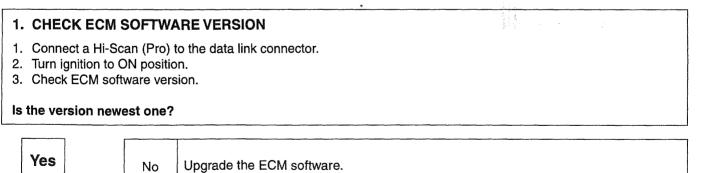
DTC	P0605	Internal Control Module Read Only Memory (ROM) Error

DESCRIPTION

A malfunction is detected by using a checksum technique for verifying data. The digital data is composed of zeros and ones. A checksum is the total of all ones in a string of data. By comparing the checksum value with a stored value, a malfunction can be detected.

DTC DETECTING CONDITION

1. DTC Description


The ECM monitors RAM areas and communication connections between microcontroller and output drivers and sets DTC P0605 if failure is detected.

2. Conditions for Setting the DTC

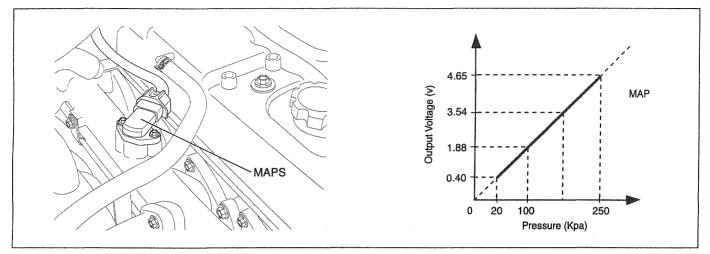
FLA -69

DTC No	Detecting Condition & Limp Home				Suspect area	
	Detecting Condition DTC Strategy EEPROM en Enable condition IG ON or er Threshold Value "READY"/"Bi "VERIFY" er Limp-Home Functio					
	 TPS learning error → Learn the TPS again Revised compensation resistor → Back-up with No.7 Deleting DTCs stored in ECM "READY"/"BUSY" error 					
P0605		With Immobilizer	Without Immobilizer		• ECM	
	Engi		Possible	-		
	Mi	L ON	OFF]		
4				LF9E101C		
	• "VERIFY" error (a an tait an an an airtean Tait an tait an an an tait an tait				
		Possible data reading	Impossible data reading]		
	Engi	ne Possible	Impossible			
	MI	L OFF	ON			
				LF9E101D		
	 "VERIFY" error (without immobilizer) Engine operation: impossible MIL: OFF 				n Normal Anna Anna Anna	
				<u></u>		

INSPECTION PROCEDURE

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

BFGE605B

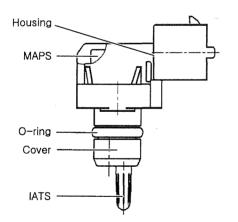

TROUBLESHOOTING FOR DTC E755EC62

DTC

P1116

Manifold Absolute Pressure Sensor Range/Performance Problem

COMPONENT LOCATION



LF9E0882

1.15.5897.3

DESCRIPTION

The manifold absolute pressure sensor (MAPS) is a pressure sensitive variable resistor. It measures changes in the intake manifold pressure which result from engine load and speed changes, and converts this to a voltage output. The ECM supplies 5 volts to the MAP sensor and monitors the voltage on a signal line. The sensor provides a path to ground through its variable resistor. The MAP sensor input affects fuel delivery and engine controls in the ECM.

LGGE002I

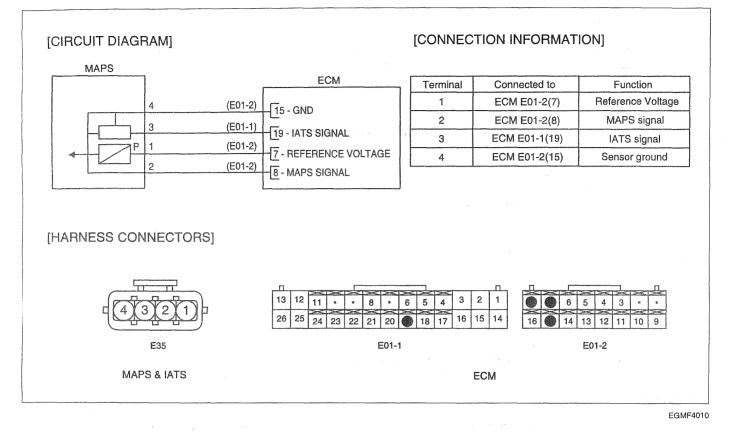
DTC DETECTING CONDITION

1. DTC Description

The ECM compares the actual measured Manifold Absolute Pressure signal to the modeled Manifold Absolute Pressure value and sets the DTC P1116 when the difference between these two value is too high or too low.

2. Conditions for Setting the DTC

DTC No	Detecting Condition & Limp Home	Suspect area
P1116	 Detecting Condition DTC Strategy Rationality Check Voltage range check Enable condition IG ON or engine running Threshold Value MAPS signal < 0.2V or MAPS signal > 4.8V for 1 second Limp-Home Function Manifold absolute pressure on full quantity map = 101.325 kPa 	 Open or short in MAPS circuit MAPS ECM

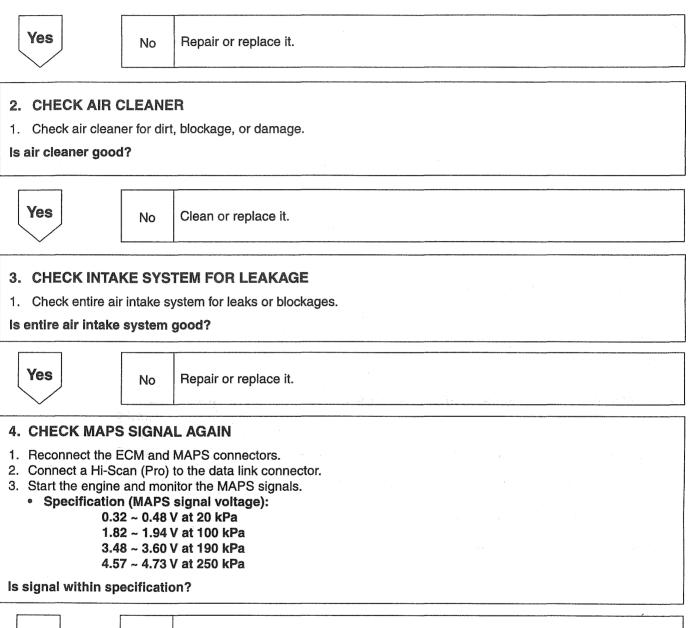

SPECIFICATION

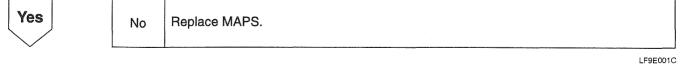
Manifold Absolute Pressure	MAPS Output Voltage
20 kPa	0.32 ~ 0.48 V
100 kPa	1.82 ~ 1.94 V
190 kPa	3.48 ~ 3.60 V
250 kPa	4.57 ~ 4.73 V

FLA -72

FUEL SYSTEM (D4BH)

SCHEMATIC DIAGRAM



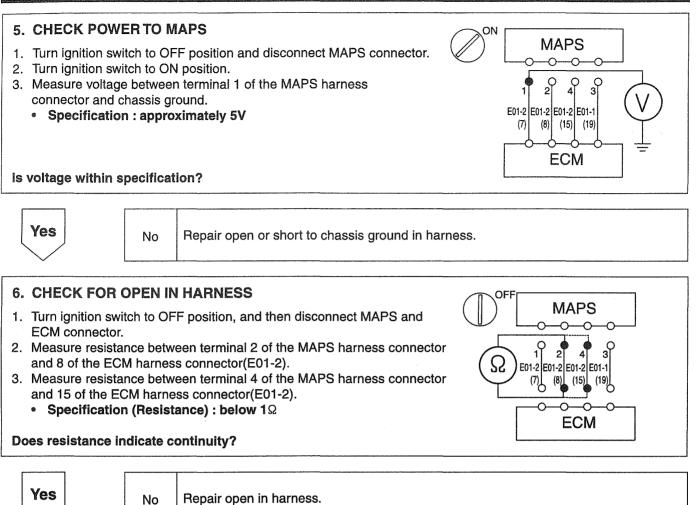

INSPECTION PROCEDURE

1. CHECK MAPS AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

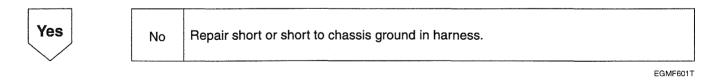
MAPS


E01-2 E01-2 E01-2 E01-1 (8)] 0 (7)

(15) (19)

ECM

Ω


ç 3

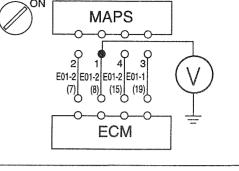
7. CHECK FOR SHORT TO GROUND IN HARNESS

- 1. Turn ignition switch to OFF position, and then disconnect MAPS and ECM connector.
- 2. Measure resistance between terminal 2 of the MAPS harness connector and chassis ground.
- 3. Measure resistance between terminal 2 and 4 of the MAPS harness connector.
 - Specification (Resistance) : infinite

Does the resistance indicate open?

No

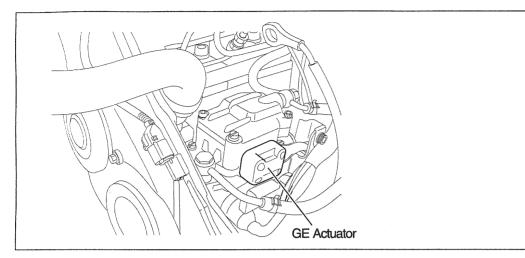
8. CHECK FOR SHORT TO POWER IN HARNESS ON 1. Turn ignition switch to OFF position and disconnect MAPS \sim and ECM connectors. 29 2. Turn ignition switch to ON position. 3. Measure voltage between terminal 2 of the MAPS harness connector and chassis ground. (7) Specification (Resistance): below 0.5 V \cap Is voltage within specification?


Yes

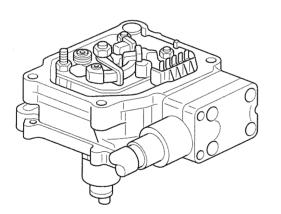
Repair short to power in harness.

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EGMF601V


FLA -75

TROUBLESHOOTING FOR DTC EE708DE9


DTC	1120	GE Actuator Circuit Malfunction

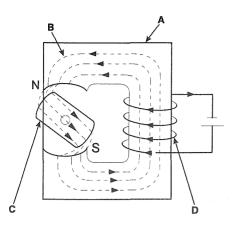
COMPINENT LOCATION

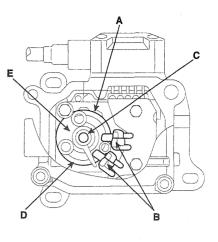
DESCRIPTION

The GE actuator is attached to the governor chamber at the upper part of the injection pump.

LF9E004A

There is a magnet filter between the governor chamber. And the fuel oil flowing into the governor chamber cools the coil because the two chambers are connected each other.


The magnet filter(B) also prevents iron dregs from entering the GE actuator. The ball pin(A) which is eccentric to the pressfitted shaft through the rotor is inserted into a hole in the control sleeve.


Unlike the conventional injection pump, COVEC-F adjusts fuel injection quantity electromagnetically. Control sleeve position is detected by the control sleeve position sensor and fed back to the control unit.

When the coil(D) is energized, the core(A) generates magnetic(B) flux to rotate the rotor(C) within a specific range. The intensity of the magnetic flux generated by the coil is determined by the input current. The rotor is rotated until the intensity of the core's magnetic flux equals the force of the rotor's return spring.

LF9E0001

LF9E011A

LF9E012A

The control sleeve position sensor detects rotational angle. It is installed at the top of the GE actuator to detect whether the control sleeve position (ie, the rotor's angle of rotation) specified by the current is in fact the correct position. The control sleeve position sensor consists of a sensor yoke(A), a sensor coil(B), a movable plate(D) and a fixed plate(C). The movable plateis connected directly to and rotates with the shaft(E).

The fixed plate compensates for temperature induced inductance variations.

DTC DETECTING CONDITION

1. DTC Description

ECM sets DTC P1120 if the ECM detects that the GE actuator does not operate normally.

2. Conditions for Setting the DTC

DTC No	Detecting Condition & Limp Home	Suspect area
	Detecting Condition DTC Strategy Check open or short circuit 	
P1120	 Enable condition IG ON or engine running Threshold Value (GE actuator target value) - (GE actuator actual value) > 1.0V for 0.5 second 	 Open or short in GE actuator circuit Abnormal yoke/rotor of GE actuator High viscosity fuel on low temperature CSPS error GE actuator
	Limp-Home Function • FCV OFF • GE actuator OFF • Target value of fuel quantity = 0 mm/st • Target value = 0 V	• ECM · · · · · · · · · · · · · · · · · · ·

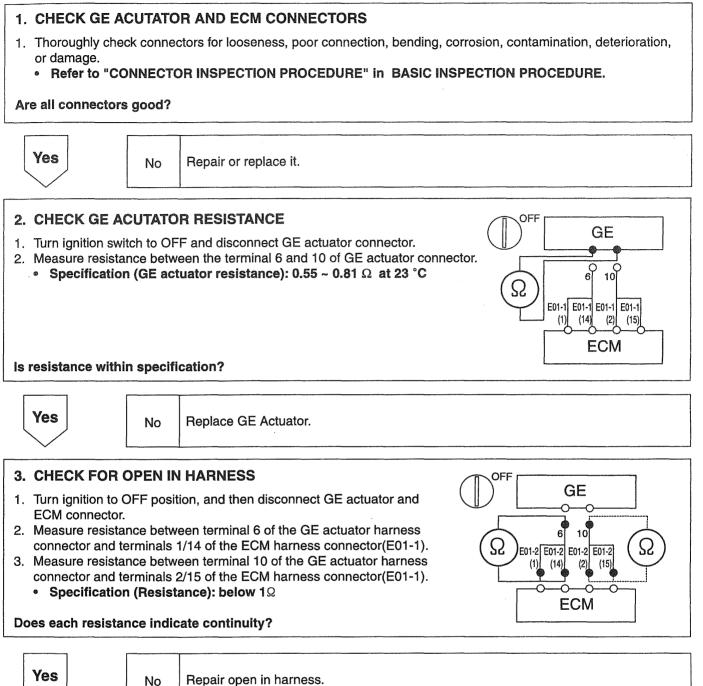

The control sleeve position sensor converts differences in the inductances of the upper and lower coils into angles, and feeds this back to the control unit. The control unit compares the target angle with the actual angle measured, and compensates the current so that the angle corresponds to the target angle.

F	Δ	-7	8
	L. M	- 1	U.

SPECIFICATION

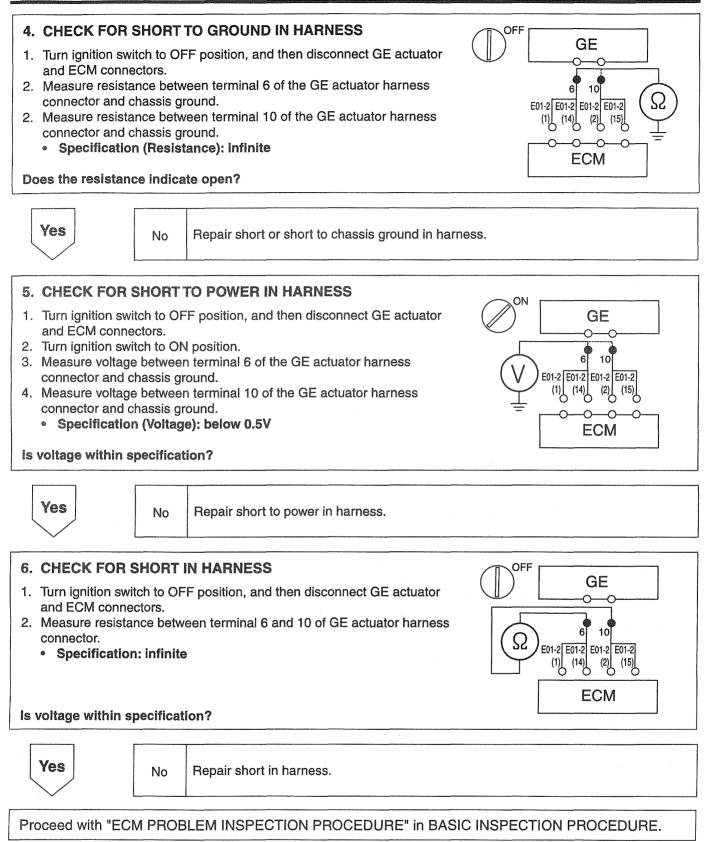
Tempe	erature	GE Actuator Resistance
23 °C	73.4 °F	0.55 ~ 0.81 Ω

SCHEMATIC DIAGRAM



SIGNAL WAVE FROM

MIN:	12.8 V AU	VE: 13.2 V	Max:	14.1 V	MIN: 6	81.4mV A	VE:	9.7 V	MAX:	15.7 V
FREQ:	263.16	Hz DUTY:	62 %		FREQ:	256.41	Hz	DUTY:	63 %	
	: : :						1 1			
	····•	GE [+] Contro					GE [-] (Control		· · · · · · · · · · · · · · · · · · ·
			····							· · · · · · · · · · · · · · · · · · ·
		; / ;				مغيب بنيب	<u>ki</u>	<u>i èn</u> i		ليستبر أستيني
	7									
						- finn frankfinn	· · · · · · · · · · · · · · · · · · ·	lan binanda		
N						المرا ال			니 니	<u>ا لا ا</u>
V							: :			


LF9E0003

INSPECTION PROCEDURE

Repair open in harness.

EGMF6030

EGMF603Y

TROUBLESHOOTING FOR DTC EF4EF739

DTC 1122 Manifold Absolute Pressure Too High	DTC	1122	Manifold Absolute Pressure Too High
--	-----	------	-------------------------------------

DTC DETECTING CONDITION

1. DTC Description

The ECM sets DTC P1122 if the ECM detects that manifold absolute pressure is too high.

2. Conditions for Setting the DTC

DTC No	Detecting Condition & Limp Home	Suspect area
P1122	 Detecting Condition & Limp Home DTC Strategy Rationality check Enable condition Engine running Threshold Value Manifold absolute pressure ≥ 209.3 kPa for 1 second (consecutive 60 times) 	 Too much injection fuel Retarded injection timing Disabled waste gate actuator Disabled turbo charger ECM
	 Limp-Home Function Manifold absolute pressure on full quantity map = 101.3 kPa 	

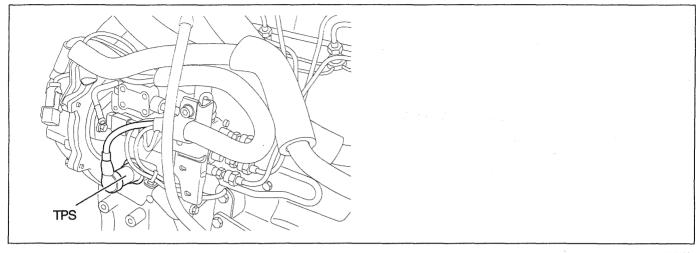
INSPECTION PROCEDURE

1. CHECK THE SYSTEM RELATED TO MANIFOLD	PRESSURE	
 Check the below items. Injection fuel quantity Injection timing Waste gate actuator Turbo charger 		
Are all item have normal condition?		

Yes No Repair it.

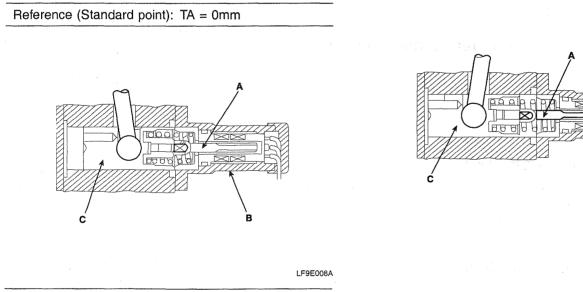
Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

LF9E101E


TROUBLESHOOTING FOR DTC EBAF9BFC

DTC

1123


Timing Position Sensor Range/Performance Problem

COMPONENTS LOCATION

DESCRIPTION

The TPS is installed on the timer's low pressure side. The TPS is constructed of a core rod (A) and a bobbin (B), and detects timer piston (C) position electrically. The TPS detects variations in the core rod (A) inductance to measure timer piston (C) position.

Reference (Operation): TA = advance angle direction

LF9E0028

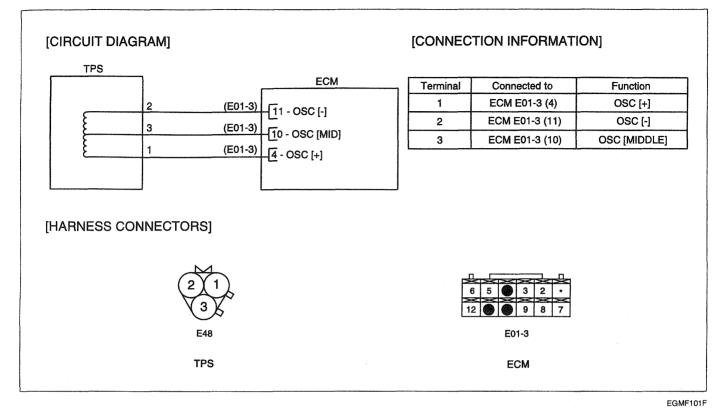
LF9E016A

DTC DETECTING CONDITION

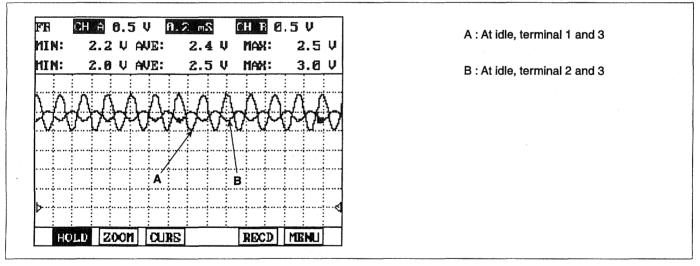
1. DTC Description

The ECM sets DTC P1123 if the ECM detects fault in the TPS circuit.

2. Conditions for Setting the DTC


DTC No	Detecting Condition & Limp Home	Suspect area
	Detecting Condition DTC Strategy Rationality Check Voltage range check 	
	 Enable condition IG ON or engine running Threshold Value TPS signal < 0.3V or TPS signal > 4.5V for 1 second 	 Open or short in TPS circuit TPS ECM
	Limp-Home Function Timing position = 0 mm Injection timing is controlled on open loop 	
P1123	Detecting Condition DTC Strategy TPS learning error 	
	 Enable condition After ignition switch "START" position Engine speed ≤ 300 rpm TPS didn't learn Threshold Value 	 Abnormal installation of timer piston EEPROM error TCV error
	- TPS signal < 0.3V or TPS signal > 0.7V	• ECM
	 Limp-Home Function TPS signal 0.5V = 1mm (If the TPS outputs 0.5V, the ECM will recognize that the timing position is 0mm) Injection timing is controlled on open loop 	

SPECIFICATION

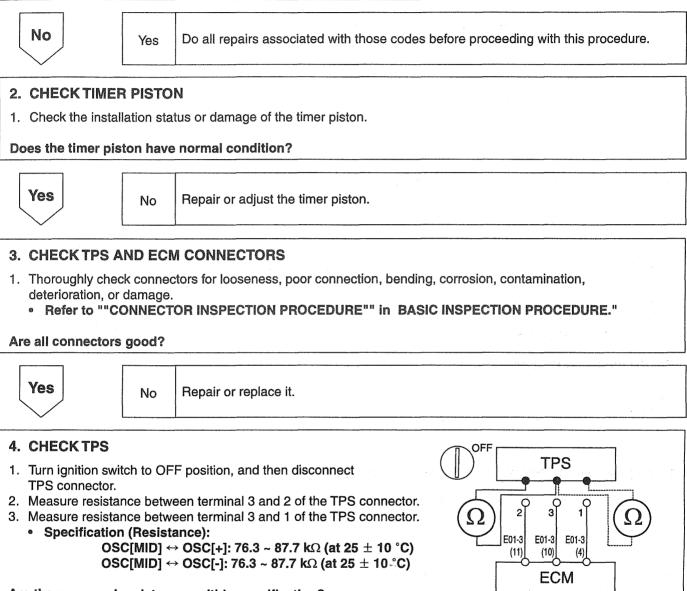

SPECIFICATION				
Tempe	erature	TPS Coil	Resistance	
25 ± 10 °C	77 ± 18 °F	OSC[MID] ↔ OSC[+]	70.0 07.7 40	
25 ± 10 °C	77 ± 18 °F	OSC[MID] ↔ OSC[-]	76.3 ~ 87.7 kΩ	

FLA -84

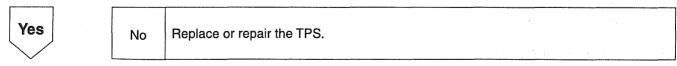
SCHEMATIC DIAGRAM

SIGNAL WAVE FROM

LF9E0023


FLA -85

INSPECTION PROCEDURE


1. CHECK DTC RELATING TO EEPROM OR TCV

- 1. Connect a Hi-Scan (Pro) to the data link connector.
- 2. Turn ignition to ON position and monitor other DTCs.

Is any DTC relating to EEPROM OR TCV set?

Are the measured resistances within specification?

EGMF101G

TPS

E01-3

E01-3

(10)

ECM

2

F01-3

(11)

OF

FLA -86

5. CHECK FOR OPEN IN HARNESS

- 1. Turn ignition switch to OFF position, and then disconnect TPS and ECM connector.
- 2. Measure resistance between terminal 2 of the TPS harness connector and terminal 11 of the ECM harness connector(E01-3).
- 3. Measure resistance between terminal 3 of the TPS harness connector and terminal 10 of the ECM harness connector(E01-3).
- 4. Measure resistance between terminal 1 of the TPS harness connector and terminal 4 of the ECM harness connector(E01-3).
 - Specification (Resistance): below 1 $\!\Omega$

Are the measured resistances within specification?

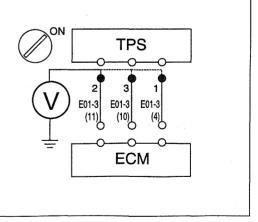
No Repair open in harness.

6. CHECK FOR SHORT TO GROUND IN HARNESS

- 1. Turn ignition switch to OFF position, and then disconnect TPS and ECM connector.
- 2. Measure resistance between terminal 2 of the TPS harness connector and chassis ground.
- 3. Measure resistance between terminal 3 of the TPS harness connector and chassis ground.
- 4. Measure resistance between terminal 1 of the TPS harness connector and chassis ground.
 - Specification (Resistance): infinite

No

Are the measured resistances within specification?



Repair short to ground in harness.

7. CHECK FOR SHORT TO POWER IN HARNESS

- 1. Turn ignition switch to OFF position, and then disconnect TPS and ECM connector.
- 2. Turn ignition switch to ON position.
- 3. Measure voltage between terminal 2 of the TPS harness connector and chassis ground.
- 4. Measure voltage between terminal 3 of the TPS harness connector and chassis ground.
- 5. Measure voltage between terminal 1 of the TPS harness connector and chassis ground.
 - Specification (Voltage): about 0.5V

Are the measured voltages within specification?

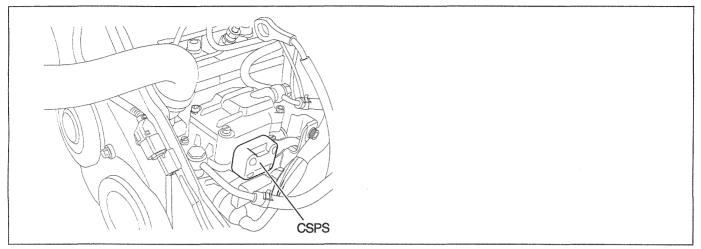
EGMF101H

No

Repair short to power in harness.

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

LF9E1011


TROUBLESHOOTING FOR DTC EPFCAE3C

DTC

1127

Control Sleeve Position Sensor Range/Performance Problem

COMPINENT LOCATION

DESCRIPTION

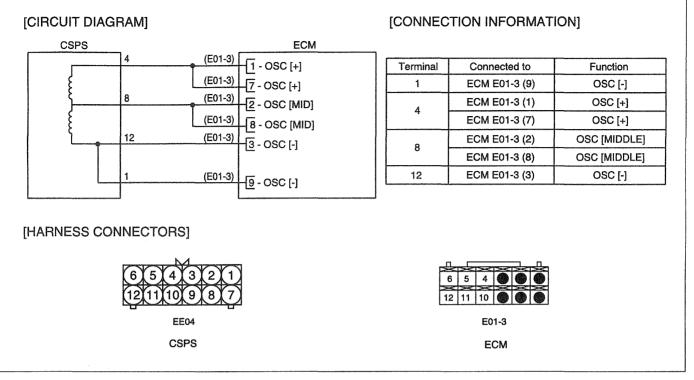
Control Sleeve Position Sensor (CSPS) is installed on GE actuator and monitors the Electronic Governor operation. The movable plate connected with the shaft rotates with the shaft and the fixed plate adjusts inductive coefficient according to temperature variation. The CSPS calculates the angle by using the difference between the inductive coefficients of the upper and the lower sensing coils. If the actual value is differ from the target value, the ECM will make that the actual value is equal to the target value by adjusting the current.

LF9E101J

DTC DETECTING CONDITION

1. DTC Description

The ECM sets DTC P1127 if the ECM detects the abnormal CSPS operation.


2. Conditions for Setting the DTC

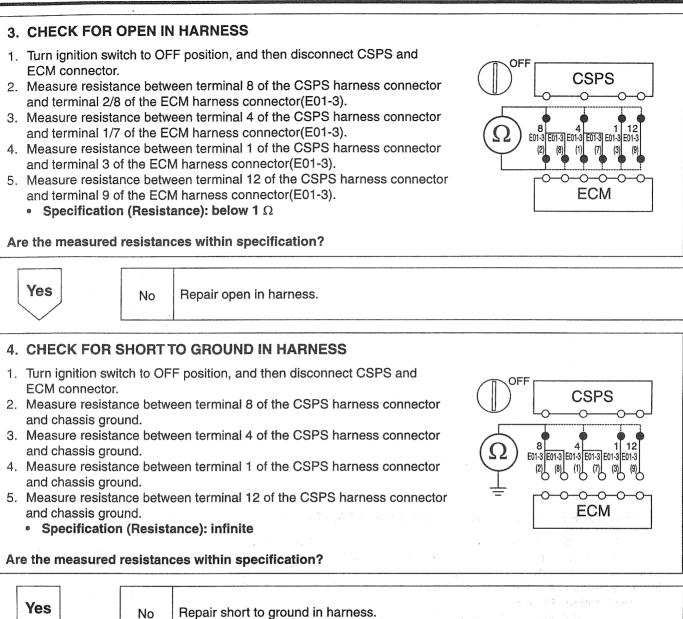
DTC No	Detecting Condition & Limp Home	Suspect area
P1127	 Detecting Condition DTC Strategy Rationality check Voltage range check Enable condition IG ON or engine running Threshold Value CSPS output signal < 0.3V or CSPS output signal > 4.5V for 0.3 second 	 Open or short in CSPS circuit CSPS ECM
	Limp-Home Function FCV OFF GE actuator OFF Target value of fuel quantity = 0 mm/st Target value = 0 V 	

SPECIFICATION

Temp	Temperature CSPS Coil		Resistance
23 °C	73.4 °F	OSC[+] ↔ OSC[-]	11.2 ~ 12.4 Ω
23 °C	73.4 °F	OSC[MID] ↔ OSC[+]	5.6 ~ 6.2 Ω
23 °C	73.4 °F	OSC[MID] ↔ OSC[-]	0.0 ~ 0.2 12

SCHEMATIC DIAGRAM

EGMF101K


INSPECTION PROCEDURE

1. CHECK CSPS AND ECM CONNECTORS 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE." Are all connectors good? Yes No Repair or replace it. 2-1. CHECK CSPS (WHOLE COIL RESISTANCE) OFF CSPS 1. Turn ignition switch to OFF position, and then disconnect CSPS connector. 2. Measure resistance between terminal 8 and 11 of the CSPS connector(E01-3). 3. Measure resistance between terminal 8 and 10 of the CSPS connector(E01-3). Specification (Resistance): () E01-3 E01-3 E01-3 E01-3 E01-3 (1) (1) μ Π OSC[+] ↔ OSC[-]: 11.2 ~ 12.4 Ω at 23 °C (73.4 °F) (8) (3) ECM Are the measured resistances within specification? Yes No Replace or repair the CSPS. 2-2. CHECK CSPS (UPPER AND LOWER COIL RESISTANCE) OFF **CSPS** 1. Turn ignition switch to OFF position, and then disconnect CSPS connector. 2. Measure resistance between terminal 9 and 8 of the CSPS connector(E01-3). 3. Measure resistance between terminal 9 and 11 of the CSPS connector(E01-3). \cap റ 8 4. Measure resistance between terminal 9 and 10 of the CSPS connector(E01-3). (2)E01-3 E01-3 E01-3 E01-3 E01-3 E01-3 **Specification (Resistance):** (9) OSC[MID] \leftrightarrow OSC[+]: 5.6 ~ 6.2 Ω at 23 °C (73.4 °F) റ $OSC[MID] \leftrightarrow OSC[-]: 5.6 \sim 6.2 \Omega \text{ at } 23 ^{\circ}C (73.4 ^{\circ}F)$ ECM Are the measured resistances within specification?

Yes

No Replace or repair the CSPS.

EGMF101L

EGMF101M

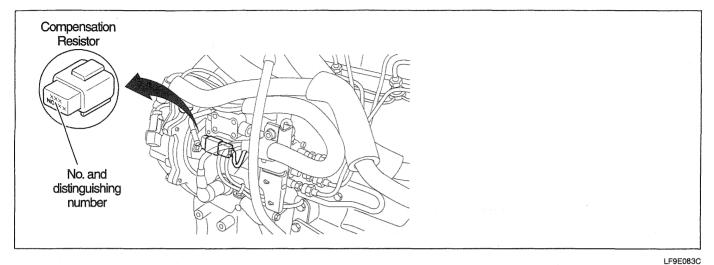
5. CHECK FOR SHORT TO POWER IN HARNESS 1. Turn ignition switch to OFF position, and then disconnect CSPS and ON ECM connector. CSPS 2. Turn ignition switch to ON position. 0 3. Measure voltage between terminal 8 of the CSPS harness connector and chassis ground. 8 1 12 4. Measure voltage between terminal 4 of the CSPS harness connector and E01-3 E01-3 E01-3 E01-3 E01-3 E01-3 (2) (2) chassis ground. ^{(3)]} (8) 侧侧 5. Measure voltage between terminal 1 of the CSPS harness connector and chassis ground. \circ ECM 6. Measure voltage between terminal 12 of the CSPS harness connector and chassis ground. • Specification (Voltage): below 0.5V Are the measured voltages within specification?

 Yes
 No
 Repair short to power in harness.

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EGMF101N

FLA -93


TROUBLESHOOTING FOR DTC EC8B325D

DTC

1131

Compensation Resistor Range/Performance Problem

COMPINENT LOCATION

DESCRIPTION

The Compensation Resistor is simple resistor, but it has different resistance in accordance with the number written on the compensation resistor boby. The ECM adjusts the fuel quantity according to the resistance of the compensation resistor installed in the engine.

When replacing the compensation resistor, compare the number of the new compensation resistor with the number of the old one. If the numbers are different, delete the DTC memorized in the ECM using the Hi-Scan (Pro). Otherwise the ECM determines that the compensation resistor is out of order.

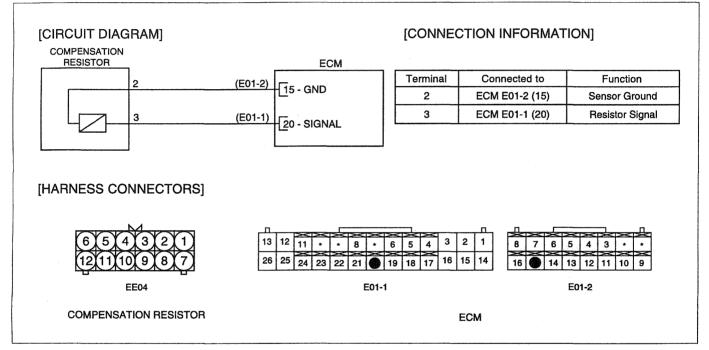
🛈 ΝΟΤΕ

Hi-Scan (Pro) displays the number smaller than the actual number of compensation resistor by 7. For example, if the actual number is No.9, Hi-Scan (Pro) will display "No.2".

DTC DETECTING CONDITION

1. DTC Description

The ECM sets DTC P1131 if the ECM detects fault in the compensation resistor circuit.

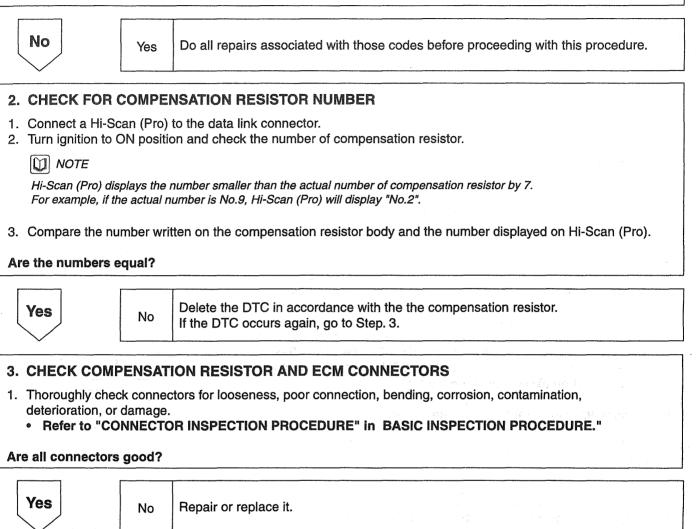

2. Conditions for Setting the DTC

DTC No	Detecting Condition & Limp Home	Suspect area
	Detecting Condition	
	DTC Strategy	
	- Rationality Check	
	- Voltage range check	
	Enable condition	
	- IG ON or engine running	
	Threshold Value	
	 Output signal < 0.1V or output signal > 4.6V for 5 seconds 	
	Limp-Home Function	 Open or short in compensation resistor
P1131	 Using saved value. 	circuit
P1131	Detecting Condition	 EEPROM error
	DTC Strategy	 Compensation resistor
	- EEPROM error	• ECM
	Enable condition	
	- IG ON or engine running	
. 4°C	Threshold Value	
	- Output signal is not equal to the saved in EEPROM	
	for 12.75 seconds	1. N. S.
		and the state of the second
	Limp-Home Function	
	 Compensation resistor number = No.7 	

SPECIFICATION

No.	Distinguishing No.	Resistance	No.	Distinguishing No.	Resistance
1	945	0.18 kΩ	8	952	2.00 kΩ
2	946	0.30 kΩ	9	953	2.70 kΩ
3	947	0.43 kΩ	10	954	3.90 kΩ
4	948	0.62 kΩ	11	955	5.60 kΩ
5	949	0.82 kΩ	12	956	8.20 kΩ
6	950	1.10 kΩ	13	957	15.00 kΩ
7	951	1.50 kΩ			

SCHEMATIC DIAGRAM


EGMF1010

INSPECTION PROCEDURE

1. CHECK DTC RELATING TO EEPROM

- 1. Connect a Hi-Scan (Pro) to the data link connector.
- 2. Turn ignition to ON position and monitor other DTCs.

Is any DTC relating to EEPROM set?

LF9E101P

FUEL SYSTEM (D4BH)

FLA -98

4. CHECK COMPENSATION RESISTOR

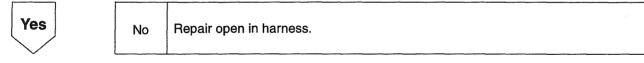
1. Turn ignition switch to OFF position, and then disconnect Compensation Resistor connector.

2. Measure resistance between terminal 3 and 2 of the Compensation Resistor connector, and then check the resistance in accordance with the number written in the resistor body.

• Specification (Resistance):

No.	Distinguishing No.	Resistance	No.	Distinguishing No.	Resistance
1	945	0.18 kΩ	8	952	2.00 kΩ
2	946	0.30 kΩ	9	953	2.70 kΩ
3	947	0.43 kΩ	10	954	3.90 kΩ
4	948	0.62 kΩ	11	955	5.60 kΩ
5	949	0.82 kΩ	12	956	8.20 kΩ
6	950	1.10 kΩ	13	957	15.00 kΩ
7	951	1.50 kΩ			

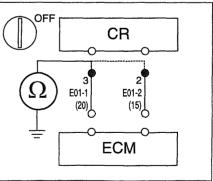
Is the measured resistance within specification?

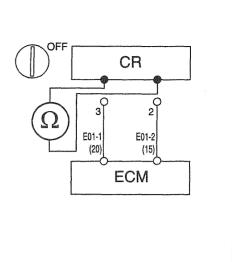

No Re

Replace or repair the Compensation Resistor.

5. CHECK FOR OPEN IN HARNESS

- 1. Turn ignition switch to OFF position, and then disconnect Compensation Resistor and ECM connector.
- 2. Measure resistance between terminal 3 of the Compensation Resistor harness connector and terminal 20 of the ECM harness connector(E01-1).
- 3. Measure resistance between terminal 2 of the Compensation Resistor harness connector and terminal 15 of the ECM harness connector(E01-2).
 - Specification (Resistance): below 1 Ω


Is the measured resistances within specification?


6. CHECK FOR SHORT TO GROUND IN HARNESS

- 1. Turn ignition switch to OFF position, and then disconnect Compensation Resistor and ECM connector.
- 2. Measure resistance between terminal 3 of the Compensation Resistor harness connector and chassis ground.
- 3. Measure resistance between terminal 2 of the Compensation Resistor harness connector and chassis ground.
 - Specification (Resistance): infinite

Is the measured resistances within specification?

EGMF101Q

CR

E01-2

ECM

(15)

OFF

E01-1

(20)

No

Repair short to ground in harness.

7. CHECK FOR SHORT TO POWER IN HARNESS

- 1. Turn ignition switch to OFF position, and then disconnect Compensation Resistor and ECM connector.
- 2. Turn ignition switch to ON position.
- 3. Measure voltage between terminal 3 of the Compensation Resistor harness connector and chassis ground.
- 4. Measure voltage between terminal 2 of the Compensation Resistor harness connector and chassis ground.
 - Specification (Voltage): about 0.5V

Is the measured voltages within specification?

No

Yes

Repair short to power in harness.

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EGMF101R

ON

CR

2

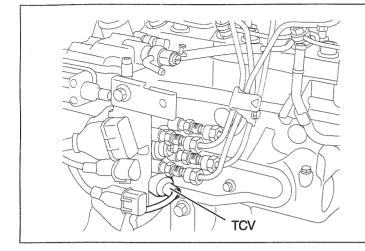
E01-2 (15)

ECM

3

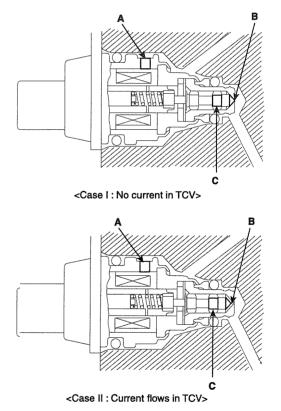
E01-1

(20)


TROUBLESHOOTING FOR DTC EA3E4B67

1135

DTC


Injection Timing Control System Malfunction

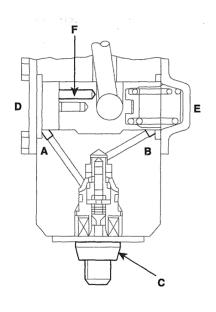
COMPINENT LOCATION

DESCRIPTION

The TCV has a fuel inlet(A) located in the center of the side of the TCV body. The fuel inlet is equipped with a filter. This inlet connects through the inside of the TCV to a hole(B) in the end of the TCV body. A needle valve(C) inside the TCV seats inside this end hole(B). When current is applied to the TCV, the needle valve is pulled to the left (see right hand figure) by a magnet to open the end seat. Injection timing is varied by timer piston movement transferred to the roller holder, as with conventional injection pumps. Previously, though, the pressure inside the timer's high pressure chamber controlling the timer piston varied in accordance with pump speed. With COVEC-F, however, the TCV controls pressure inside the high pressure chamber.

EGMF0010

LF9E006A

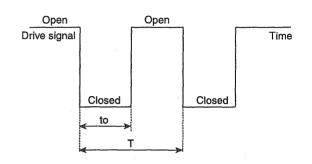

The TCV(C) is located at the lower part of the injection pump. Two holes (A and B) in the pump housing connect to the TCV.

Hole A connects the timer piston's high pressure chamber(D) to the fuel inlet side of the TCV. A filter is installed at this inlet to exclude foreign matter.

Hole B connects the timer piston's low pressure chamber(E) to the fuel outlet at the tip of the TCV. Installed between the timer piston's(F) high and low pressure chambers, the TCV adjusts high pressure chamber pressure by opening and closing the needle.

When current is not flowing to the TCV, the tip of the needle completely separates the high and low pressure chambers. When current is applied, the needle tip seat is opened, the high and low pressure chambers are connected, and the high pressure chamber pressure decreases. The timer piston(F) is then moved by the timer spring to a position that balances the high pressure chamber pressure chamber pressure.

Accompanying this, the roller holder rotates to vary the injection timing. Injection timing can therefore be varied by utilizing the ON-OFF duty ratio of the current flowing to the TCV. Injection timing is controlled by duty. All characteristics and control signals are processed with TCV drive signal duty ratios. Also, the frequency of the TCV drive signal can be varied to correspond to the frequency of injection pump speed.


LF9E050A

Duty ratio is the ratio of the time that the timing control valve is closed per unit of time (ie, per cycle).

Duty ratio = $to/T \times 100(\%)$

🗊 ΝΟΤΕ

Injection timing is retarded when the duty ratio decreases from 100%.

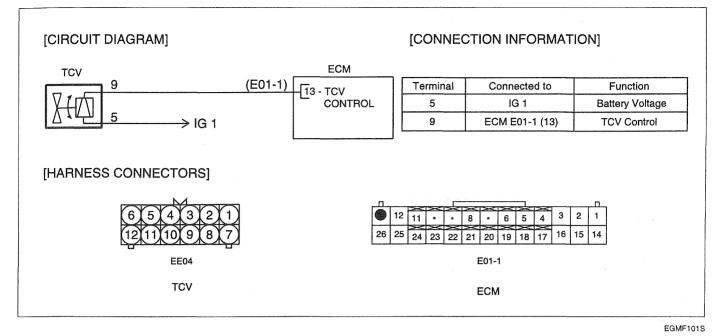
LF9E014A

DTC DETECTING CONDITION

1. DTC Description

The ECM sets DTC P1135 if the ECM detects fault in the injection timing control system.

2. Conditions for Setting the DTC


DTC No	Detecting Condition & Limp Home	Suspect area
P1135	Detecting Condition & Limp Home • DTC Strategy • Check injection timing control system • Enable condition • Engine speed ≥ 600rpm • Engine coolant temperature ≥ -5 °C • Threshold Value	 Open or short in TPS or TCV circuit Abnormal timer piston High viscosity fuel on low temperature
	 Intestidid value (TPS target value) - (TPS actual value) > 5mm for 5 seconds Limp-Home Function TPS = 0mm and injection timing control system is control system is control on open loop 	• TPS • TCV • ECM

SPECIFICATION

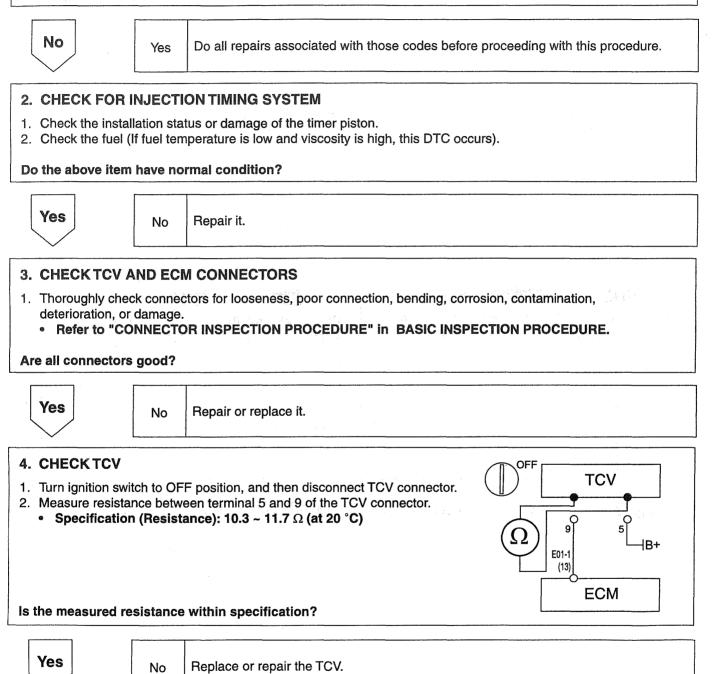
	Temperature		TCV Resistance
i	20 °C	68 °F	10.3 ~ 11.7 Ω

FLA -103

SCHEMATIC DIAGRAM

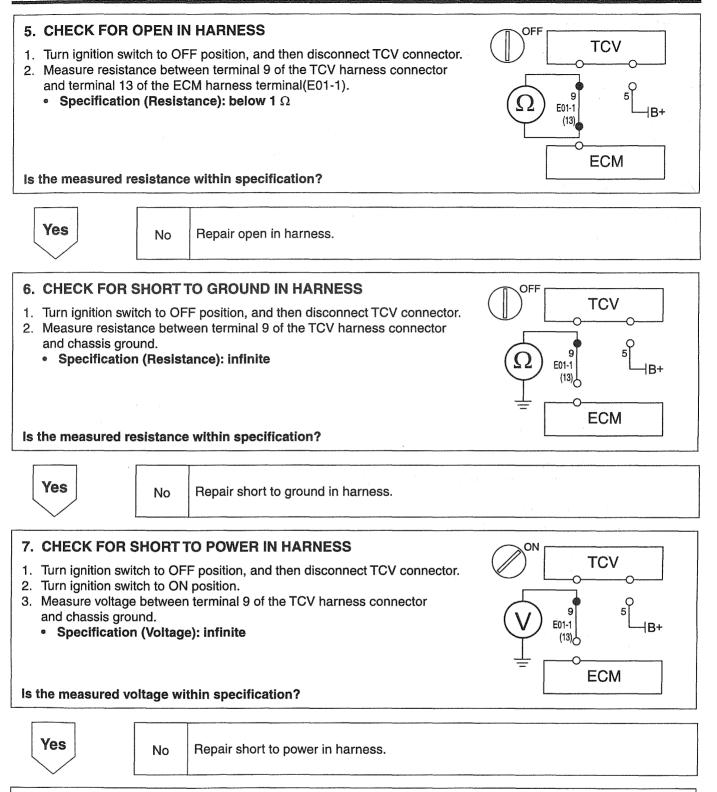
SIGNAL WAVE FROM

FR 011 A 5.0 V 2.0 **m**S CH B 1.8 V FR CIIA 5.6 V 2.0 mS CH B 1.8 V MIN: 54.1nV AVE: 681.4nV MAX: 28.1 V HIN: 54.1nV AVE: 9.8 V МАН: 20.3 V 2% FREQ : 70.92 Hz DUTY: FREQ: 131.58 DUTY : 9% Hz HOLD ZOOM CURS RECD NENU HOLD ZOOM CLIRS RECD NENU At idle At acceleration


LF9E0012

INSPECTION PROCEDURE

1. CHECK DTC RELATING TO EEPROM OR TPS


- 1. Connect a Hi-Scan (Pro) to the data link connector.
- 2. Turn ignition to ON position and monitor other DTCs.

Is any DTC relating to EEPROM OR TPS set?

.....

EGMF101T

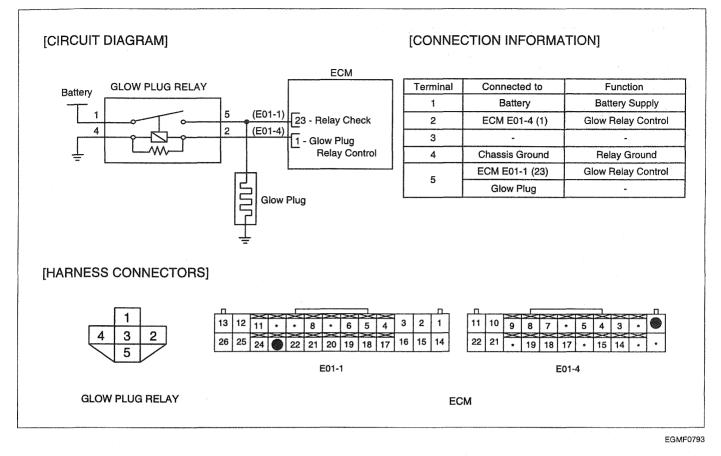
Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EGMF101U

TROUBLESHOOTING FOR DTC EOED1A4C

DTC P1324 Glow Relay Circuit Malfunction	

DESCRIPTION

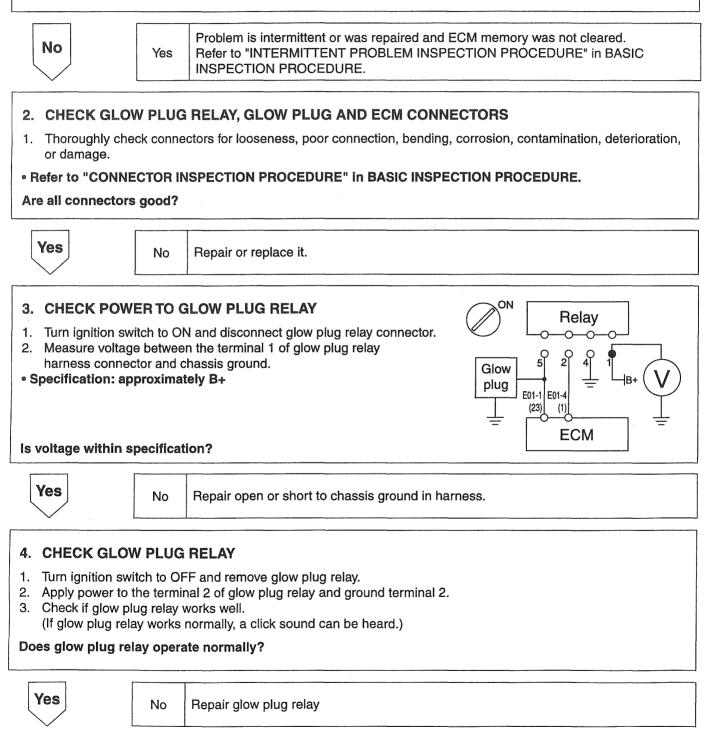

Glow plug plays an efficient role at cold start. It also shortens the warm-up period, a fact that is highly relevant for exhaust emissions. The time of preheating is determined by a number of parameters that include the engine speed and the coolant temperature. The ECM controls the glow plug via glow plug relay.

DTC DETECTING CONDITION

DTC No	Detecting Condition & Limp Home	Suspect area
P1324	Detecting Condition • DTC Strategy • Check short circuit to battery line • Enable condition • Glow relay OFF • Threshold Value • "HIGH" level appears on glow relay check terminal for 10 seconds Limp-Home Function • Glow relay OFF Detecting Condition • Glow relay OFF Detecting Condition • DTC Strategy • Check open or short circuit to ground • Enable condition • Glow relay ON • Threshold Value	 Suspect area Open or short in glow relay circuitcircuit Voltage overflow Glow relay ECM
	 "LOW" level appears on glow relay check terminal for 0.1 seconds Limp-Home Function Glow relay OFF 	

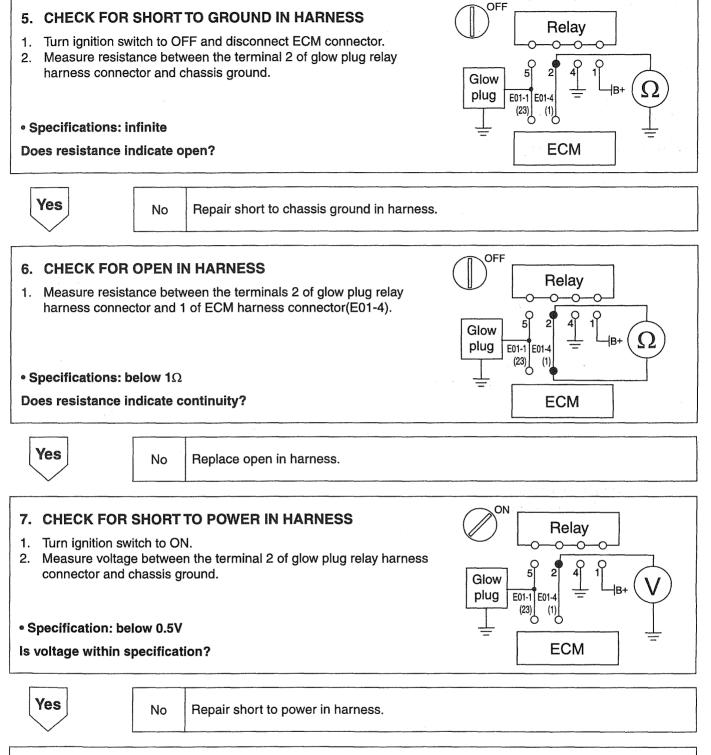
FLA -107

SCHEMATIC DIAGRAM



INSPECTION PROCEDURES

1. CHECK GLOW PLUG RELAY FOR WORKING


- 1. Connect Hi-Scan (Pro) to data link connector.
- 2. Turn ignition switch to ON.
- 3. Operate glow plug relay by Actuator Test mode of Hi-Scan (Pro).

Does glow plug relay function normally?

EGMF003S

FLA -109

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EGMF003T

TROUBLESHOOTING FOR DTC EOD8BF70

DTC	P1522	Battery Voltage Malfunction	

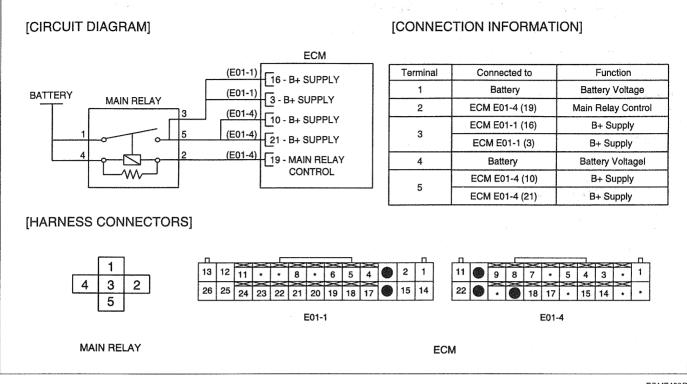
DESCRIPTION

The ECM provides ground to one side of the coil of the main relay and the other side is connected to the battery. The ECM monitors battery voltage and the voltage after the main relay.

DTC DETECTING CONDITION

1. DTC Description

ECM sets DTC P1522 if the ECM detects system voltage lower or higher than the possible range of battery voltage.

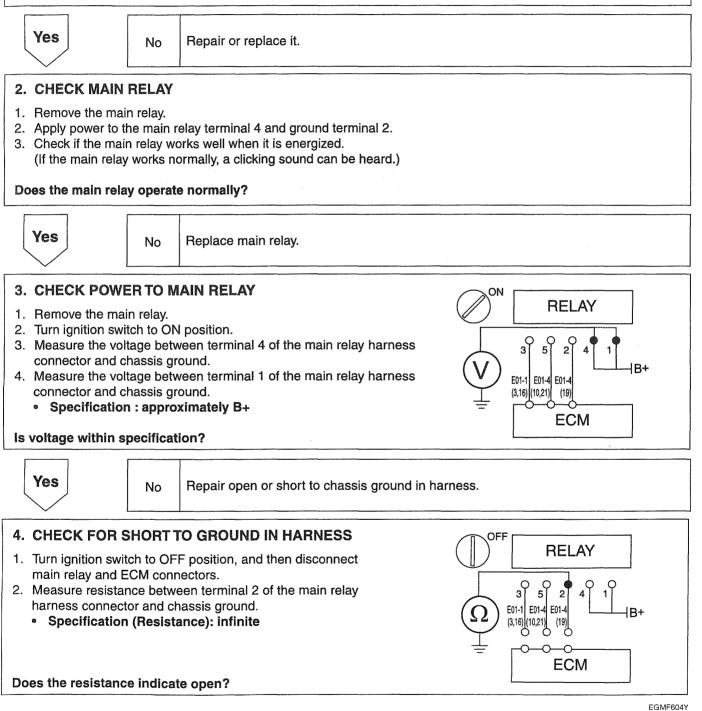

2. Conditions for Setting the DTC

DTC No	Detecting Condition & Limp Home	Suspect area
P1522	 Detecting Condition DTC Strategy System voltage too low or high Enable condition IG ON or engine running Threshold Value Battery voltage after main relay < 0V or battery voltage after main relay >30V for 30 seconds 	 Open or short in main relay circuit Charging system ECM
	Limp-Home Function • Battery voltage = 14V	

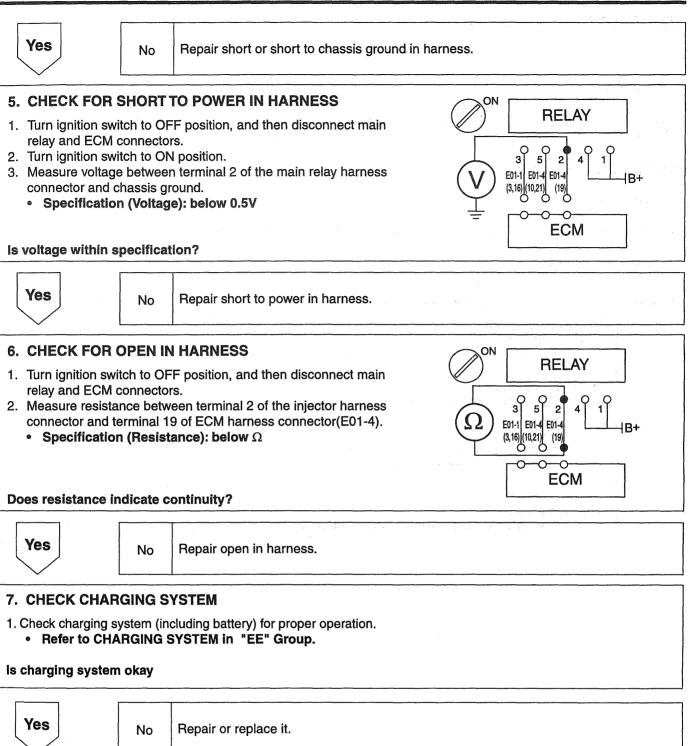
DTC TROUBLESHOOTING PROCEDURES

FLA -111

SCHEMATIC DIAGRAM


EGMF402Q

INSPECTION PROCEDURE



- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

DTC TROUBLESHOOTING PROCEDURES

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EGMF604Z

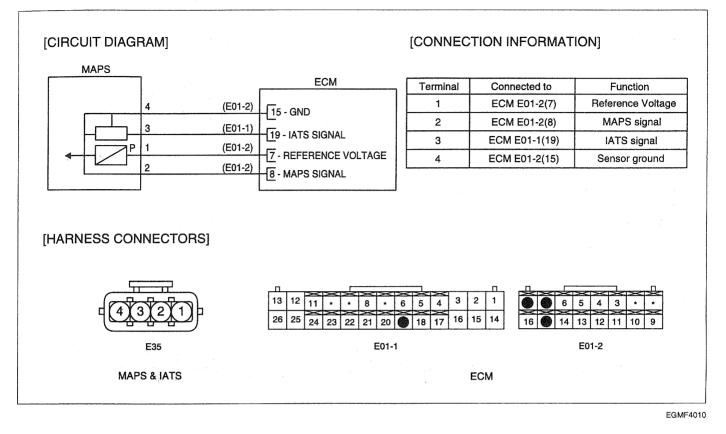
TROUBLESHOOTING FOR DTC EAFFE2ED

	······································	
DTC	P1525	Sensor Supply Voltage (+5V) Malfunction

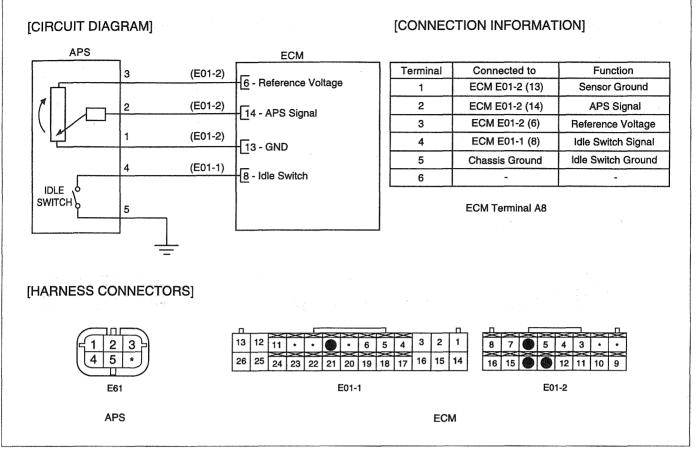
DESCRIPTION

The +5V power source in the ECM is supplied to the Accelerator Position Sensor (APS) and Manifold Absolute Pressure Sensor (MAPS). The ECM monitors this sensor supply voltage.

DTC DETECTING CONDITION


1. DTC Description

The ECM sets DTC P1525 if the sensor supply voltage is higher or lower than the predetermined range.

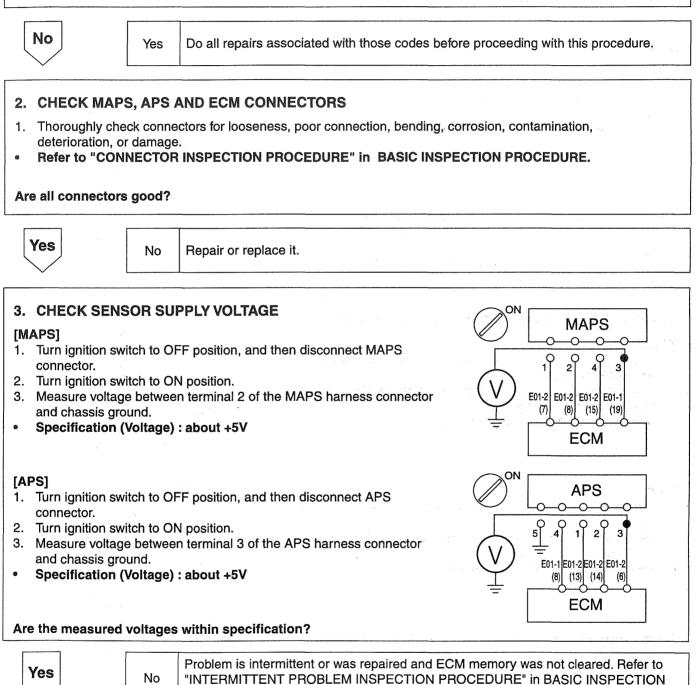

2. Conditions for Setting the DTC

DTC No	Detecting Condition & Limp Home	Suspect area
P1525	 Detecting Condition DTC Strategy Check APS or MAPS supply voltage Enable condition IG ON or engine running Threshold Value Sensor supply voltage < 4.5V or sensor supply voltage > 5.0V for 1 second 	 Open or short in APS or MAPS circuit ECM internal error
	 Limp-Home Function It is impossible to adjust APS or MAPS output voltage 	 A second sec second second sec

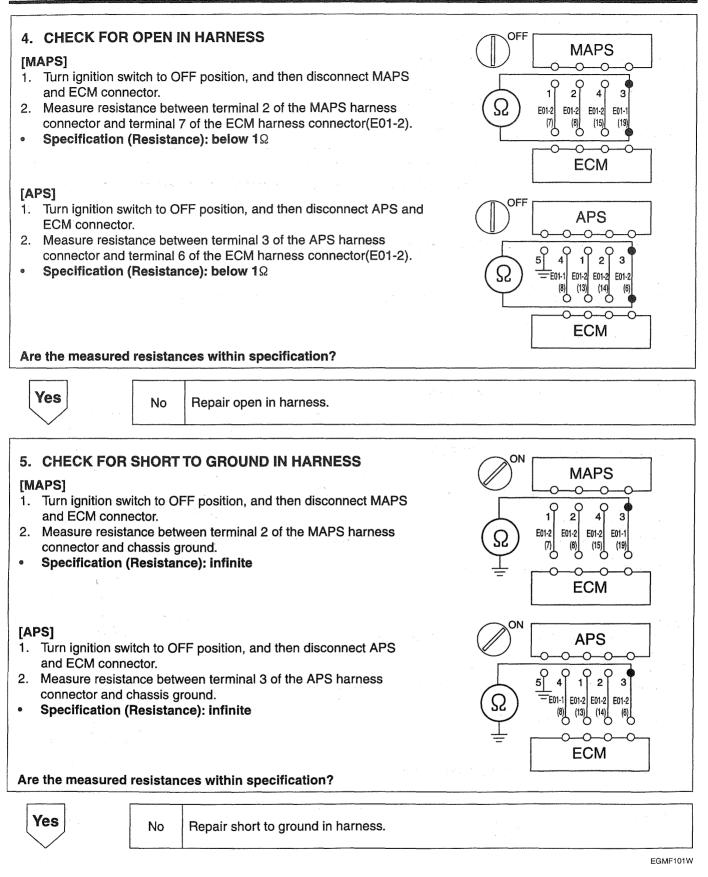
SCHEMATIC DIAGRAM (I) - MAPS

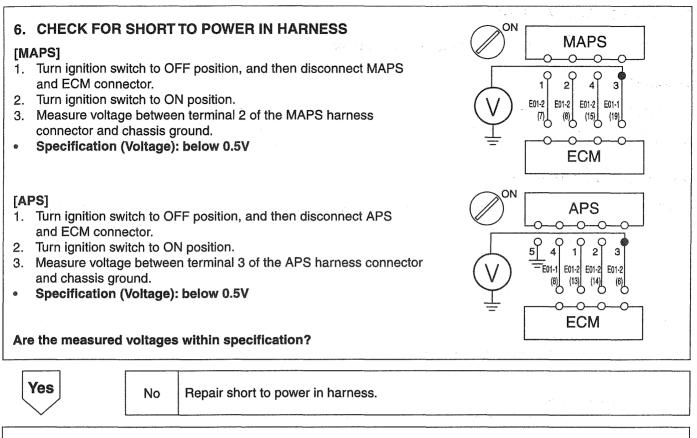
SCHEMATIC DIAGRAM (II) - APS

EGMF0634


INSPECTION PROCEDURE

1. CHECK DTC RELATING TO MAPS AND APS


- 1. Connect a Hi-Scan (Pro) to the data link connector.
- 2. Turn ignition switch to ON position and monitor other DTCs.


PROCEDURE.

Is any DTC relating to MAPS or APS set?

EGMF101V

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

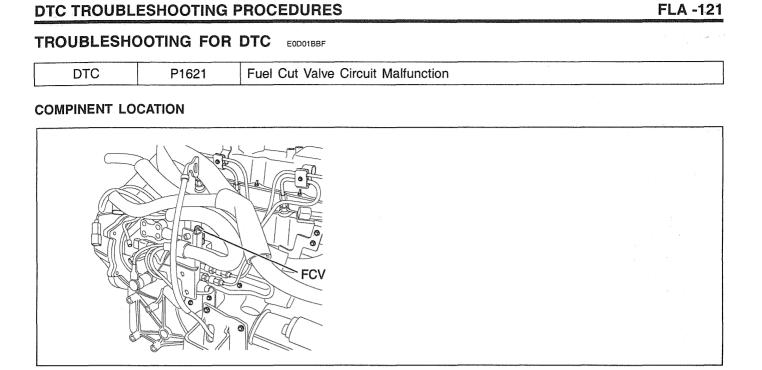
EGMF101X

TROUBLESHOOTING FOR DTC EABE1F8E

DTC	P1613	ECM Error (A/D Converter)

DESCRIPTION

An ECM ROM malfunction is detected by using a checksum technique for verifying data. Digital data is composed of zeros and ones. A checksum is the total of all ones in a string of data. By comparing the checksum value with a stored value, a malfunction can be detected.


DTC DETECTING CONDITION

DTC No	Detecting Condition & Limp Home	Suspect area
P1613	 Detecting Condition DTC Strategy ECM error Enable condition IG ON or engine running Threshold Value A/D conversion end signal is not detected 	• ECM internal error
	Limp-Home Function Using the data saved in ECM just after occurrence of the error 	

INSPECTION PROCEDURES

· ·	
	Internal fault. There is no inspection of service possible for this diagnostic trouble code.
۲	Temporarily install a good ECM and check for proper operation. If problem is corrected, replace ECM.

LWGE004F

FLA -121

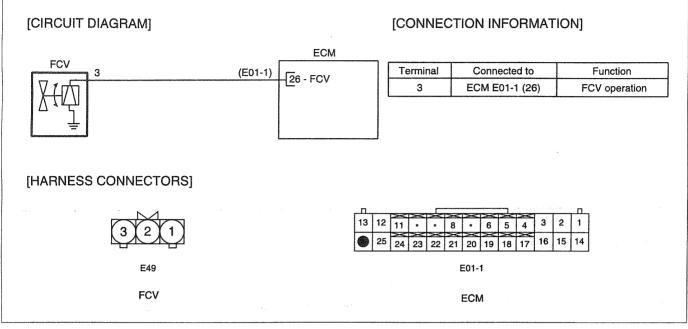
LF9E505Z

DTC DETECTING CONDITION

1. DTC Description

ECM sets DTC P1621 if the ECM detects that the FCV control line is open or short to ground.

2. Conditions for Setting the DTC


DTC No	Detecting Condition & Limp Home	Suspect area
P1621	 Detecting Condition DTC Strategy Check open or short circuit Enable condition IG ON or engine running Threshold Value "LOW" level appears on FCV control terminal for 30 seconds Limp-Home Function FCV OFF 	 Open or short in FCV circuit FCV ECM
	 GE actuator OFF Target value of fuel quantity = 0 mm/st Target value = 0 V 	

FUEL SYSTEM (D4BH)

SPECIFICATION

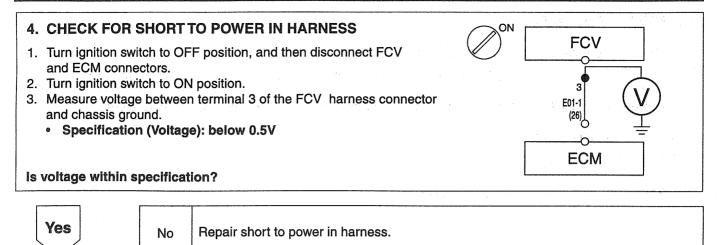
Ter	nperature	FCV Resistance
23 ± 10 °C	73.4 ± 18 °F	7.5 ~ 9.7 Ω

SCHEMATIC DIAGRAM

EGMF101Y

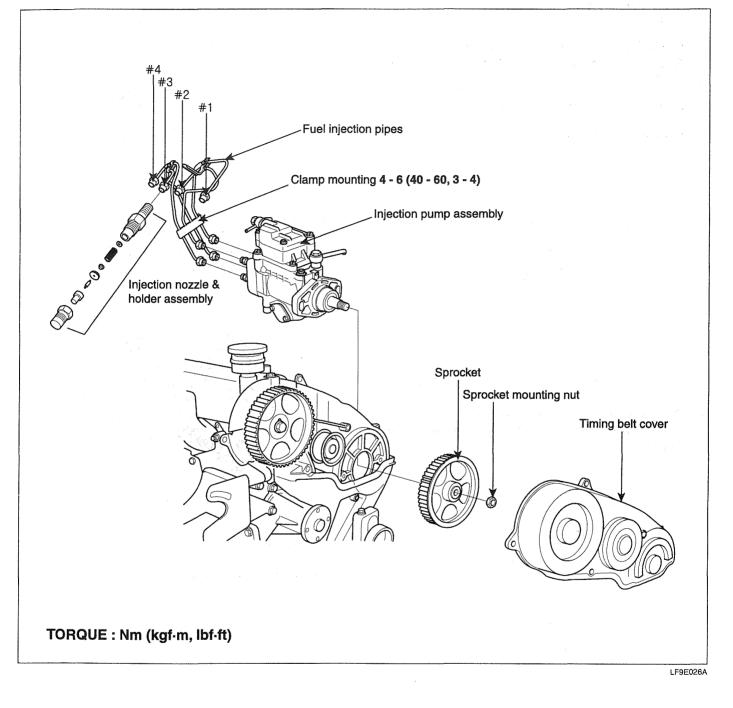
DTC TROUBLESHOOTING PROCEDURES

INSPECTION PROCEDURE


1. CHECK FCV AND ECM CONNECTORS 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE. Are all connectors good? Yes Repair or replace it. No 2. CHECK FOR OPEN IN HARNESS OFF **FCV** 1. Turn ignition to OFF position, and then disconnect FCV and ECM connector. 2. Measure resistance between terminal 3 of the FCV harness connector 3 and 26 of the ECM harness connector(E01-1). E01-1 • Specification (Resistance): below 1Ω (26) ECM Does each resistance indicate continuity? Yes Repair open in harness. No 3. CHECK FOR SHORT TO GROUND IN HARNESS OFF **FCV** 1. Turn ignition switch to OFF position, and then disconnect FCV and ECM connectors. 2. Measure resistance between terminal 3 of the FCV harness 3 connector and chassis ground. E01-1 Specification (Resistance): infinite (26) ECM Does the resistance indicate open? Yes

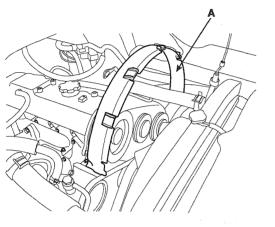
Repair short or short to chassis ground in harness. No

EGMF101Z

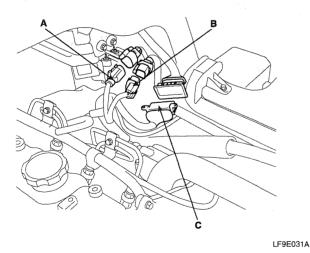

FLA -124

FUEL SYSTEM (D4BH)

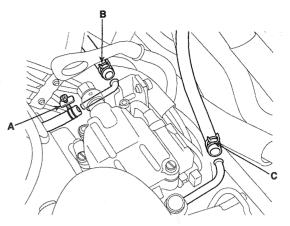
Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.


EGMF102A

FLA -126

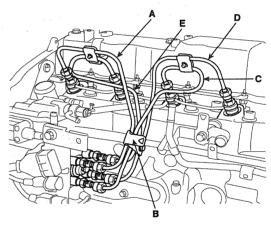

REMOVAL E19CB902

- 1. The driver's seat should be firstly removed in order to remove the injection pump. The assistant's seat, however, doesn't need to be. It is possible to make progress this step just by pulling back the assistant's seat.
- Remove the parking brake cover and console assembly (Refer to grounp "BE" in this WORKSHOP MAN-UAL)
- 3. Disconnect the (-) terminal from the battery.
- 4. Remove the fan shield(A) from the radiator assembly.



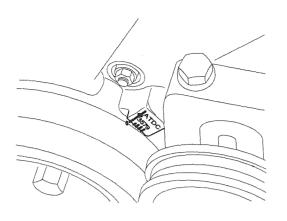
LF9E030A

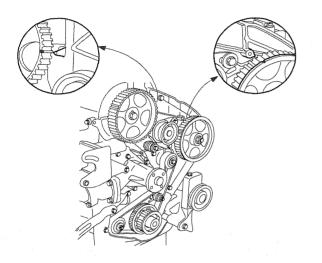
5. Disconnect the sensor wire connectors (Np sensor connector(A), TPS connector(B) and pump connector(C)).



6. Disconnect the fuel hoses (A, B and C) which are clamped to the injection pump.

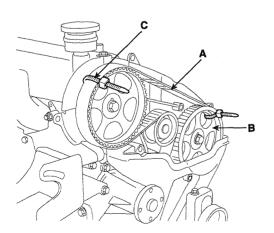
LF9E032A


- 7. Remove the fuel injection pipes
 - a. Remove the bracket(B) firstly.
 - b. Remove the two upper pipes(A, C) then.
 - c. Remove the rest(D, E).

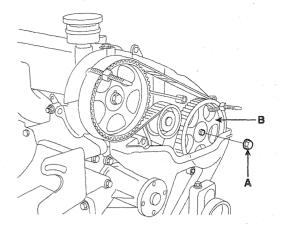

LF9E024A

- 8. Remove the fan.
- 9. Remove the timing cover.

10. Align the timing marks using a 19mm spanner.



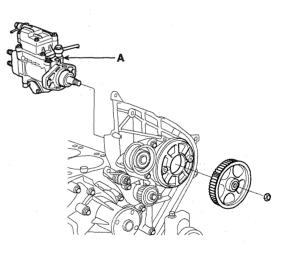
LF9E024C


LF9E024D

11. Strap(C) the timing belt(A) and sprocket(B) to hold them tight.

LF9E033A

12. Remove the sprocket(B) mounting nut(A) which is jointed to the injection pump shaft.


LF9E034A

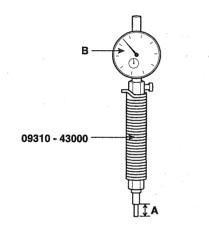
- 13. Remove the injection pump mounting bolts(2EA) and nuts(2EA). The engine oil gauge tube can be removed in this step.
- 14. With using the SST (09314-43000), pull back the injection pump shaft from the sprocket.

There is a separative key on the injection pump shaft. Be careful not to loose it in this step.

15. Remove the injection pump assembly(A).

LF9E139A

FLA -128


FUEL SYSTEM (D4BH)

INSTALLATION EA15B8D6

- 1. Install the injection pump assembly with the key on the shaft.
- 2. Tight the sprocket nut temporarily.
- 3. Tight the injection pump mounting bolts and nuts temporarily.
- 4. Loosen the straps between the sprocket and the belt.
- 5. Remove the injection pump timing adjusting bolt (12mm) from the injection pump.
- 6. Attach the prestroke measuring adapter (09310-43000) and dial indicator(B) to the injection pump.

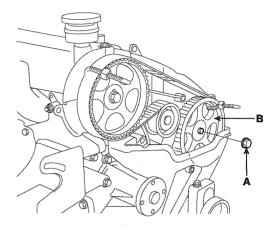
🛈 ΝΟΤΕ

Before installing the adapter(09310-43000), make sure that the push rod projects 10mm. Push rod(A) projection can be adjusted by means of the interior nut.

LF9E052A

a. Set the notch on the crank pulley at approximately 330° ~335° ATDC of the compression stroke of the No.1 cylinder. Turn the crankshaft pulley slightly in both clockwise and counter-clockwise directions to make sure that the dial indicator pointer does not move. On certain point that the dial indicator does not

move, set the dial indicator pointer to zero.

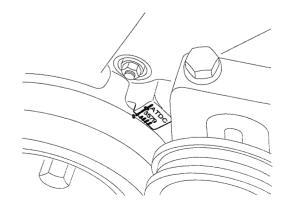

b. Turn the crankshaft clockwise to bring the notch on the pulley to ATDC $9^{\circ} \pm 0.5^{\circ}$, and then make sure that the dial indicator is indicating the standard value (plunger stroke).

Standard value: 1 ± 0.03 mm (0.97~1.03 mm)

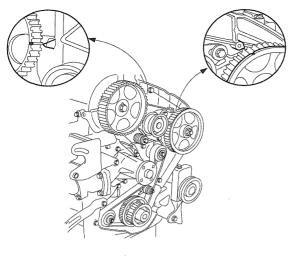
c. Tilt the injcetion pump body to the right or left until the indicator does indicate the standard value.

🗊 ΝΟΤΕ

- When lower then standard value : Tilt the injection pump body to the engine side until the reading is within the standard value range. Check to be sure that the dial indicator reading is within the standard value range.
- When higher than standard value : Tilt the injection pump body to the opposite of the engine side until the reading is within the standard value range. Check to be sure that the dial indicator reading is within the standard value range.
- 7. Tighten the sprocket(B) mounting nut(A) completely.



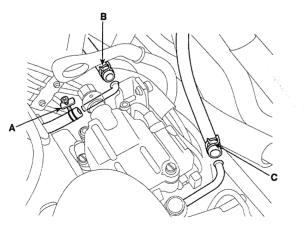
LF9E034A


8. Tighten the injection pump mounting bolts and nuts completely. The engine oil gauge tube is fixed in this step.

Tightening torque: 18~25Nm (180~250 kg·cm, 13~18 lb·ft)

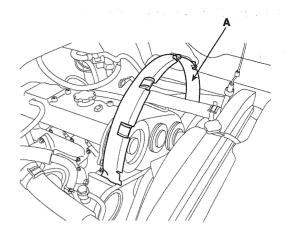
9. Repeat steps 6) and 7) to make sure that the adjustment has been correctly performed. Align the timing marks - NO.1 TDC.

LF9E024C


- LF9E024D
- 10. Remove the dial indicator and prestroke measuring adapter from the injection pump.
- Install the injection pump timing adjusting bolt (12mm) after replacing the copper gasket with a new one. Tighten the timing adjusting bolt to specification.

Tightening torque: 15~20Nm (150~200 kg·cm, 10~14 lb·ft)

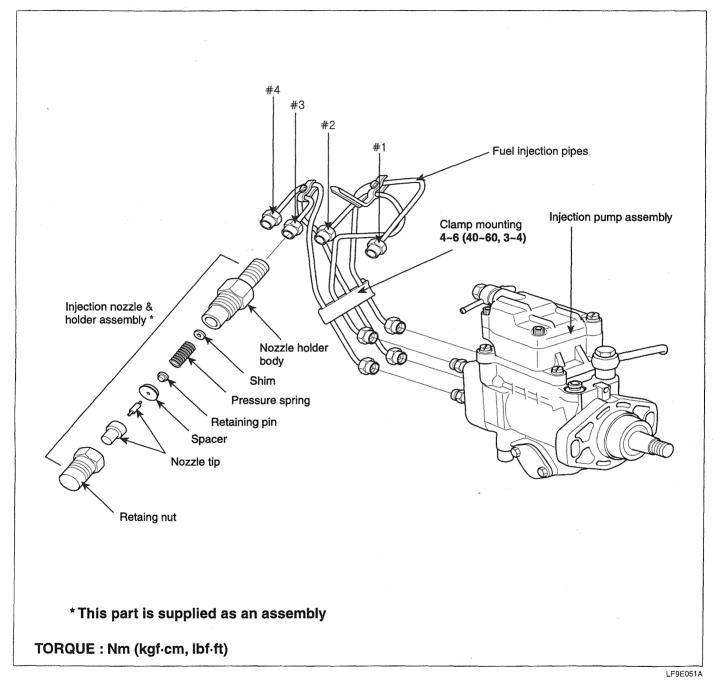
- 12. Assemble the fan.
- 13. Fix the timing cover.
- 14. Install and tighten the No.1/2/3/4 fuel injection pipe to specification.


Tightening torque: 23~27Nm (230~370 kg·cm, 16~27 lb·ft)

15. Clamp the fuel hoses(A, B and C) to the injection pump.

LF9E032A

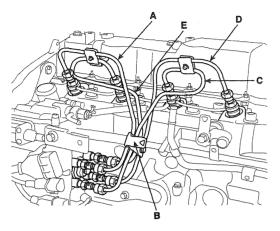
- 16. Connect the sensor wire connectors (Np sensor connector, TPS connector and pump connector).
- 17. Install the fan shield from the radiator assembly.


LF9E030A

- 18. Install the parking brake cover and console assembly (Refer to grounp "BD" in this WORKSHOP MANUAL).
- 19. Connect the (-) terminal from the battery.
- 20. Install the seats.

FUEL DELIVERY SYSTEM-DIESEL

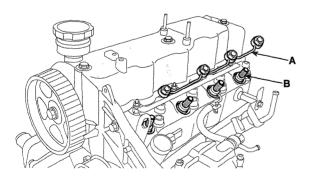
FUEL INJECTION NOZZLE


COMPONENTS E9D6A9DC

REMOVAL EFD62BE7

1. INJECTION PIPE

When loosening the union nuts, hold delivery valve holder on fuel injection pump head or hexagon nut of fuel return pipe with a wrench to prevent it from rotating along with the union nut.


LF9E024A

2. FUEL RETURN PIPE

When removing the fuel return pipe nut(B), hold the fuel return pipe(A) by the hexagon nut with a wrench.

A CAUTION

If you remove the hexagon nut without holding the fuel return pipe nut, the pipe might be damaged. So you must remove the hexagon nut with holding return pipe.

LF9E027A

3. INJECTION NOZZLE

Using a SST(09314-43100), loosen the injection nozzle and remove.

Write the number of the cylinder on the injection nozzle that has been removed.

Cover the opening with an appropriate cap to prevent entry of dust, water and foreign material into the fuel passage land combustion chamber.

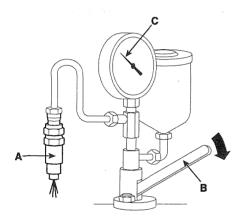
DISASSEMBLY EC6A3AAE

1. RETAINING NUT

- a. Lightly clamp the retaining nut with a cushion bracket.
- b. Hold the retaining nut with a box wrench, and loosen the nozzle holder body using a deep socket wrench.

INSPECTION EBEEACF3

1. INJECTION START PRESSURE

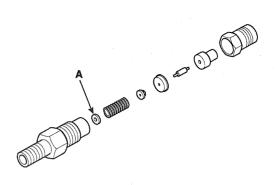

- a. Set injection nozzle in nozzle(A) tester and check the following.
- b. Move nozzle tester handle(B) at about one stroke per second.
- c. The pressure gauge(C) pointer rises slowly and swings when injection is made. Read the position at which the pointer started to swing. Check the injection start pressure is the standard value.

Standard value

- Opening pressure : 14,710 kPa (150
- kgf/cm², 2,132 psi)

Initial opening pressure : 15,200~16,181 kPa

(155 ~ 165 kg/cm², 2,204 ~ 2,346 psi)


LF9E022A

d. If the nozzle is faulty, disassemble and adjust injection start pressure to the standard value by changing the shim thickness. Injection pressure increases by approx. 1,000 kPa (10 kg/cm², 142 psi) as shim thickness is increased by 0.1 mm (0.0039 in.).

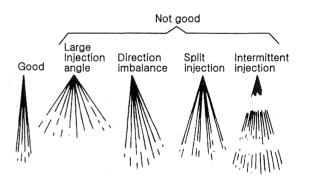
CAUTION

When disassembling nozzle holder, be careful not to allow entry of dirt or water.

e. If the injection start pressure can not be adjusted by changingthe shim thickness, replace nozzle assembly.

LF9E023A

2. INJECTION STATUS


a. Move nozzle tester handle at about 1 stroke per second.

[Needle valve vibration]

Inject on is normal if the characteristic intermittent sound is heard as the handle is operated, and vibration of the needle valve is felt at the handle.

[Spray]

Check that the spray is good, as illustrated in the figure, in the test, the spray may be bolt shaped with a course mist and fuel may remain. This is phenomenon common in this type of inspection, and the nozzle function is normal.

LF9E018C

- b. Move nozzle tester handle at 4 to 6 strokes per second.
- c. Confirm the spray is cone shaped with an angle of about 15°. This indicates a good condition.
- d. If the injection is not good, disassemble nozzle and replace nozzle tip or entire assembly.
- e. Confirm fuel does not drip after injection.
- f. If dripping, disassemble injection nozzle and replace nozzle tip or entire assembly.

3. NOZZLE OIL-SEAL

- Maintain internal nozzle pressure (pressure gauge indication value) with the nozzle tester at 10,000-11,000 kPa (100-110 kg/cm², 1,422-1,565 psi). Check for fuel leaking from nozzle tip in this condition.
- b. If there is leakage, disassemble injection nozzle and replace nozzle tip or entire assembly.

4. NOZZLE TIP

- a. Check the nozzle tip for carbon deposits: Scrape off carbon deposits with a piece of wood land clean each part with patrol. After cleaning, keep parts submerged in diesel fuel. Take particular care to protect the nozzle tip needle valve from damage.
- b. While the nozzle tip is submerged in diesel fuel, check that the needle valve slides smoothly. If the needle valve does not slide smoothly, replace the nozzle tip. When replacing the nozzle tip, completely wash off the anticorrosive oil from the new nozzle tip with clean diesel fuel before using it.
- c. Check plunger tip "A" for deformation and breakage. If "A" is damaged or broken replace it.

5. DISTANCE PIECE

Check the surface in contact with the nozzle holder body by using minimum.

6. **RESSURE SPRING**

Check spring for weakness and breakage.

REASSEMBLY EB4BFF76

1. RETAINING NUT

- a. Finger-tighten the nozzle holder body.
- b. Lightly clamp the retaining nut in a vise with cushion plates.
- c. While holding the retaining nut with a box wrench, tighten the nozzle holder body to the specified torque with a deep socket wrench.

Tightening torque : 35~40 Nm (3.5~4.0 kgm)

INSTALLATION EED9C99C

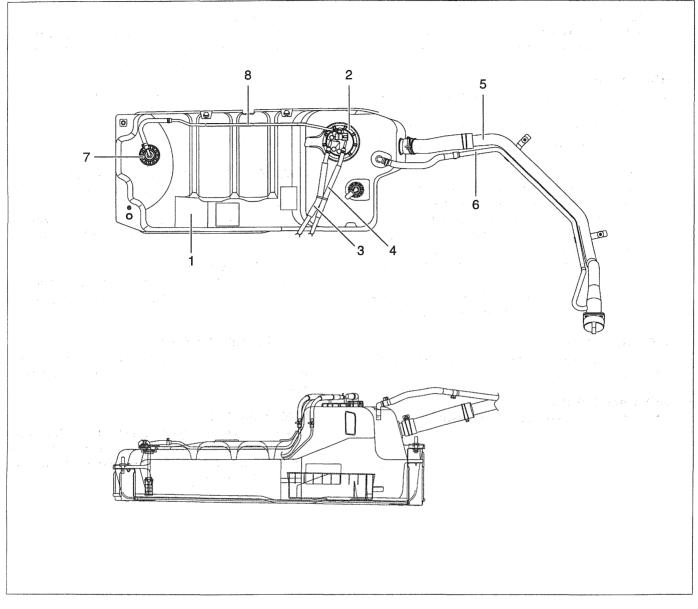
1. NOZZLE GASKET AND HOLER GASKET

- a. Clean nozzle holder installation area of the cylinder head.
- b. Fit a new nozzle gasket and holder gasket into the nozzle holder hole in the cylinder head.

2. INJECTION NOZZLE

Install the injection nozzle in the cylinder head and tighten to the specified torque, using a deep socket wrench.

3. FUEL RETURN PIPE NUT


While holding the fuel return pipe by the hexagon nut with a wrench, tighten the fuel return pipe nut to the specified torque.

4. INJECTION PIPE

When tightening the injection pipe nuts, hold the delivery valve holder or the fuel return pipe by the hexagon nut with a wrench in order to prevent it from rotating along with the nut.

FUEL TANK

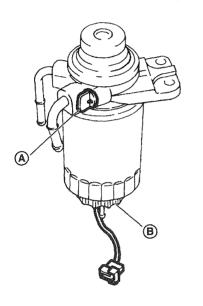
COMPONENTS ECCE994A

- 1. Fuel Tank
- 2. Fuel Sender
- Pipe Return
 Pipe Feed

- 5. Fuel Filler Hose
- 6. Breather Hose
- 7. Fuel Sender (Sub)
- 8. Fuel Suction Hose

EGMF100R

FUEL FILTER


INSPECTION EF99FCOD

AIR BLEEDING

In case that air is present in the injection system because of lack of fuel during engine operation, or the injection pump is replaced, air bleeding should be performed according to the following procedures, and then start engine and verify if fuel is not leaked.

1. Remove the fuel filter air bleeding plug (A).

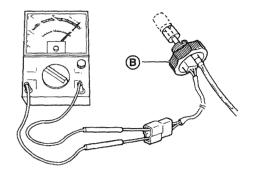
LG9E001D

- 2. Depress and release repeatedly the head of fuel filter until only fuel flows out.
- 3. Install the air bleeding plug while depressing the head of fuel filter.

DRAINING WATER

NOTE

If the sedimentor warning light is lit, drain the water in the steps as shown below.


- 1. Remove the drain plug, and then drain the water while depressing and releasing repeatedly the head of fuel filter.
- 2. After draining the water, do air bleeding for the fuel filter.

DETECTOR

- 1. Remove the detector (B) from the sedimentor.
- 2. Do the continuity test and verify that it is closed if the detector is moved upward and opened if downward.

After installing the detector, air bleeding should be done.

LG9E001E

Fuel System (J3 TCI - DSL2.9)

GENERAL INFROMATION

SPECIFICATION	FLB-2
SEALANT	FLB -3
SERVICE STANDARD	FLB -3
TIGHTENING TORQUES	FLB -3
BASIC TROUBLESHOOTING	FLB -4
SYSPTOM TROUBLESHOOTING	
GUIDE CHART	FLB -12

DIESEL CONTROL SYSTEM

COMPONENTS	FLB-	23
ECM CONNECTOR	FLB-	26

DTC TROUBLESHOOTING PROCEDURES

INSPECTION CHART FOR DIAGNOSTIC	
TROUBLE CODES (DTC)	EL B-30
TROUBLESHOOTING FOR DTC	.1 LD-30
P0100	FI B-36
P0101 P0102	
P0115	
P0120 P0220	
P0180	
P0190	
P0201 P0202 P0203 P0204	
P0226	
P0325	
P0335	
P0340	FLB-71
P0380 P0382	FLB-76
P0381	FLB-80
P0400	FLB-83
P0560	FLB-86
P0650	FLB-90
P1119 P1120	FLB-93
P1140	FLB-99
P1150	FLB-103
P1300	FLB-104
P1310	FLB-105
P1500	
P1543	
P1608	
P1610	
P1614	
P1620	
P1640	FLB-129

P1674	FLB-132
P1786	FLB-135
P2264	FLB-138
P2269	FLB-141

FUEL DELIVERY SYSTEM-DIESEL

COMMON RAIL FUEL	
INJECTION SYSTEM	. FLB-144
LOW PRESSURE LINE	. FLB-146
HIGH PRESSURE LINE	
COMPONENTS	. FLB-148
INJECTOR	
REMOVAL	
INSTALLATION	. FLB-150
ACCUMULATOR (COMMON RAIL)	
REMOVAL	
INSTALLATION	. FLB-153
FUEL LINE	
REMOVAL	. FLB-154
INSTALLATION	. FLB-155

FUEL SYSTEM (J3 TCI)

GENERAL

SPECIFICATION EB2FEC9C

	Items	-	Specification	
Fuel Tank		Capacity	75ℓ	
Fuel Pump		Туре	High pressure pump (Gear driven ty	
5. T	Fuel Filter	Туре	High pressure type	
l	Fuel Pressure (at common rail)	Pressure	1,600 bar (1	,631.5kgf/cm²)
SEN-	Mass Air Flow Sensor (MAFS)	Туре	HOT FILM type	
SORS	Intake Air Temperature Sensor (IATS)	Туре	Thermister type	
		Specification	-40°C (-40°F)	39.3kΩ
			-20°C(-4°F)	13.9kΩ
			0°C(32°F)	5.5kΩ
			20°C(68°F)	2.4kΩ
			40°C(104°F)	1.2kΩ
			60°C(140°F)	0.6kΩ
			80°C(176°F)	0.3kΩ
	Accelerator Position Sensor (APS)	Туре	Thermister type	
	Camshaft Position Sensor (CMPS)	Туре	Hall sensor type	
	Crankshaft Position Sensor (CKPS)	Туре	Magnetic type	
	Rail Pressure Sensor (RPS)	Туре	Piezo electricity type	
	Fuel Temperature Sensor (FTS)	Туре	Thermister type	
		Specification	-30°C(-22°F)	22.2 ~ 31.8kΩ
			-20°C(-4°F)	13.2 ~ 18.1kΩ
			0°C(32°F)	5.2 ~ 6.6kΩ
			20°C(68°F)	2.3 ~ 2.7kΩ
			40°C(104°F)	1.1 ~ 1.3kΩ
			60°C(140°F)	0.54 ~ 0.65kΩ
			80°C(176°F)	0.30 ~ 0.32kΩ
	Engine Coolant Temperature Type Thermister type		ster type	
	Sensor (ECTS)	Specification	-40°C (-40°F)	44.4kΩ
	-	-20°C(-4°F)	13.4 ~ 16.8kΩ	
		0°C(32°F)	5.74kΩ	
			20°C(68°F)	2.3 ~ 2.6kΩ
			40°C(104°F)	1.15kΩ
			60°C(140°F)	0.58kΩ
			80°C(176°F)	0.32kΩ

Items Specification		Specification	
ACTUA-	Injector	Туре	Solenoid type
TORS		Number	4
	Inlet Metering Valve (IMV)	Resistance	5.5Ω at 20°C(68°F)
	EGR Solenoid Valve	Resistance	15.0 ~ 16.0Ω at 20°C(68°F)

SEALANT EE554B8A

Engine Coolant Temperature Sensor (ECTS)	LOCTITE 962T

SERVICE STANDARD

Idle Speed	800±100 rpm

TIGHTENING TORQUES

Items		Kgf∙m	N·m	lbf·ft
ENGINE CONTROL SYSTEM	Engine Coolant Temperature Sensor (ECTS)	2.00	19.61	14.47
	Knock Sensor (KS)	1.50 ~ 2.50	14.71 ~ 24.52	10.85 ~ 18.08
	Crankshaft Position Sensor (CKPS)	0.90 ~ 1.00	8.83 ~ 9.81	6.51 ~ 7.23
	EGR Solenoid Valve	0.80 ~ 1.10	7.85 ~ 10.79	5.79 ~ 7.96
FUEL DELIVERY SYSTEM	High pressure pump mounting bolts (on timing case)	2.20 ~ 2.60	21.57 ~ 25.50	15.91 ~ 18.81
	High pressure pump mounting bolts (on bracket)	2.20 ~ 2.60	21.57 ~ 25.50	15.91 ~ 18.81
	High Pressure Pipe connecting between high pressure pump and common rail	3.65 ~ 4.35	35.79 ~ 42.66	26.40 ~ 31.46
	High Pressure Pipe connecting between common rail and injectors	3.65 ~ 4.35	35.79 ~ 42.66	26.40 ~ 31.46
	Common rail mounting bolts	1.90 ~ 2.30	18.63 ~ 22.56	13.74 ~ 16.64
	Injector clamp bolt	2.00 ~ 2.20	19.61 ~ 21.57	14.47 ~ 15.91

BASIC TROUBLESHOOTING E40A46A4

BASIC TROUBLESHOOTING GUIDE

1 Bring Vehicle to Workshop

2 Analyze Customer's Problem

• Ask the customer about the conditions and environment relative to the issue (Use CUS-TOMER PROBLEM ANALYSIS SHEET).

3 Verify Symptom, and then Check DTC and Freeze Frame Data

• Connect Hi-Scan (Pro) to Diagnostic Link Connector (DLC).

· Record the DTC and freeze frame data.

NOTE

To erase DTC and freeze frame data, Refer to Step 5.

4 Confirm the Inspection Procedure for the System or Part

• Using the SYMPTOM TROUBLESHOOTING GUIDE CHART, choose the correct inspection procedure for the system or part to be checked.

5 Erase the DTC and Freeze Frame data

(WARNING)

NEVER erase DTC and freeze frame data before completing Step 2 MIL/DTC in " CUS-TOMER PROBLEM ANALYSIS SHEET".

6 Inspect Vehicle Visually

• Go to Step 11, if you recognize the problem.

7 Recreate (Simulate) Symptoms the DTC

· Try to recreate or simulate the symptoms and conditions of the malfunction as described by customer.

• If DTC(s) is/are displayed, simulate the condition according to troubleshooting procedure for the DTC.

8 Confirm Symptoms of Problem

• If DTC(s) is/are not displayed, go to Step 9.

• If DTC(s) is/are displayed, go to Step 11.

Recreate (Simulate) Symptom

• Try to recreate or simulate the condition of the malfunction as described by the customer.

10 Check the DTC

9

• If DTC(s) does(do) not occur, refer to BASIC INSPECTION in INTERMITTENT PROBLEM PROCEDURE.

• If DTC(s) occur(s), go to Step 11.

11 Perform troubleshooting procedure for DTC

12 Adjust or repair the vehicle

GENERAL

13	Confirmation test	
14	END	

CUSTOMER PROBLEM ANALYSIS SHEET

1. VEHICLE INFORMATION

(I) VIN:	
(II) Production Date:	
(III) Odometer Reading: (miles/km)	

2. SYMPTOMS

Unable to start	 Engine does not turn over Incomplete combustion Initial combustion does not occur
Difficult to start	Engine turns over slowly Other
Poor idling	 Rough idling I Incorrect idling Unstable idling (High: rpm, Low:rpm) Other
Engine stall	 Soon after starting After accelerator pedal depressed After accelerator pedal released During A/C ON Shifting from N to D-range Other
□ Others	 Poor driving (Surge) Knocking Poor fuel economy Back fire After fire Other

3. ENVIRONMENT

Problem frequency	Constant Sometimes () Once only Other
Weather	□ Fine □ Cloudy □ Rainy □ Snowy □ Other
Outdoor temperature	Approx °C/°F
Place	 □ Highway □ Suburbs □ Inner City □ Uphill □ Downhill □ Rough road □ Other
Engine temperature	Cold Warming up After warming up Any temperature
Engine operation	 Starting Just after starting (min) Idling Racing Driving Constant speed Acceleration Deceleration A/C switch ON/OFF Other

4. MIL/DTC

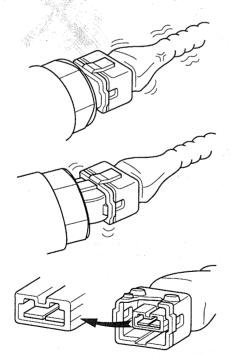
MIL (Malfunction Indicator Lamp)	Remains ON Sometimes lights up Does not light
DTC	□ Normal □ DTC () □ Freeze Frame data

FLB -7

BASIC INSPECTION PROCEDURE

MEASURING CONDITION OF ELECTRONIC PARTS' RESISTANCE

The measured resistance at high temperature after vehicle running may be high or low. So all resistance must be measured at ambient temperature (20° C, 68° F), unless there is any notice.



The measured resistance in except for ambient temperature (20°C, 68°F) is reference value.

INTERMITTENT PROBLEM INSPECTION PROCEDURE

Sometimes the most difficult case in troubleshooting is when a problem symptom occurs but does not occur again during testing. An example would be if a problem appears only when the vehicle is cold but has not appeared when warm. In this case, technician should thoroughly make out a "CUSTOMER PROBLEM ANALYSIS SHEET" and recreate (simulate) the environment and condition which occurred when the vehicle was having the issue.

- 1. Clear Diagnostic Trouble Code (DTC).
- 2. Inspect connector connection, and check terminal for poor connections, loose wires, bent, broken or corroded pins, and then verify that the connectors are always securely fastened.

- 3. Slightly shake the connector and wiring harness vertically and horizontally.
- 4. Repair or replace the component that has a problem.
- 5. Verify that the problem has disappeared with the road test.
- SIMULATING VIBRATION
- a. Sensors and Actuators
 : Slightly vibrate sensors, actuators or relays with finger.

🕲 WARNING

Strong vibration may break sensors, actuators or relays

- b. Connectors and Harness
 : Lightly shake the connector and wiring harness vertically and then horizontally.
- SIMULATING HEAT
- a. Heat components suspected of causing the malfunction with a hair dryer or other heat sourre.

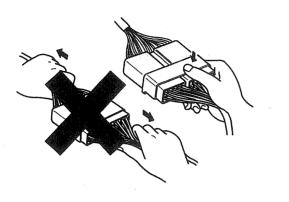
🕲 WARNING

- DO NOT heat components to the point where they may be damaged.
- DO NOT heat the ECM directly.

SIMULATING WATER SPRINKLING

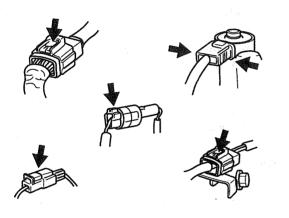
a. Sprinkle water onto vehicle to simulate a rainy day or a high humidity condition.

🕲 WARNING

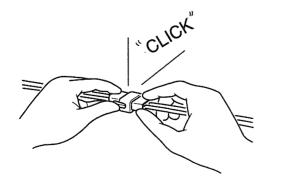

DO NOT sprinkle water directly into the engine compartment or electronic components.

- SIMULATING ELECTRICAL LOAD
- a. Turn on all electrical systems to simulate excessive electrical loads (Radios, fans, lights, etc.).

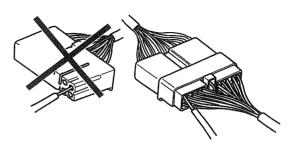
BFGE321A


CONNECTOR INSPECTION PROCEDURE

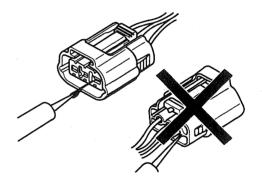
- 1. Handling of Connector
 - a. Never pull on the wiring harness when disconnecting connectors.


BFGE015F

b. When removing the connector with a lock, press or pull locking lever.


BFGE015G

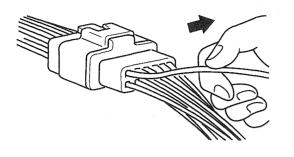
c. Listen for a click when locking connectors. This sound indicates that they are securely locked.


BFGE015H

d. When a tester is used to check for continuity, or to measure voltage, always insert tester probe from wire harness side.

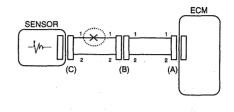
BFGE015I

e. Check waterproof connector terminals from the connector side. Waterproof connectors cannot be accessed from harness side.



BFGE015J

🗊 ΝΟΤΕ


- Use a fine wire to prevent damage to the terminal.
- Do not damage the terminal when inserting the tester lead.
- 2. Checking Point for Connector
 - a. While the connector is connected: Hold the connector, check connecting condition and locking efficiency.
 - When the connector is disconnected: Check missed terminal, crimped terminal or broken core wire by slightly pulling the wire harness. Visually check for rust, contamination, deformation and bend.
 - c. Check terminal tightening condition: Insert a spare male terminal into a female terminal, and then check terminal tightening conditions.

d. Pull lightly on individual wires to ensure that each wire is secured in the terminal.

If an open circuit occurs (as seen in [FIG. 1]), it can be found by performing Step 2 (Continuity Check Method) or Step 3 (Voltage Check Method) as shown below.

BFGE501A

BEGE015K

- 3. Repair Method of Connector Terminal
 - a. Clean the contact points using air gun and/or shop rag.

Never use sand paper when polishing the contact points, otherwise the contact point may be damaged.

b. In case of abnormal contact pressure, replace the female terminal.

WIRE HARNESS INSPECTION PROCEDURE

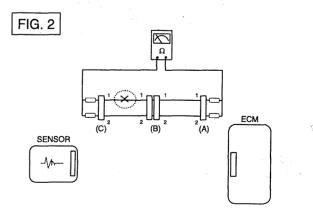
- 1. Before removing the wire harness, check the wire harness position and crimping in order to restore it correctly.
- 2. Check whether the wire harness is twisted, pulled or loosened.
- 3. Check whether the temperature of the wire harness is abnormally high.
- 4. Check whether the wire harness is rotating, moving or vibrating against the sharp edge of a part.
- 5. Check the connection between the wire harness and any installed part.
- 6. If the covering of wire harness is damaged; secure, repair or replace the harness.

ELECTRICAL CIRCUIT INSPECTION PROCEDURE

CHECK OPEN CIRCUIT

- 1. Procedures for Open Circuit
 - · Continuity Check
 - Voltage Check

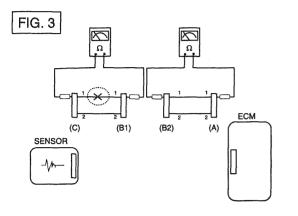
2. Continuity Check Method



When measuring for resistance, lightly shake the wire harness above and below or from side to side.

Specification (Resistance) 1Ω or less \rightarrow Normal Circuit $1^{M\Omega}$ or Higher \rightarrow Open Circuit

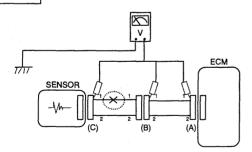
a. Disconnect connectors (A), (C) and measure resistance between connector (A) and (C) as shown in [FIG. 2].


In [FIG.2.] the measured resistance of line 1 and 2 is higher than $1M\Omega$ and below 1Ω respectively. Specifically the open circuit is line 1 (Line 2 is normal). To find exact break point, check sub line of line 1 as described in next step.

BFGE501B

b. Disconnect connector (B), and measure for resistance between connector (C) and (B1) and between (B2) and (A) as shown in [FIG. 3].

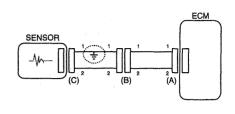
In this case the measured resistance between connector (C) and (B1) is higher than $1M\Omega$ and the open circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).



BFGE501C

- 3. Voltage Check Method
 - a. With each connector still connected, measure the voltage between the chassis ground and terminal 1 of each connectors (A), (B) and (C) as shown in [FIG. 4].

The measured voltage of each connector is 5V, 5V and 0V respectively. So the open circuit is between connector (C) and (B).


BFGE501D

CHECK SHORT CIRCUIT

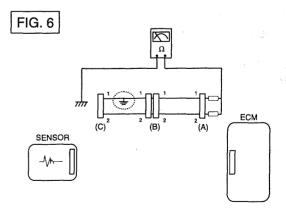
- 1. Test Method for Short to Ground Circuit
 - Continuity Check with Chassis Ground

If short to ground circuit occurs as shown in [FIG. 5], the broken point can be found by performing below Step 2 (Continuity Check Method with Chassis Ground) as shown below.

FIG. 5

BFGE501E

2. Continuity Check Method (with Chassis Ground)

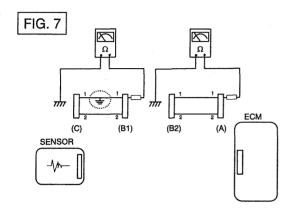


Lightly shake the wire harness above and below, or from side to side when measuring the resistance.

Specification (Resistance) 1Ω or less \rightarrow Short to Ground Circuit $1^{M\Omega}$ or Higher \rightarrow Normal Circuit

a. Disconnect connectors (A), (C) and measure for resistance between connector (A) and Chassis Ground as shown in [FIG. 6].

The measured resistance of line 1 and 2 in this example is below 1 Ω and higher than 1^{MQ} respectively. Specifically the short to ground circuit is line 1 (Line 2 is normal). To find exact broken point, check the sub line of line 1 as described in the following step.



BFGE501F

GENERAL

Disconnect connector (B), and measure the resistance between connector (A) and chassis ground, and between (B1) and chassis ground as shown in [FIG. 7].

The measured resistance between connector (B1) and chassis ground is 1Ω or less. The short to ground circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).

BFGE501G

ECM PROBLEM INSPECTION PROCEDURE

 TEST ECM GROUND CIRCUIT: Measure resistance between ECM and chassis ground using the backside of ECM harness connector as ECM side check point. If the problem is found, repair it.

Specification (Resistance): 10 or less

- TEST ECM CONNECTOR: Disconnect the ECM connector and visually check the ground terminals on ECM side and harness side for bent pins or poor contact contact pressure. If the problem is found, repair it.
- 3. If problem is not found in Step 1 and 2, the ECM could be faulty. If so, replace the ECM with a new one, and then check the vehicle again. If the vehicle operates normally then the problem was likely with the ECM.
- 4. RE-TEST THE ORIGINAL ECM : Install the original ECM (may be broken) into a known-good vehicle and check the vehicle. If the problem occurs again, replace the original ECM with a new one. If problem does not occur, this is intermittent problem (Refer to INTERMITTENT PROBLEM PROCEDURE in BASIC INSPECTION PROCEDURE).

FUEL SYSTEM (J3 TCI)

SYMPTOM TROUBLESHOOTING GUIDE CHART

Problem	Possible cause
Engine does not start	Run out of petrol
	Starter out of order
	Pump hose supply cut
	High pressure leakage
	Fuse out of order
	The compensation of individual injector not adapted
	Drift of the engine coolant temperature sensor not detected
	Drift of the rail pressure sensor not detected
	Cam and Crank signals missing simultaneously
	Battery voltage too low
	Faulty antitheft
	EGR valve blocked open (engine doesn't start)
	IMV contaminated, stuck, jammed
	Fuel quality / presence of water
	Inversion of low pressure fuel connections
	Fuel filter not adapted
	Low pressure fuel circuit sealed
	Sealed fuel filter
	Intermittent fault connection
	Air ingress in the low pressure fuel circuit
	Fuel return circuit of the pump sealed
	Air heaters out of order
	Engine compression too low
	Leakage at the injector valve
	Transfer pump out of order
	High pressure pump out of order
	Injector jammed open
	Bug soft or hardware fault not detected

Problem	Possible cause							
Engine starts with difficulty	Run out of petrol							
or starts and stalls	Fuel return hose of nozzle holder cut							
	High pressure leakage							
	Fuse out of order							
	Air filter sealed							
	Alternator or voltage regulator out of order							
	The compensation of individual injector not adapted							
	Drift of the engine coolant temperature sensor not detected							
	Drift of the rail pressure sensor not detected							
	Battery voltage too low							
	EGR valve blocked open (engine doesn't start)							
	IMV contaminated, stuck, jammed							
	Fuel quality / presence of water							
	Inversion of low pressure fuel connections							
	Fuel filter not adapted							
	Low pressure fuel circuit sealed							
	Sealed fuel filter							
	Oil level too high/too low							
	Catalytic converter sealed or damaged							
	Intermittent fault connection							
	Air ingress in the low pressure fuel circuit							
	Fuel return circuit of the pump sealed							
	Air heaters out of order and the second second second							
	Engine compression too low							
	Fuel return hose of nozzle holder sealed							
	Carbon deposit on the injector (sealed holes)							
	Needle stuck (injection possible over a certain pressure)							
	Petrol in fuel							
	Bug soft or hardware fault not detected							

Problem	Possible cause						
Poor starting when hot	The compensation of individual injector not adapted						
	Drift of the rail pressure sensor not detected						
	Drift of the engine coolant temperature sensor not detected						
	EGR valve blocked open (engine doesn't start)						
	IMV contaminated, stuck, jammed						
	Air filter sealed						
	Fuel filter not adapted						
	Air ingress in the low pressure fuel circuit						
· · · · · · · · · · · · · · · · · · ·	Fuel quality / presence of water						
	Fuel return circuit of the pump sealed						
	Sealed fuel filter						
	Engine compression too low						
	Intermittent fault connection						
	Carbon deposit on the injector (sealed holes)						
	Needle stuck (injection possible over a certain pressure)						
	Petrol in fuel						
	Bug soft or hardware fault not detected						
Unstable idling	Fuel return hose of nozzle holder cut						
	The compensation of individual injector not adapted						
	Drift of the rail pressure sensor not detected						
	Drift of the sensors used to evaluate the air flow not detected						
	Harness resistance increased						
	Fuel filter not adapted						
	Air ingress in the low pressure fuel circuit						
	Fuel quality / presence of water						
	Sealed fuel filter						
	Air filter sealed						
	Fuel return hose of nozzle holder sealed						
	High pressure leakage						
	Air heaters out of order						
	Engine compression too low						
	Bad flanging of the injector						
	High pressure pump out of order						
	Injector not adapted						
	Carbon deposit on the injector (sealed holes)						
	Needle stuck (injection possible over a certain pressure)						
	Injector jammed open						

Problem	Possible cause									
Idle speed too high/too low	Drift of the engine coolant temperature sensor not detected									
	Incorrect state of the electrical pack devices									
	Alternator or voltage regulator out of order									
	Clutch not well set									
	Bug soft or hardware fault not detected									
Blue, white, black smokes	The compensation of individual injector not adapted									
	Drift of the sensors used to evaluate the air flow not detected									
	Drift of the engine coolant temperature sensor not detected									
	Drift of the rail pressure sensor not detected									
	EGR valve blocked open (engine doesn't start)									
	IMV contaminated, stuck, jammed									
	Oil level too high/too low									
	Fuel quality / presence of water									
	Catalytic converter sealed or damaged									
	Air filter sealed									
	Oil suction (engine racing)									
	Air heaters out of order									
	Engine compression too low									
	Bad flanging of the injector									
	Injector washer not adapted, forgotten, doubled									
	Injector not adapted									
	Carbon deposit on the injector (sealed holes)									
	Injector jammed open									
	Petrol in fuel									
Engine rattling, noisy engine	The compensation of individual injector not adapted									
	EGR valve blocked closed (noisy engine)									
	EGR valve blocked open (engine doesn't start)									
	Drift of the engine coolant temperature sensor not detected									
	Drift of the sensors used to evaluate the air flow not detected									
	Air heaters out of order									
	Engine compression too low									
	Fuel return hose of nozzle holder sealed									
	Drift of the rail pressure sensor not detected									
	Injector washer not adapted, forgotten, doubled									
	Injector not adapted									
	Carbon deposit on the injector (sealed holes)									
	Needle stuck (injection possible over a certain pressure)									
	Injector jammed open									

Problem	Possible cause									
Burst noise	The compensation of individual injector not adapted									
	Intermittent fault connection									
	Drift of the rail pressure sensor not detected									
	IMV contaminated, stuck, jammed									
	Bug soft or hardware fault not detected									
Untimely acceleration/deceler-	Pedal sensor blocked (cable jammed)									
ation and engine racing	EGR valve blocked open (engine doesn't start)									
	Intermittent fault connection									
	Oil suction (engine racing)									
	Drift of the rail pressure sensor not detected									
	Bug soft or hardware fault not detected									
Gap when accelerating and at	Air inlet circuit open									
re-coupling (response time)	Incorrect state of the electrical pack devices									
	Pedal sensor blocked (cable jammed)									
	EGR valve blocked open (engine doesn't start)									
	Turbo charger damaged									
	Fuel filter not adapted									
	Sealed fuel filter									
	Engine compression too low									
	High pressure leakage									
	IMV contaminated, stuck, jammed									
	Needle stuck (injection possible over a certain pressure)									
	Bug soft or hardware fault not detected									

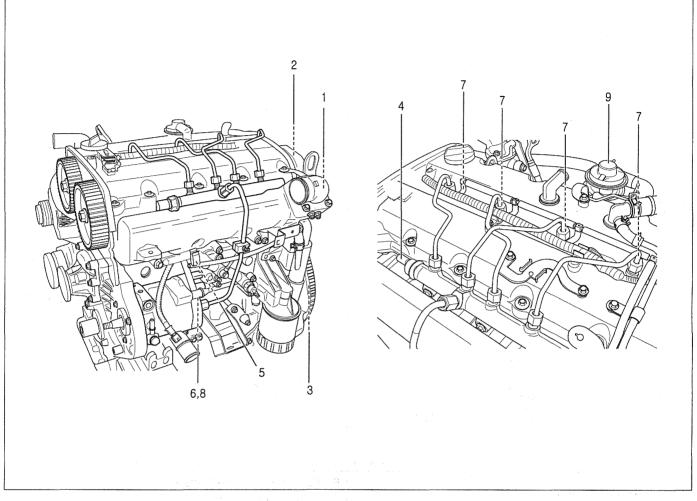
GENERAL

Problem	Possible cause
Engine stop/ stalling	Run out of petrol
	Pump hose supply cut
	High pressure leakage
	Fuse out of order
	Fuel quality / presence of water
	Low pressure fuel circuit sealed
	Sealed fuel filter
	Cam and Crank signals missing simultaneously
	EGR valve blocked open (engine doesn't start)
	IMV contaminated, stuck, jammed
	Alternator or voltage regulator out of order
	Intermittent fault connection
	Catalytic converter sealed or damaged
	Oil suction (engine racing)
	Transfer pump out of order
	High pressure pump out of order
	Faulty ignition key
	Petrol in fuel
	Bug soft or hardware fault not detected

FUEL SYSTEM (J3 TCI)

Problem	Possible cause	
Engine judder	Run out of petrol	
	Fuel return hose of nozzle holder cut	
	Incorrect state of the electrical pack devices	
	The compensation of individual injector not adapted	
	Drift of the sensors used to evaluate the air flow not detected	
	EGR valve blocked open (engine doesn't start)	
	Fuel filter not adapted	and the second second
	Air ingress in the low pressure fuel circuit	
	Fuel quality / presence of water	
	Sealed fuel filter	
	Intermittent fault connection	
	Harness resistance increased	
	Air heaters out of order	
	Engine compression too low	
	Fuel return hose of nozzle holder sealed	
	Valve clearance	
	Transfer pump out of order	
	Injector washer not adapted, forgotten, doubled	
	Carbon deposit on the injector (sealed holes)	
	Needle stuck (injection possible over a certain pressure)	
	Injector jammed open	
	Petrol in fuel	
	Bug soft or hardware fault not detected	

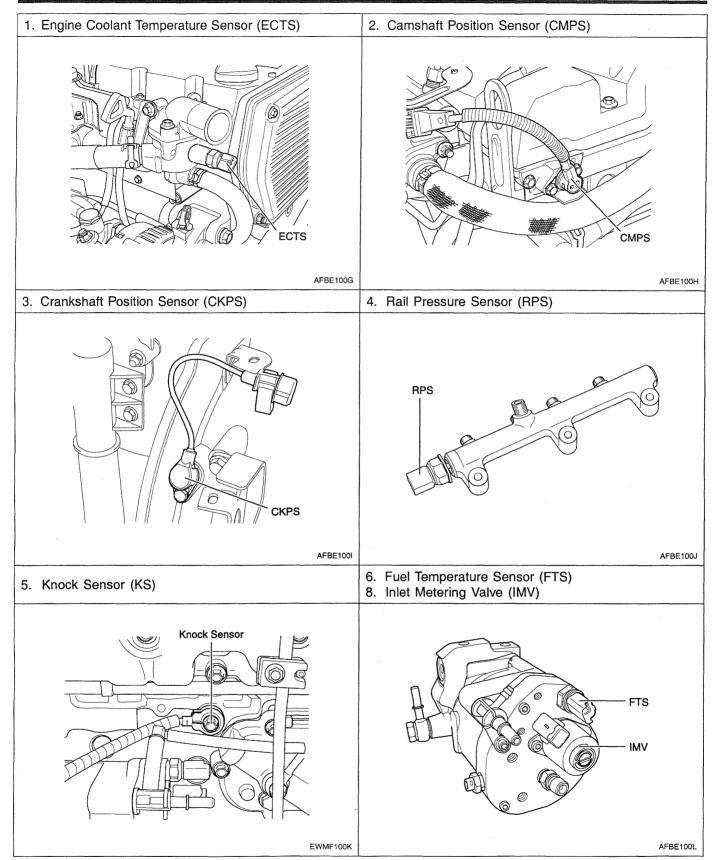
GENERAL


Problem	Possible cause
Lack of power	The compensation of individual injector not adapted
	Pedal sensor blocked (cable jammed)
	Incorrect state of the electrical pack devices
	Drift of the sensors used to evaluate the air flow not detected
	EGR valve blocked open (engine doesn't start)
	Air inlet circuit open
	Air filter sealed
	Oil level too high/too low
	Catalytic converter sealed or damaged
	Turbo charger damaged
	Fuel filter not adapted
	Sealed fuel filter
	Leakage at the injector valve
	Fuel return circuit of the pump sealed
	Fuel return hose of nozzle holder sealed
	Engine compression too low
	Injector not adapted
	Carbon deposit on the injector (sealed holes)
	Valve clearance
Too much power	EGR valve blocked closed (noisy engine)
	The compensation of individual injector not adapted
	Oil suction (engine racing)
	Injector not adapted application and a second
	Bug soft or hardware fault not detected

Problem	Possible cause									
Excessive fuel consumption	Fuel return hose of nozzle holder cut									
	Leakage at the IMV									
	Leakage at fuel temperature sensor									
	Leakage at the spacers									
	High pressure leakage									
	Air inlet circuit open									
	Air filter sealed									
	The compensation of individual injector not adapted									
	EGR valve blocked open (engine doesn't start)									
	Incorrect state of the electrical pack devices									
	Oil level too high/too low									
	Fuel quality / presence of water									
	Catalytic converter sealed or damaged									
	Turbo charger damaged									
	Engine compression too low									
	Injector not adapted									
	Bug soft or hardware fault not detected									
Over speed engine when	Pedal sensor blocked (cable jammed)									
changing the gear box ratio	The compensation of individual injector not adapted									
	Intermittent fault connection									
	Clutch not well set									
	Oil suction (engine racing)									
	Turbo charger damaged									
	Injector not adapted									
	Bug soft or hardware fault not detected									
Exhaust smells	EGR valve blocked open (engine doesn't start)									
	Oil suction (engine racing)									
	Turbo charger damaged									
	Oil level too high/too low									
	The compensation of individual injector not adapted									
	Catalytic converter sealed or damaged									
	Bad flanging of the injector									
	Injector washer not adapted, forgotten, doubled									
	Injector not adapted									
	Carbon deposit on the injector (sealed holes)									
	Needle stuck (injection possible over a certain pressure)									
	Injector jammed open									
	Bug soft or hardware fault not detected									

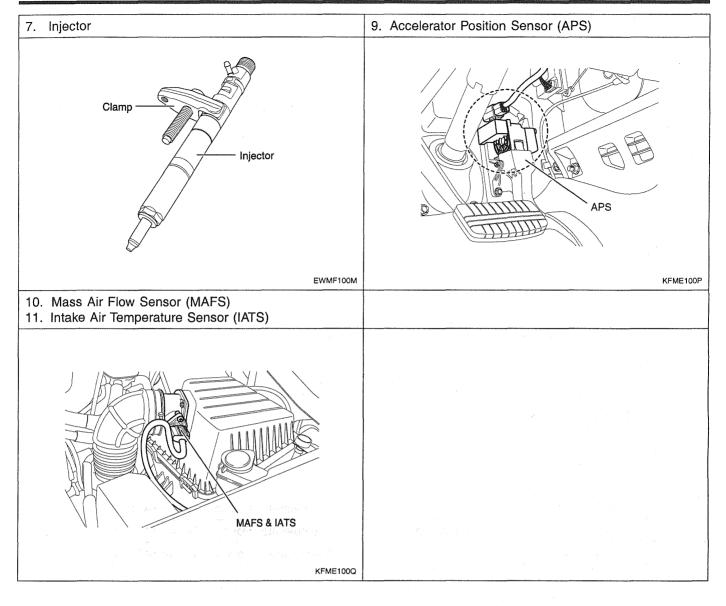
Problem	Possible cause
Smokes (black, white, blue)	The compensation of individual injector not adapted
when accelerating	EGR valve blocked open (engine doesn't start)
	Drift of the sensors used to evaluate the air flow not detected
	Air filter sealed
	Fuel quality / presence of water
	Oil level too high/too low
	Turbo charger damaged
	Catalytic converter sealed or damaged
	Oil suction (engine racing)
	Air heaters out of order
	Engine compression too low
	High pressure leakage
	Intermittent fault connection
	Bad flanging of the injector
	Injector washer not adapted, forgotten, doubled
	Injector not adapted
	Carbon deposit on the injector (sealed holes)
	Needle stuck (injection possible over a certain pressure)
	Injector jammed open
	Petrol in fuel
	Bug soft or hardware fault not detected
Fuel smells	Pump hose supply cut an additional and a second supply cut and a second supply
	Fuel return hose of nozzle holder cut
	Leakage at the IMV
	Leakage at fuel temperature sensor
	Leakage at the spacers
	High pressure leakage

Problem	Possible cause							
The engine collapses at take off	Pedal sensor blocked (cable jammed)							
	Incorrect state of the electrical pack devices							
	Air filter sealed							
	Inversion of low pressure fuel connections							
	Fuel filter not adapted							
	Fuel quality/presence of water							
	Air ingress in the low pressure fuel circuit							
	Sealed fuel filter							
	Catalytic converter sealed or damaged							
	Clutch not well set							
	Intermittent fault connection							
	Drift of the rail pressure sensor not detected							
	IMV contaminated, stuck, jammed							
	Petrol in fuel							
	Bug soft or hardware fault not detected							
The engine does not stop	Faulty ignition key							
	Oil suction (engine racing)							
	Bug soft or hardware fault not detected							
Different mechanical noises	Buzzer noise (discharge by the injectors)							
	Clip broken (vibrations, resonance, noises)							
	Incorrect state of the electrical pack devices							
	Catalytic converter sealed or damaged							
	Air inlet circuit open							
	Bad flanging of the injector							
	Clutch not well set							
	Turbo charger damaged							
	Valve clearance							


COMPONENTS EE257321

- 1. Engine Coolant Temperature Sensor (ECTS)
- 2. Camshaft Position Sensor (CMPS)
- 3. Crankshaft Position Sensor (CKPS)
- 4. Rail Pressure Sensor (RPS)
- 5. Knock Sensor (KS)
- 6. Fuel Temperature Sensor (FTS)
- 7. Injector

- 8. Inlet Metering Valve (IMV)
- 9. EGR Valve
- 10. EGR Solenoid Valve
- 11. Accelerator Position Sensor (APS)
- 12. Mass Air Flow Sensor (MAFS)
- 13. Intake Air Temperature Sensor (IATS)


EWMF100F

.

DIESEL CONTROL SYSTEM

FLB -25

ECM CONNECTOR E0AE603B

ECM Harness Connector

1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	65	69	73	77	81	85	89	93	97	101	105	109
2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62	66	70	74	78	82	86	90	94	98	102	106	110
3	7							35		ļ															ļ	107	
		11	15				31			43	47	51	55		63	67	71	75	79	83			95		103		
4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84	88	92	96	100	104	108	112
			E0	3-1									FΛ	3-2									FC	3-3	2		

CONNECTOR [E03-1]

Pin Function Connected to 1 _ 2 Accelerator position sensor signal input 1 Accelerator Position Sensor (APS) 1 Accelerator Position Sensor (APS) 1 3 Sensor ground 4 Chassis Ground Power ground 5 Power supply (Battery voltage) Main Relay Accelerator Position Sensor (APS) 1 6 Sensor power supply 7 -8 Power ground Chassis Ground Malfunction indicator lamp control output Cluster 9 10 Sensor power supply Accelerator Position Sensor (APS) 2 Accelerator position sensor signal input 2 Accelerator Position Sensor (APS) 2 11 Accelerator Position Sensor (APS) 2 12 Sensor ground 13 ... Cluster 14 Immobilizer lamp control output 15 16 Brake switch 1 signal input Brake Switch Ignition Switch 17 Ignition switch sense 18 -19 -20 21 Auto cruise indicator lamp control output Auto Cruise Indicator Lamp 22 -23 -Clutch Switch 24 Clutch switch (M/T only) 25 Cluster 26 Engine speed signal output 27 Immobilizer diagnosis line Immobilizer

EU3-2

EWMF100A

DIESEL CONTROL SYSTEM

Pin	Function	Connected to	
28	Diagnosis line (K-LINE)	Data Link Connector (DLC)	
29	29 Glow indicator lamp control output Cluster		
30	A/T: P/N switch signal input Inhibitor switch		
	M/T: 1st gear switch signal input	1st Gear Switch	
31	CAN - LOW	ТСМ	
32	CAN - HIGH	ТСМ	

CONNECTOR [E03-2]

Pin	Function	Connected to
33	Sensor shield	Knock Sensor (KS)
34	-	
35	Intake throttle solenoid valve control output	Intake Throttle Solenoid Valve
36	Inlet metering valve control output	Inlet Metering Valve (IMV)
37	Sensor shield	Crankshaft Position Sensor (CKPS)
38	Water indicator lamp control output	Cluster
39	EGR solenoid valve control output	EGR Solenoid Valve
40	-	
41	-	
42	Intake air temperature sensor signal input	Intake Air Temperature Sensor (IATS)
43	-	
44	-	
45	-	
46	Glow relay 2 diagnosis line	Glow Relay 2
47	-	
48	-	
49	-	
50	Engine coolant temperature sensor signal input	Engine Coolant Temperature Sensor (ECTS)
51	Sensor ground	Engine Coolant Temperature Sensor (ECTS)
52	Injector (Cylinder #4) Low	Injector (Cylinder #4)
53	Knock sensor signal input	Knock Sensor (KS)
54	Fuel temperature sensor signal input	Fuel Temperature Sensor (FTS)
55	Sensor ground	Fuel Temperature Sensor (FTS)
56	Injector (Cylinder #4) High	Injector (Cylinder #4)
57	Sensor ground	Knock Sensor (KS)
58	Crankshaft position sensor [+] signal input	Crankshaft Position Sensor (CKPS)
59	Crankshaft position sensor [-] signal input	Crankshaft Position Sensor (CKPS)
60	Injector (Cylinder #3) Low	Injector (Cylinder #3)
61	Sensor power supply	Camshaft Position Sensor (CMPS)
62	Camshaft position sensor signal input	Camshaft Position Sensor (CMPS)

Pin	Function	Connected to
63	Sensor ground	Camshaft Position Sensor (CMPS)
64	Injector (Cylinder #3) High	Injector (Cylinder #3)
65	Sensor power supply	Rail Pressure Sensor (RPS)
66	Rail pressure sensor signal input	Rail Pressure Sensor (RPS)
67	Sensor ground	Rail Pressure Sensor (RPS)
68	Injector (Cylinder #2) Low	Injector (Cylinder #2)
69	-	
70	-	· · · · · · · · · · · · · · · · · · ·
71	-	
72	Injector (Cylinder #2) High	Injector (Cylinder #2)
73	-	
74	-	
75		
76	Injector (Cylinder #1) Low	Injector (Cylinder #1)
77	Sensor power supply	Mass Air Flow Sensor (MAFS)
78	Mass air flow sensor signal input	Mass Air Flow Sensor (MAFS)
79	Sensor ground	Mass Air Flow Sensor (MAFS)
		Intake Air Temperature Sensor (IATS)
80	Injector (Cylinder #1) High	Injector (Cylinder #1)

CONNECTOR [E03-3]

Pin	Function	Connected to	
81	-		
82	-		
83	-		
84	Compressor fan relay control output	Compressor Fan Relay	
85	-		
86	Brake switch 2 signal input	Brake Switch	
87	-		
88	-		
89	Auto cruise switch signal input	Auto Cruise Switch	
90	-		
91	Glow relay 1 control output	Glow Relay 1	
92	· -		
93	Blower switch signal input	Blower switch	
94	Glow relay 1 diagnosis line	Glow Relay 1	
95	Glow relay 2 control output	Glow Relay 2	
96	-		
97	MT/AT switch signal input	A/T: Chassis Ground, M/T: not used	
98	Torque reduction signal input	тсм	
99	A/C switch signal input	A/C Switch	
100	Vehicle speed sensor signal input	Vehicle Speed Sensor (VSS)	
101	-		
102	Water sensor signal input	Water Sensor in Fuel Filter	
103	Accelerator position signal input (4WD only)	4WD: TOD (Torque On Demand), A/T: TCM	
104	Main relay control output	Main Relay	
105	A/C relay control output	A/C Relay	
106	-		
107	Power supply (Battery voltage)	Main Relay	
108	Power ground	Chassis Ground	
109	-		
110	-		
111	Power supply (Battery voltage)	Main Relay	
112	Power ground	Chassis Ground	

INSPECTION CHART FOR DIAGNOSTIC

TROUBLE CODES (DTC) E6EB026F

DTC	CC - CODE	Description	MIL
		EGR Control Malfunction	
P0100	04	Parameter at minimum limit	
	05	Parameter at maximum limit	
		Mass Air Flow Sensor (MAFS) Circuit Malfunction	
P0101	0a	Signal low (Open circuit or short circuit to ground)	
	Ob	Signal high (Short circuit to battery line)	
		Mass Air Flow Sensor (MAFS) Range/Performance Problem	
P0102	04	Signal lower than lower limit	
	05	Signal higher than upper limit	
		Engine Coolant Temperature Sensor (ECTS) Circuit Malfunction	
P0115	0b	Signal low (Open circuit or short circuit to battery line)	
	02	Signal high (Short circuit to ground)	
		Accelerator Position Sensor (APS) 1 Circuit Malfunction	
P0120	0a	Signal low (Open circuit or short circuit to ground)	^
10120	0b	Signal high (Short circuit to battery line)	
	06	Value incoherent	
		Fuel Temperature Sensor (FTS) Circuit Malfunction	
P0180	0b	Signal low (Open circuit or short circuit to battery line)	\triangle
	02	Signal high (Short circuit to ground)	
		Rail Pressure Sensor (RPS) Range/Performance Problem	
	0a	Signal low (Short cirucit to ground)	
	Ob	Signal high (Open circuit or short circuit to battery line)	
P0190	06	Rail pressure incoherent	
10190	08	Signal low	
	09	Signal high	
	05	Parameter at maximum limit	
	8d	Above the average threshold	

DTC	CC - CODE	Description	MIL
		Inector #1 (Cylinder #1) Circuit Malfunction	
	04	Signal low	
	91	Injector stuck (Open)	
P0201	86	Injector stuck (Close)	
	01	Open Circuit	
	0c	Short Circuit	
		Inector #2 (Cylinder #3) Circuit Malfunction	
	04	Signal low	
D0000	91	Injector stuck (Open)	
P0202	86	Injector stuck (Close)	
	01	Open Circuit	
	0c	Short Circuit	
		Inector #3 (Cylinder #4) Circuit Malfunction	· .
	04	Signal low	
DOOOD	91	Injector stuck (Open)	
P0203	86	Injector stuck (Close)	
	01	Open Circuit	
	0c	Short Circuit	
		Inector #4 (Cylinder #2) Circuit Malfunction	
	04	Signal low	
D0004	91	Injector stuck (Open)	
P0204	86	Injector stuck (Close)	
	01	Open Circuit	
	0c	Short Circuit	
		Accelerator Position Sensor (APS) 2 Circuit Malfunction	
	0a	Signal low (Open circuit or short circuit to ground)	
P0220	0b	Signal high (Short circuit to battery line)	
-	02	Signal low	
	03	Signal high	
		Accelerator Position Sensor (APS) 2 Range/Performance Problem	
P0226	06	APS 1/2 signal incoherent	
	0b	Abnormal signal	-
		Knock Sensor Circuit Malfunction	
P0325	09	Signal high	
-	07	No signal	

FLB -31

DTC	CC - CODE	Description	MIL
		Crankshaft Position Sensor (CKPS) Circuit Malfunction	
	93	Too many extra teeth detected	
	95	Extra teeth detected	
P0335	07	No signal	
	94	Missing teeth detected	
	06	Abnormal airgap	
	92	Too many missing teeth detected	
		Camshaft Position Sensor (CMPS) Circuit Malfunction	
P0340	07	No signal	
	06	CMPS/CKPS signal incoherent	
		Glow Relay 1 Circuit Malfunction	
	0a	Signal low (Open circuit or short circuit to ground)	
P0380	03	Signal high (Short circuit to battery line)	
	0a	Open circuit or short circuit to ground	
	03	Short circuit to battery line	
		Glow Indicator Lamp Circuit Malfunction	
P0381	0a	Open circuit or short circuit to ground	
	03	Short circuit to battery line	
		Glow Relay 2 Circuit Malfunction	
	0a	Signal low (Open circuit or short circuit to ground)	
P0382	03	Signal high (Short circuit to battery line)	
	0a	Open circuit or short circuit to ground	
	03	Short circuit to battery line	
		EGR Solenoid Valve Circuit Malfucntion	
P0400	0a	Open circuit or short circuit to ground	
	03	Short circuit to battery line	
		Battery Voltage Malfunction	
P0560	08	Battery voltage too low	
-	09	Battery voltage too high	
		CAN Communication Error	
DOCOO	07	No signal	
P0600	06	No signal or TCM error	
	0a	No signal or TCS(or ESP) error	
		Malfunction Indicator Lamp Circuit Malfunction	
P0650	0a	Open circuit or short circuit to ground	
	03	Short circuit to battery line	

DTC	CC - CODE	Description	MIL
		Inlet Metering Valve (IMV) Control Malfunction	
	96	Fuel leakage	
P1119	97	Fuel leakage	
	98	Fuel leakage	
	99	Fuel leakage	
		Inlet Metering Valve (IMV) Circuit Malfunction	
	0a	Open circuit or short circuit to ground	
D1100	03	Short circuit to battery line	
P1120	05	Fuel leakage	
	04	Fuel leakage	
	08	Fuel leakage	
		Intake Air Temperature Sensor (IATS) Circuit Malfunction	
P1140	0b	Signal low (Open circuit or short circuit to battery line)	
	02	Signal high (Short circuit to ground)	
		Atmospheric Pressure Sensor Fault	
P1150	0a	Signal low (Open circuit or short circuit to ground)	
	03	Signal high (Short circuit to battery line)	
		Throttle Drive Fault	
P1190	0a	Signal low (Open circuit or short circuit to ground)	
	03	Signal high (Short circuit to battery line)	
P1300		Injector Specific Data Fault	
F 1300	04	Injector parameters incorrect	
		Injector Control Circuit Fault	
P1310	03	Short circuit to battery line	
	02	Short circuit to ground	
D1459		A/C Switch Fault	
P1458	06	Value incoherent	
		Vehicle Speed Sensor (VSS) Circuit Malfunction	
-	06	Abnormal signal after running	
P1500	06	Abnormal signal after running	
	06	Abnormal signal after running	
F	07	No signal before running	
		Brake Switch Signal Fault	
	03	Short to battery line in brake switch 1 circuit	
DICIO	02	Short to gound in brake switch 1 circuit	
P1543	0b	Short to battery line in brake switch 2 circuit	
	0a	Short to gound in brake switch 2 circuit	
	0c	Barke 1/2 signal incoherent	

DTC	CC - CODE	Description	MIL
P1603		CAN BUS OFF	
P1603	07	CAN BUS OFF Fault	
		ECM Fault	
	81	ECM internal fault	
P1608	82	ECM internal fault	
	82	ECM internal fault	
	82	ECM internal fault	
		Sensor External Voltage Fault	
P1610	08	Sensor supply voltage too low	
	09	Sensor supply voltage too high	
		ECM Programming Error	
	85	ECM internal fault	
	83	ECM internal fault	
	8b	ECM internal fault	
P1614	88	ECM internal fault	
	87	ECM internal fault	
	8a	ECM internal fault	
	8c	ECM internal fault	
	8a	ECM internal fault	
		A/C Relay Circuit Malfunction	
P1620	0a	Open circuit or short circuit to ground	
	03	Short circuit to battery line	
-		Main Relay Circuit Malfunction	
P1640	0a	Open circuit or short circuit to ground	•
	0b	Short circuit to battery line	
		A/C Fan Relay Circuit Malfunction	
P1674	0a	Open circuit or short circuit to ground	
ĺ	03	Short circuit to battery line	
	·····	Torque Reduction Signal Fault	
	06	Abnormal signal	-
P1780	09	Abnormal signal	
	0a	Signal low (Open circuit or short circuit to ground)	-
	0b	Signal high (Short circuit to battery line)	-
		Tachometer Output Fault	
P1786	0a	Signal low (Short cirucit to ground)	
	03	Signal high (Short cirucit to battery line)	
D		Water Sensor Circuit Malfunction	
P2264	0b	Permanent low level	

DTC	CC - CODE	Description	
		Water in Fuel Filter Indicator Lamp Circuit Malfunction	
P2269	0a	Signal low (Open cirucit or short circuit to ground)	
	03	Signal high (Short circuit to battery line)	

NOTE

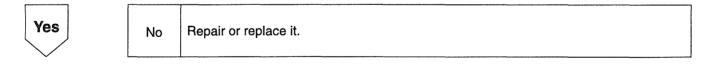
• : MIL ON & FAULT CODE MEMORY

△ : MIL OFF & FAULT CODE MEMORY

NOTE

- Refer to the Group "BE" for the troubleshooting procedures of DTC P1611, P1612, P1613 and P1626.
- Refer to the Group "EE" for the troubleshooting procedures of DTC P1660 and P1661.

TROUBLESHOOTING FOR DTC E4392AED

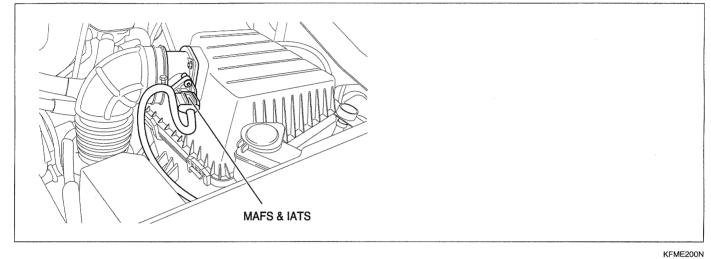

DTC	P0100	EGR Control Malfunction
	04	Parameter at minimum limit
CC-CODE	05	Parameter at maximum limit

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
04	 (Target intake air mass - Actual intake air mass) < 200 mg/stroke 	EGR valveEGR solenoid valve
05	 (Target intake air mass - Actual intake air mass) > 900 mg/stroke 	 Pipe connecting EGR valve and exhaust manifold ECM

INSPECTION PROCEDURE

1. CHECK DTC					
 Connect the Hi-Scan (Pro) to the Data Link Connector (DLC). Turn ignition switch to ON and check that any other DTC(s) is (are) detected. 					
ls P0400 also set	?				
					
No	Yes	Do all repairs associated with those codes before proceeding with this procedure.			
\sim					
2. EGR VALVE	INSPECT	ION			
•	1. Inspect below items.				
 EGR valve Pipe connecting EGR valve and exhaust manifold 					
Are all items have	e normal	condition?			


Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

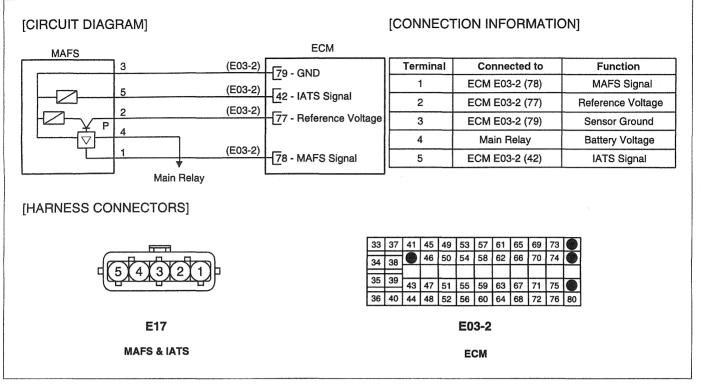
EWMF202L

TROUBLESHOOTING FOR DTC EFED28F4

DTC	P0101	Mass Air Flow Sensor (MAFS) Circuit Malfunction	
	0a Signal low (Open circuit or short circuit to ground)		
CC-CODE	0b	Signal high (Short circuit to battery line)	
DTC	P0102	Mass Air Flow Sensor (MAFS) Range/Performance Problem	

	DIC	P0102	Mass Air Flow Sensor (MAFS) Range/Performance Problem	
	00.0005	04	Signal lower than lower limit	
CC-CODE 05		05	Signal higher than upper limit	

DESCRIPTION

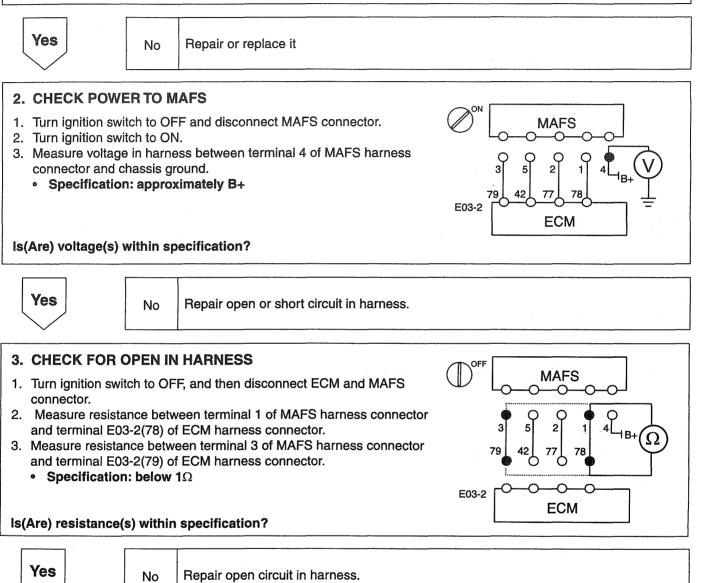

The mass air flow sensor (MAFS) has an intake air temperature sensor built-in and is located between the air cleaner assembly and the throttle device. The MAFS uses a hot film type sensing-element to measure the mass of intake air entering the engine. Mass air flow rate is measured by detection of heat transfer from a hot film probe. The change in air flow rate causes change in the amount of heat being transferred from the hot film probe surface to KFME200N

the air flow. A large amount of intake air represents acceleration or high load conditions while a small amount of intake air represents deceleration or idle. The ECM uses this information to control the EGR solenoid valve and correct the fuel amount.

DTC DETECTING CONDITION

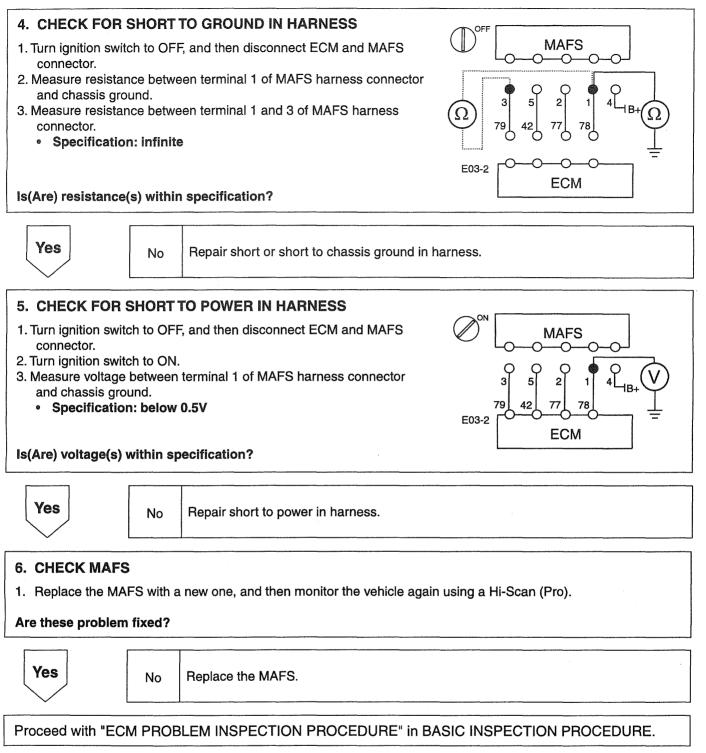
CC-CODE	Detecting Condition	Suspect Area
0a	 Mass air flow < 50 mg/stroke 	
Ob	 Mass air flow > 1,000 mg/stroke 	Open or short in MAFS cirue
04		• MAFS • ECM
05	 Mass air flow sensor fault 	

[SCHEMATIC DIAGRAM]


EWMF200A

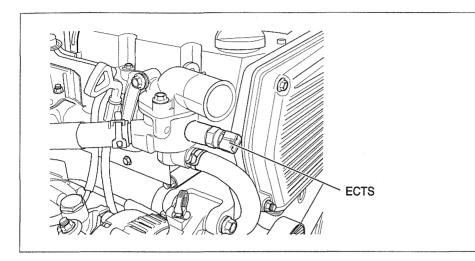
INSPECTION PROCEDURE

1. CHECK MAFS AND ECM CONNECTORS


- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

EWMF200B


FUEL SYSTEM (J3 TCI)

EWMF200C

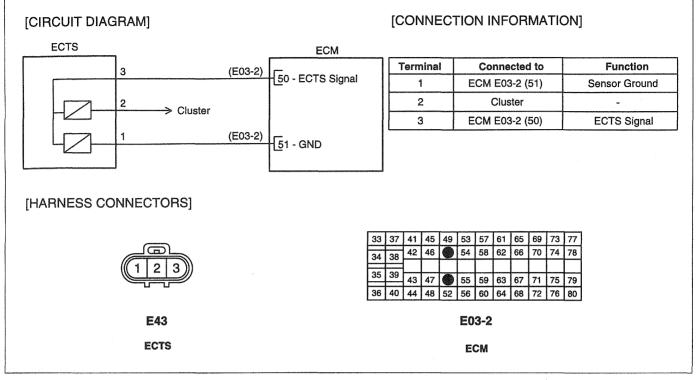
TROUBLESHOOTING FOR DTC E91DF16A

DTC	P0115	Engine Coolant Temperature Sensor (ECTS) Circuit Malfunction	
	0b	Signal low (Open circuit or short circuit to battery line)	
CC-CODE	02	Signal high (Short circuit to ground)	

DESCRIPTION

The engine coolant temperature sensor (ECTS) is located in the engine coolant passage of the cylinder head for detecting the engine coolant temperature. The ECTS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the ECTS decreases as the engine coolant temperature increases, and increases as the engine coolant temperature decreases. The 5 V power source in the ECM is supplied to the ECTS via a resistor in the ECM. That is, the resistor in the ECM and the thermistor in the ECTS are connected in series. When the resistance value of the thermistor in ECTS changes according to the engine coolant temperature, the signal voltage also changes. This information of engine coolant temperature is used in determination of basic fuel quantity and cooling fan control.

DTC DETECTING CONDITION

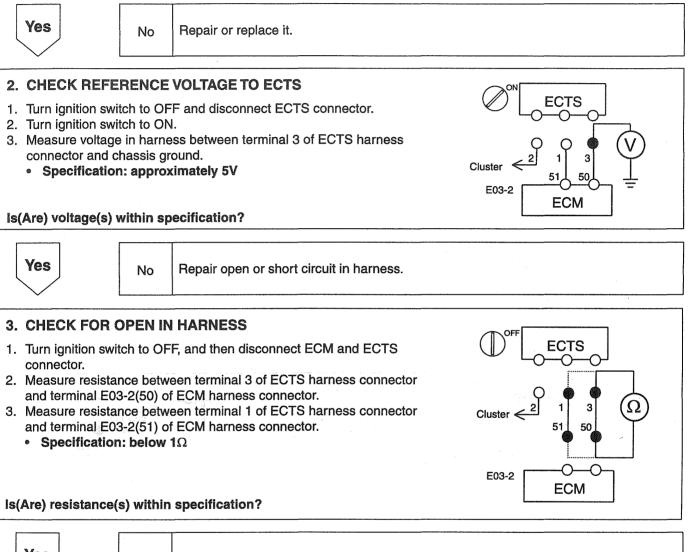

CC-CODE	Detecting Condition	Suspect Area
Ob	 Engine coolant temperature < -49°C(-56.2°F) 	Open or short in ECTS cirucit
02	 Engine coolant temperature > 139°C(282.2°F) 	• ECTS • ECM

SPECIFICATION

Temperature [°C (°F)]	-40(-40)	-20(-4)	0(32)	20(68)	40(104)	60(140)	80(176)
Resistance (kΩ)	44.4	13.4 ~ 16.8	5.74	2.3 ~ 2.6	1.15	0.58	0.32

AFBE200O

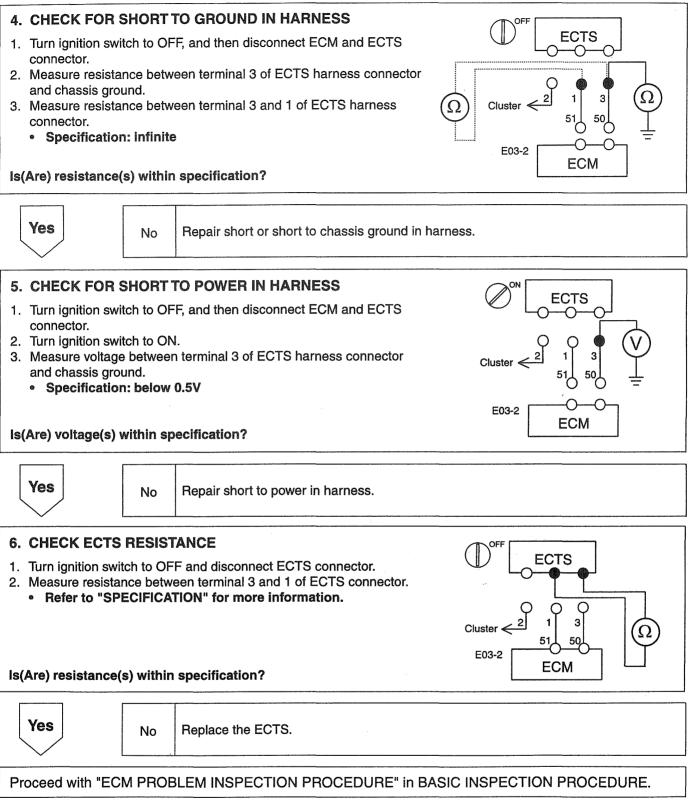
[SCHEMATIC DIAGRAM]


EWMF200D

INSPECTION PROCEDURE

1. CHECK ECTS AND ECM CONNECTORS

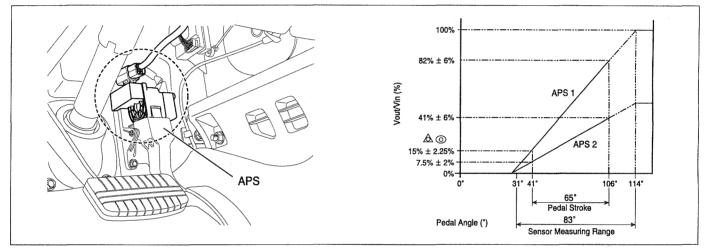
- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.


Are all connectors good?

Yes

No Repair open circuit in harness.

EWMF200E



EWMF200F

TROUBLESHOOTING FOR DTC ECAFD836

DTC	P0120	Accelerator Position Sensor (APS) 1 Circuit Malfunction		
	0a	Signal low (Open circuit or short circuit to ground)		
CC-CODE0bSignal high (Short circuit to battery line)06Value incoherent		Signal high (Short circuit to battery line)		
		Value incoherent		

DTC	P0220	Accelerator Position Sensor (APS) 2 Circuit Malfunction		
	0a	Signal low (Open circuit or short circuit to ground)		
	0b	0b Signal high (Short circuit to battery line)		
CC-CODE	02	Signal low		
	03	Signal high		

EWMF200P

DESCRIPTION

On electronic injection systems, there is no longer a load lever that mechanically controls the fuelling. The flow is calculated by the ECM depending on a number of parameters, including pedal position, which is measured using a potentiometer. The absence of a mechanical link between the accelerator pedal and the injection system presents a risk of loss of control of the engine in the event of a failure of the component in charge of providing the driver's request information to the injection system. The pedal sensor therefore has two potentiometers whose slides aremechanically solid. The two potentiometers are supplied from distinct and different power sources so there is built in redundancy of information giving reliable driver's request information.

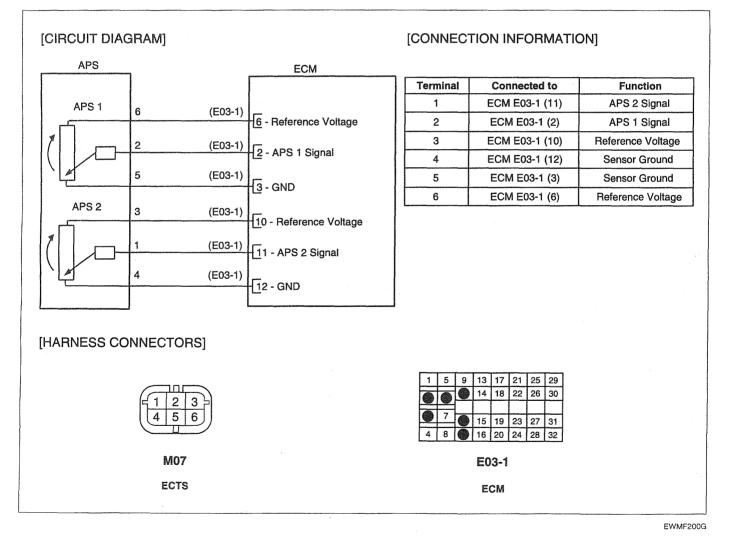
A voltage is generated across the potentiometer in the acceleration position sensor as a function of the accelerator-pedal setting. Using a programmed characteristic curve, the pedal's position is then calculated from this voltage.

DTC DETECTING CONDITION

(P0120)

CC-CODE	Detecting Condition	Suspect Area
0a	Accelerator pedal angle (APS 1) < 4%	
Ob	 Accelerator pedal angle (APS 1) > 95% 	 Open or short in APS cirucit APS
06	 Accelerator pedal angle (APS 1) - Accelerator pedal angle (APS 2) > 8% 	• ECM

FUEL SYSTEM (J3 TCI)

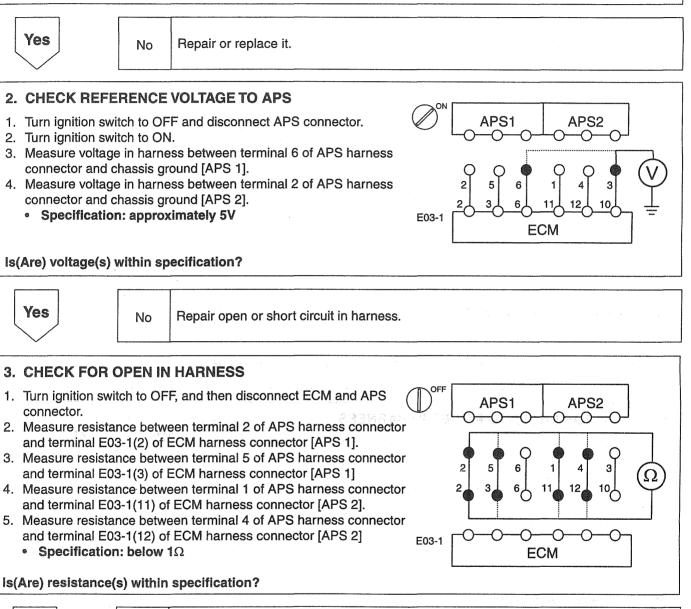

(P0220)

CC-CODE	Detecting Condition	Suspect Area
0a	Accelerator pedal angle (APS 2) < 2%	
Ob	Accelerator pedal angle (APS 2) > 49.5%	Open or short in APS cirucit
02	 Sensor supply voltage < 3.17V 	• APS • ECM
03	 Sensor supply voltage > 4.63V 	

SPECIFICATION

Condition		C.T	W.O.T	
Pedal Angle		41°	106°	
$\lambda = \frac{1}{2} \left(\frac{1}{2} \right)$	APS 1	14.66 ~ 15.34%	77.08 ~ 86.92%	
Vout/Vin (%)	APS 2	7.35 ~ 7.65%	38.5 ~ 43.5%	

[SCHEMATIC DIAGRAM]

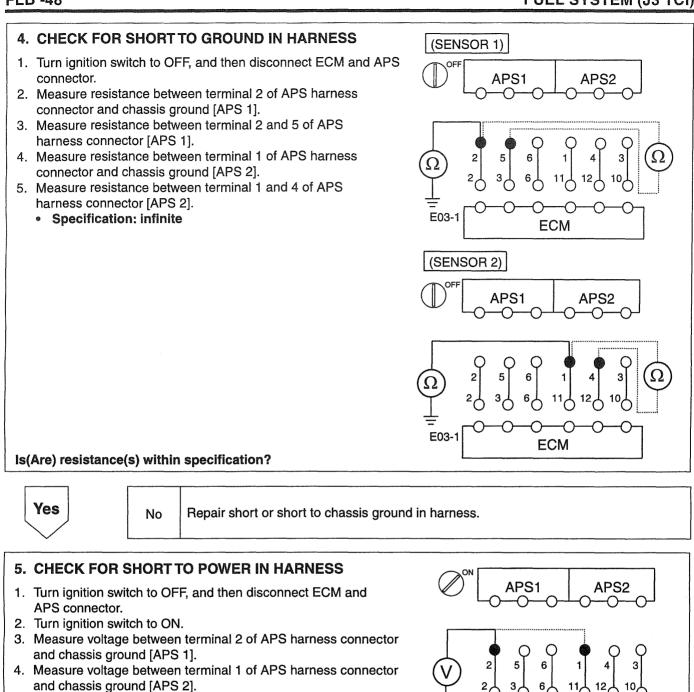

1. CHECK APS AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

Yes

No

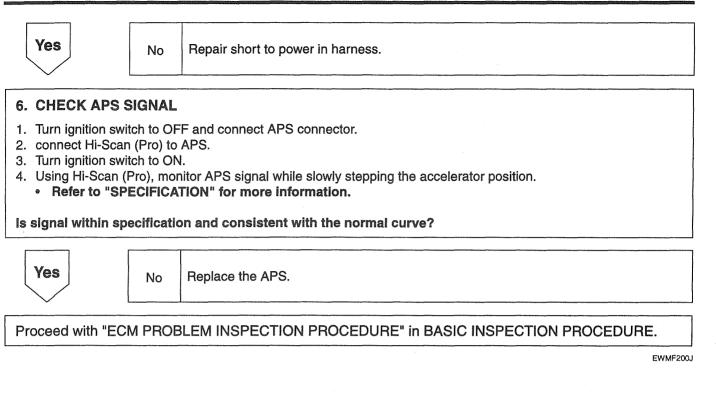


Repair open circuit in harness.

EWMF200H

FLB-48

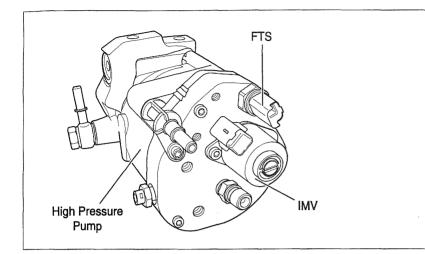
FUEL SYSTEM (J3 TCI)


E03-1

Specification: below 0.5V

Is(Are) voltage(s) within specification?

EWMF200I


ECM

EWMF200Q

TROUBLESHOOTING FOR DTC ED8D1F3D

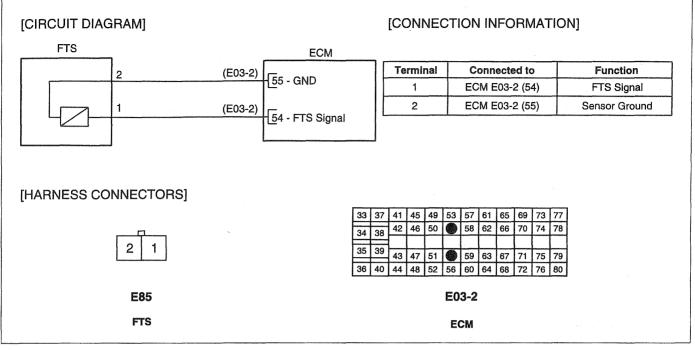
DTC	P0180	Fuel Temperature Sensor (FTS) Circuit Malfunction	
CC-CODE	0b	Signal low (Open circuit or short circuit to battery line)	
	02	Signal high (Short circuit to ground)	

DESCRIPTION

The fuel temperature sensor (FTS) is located in the highpressure pump assembly to measure the fuel temperature. The FTS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the FTS decreases as the fuel temperature increases, and increases as the fuel temperature decreases. The 5 V power source in the ECM is supplied to the FTS via a resistor in the ECM.

That is, the resistor in the ECM and the thermistor in the FTS are connected in series. When the resistance value of the thermistor in FTS changes according to the fuel temperature, the signal voltage also changes. This information of fuel temperature is used in correcting fuel quantity.

DTC DETECTING CONDITION

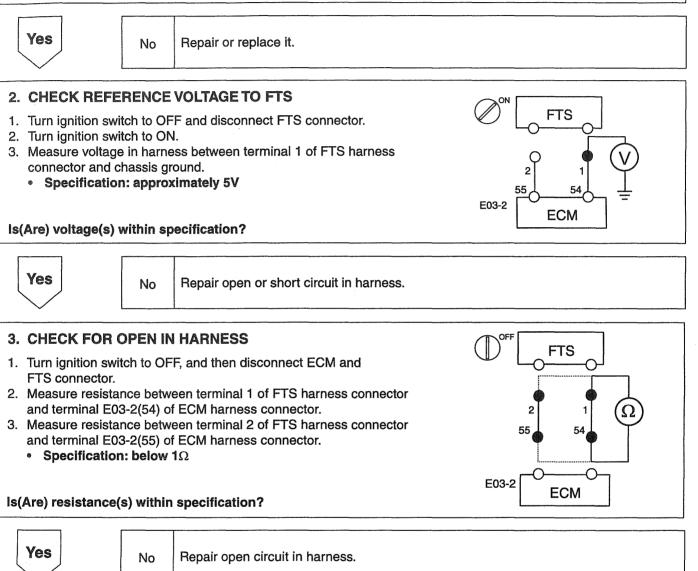

CC-CODE	Detecting Condition	Suspect Area
ОĎ	 Fuel temperature < -40°C(-40°F) 	Open or short in FTS cirucit
02	 Fuel temperature > 140°C(284°F) 	FTS ECM

SPECIFICATION

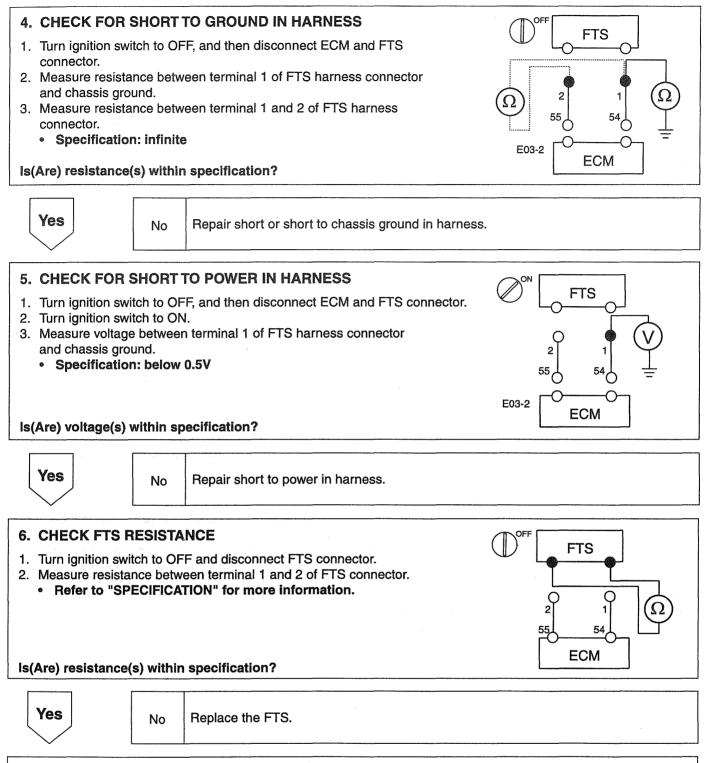
Temperature [°C (°F)]	-30(-22)	-20(-4)	0(32)	20(68)	40(104)	60(140)	80(176)
Resistance (kΩ)	22.2 ~ 31.8	13.2 ~ 18.1	5.2 ~ 6.6	2.3 ~ 2.7	1.1 ~ 1.3	0.54 ~ 0.65	0.30 ~ 0.32

FLB -51

[SCHEMATIC DIAGRAM]


EWMF200K

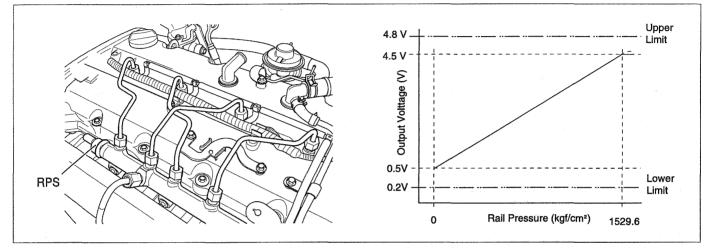
INSPECTION PROCEDURE


1. CHECK FTS AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

EWMF200L



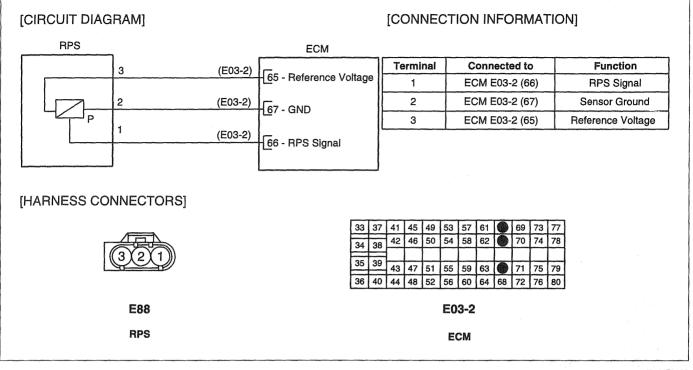
Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF200M

TROUBLESHOOTING FOR DTC E6FE4E7A

DTC	P0190	Rail Pressure Sensor (RPS) Range/Performance Problem	
	0a	Signal low (Short cirucit to ground)	
	0b [°]	Signal high (Open circuit or short circuit to battery line)	
	06	Rail pressure incoherent	
CC-CODE	08	Signal low	
	09	Signal high	
	05	Parameter at maximum limit	
	8d	Above the average threshold	

EWMF200R


DESCRIPTION

The aim of the Rail Pressure Sensor (RPS) is to provide to the ECM the voltage signal corresponding to fuel pressure in the rail. This information is used for fueling and timing calculation. The sensor element (semiconductor device) for converting the pressure to an electric signal is mounted on the diaphragm. The sensor operates as an analog resistor. The change in resistance is proportional to the rail pressure acting upon this diaphragm. A rail pressure change lead to a geometry change. This movement changes the electrical resistance. A bridge circuit on the diaphragm supplies a voltage that is amplified to a range from 0.5 V to 4.5 V (respectively 0 and 1,800 kgf/cm²).

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
0a	• Rail pressure < -114.7 kgf/cm ²	
Ob	 Rail pressure > 1,950.2 kgf/cm² 	
06	 Pressure variation greater than 255 kgf/cm² between two successive measurements. 	
08	 Rail pressure < -91.8 kgf/cm² when IG ON 	Open or short in RPS cirucit
09	 Rail pressure when IG ON is more than 255 kgf/cm² higher than the rail pressure at the previous IG OFF (upwards sensor drift). 	• RPS • ECM
05	 Rail pressure > 1,753.9 kgf/cm² 	
8d	 The rail pressure is > 91.8 kgf/cm² for 20 consecutive IG ON (upwards sensor drift). 	

[SCHEMATIC DIAGRAM]

EWMF200S

INSPECTION PROCEDURE

1. CHECK DTC 1. Connect the Hi-Scan (Pro) to the Data Link Connector (DLC). 2. Turn ignition switch to ON and check that any other DTC(s) is (are) detected. Are the DTCs related to IMV (P1119 or P11200) also set? Yes Do all repairs associated with those codes before proceeding with this procedure. No 2. CHECK RPS AND ECM CONNECTORS 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE. Are all connectors good? Yes Repair or replace it. No 3. CHECK REFERENCE VOLTAGE TO RPS RPS 1. Turn ignition switch to OFF and disconnect RPS connector. 2. Turn ignition switch to ON. 3. Measure voltage in harness between terminal 3 of RPS harness connector and chassis ground. 2 3 Specification: approximately 5V 66 67 65 E03-2 ECM Is(Are) voltage(s) within specification? Yes Repair open or short circuit in harness. No 4. CHECK FOR OPEN IN HARNESS RPS 1. Turn ignition switch to OFF, and then disconnect ECM and RPS connector. 2. Measure resistance between terminal 1 of RPS harness connector and terminal E03-2(66) of ECM harness connector. 2 з 3. Measure resistance between terminal 2 of RPS harness connector and terminal E03-2(67) of ECM harness connector. Specification: below 1Ω E03-2 ECM Is(Are) resistance(s) within specification?

EWMF200T

No

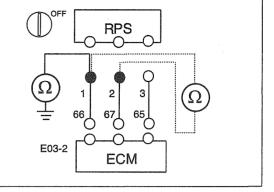
Repair open circuit in harness.

5. CHECK FOR SHORT TO GROUND IN HARNESS

- 1. Turn ignition switch to OFF, and then disconnect ECM and RPS connector.
- 2. Measure resistance between terminal 1 of RPS harness connector and chassis ground.
- 3. Measure resistance between terminal 1 and 2 of RPS harness connector.
 - Specification: infinite

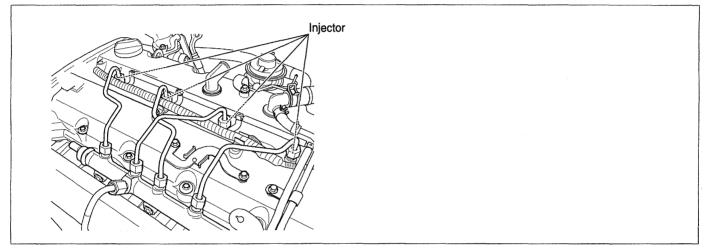
Is(Are) resistance(s) within specification?

No


Repair short or short to chassis ground in harness.

6. CHECK FOR SHORT TO POWER IN HARNESS RPS 1. Turn ignition switch to OFF, and then disconnect ECM and RPS connector. 2. Turn ignition switch to ON. 3. Measure voltage between terminal 1 of RPS harness connector and chassis ground. Specification: below 0.5V E03-2 **ECM** Is(Are) voltage(s) within specification? Yes Repair short to power in harness. No 7. CHECK RPS 1. Replace the RPS with a new one, and then monitor the vehicle again using a Hi-Scan (Pro). Is this problem fixed? Yes Replace the RPS. No

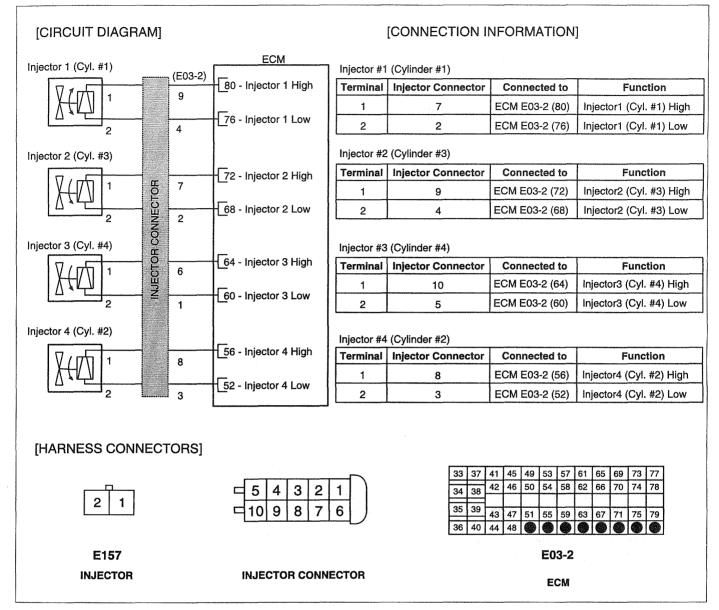
Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.


EWMF200U

TROUBLESHOOTING FOR DTC E35C1F2A

DTC	P0201	Inector #1 (Cylinder #1) Circuit Malfunction	
DTC	P0202	Inector #2 (Cylinder #3) Circuit Malfunction	
DTC	P0203	Inector #3 (Cylinder #4) Circuit Malfunction	
DTC	P0204	Inector #4 (Cylinder #2) Circuit Malfunction	
	04	Signal low	
	91	Injector stuck (Open)	
CC-CODE	86	Injector stuck (Close)	
	01	Open Circuit	
	0c	Short Circuit	

DESCRIPTION

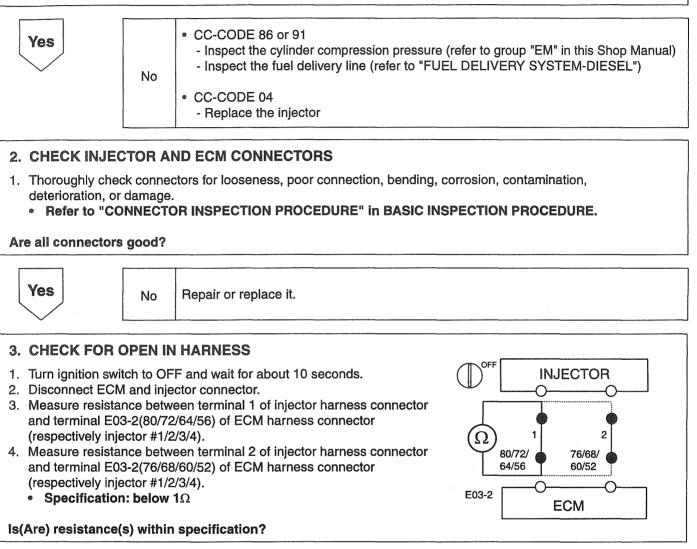

The injector of the Common Rail System is electronically controlled. It has been designed to allow multiple injection with short intervals, to be fully electronically controlled, and to release a small amount of heat. The nozzle of injector opens when the solenoid valve is triggered and permits the flow of fuel. They inject the fuel directly into the engine's combustion chamber. The fuel is stored in the Rail ready for injection and the injected fuel quantity is defined by the injector opening time and the rail pressure. EWMF202M

The excess fuel, which was needed for opening the nozzle of injector, flows back to the tank through a collector line. The return fuel from the pressure-control valve and from the low-pressure stage is also led into this collector line together with the fuel used to lubricate the high-pressure pump.

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
04	MDP (Minimum Drive Pulse) correction determined by the knock sensor strategy exceeds a calibrated value.	Open or short circuit
91	Injector stuck (Open)	in injector • Injector
86	Injector stuck (Close)	Compression pressure
01	Open circuit	 Fuel line ECM
Ос	Short circuit	LOW

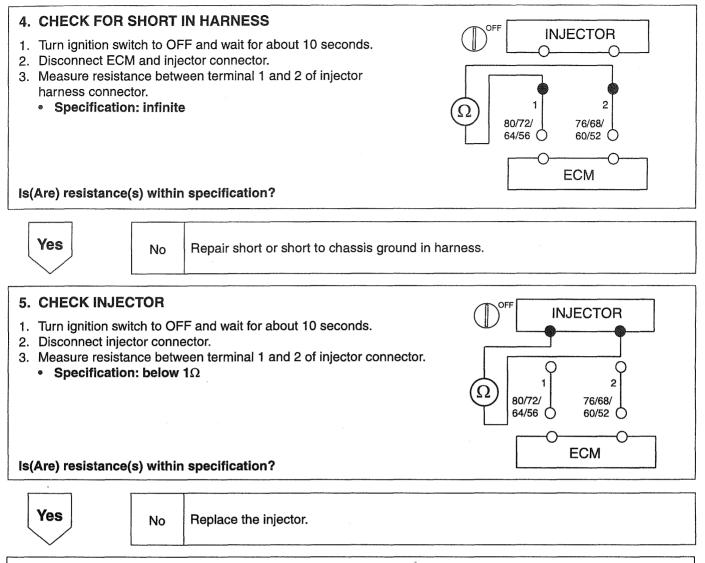
[SCHEMATIC DIAGRAM]


EWMF202N

INSPECTION PROCEDURE

1. CHECK DTC

- 1. Connect the Hi-Scan (Pro) to the Data Link Connector (DLC).
- 2. Turn ignition switch to ON and check that any other DTC(s) is (are) detected.


Are the CC-codes 86, 91, or 04 also set?

No Repair open circuit in harness.

EWMF202O

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF202P

TROUBLESHOOTING FOR DTC E133D74F

DTC	P0226	Accelerator Position Sensor (APS) 2 Range/Performance Problem	
00.0005	06	APS 1/2 signal incoherent	
CC-CODE	0b	Abnormal signal	

DTC DETECTING CONDITION

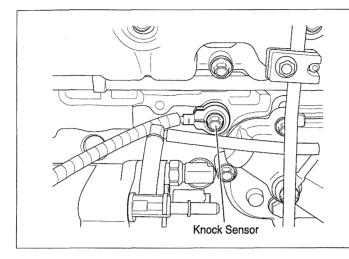
CC-CODE	Detecting Condition	Suspect Area
06	APS 1/2 circuit malfunction	• Refer to P0120, P0220
Ob	 Accelerator pedal fault Brake switch circuit malfunction 	 Accelerator pedal Open or short in brake switch circuit Brake switch ECM

INSPECTION PROCEDURE

• CC-CODE 06: Refer to troubleshooting procedure for DTC P0120, P0220

• CC-CODE 06

- Inspect accelerator pedal


- Inspect brake switch circuit (Refer to troubleshooting procedure for DTC P1543)

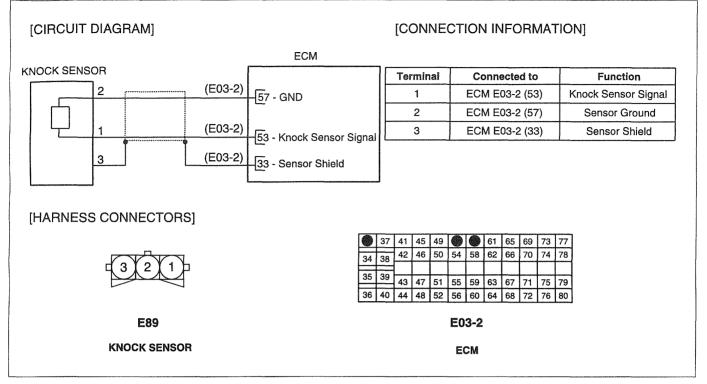
FLB -63

EWMF200V

TROUBLESHOOTING FOR DTC EA19DE6F

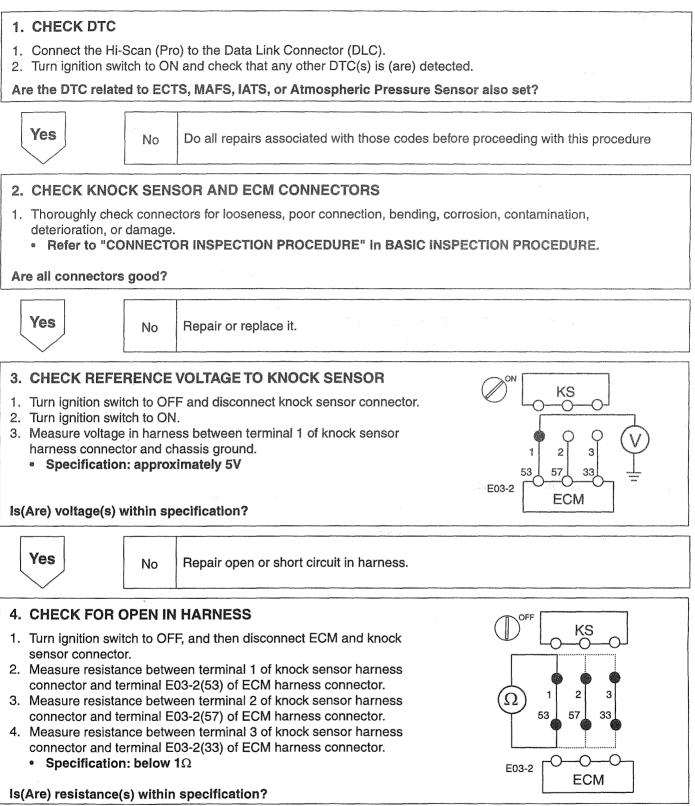
DTC	P0325	Knock Sensor Circuit Malfunction
	09	Signal High
CC-CODE	07	No Signal

DESCRIPTION

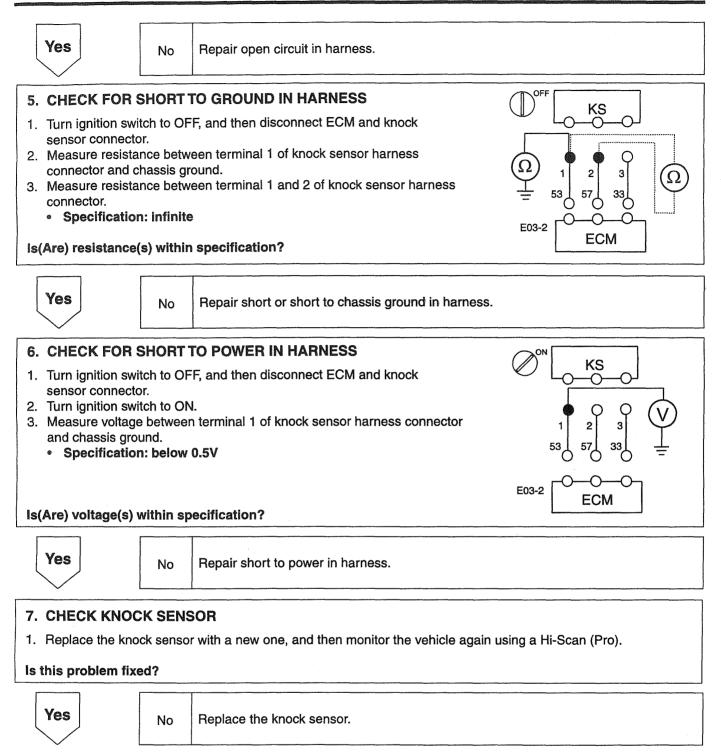

A knock sensor with piezoelectric element (ceramic) is attached to the center of cylinder block to sense the engine knocking condition (Check for knocking for each cylinder). The piezoelectric device output (V) = Q/C =2dF/C (d = piezoelectric integer, C = Electrostatic capacity). The ECM

DTC DETECTING CONDITION

performs the knocking control to make the engine to operate in optimum condition before the knocking limit.


CC-CODE	Detecting Condition	Suspect Area	
09		Open or short in Knock	
07	 Abnormal signal 	Sensor cirucit Knock Sensor ECM 	

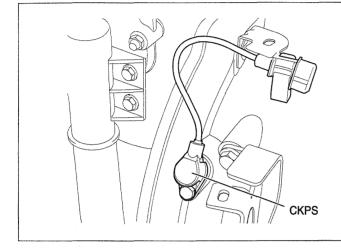
[SCHEMATIC DIAGRAM]


EWMF200W

INSPECTION PROCEDURE

EWMF200X

FUEL SYSTEM (J3 TCI)



Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF200Y

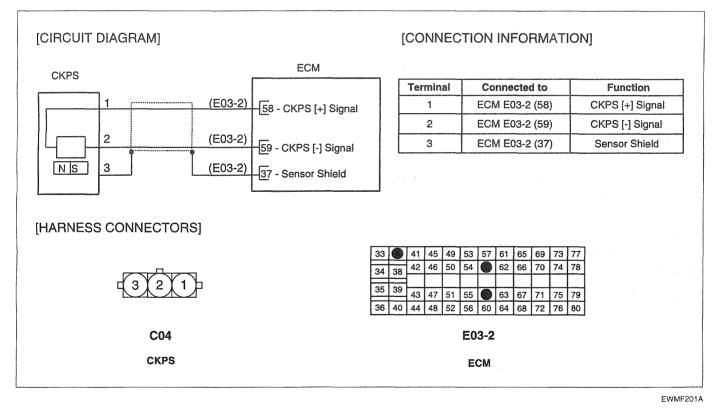
TROUBLESHOOTING FOR DTC E73A1AE4

DTC	P0335	Crankshaft Position Sensor (CKPS) Circuit Malfunction
	06	Abnormal airgap
	07	No signal
	92	Too many missing teeth detected
CC-CODE	93	Too many extra teeth detected
	94	Missing teeth detected
	95	Extra teeth detected

AFBE200Z

DESCRIPTION

Piston position on combustion chamber is the substantial to define the starting of injection timing. All engine pistons are connected to crankshaft by connecting rod. Crankshaft position sensor (CKPS) senses the information concerning all piston positions and uses this signal to calculate the injection timing and engine speed. Camshaft position sensor (CMPS) senses the position of camshaft in reference to the upper dead point of compression of cylinder and sends this signal, based on which the ECM determines the injection sequence of each cylinder and the fuel injection timing.

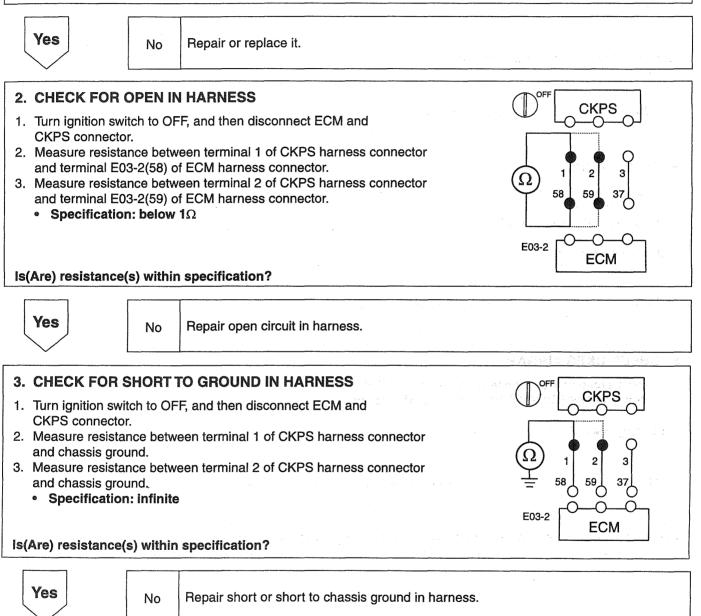

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
06	 No gap detection on the engine flywheel, but no extra or mission teeth detected 	
07	 Loss of engine speed sensor signal 	
92	 More than 4 missing teeth detected on an engine flywheel rotation 	Open or short in CKPS
93	 More than 2 extra teeth detected on an engine flywheel rotation 	● CKPS ● ECM
94	 4 missing teeth detected on an engine flywheel rotation 	
95	• 2 extra teeth detected on an engine flywheel rotation	

SPECIFICATION

Air gab between target wheel and CKPS	0.5 ~ 1.5 mm
---------------------------------------	--------------

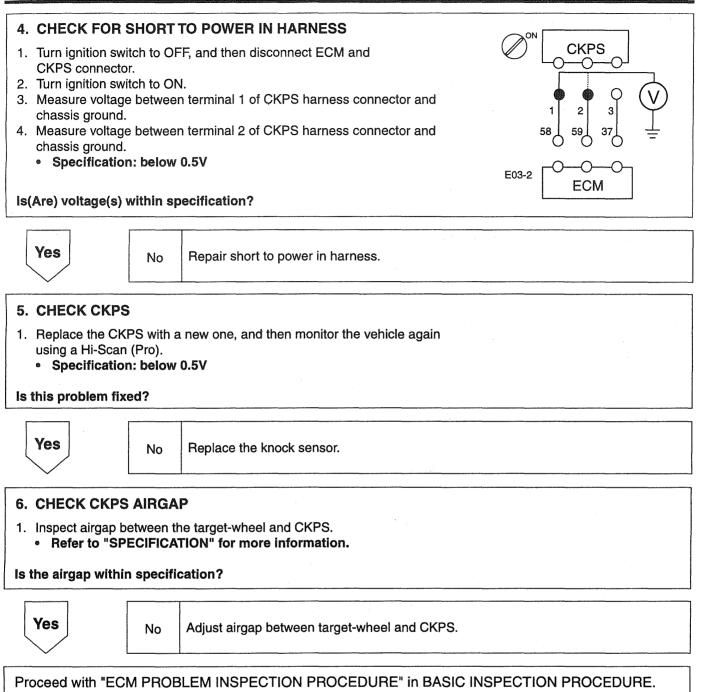
[SCHEMATIC DIAGRAM]



INSPECTION PROCEDURE

1. CHECK CKPS AND ECM CONNECTORS

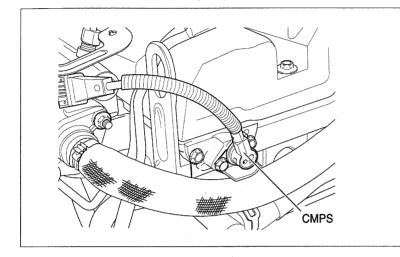
- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.


Are all connectors good?

FLB -69

EWMF201B

FUEL SYSTEM (J3 TCI)



EWMF201C

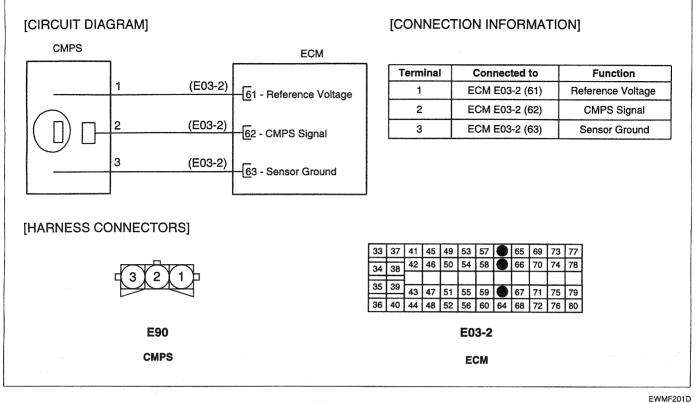
FLB -70

TROUBLESHOOTING FOR DTC E37B3222

DTC	P0340	Camshaft Position Sensor (CMPS) Circuit Malfunction	
CC-CODE	07	No signal	
CC-CODE	06	CMPS/CKPS signal incoherent	

DESCRIPTION

Piston position on combustion chamber is the substantial to define the starting of injection timing. All engine pistons are connected to crankshaft by connecting rod. Crankshaft position sensor (CKPS) senses the information concerning all piston positions and uses this signal to calculate the injection timing and engine speed. Camshaft position sensor (CMPS) senses the position of camshaft in

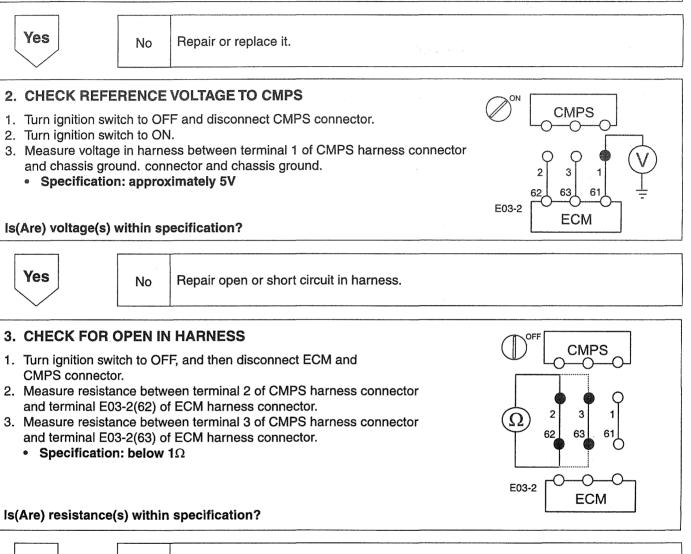

DTC DETECTING CONDITION

reference to the upper dead point of compression of cylinder and sends this signal, based on which the ECM determines the injection sequence of each cylinder and the fuel injection timing.

CC-CODE Detecting Condition		Suspect Area
07	• No signal	Open or short in CMPS cirucit
06	CMPS/CKPS incoherent	• CMPS • ECM

AFBE204D

[SCHEMATIC DIAGRAM]

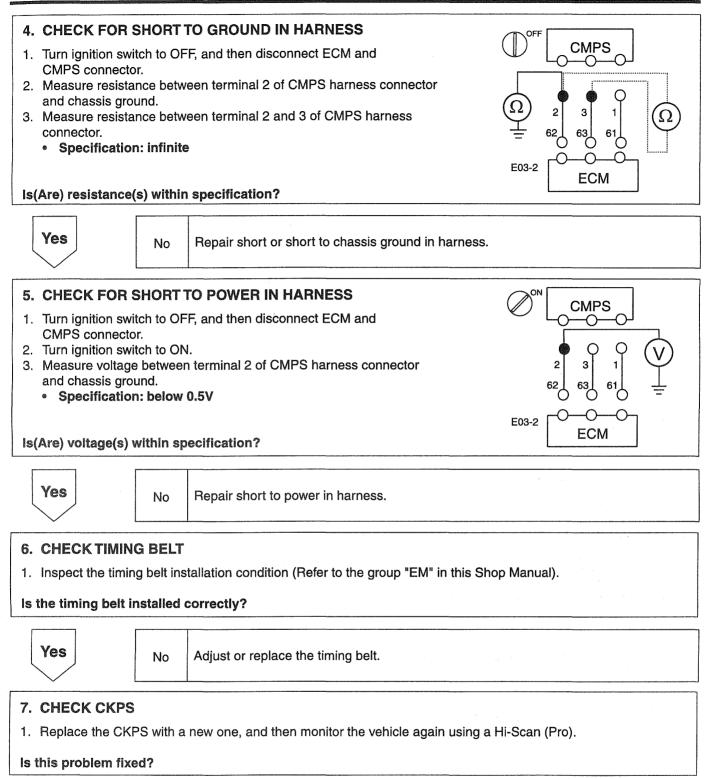

WWW 2010

INSPECTION PROCEDURE

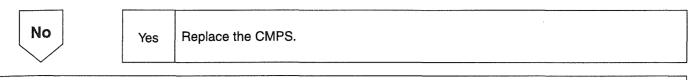
1. CHECK CMPS AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?



No Repair open circuit in harness.


EWMF201E

FUEL SYSTEM (J3 TCI)

EWMF201F

FLB -74

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF204E

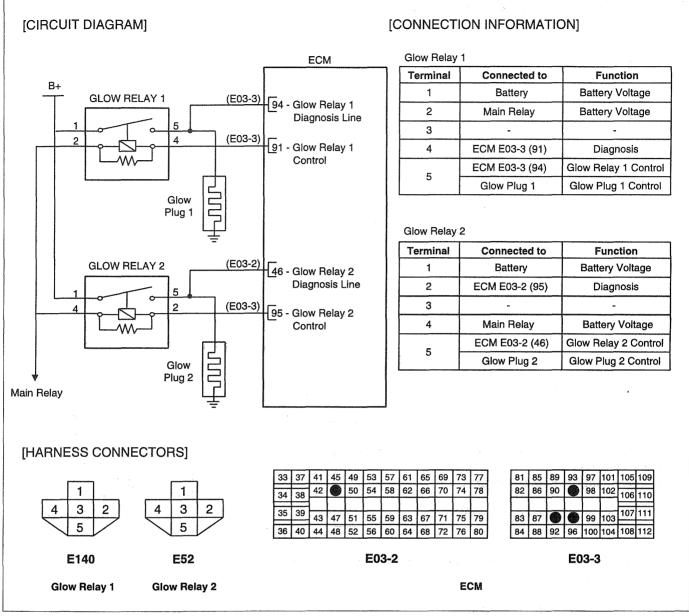
and the coolant temperature. The ECM controls the glow

plug via glow plug relay.

TROUBLESHOOTING FOR DTC E0430229

DTC	P0380	Glow Relay 1 Circuit Malfunction	
0a Signal low (Open circuit or short circuit to gro		Signal low (Open circuit or short circuit to ground)	
CC-CODE	03	Signal high (Short circuit to battery line)	
	0a	Open circuit or short circuit to ground	
	03	Short circuit to battery line	

DTC	P0382	Glow Relay 2 Circuit Malfunction	
	0a	Signal low (Open circuit or short circuit to ground)	
	03	Signal high (Short circuit to battery line)	
CC-CODE -	0a	Open circuit or short circuit to ground	
	03	Short circuit to battery line	


DESCRIPTION

Glow plug plays an efficient role at cold start. It also shortens the warm-up period, a fact that is highly relevant for exhaust emissions. The time of preheating is determined by a number of parameters that include the engine speed

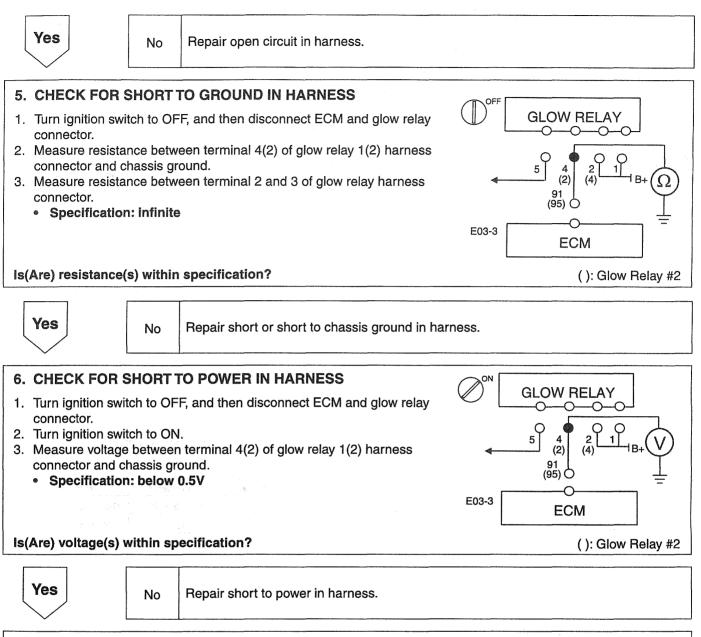
DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
0a	Open or short to ground in glow relay circuit	 Open or short in Glow
03	 Short to battery line in glow relay circuit 	Relay cirucit • Glow Relay • ECM

[SCHEMATIC DIAGRAM]

EWMF201H

INSPECTION PROCEDURE


1. CHECK GLOW RELAY AND ECM CONNECTORS 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE. Are all connectors good? Yes Repair or replace it. No 2. CHECK GLOW RELAY 1. Turn ignition switch to OFF and remove the glow relay. 2. Apply power to the terminal 2(4) and ground termnal 4(2) of glow relay 1(2). 3. Check if glow relay works well. (If glow relay works normally, a "click" sound can be heard). Does the glow relay operate normally? Yes Replace the glow plug relay No 3. CHECK REFERENCE VOLTAGE TO GLOW RELAY **GLOW RELAY** 1. Turn ignition switch to OFF and disconnect glow relay connector. \circ 2. Turn ignition switch to ON. 59 3. Measure voltage in harness between terminal 1 of glow relay harness connector and chassis ground. 4. Measure voltage in harness between terminal 2(4) of glow relay harness (95) connector and chassis ground. E03-3 Specification: approximately B+ **ECM** Is(Are) voltage(s) within specification? (): Glow Relay #2 Yes Repair open or short circuit in harness. No 4. CHECK FOR OPEN IN HARNESS OFF GLOW RELAY 1. Turn ignition switch to OFF, and then disconnect ECM and glow relay connector. 2. Measure resistance between terminal 4(2) of glow relay 1(2)harness 5 connector and terminal E03-3(91)(E03-3(95)) of ECM harness connector. • Specification: below 1Ω 91 (95) E03-3 ECM

Is(Are) resistance(s) within specification?

EWMF2011

(): Glow Relay #2

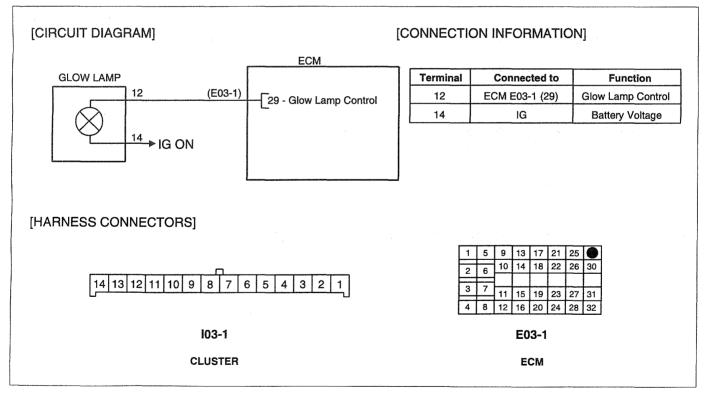
Ω

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF201J

TROUBLESHOOTING FOR DTC EOOC6DA7

DTC	P0381	Glow Indicator Lamp Circuit Malfunction	
	0a	Open circuit or short circuit to ground	
CC-CODE	03	Short circuit to battery line	

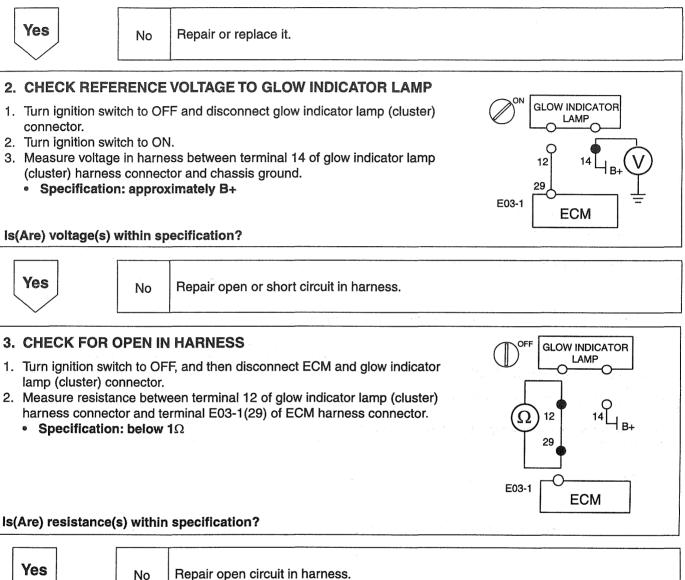

DESCRIPTION

Glow plugs in the diesel engine are small 12 V heating elements with the tip exposed to a small chamber where the volume of air can readily be heated. When the diesel engine is started up, the glow plug preheating current is controlled, taking into account factors such as coolant temperature. In addition to shortening preheating time, the surface temperature of the glow plug is maintained at a fixed temperature after the engine has been started. This has the effect of stabilizing engine speed and reducing the amount of smoke. The preheating warning light (Glow Indicator Lamp), which is located on the cluster, notifies the driver that the ECM is preheating it to improve the driving performance.

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
0a	Open or short to ground in glow indicator lamp circuit	 Open or short in Glow
03	 Short to battery line in glow indicator lamp circuit 	Indicator Lamp cirucitGlow Indicator LampECM

[SCHEMATIC DIAGRAM]

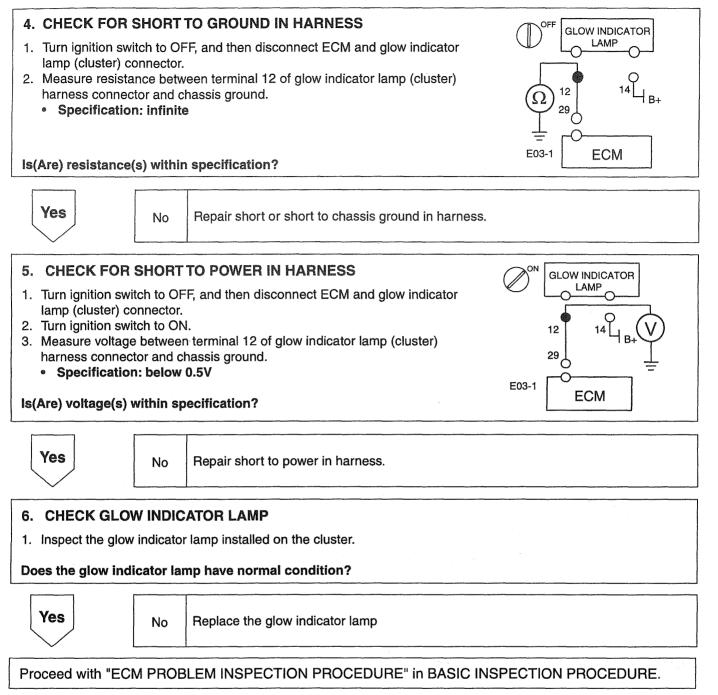

EWMF202R

INSPECTION PROCEDURE

1. CHECK GLOW INDICATOR LAMP (CLUSTER) AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?



Yes

Repair open circuit in harness.

EWMF202S

FUEL SYSTEM (J3 TCI)

EWMF202T

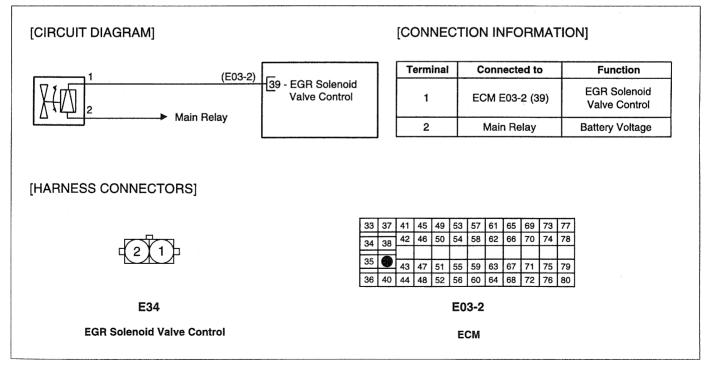
FLB -82

TROUBLESHOOTING FOR DTC E5DD1E09

DTC	P0400	EGR Solenoid Valve Circuit Malfucntion	
	0a	Open circuit or short circuit to ground	
CC-CODE	03	Short circuit to battery line	

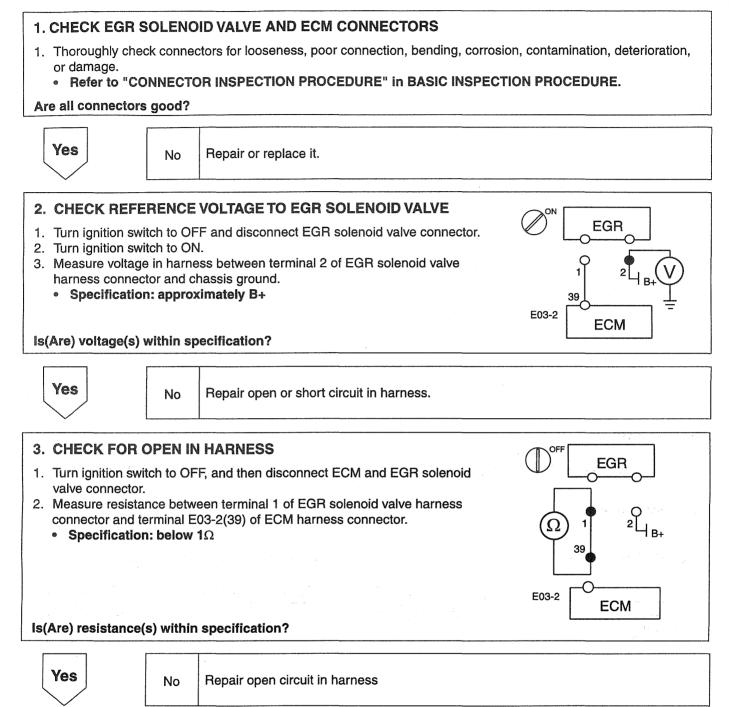
DESCRIPTION

The exhaust-gas recirculation (EGR) system is designed to introduce exhaust gas into the engine' s intake manifold. Up to a certain degree, this system enables to reduce the formation of oxides of nitrogen (NOx) by cooling the combustion process. EGR solenoid valve will not open under all driving conditions. For it to cycle, the engine must be at normal operating temperature and not under heavy load. The amount and timing of exhaust gas introduced into the combustion cycle varies by such factors as engine vacuum, exhaust system back pressure, coolant temperature and accel position. Depending upon the engine's operating point, the air/gas mass drawn into the cylinders can be composed of up to 40% exhaust gas. Using the signal generated by the ECM control circuit, the EGR valve opens so that exhaust gas can flow into the intake manifold. If the EGR valve begins to clog or only partially opens, its flow will be reduced and emissions will increase.

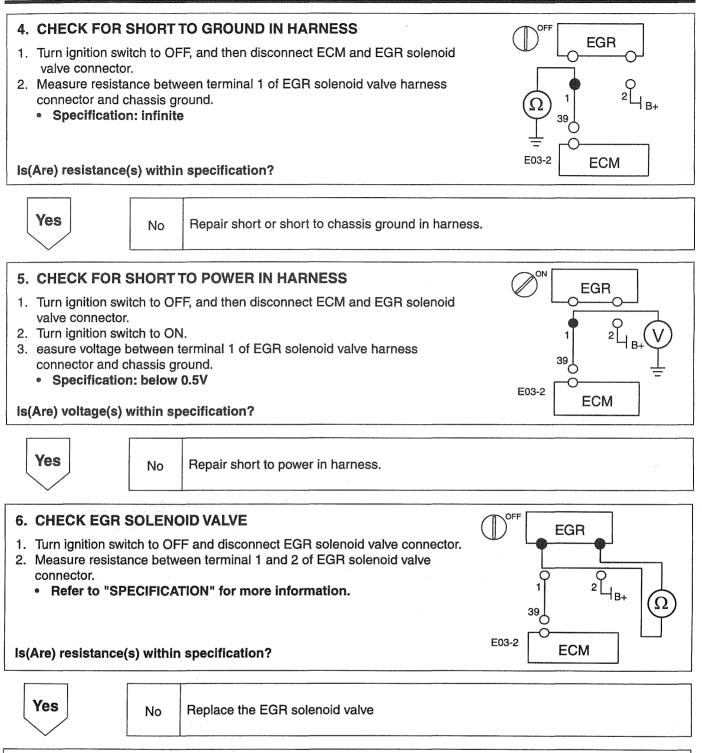

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
0a	 EGR solenoid valve duty > 95% 	 Open or short in EGR
03	 EGR solenoid valve duty < 5% 	Solenoid Valve cirucitEGR Solenoid ValveECM

SPECIFICATION


EGR Solenoid Valve Resistance (Ω)	15.0 ~ 16.0Ω at 20°C (68°F)	1

[SCHEMATIC DIAGRAM]


EWMF201L

INSPECTION PROCEDURE

EWME201M

FLB -84

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

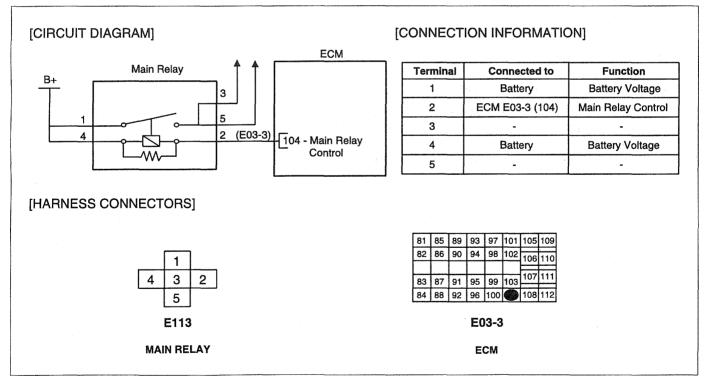
EWMF201N

FLB -85

TROUBLESHOOTING FOR DTC E5DF4755

DTC	P0560	Battery Voltage Malfunction
00.0005	08	Battery voltage too low
CC-CODE	09	Battery voltage too high

DESCRIPTION

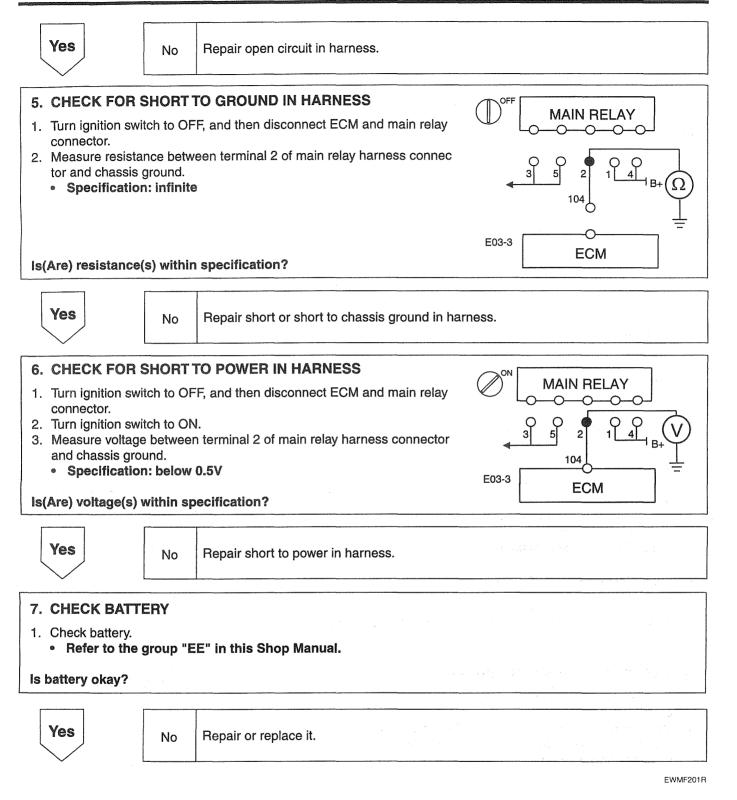

The charging system includes a battery, generator with a built in regulator, the charging indicator light, and connecting wiring. The generator uses diodes to rectify alternating current (AC) to direct current (DC). The ECM provides ground to one side of coil of main relay and the other side

DTC DETECTING CONDITION

is connected to battery. The ECM monitors battery voltage and the voltage after main relay.

CC-CODE	Detecting Condition	Suspect Area
08	 Battery voltage < 6V at engine speed = 700 rpm 	 Open or short in Main
09	 Battery voltage > 18V at engine speed = 700 rpm 	Relay cirucit Main Relay Battery Alternator ECM

[SCHEMATIC DIAGRAM]


EWMF201P

INSPECTION PROCEDURE

1. CHECK MAIN RELAY, BATTERY CABLE AND ECM CONNECTORS 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE. Are all connectors good? Yes Repair or replace it. No 2. CHECK MAIN RELAY 1. Turn ignition switch to OFF and remove the main relay. 2. Apply power to the terminal 4 and ground termnal 2 of main relay. 3. Check if main relay works well. (If main relay works normally, a "click" sound can be heard). Does the main relay operate normally? Yes Replace the glow plug relay No 3. CHECK POWER TO MAIN RELAY 1. Turn ignition switch to OFF and disconnect main relay connector. MAIN RELAY 2. Turn ignition switch to ON. 3. Measure voltage in harness between terminal 4 of main relay harness connector and chassis ground. 5 2 4. Measure voltage in harness between terminal 1 of main relay harness 104 connector and chassis ground. E03-3 Specification: approximately B+ ECM Is(Are) voltage(s) within specification? Yes Repair open or short circuit in harness. No 4. CHECK FOR OPEN IN HARNESS MAIN RELAY 1. Turn ignition switch to OFF, and then disconnect ECM and main relay \cap \cap \neg connector. 2. Measure resistance between terminal 2 of main relay harness connector and terminal E03-3(104) of ECM harness connector. Specification: below 1Ω E03-3 ECM Is(Are) resistance(s) within specification?

EWMF201Q

FUEL SYSTEM (J3 TCI)

8. CHECK ALTERNATOR

- 1. Check alternator.
 - Refer to the group "EE" in this Shop Manual.

Is alternator okay?

No Repair or replace it.

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

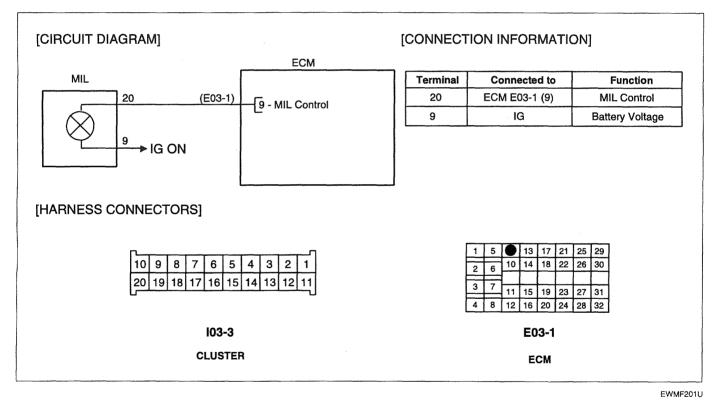
EWMF201S

malfunction indicator lamp is lit for 5 seconds to indicate

that the MIL operates normally.

TROUBLESHOOTING FOR DTC EC60D8FC

DTC	P0650	Malfunction Indicator Lamp Circuit Malfunction
	0a	Open circuit or short circuit to ground
CC-CODE 03 Short circuit to battery line		Short circuit to battery line


DESCRIPTION

The Malfunction Indicator Lamp (MIL), which is located in the instrument cluster, comes on to notify the driver that theremay be a problem with the vehicle and that service is needed. Immediately after the ignition switch turns on, the

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
Oa	Open or short to ground in MIL circuit	 Open or short in MIL cirucit
03	Short to battery line in MIL circuit	• MIL • ECM

[SCHEMATIC DIAGRAM]

1. CHECK MIL(CLUSTER) AND ECM CONNECTORS

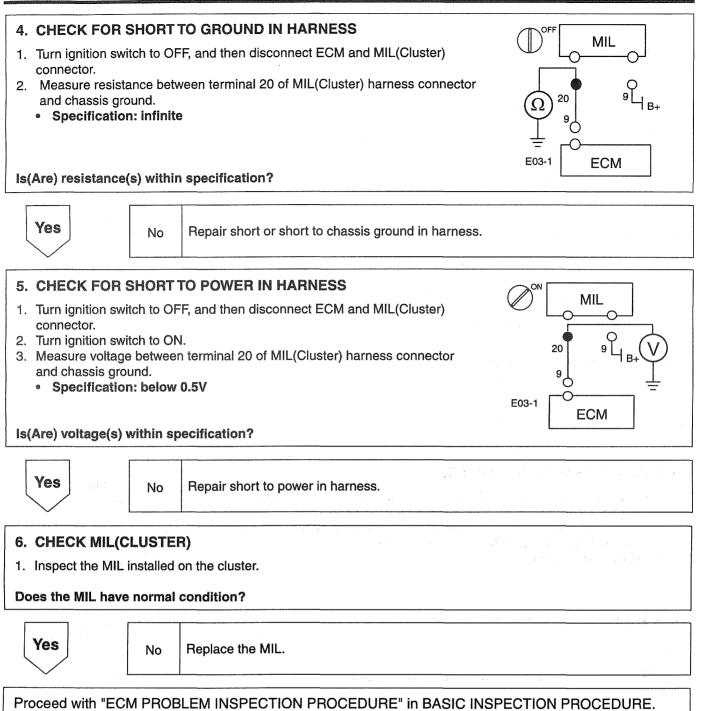
INSPECTION PROCEDURE

1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration. or damage. Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE. Are all connectors good? Yes Repair or replace it. No 2. CHECK POWER TO MIL MIL 1. Turn ignition switch to OFF and disconnect MIL(Cluster) connector. 2. Turn ignition switch to ON. 3. Measure voltage in harness between terminal 9 of MIL(Cluster) harness 20 connector and chassis ground. Specification: approximately B+ 0 9 E03-1 ECM Is(Are) voltage(s) within specification? Yes Repair open or short circuit in harness. No 3. CHECK FOR OPEN IN HARNESS OFF MIL 1. Turn ignition switch to OFF, and then disconnect ECM and MIL(Cluster) connector. 2. Measure resistance between terminal 20 of MIL(Cluster) harness connector 9Ť Ω 20

- and terminal E03-1(9) of ECM harness connector.
- Specification: below 1Ω

Is(Are) resistance(s) within specification?

Yes Repair open circuit in harness. No


EWMF201V

-I _{В+}

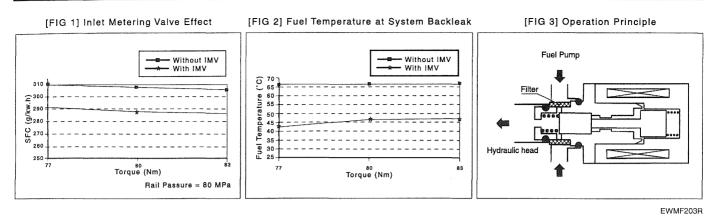
ECM

E03-1

FLB -91

EWMF201W

DTC	P1119	Inlet Metering Valve (IMV) Control Malfunction
	96	Fuel leakage
CC-CODE	97	Fuel leakage
CC-CODE	98	Fuel leakage)
	99	Fuel leakage
DTC	P1120	Inlet Metering Valve (IMV) Circuit Malfunction


TROUBLESHOOTING FOR DTC EDE9BA65

DTC	P1120	Inlet Metering Valve (IMV) Circuit Malfunction	
	0a	Open circuit or short circuit to ground	
	03	Short circuit to battery line	
CC-CODE	05	Fuel leakage	
	04	Fuel leakage	
Ē	08	Fuel leakage	

DESCRIPTION

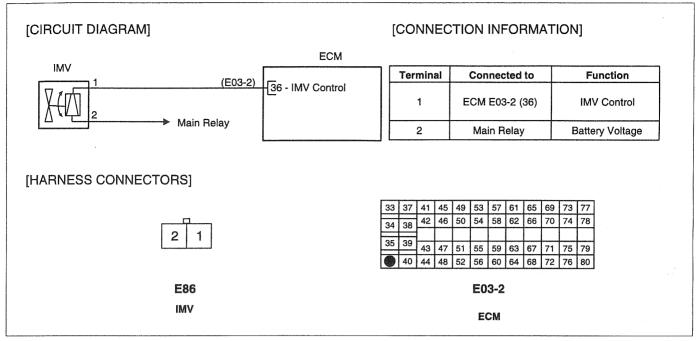
The Inlet Metering Valve (IMV) is used to control the rail pressure by regulating the amount of fuel which is sent to the pumping element of the HP pump. This IMV has two purposes:

- 1. Firstly, it allows the efficiency of the injection system to be improved, since the HP pump only compresses the amount of fuel necessary to maintain in the rail the level of pressure required by the system as a function of the engine operating conditions.
- 2. Secondly, it allows the temperature to be reduced in the fuel tank. When the excess fuel is discharged into the back leak circuit, the pressure reduction in the fluid (fromrail pressure down to atmospheric pressure) gives off a large amount of heat. This leads to a temperature rise in the fuel entering the tank. In order to prevent too high a temperature being reached, it is necessary to limit the amount of heat generated by the fuel pressure reduction, by reducing the back leak flow. To reduce the back leak flow, it is sufficient to adapt the flow of the HP pump to the engine requirements throughout its operating range.

DTC DETECTING CONDITION

(P1119)

CC-CODE	Detecting Condition	Suspect Area
96	. The reil process is alightly lower than the domend	 Open or short in IMV cirucit IMV High pressure fuel circuit Low pressure fuel circuit
97	 The rail pressure is slightly lower than the demand. 	
98		
99	The rail pressure is slightly higher than the demand.	InjectorHigh pressure pumpECM


(P1120)

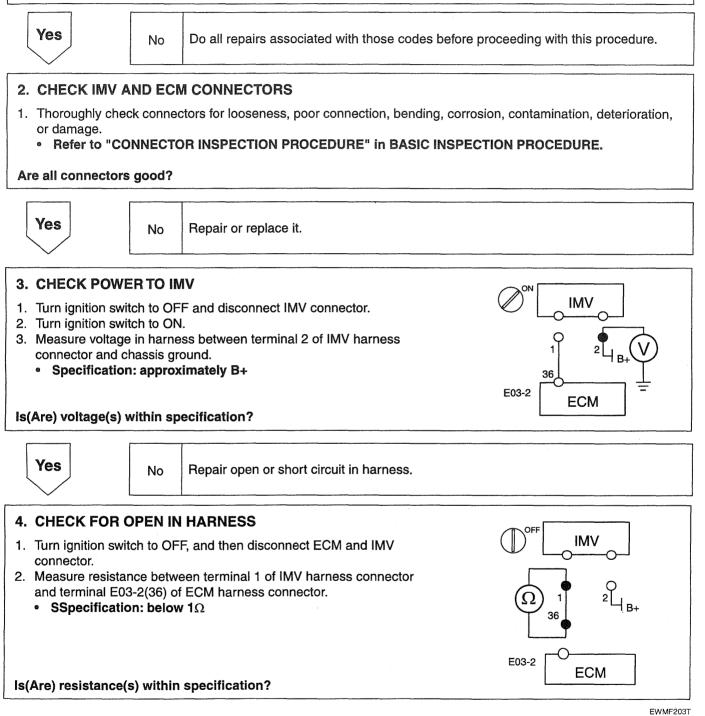
CC-CODE	Detecting Condition	Suspect Area
0a	Open or short to ground in IMV circuit	
03	Short to battery line in IMV circuit	Open or short in IMV cirucit
05	 The rail pressure remains 101.9 kgf/cm² above the demand for a variable time depending on the difference. 	 IMV High pressure fuel circuit Low pressure fuel circuit
 The rail pressure remains 101.9 kgf/cm² below the demand for a variable time depending on the difference. 		InjectorHigh pressure pumpECM
08	The pressure rise on starting is too slow.	

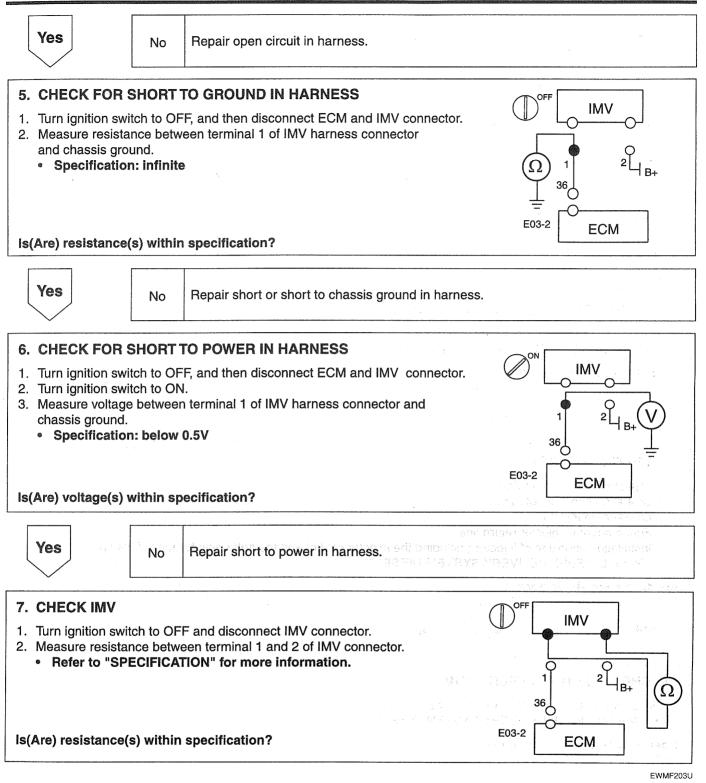
SPECIFICATION

Inlet Metering Valve Resistance (Ω)	5.5Ω at 20°C (68°F)
--	---------------------

[SCHEMATIC DIAGRAM]

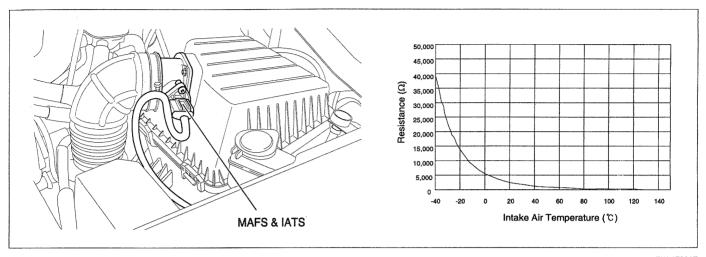
EWMF203S


INSPECTION PROCEDURE


FUEL SYSTEM (J3 TCI)

- 1. Connect the Hi-Scan (Pro) to the Data Link Connector (DLC).
- 2. Turn ignition switch to ON and check that any other DTC(s) is (are) detected.

Is P0190 also set?


FLB -97

		FUEL SYSTEM (J3 TC
Yes	No	Replace the IMV
8. CHECK LOW	PRESS	URE FUEL CIRCUIT
 Leakage and c The absence of disconnect the 	of fuel in connectio onnectio of air in th pump re	n condition of fuel line from fuel tank to high pressure pump n condition of fuel line from fuel tank to injector via high pressure pump e low pressure circuit (If air exists, place a receptacle under the venturi, and then turn hose at the venturi and prime the fuel circuit with the hand-priming pump).
Are all system abo	ove norm	
Yes	No	Repair or replace it.
9. CHECK HIGH	PRESS	URE FUEL CIRCUIT
 Inspect high pre Refer to "FU 		el circuit. VERY SYSTEM-DIESEL".
Does it have norm	al condi	tion?
Yes	No	Repair or replace it.
10. CHECK INJE	CTOR	
	dition of in ector f injector adition of	njector
Are all system abo	ve norm	al?
Yes	No	Repair or replace it.
11. CHECK HIGH	I PRES	SURE PUMP
		on of high pressure pump. VERY SYSTEM-DIESEL".
Does it have norm	al condit	ion?
Yes	No	Repair or replace it.
Proceed with "EC	M PROB	LEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF203V

TROUBLESHOOTING FOR DTC E771E34A

DTC	P1140	Intake Air Temperature Sensor (IATS) Circuit Malfunction	
00.0005	0b	Signal low (Open circuit or short circuit to battery line)	
CC-CODE	02	Signal high (Short circuit to ground)	

EWMF201Z

DESCRIPTION

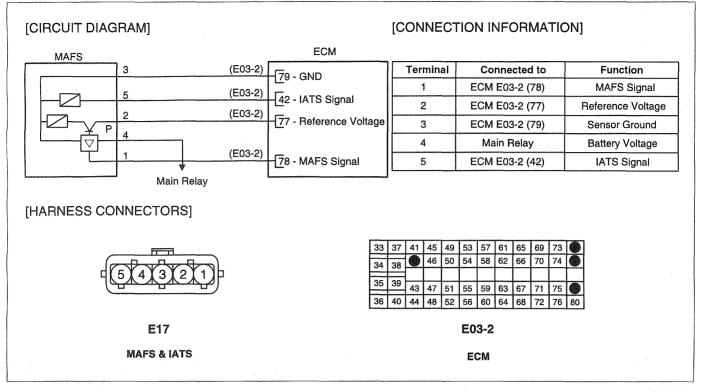
The intake air temperature sensor (IATS) is built in the mass air flowmeter sensor (MAFS). It is located between the air cleaner assembly and the throttle device. The IATS uses a thermistor whose resistance changes with the temperature to check the mass of intake air entering the engine.

The electrical resistance of the IATS decreases as the temperature increases, and increases as the temperature decreases. The 5 V power source in the ECM is supplied

to the IATS via a resistor in the ECM. That is, the resistor in the ECM and the thermistor in the IATS are connected in series. When the resistance value of the thermistor in IATS changes according to the intake air temperature, the signal voltage also changes. Using this signal, the information of the intake air temperature, the ECM corrects fuel flow, injection timing.

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
Ob	 Intake air temperature < -49°C(-56.2°F) 	Open or short in IATS cirucit
02	 Intake air temperature > 130°C(266°F) 	IATS ECM

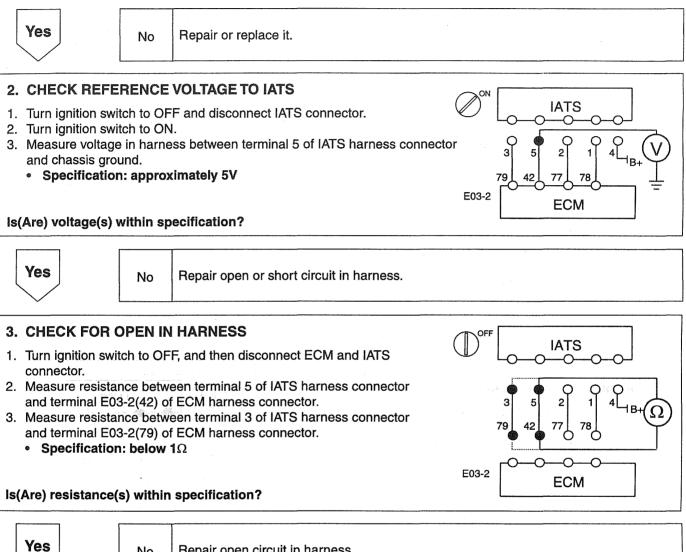

SPECIFICATION

Temperature [°C (°F)]	-40(-40)	-20(-4)	0(32)	20(68)	40(104)	60(140)	80(176)
Resistance (kΩ)	39.3	13.9	5.5	2.4	1.2	0.6	0.3

FLB -100

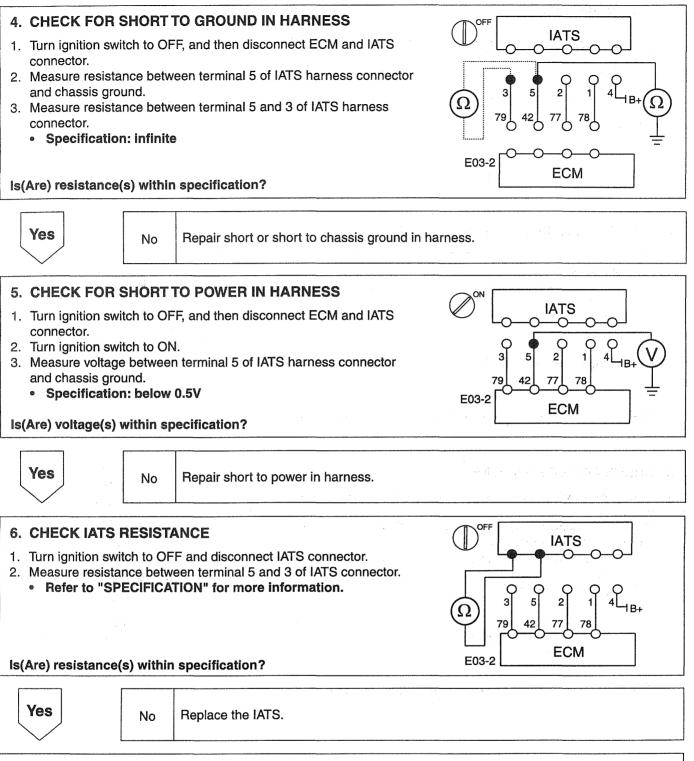
FUEL SYSTEM (J3 TCI)

[SCHEMATIC DIAGRAM]


EWMF200A

INSPECTION PROCEDURE

1. CHECK IATS AND ECM CONNECTORS


- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

No Repair open circuit in harness.

EWMF202B

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF202C

TROUBLESHOOTING FOR DTC E32031F0

DTC	P1150	Atmospheric Pressure Sensor Fault
	0a	Signal low (Open circuit or short circuit to ground)
CC-CODE	03	Signal high (Short circuit to battery line)

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
0a	 Atmospheric pressure < 0.43 kgf/cm² 	Open or short in ECM
03	 Atmospheric pressure > 1.08 kgf/cm² 	internal circuit

INSPECTION PROCEDURE

Replace the ECM

TROUBLESHOOTING FOR DTC ED6BC73B

DTC	P1300	Injector Specific Data Fault
CC-CODE	04	Injector parameters incorrect

XXXXXXXX - XXXXXXX Injector Specific Data	

EWMF201X

DTC DETECTING CONDITION

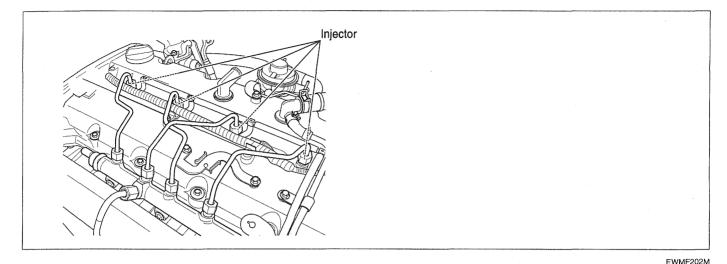
CC-CODE	Detecting Condition	Suspect Area
04	 Incorrect injector specific data 	• ECM

INSPECTION PROCEDURE

1. VERIFICATION OF INJECTOR SPECIFIC DATA

- 1. Connect the Hi-Scan (Pro) to the Data Link Connector (DLC).
- 2. Compare the injector specific data memorized in ECM memory with the one written on injector.

Are the two data same?


Input the injector specific data using Hi-Scan (Pro).

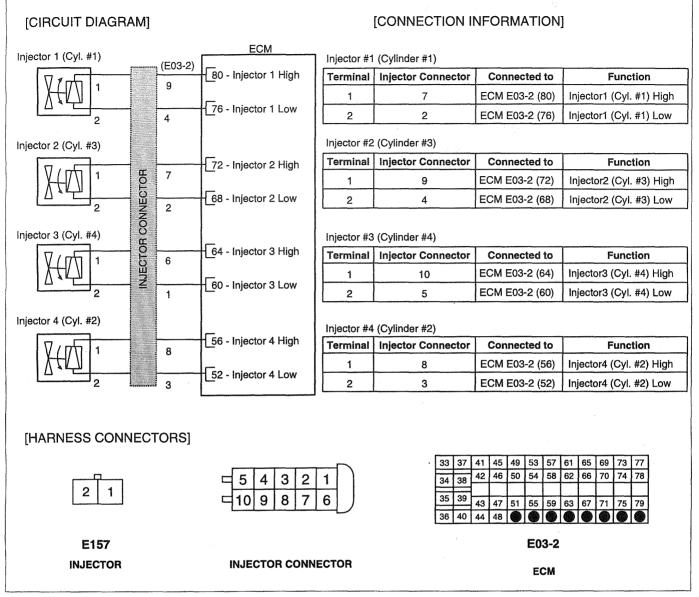
Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF201Y

TROUBLESHOOTING FOR DTC E4BCBBF5

DTC	P1310	Injector Control Circuit Fault
	03	Short circuit to battery line
CC-CODE	02	Short circuit to ground

DESCRIPTION


The injector of the Common Rail System is electronically controlled. It has been designed to allow multiple injection with short intervals, to be fully electronically controlled, and to release a small amount of heat. The nozzle of injector opens when the solenoid valve is triggered and permits the flow of fuel. They inject the fuel directly into the engine's combustion chamber. The fuel is stored in the Rail ready for injection and the injected fuel quantity is defined by the injector opening time and the rail pressure.

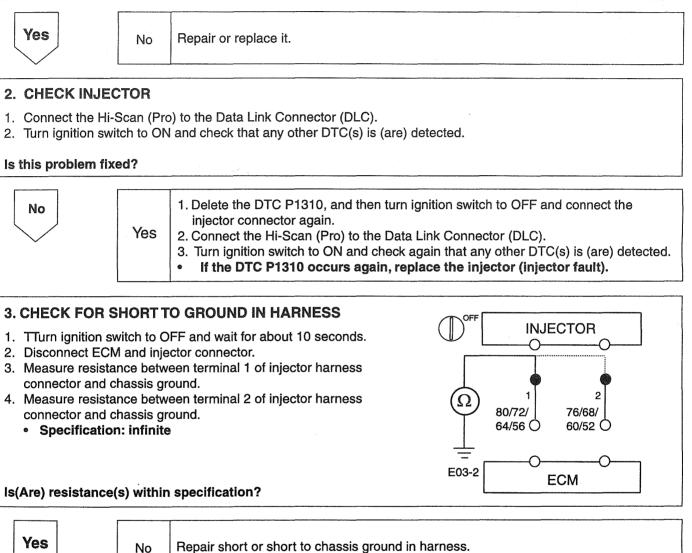
DTC DETECTING CONDITION

The excess fuel, which was needed for opening the nozzle of injector, flows back to the tank through a collector line. The return fuel from the pressure-control valve and from the low-pressure stage is also led into this collector line together with the fuel used to lubricate the high-pressure pump.

CC-CODE	Detecting Condition	Suspect Area
03	Short to battery line in injector circuit	Open or short in injector
02	 Short to ground in injector circuit 	InjectorECM

[SCHEMATIC DIAGRAM]

EWMF202N


FLB -107

INSPECTION PROCEDURE

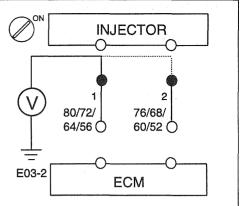
1. CHECK INJECTOR AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

Yes

Repair short or short to chassis ground in harness.


EWMF202V

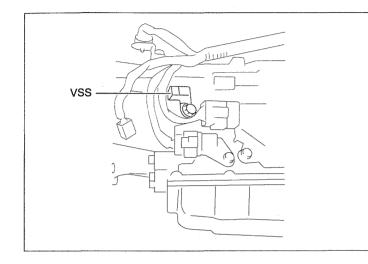
FUEL SYSTEM (J3 TCI)

- 1. Turn ignition switch to OFF and wait for about 10 seconds.
- 2. Disconnect ECM and injector connector.
- 3. Turn ignition switch to ON.
- 4. Measure voltage between terminal 1 of injector harness connector and chassis ground.
- 5. Measure voltage between terminal 2 of injector harness connector and chassis ground.
 - Specification: below 0.5V

Is(Are) voltage(s) within specification?

No Repair short to power in harness.

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.


EWMF202W

FLB -108

Yes

TROUBLESHOOTING FOR DTC EC685BE5

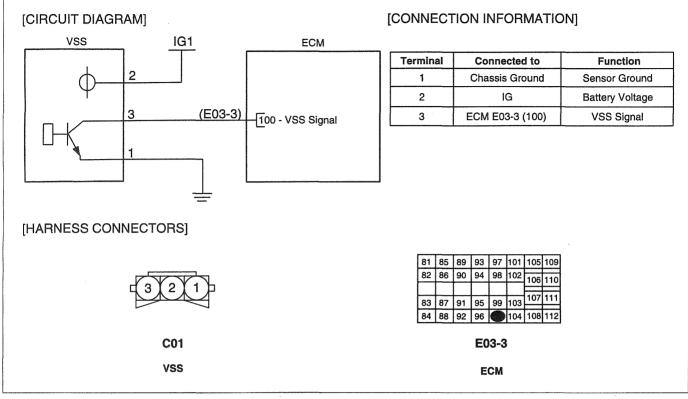
DTC	P1500	Vehicle Speed Sensor (VSS) Circuit Malfunction	
	06	Abnormal signal after running	
CC-CODE	06	Abnormal signal after running	
	06	Abnormal signal after running	
	07	No signal before running	· · · · · · · · · · · · · · · · · · ·

DESCRIPTION

The function of vehicle speed sensor (VSS) is to sense the tooth signal in T/M housing (4 pulses signal for every revolution of the rotor shaft) and send relevant signal to the Engine control module(ECM). The signal is used for

DTC DETECTING CONDITION

computing the vehicle speed and the speed display on the tachometer as well.


CC-CODE	Detecting Condition	Suspect Area
06	Open or short in VSS circuitVSS fault	Open or short in VSS cirucit
07		VSS ECM

EWMF203Z

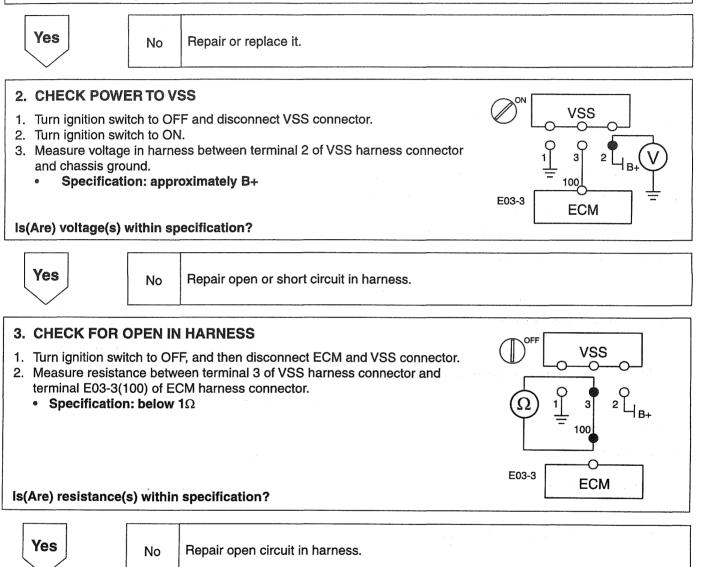
FLB -110

FUEL SYSTEM (J3 TCI)

[SCHEMATIC DIAGRAM]

EWMF204A

FLB -111


EWMF204B

INSPECTION PROCEDURE

1. CHECK VSS AND ECM CONNECTORS


- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

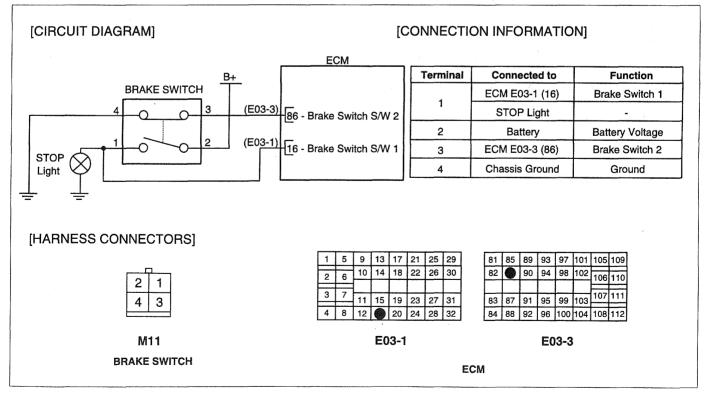
FLB -112

FUEL SYSTEM (J3 TCI)

EWMF204C

DTC DETECTING CONDITION ECD3F5BE

DTC	P1543	Brake Switch Signal Fault
	03	Short to battery line in brake switch 1 circuit
	02	Short to gound in brake switch 1 circuit
CC-CODE	0a	Short to battery line in brake switch 2 circuit
	0b	Short to gound in brake switch 2 circuit
	0c	Barke 1/2 signal incoherent

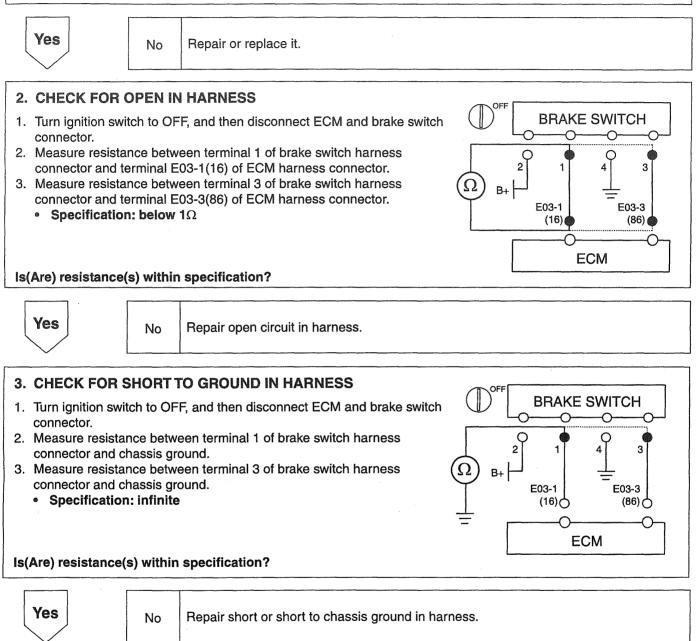

DESCRIPTION

Brake has an energy-absorbing mechanism that converts vehicle movement into heat to stop rotating wheels. Braking system is designed to reduce the speed and stop moving vehicle. The driver exerts a force on a brake pedal and the force on the brake pedal pressurizes brake fluid in a master cylinder. This hydraulic force is transferred through steel lines to a wheel cylinder at each wheel. Hydraulic pressure to each wheel cylinder is used to force friction materials against the brake drum. The ECM senses the state of brake operating through brake switch.

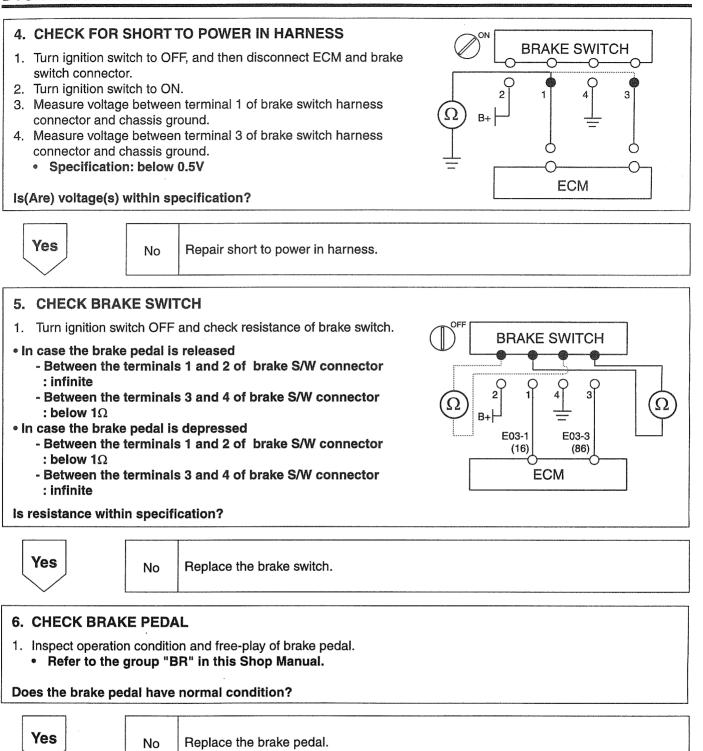
DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area	
02	Short to battery line in brake switch 1 circuit		
03	Short to ground in brake switch 1 circuit	Open or short in Brake Switch cirucit	
0a	Short to battery line in brake switch 2 circuit	 Brake Switch 	
Ob	Short to ground in brake switch 2 circuit	Brake Pedal ECM	
Oc	 Incoherent brake switch 1/2 signal 		

[SCHEMATIC DIAGRAM]


EWMF203B

INSPECTION PROCEDURE


1. CHECK BRAKE SWITCH AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

EWMF203C

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF203D

FLB -115

FLB -116

TROUBLESHOOTING FOR DTC E59F6CB6

DTC	P1608	ECM Fault
CC-CODE	81	ECM internal fault
	82	ECM internal fault
	82	ECM internal fault
	82	ECM internal fault

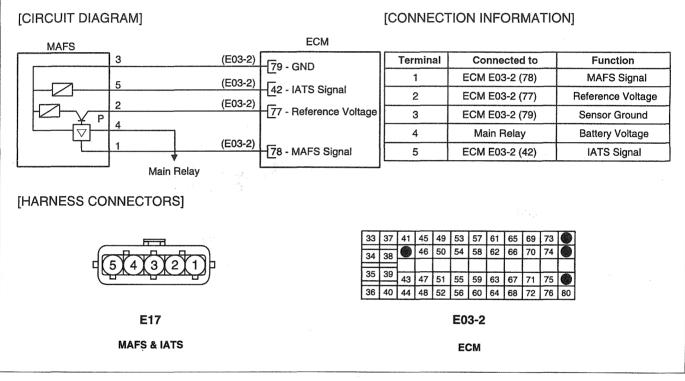
DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
81	Digital/Apolog convertor foult	• ECM
82	 Digital/Analog converter fault 	

INSPECTION PROCEDURE

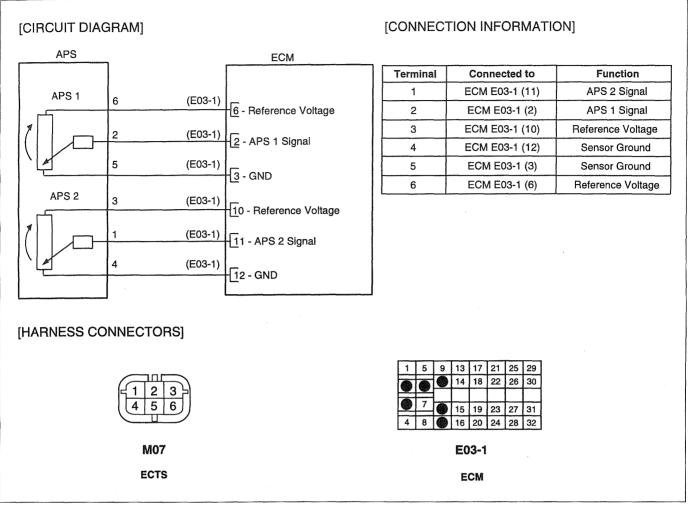
Relace the ECM

EWMF213D

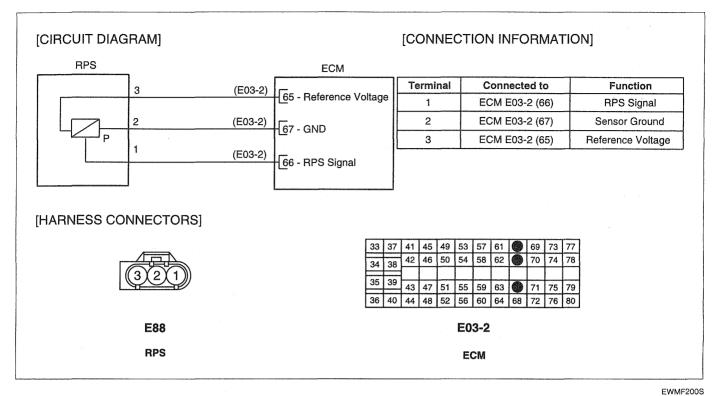

TROUBLESHOOTING FOR DTC E5EFOBC6

DTC	P1610	Sensor External Voltage Fault
CC-CODE	08	Sensor supply voltage too low
	09	Sensor supply voltage too high

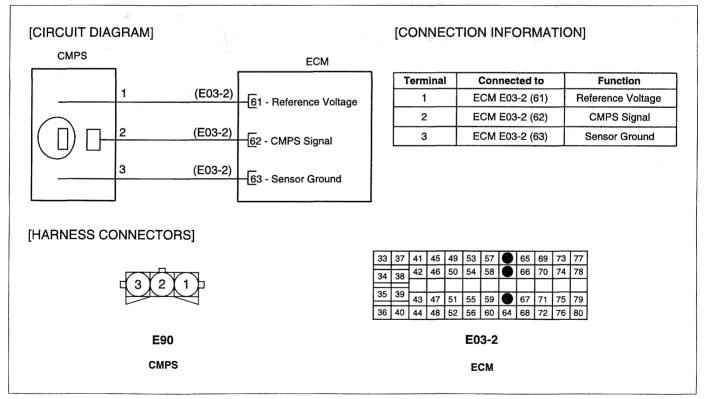
DTC DETECTING CONDITION


CC-CODE	Detecting Condition	Suspect Area
08	 Sensor reference voltage < 4.8V 	 Short to battery line or ground
09	 Sensor reference voltage > 5.2V 	in MAFS/APS1/RPS/CMPS supply line

[SCHEMATIC DIAGRAM] <1> MASS AIR FLOW SENSOR (MAFS)


EWMF200A

[SCHEMATIC DIAGRAM] <2> ACCELERATOR POSITION SENSOR (APS) 1



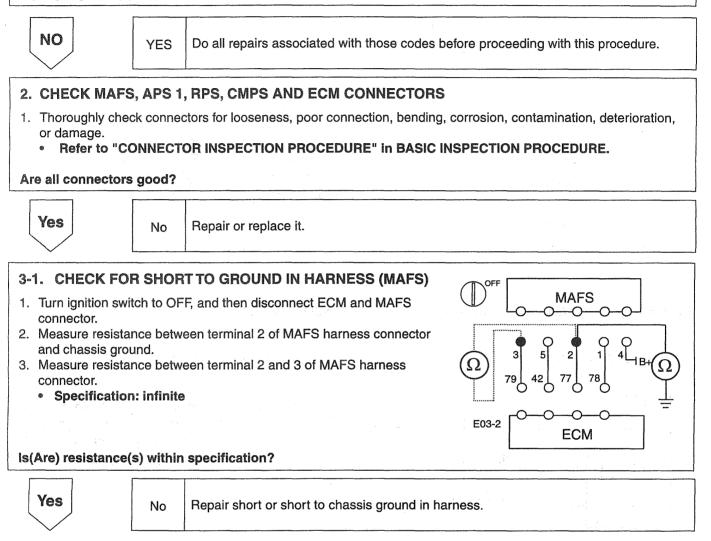
EWMF200G

[SCHEMATIC DIAGRAM] $\langle 3 \rangle$ RAIL PRESSURE SENSOR (RPS)

[SCHEMATIC DIAGRAM] <4> CAMSHAFT POSITION SENSOR (CMPS)

EWMF201D

EWMF203E

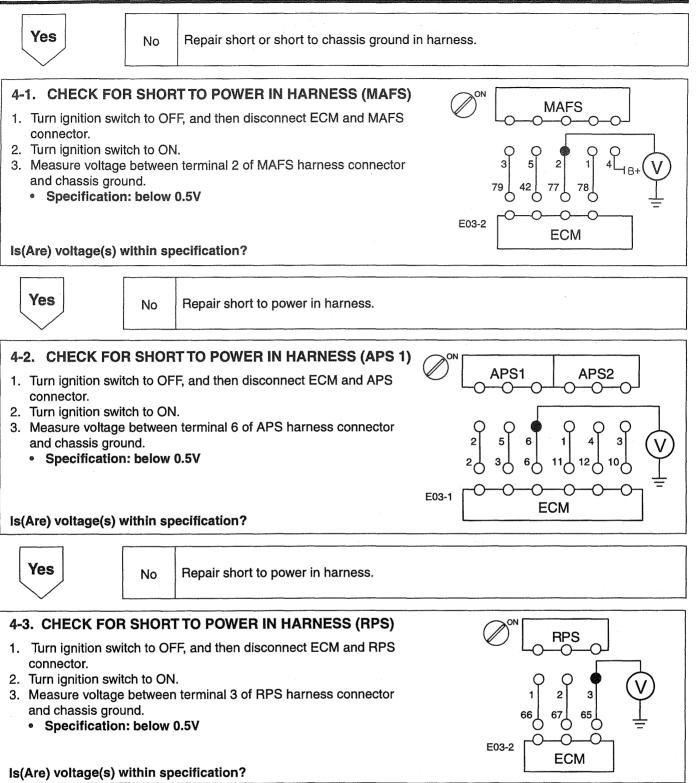

FLB -120

INSPECTION PROCEDURE

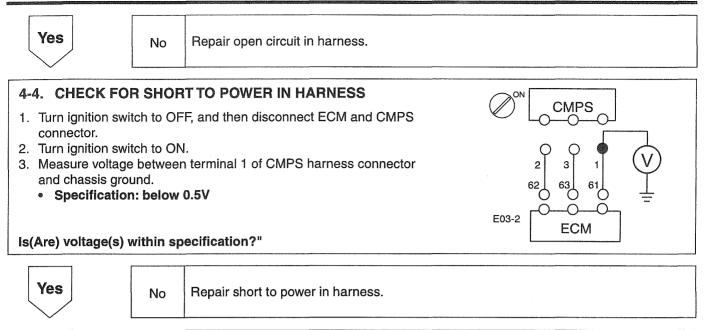
1. CHECK DTC

- 1. Connect the Hi-Scan (Pro) to the Data Link Connector (DLC).
- 2. Turn ignition switch to ON and check that any other DTC(s) is (are) detected.

is(Are) any DTC(s) related to MAFS, APS 1, RPS or CMPS also set?



3-2. CHECK FOR SHORT TO GROUND IN HARNESS (APS 1) OFF APS1 APS2 1. Turn ignition switch to OFF, and then disconnect ECM and APS connector. 2. Measure resistance between terminal 6 of APS harness connector and chassis ground. 3. Measure resistance between terminal 6 and 5 of APS harness 2 connector. · Specification: infinite E03-1 ECM Is(Are) resistance(s) within specification? Yes Repair short or short to chassis ground in harness. No 3-3. CHECK FOR SHORT TO GROUND IN HARNESS (RPS) RPS 1. Turn ignition switch to OFF, and then disconnect ECM and RPS \sim connector. 2. Measure resistance between terminal 3 of RPS harness connector and chassis ground. 3. Measure resistance between terminal 3 and 2 of RPS harness 2 connector. 66 65 • Specification: Infinite \cap E03-2 ECM Is(Are) resistance(s) within specification? Yes Repair short or short to chassis ground in harness. No 3-4. CHECK FOR SHORT TO GROUND IN HARNESS (CMPS) CMPS 1. Turn ignition switch to OFF, and then disconnect ECM and CMPS connector. 2. Measure resistance between terminal 1 of CMPS harness connector and chassis ground.


- 3. Measure resistance between terminal 1 and 3 of CMPS harness connector.
 - Specification: infinite

Is(Are) resistance(s) within specification?

EWMF203F

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF203X

FLB -123

FLB -124

FUEL SYSTEM (J3 TCI)

TROUBLESHOOTING FOR DTC EF5AE540

DTC	P1614	ECM Programming Error
	85	ECM internal fault
-	83	ECM internal fault
	8b	ECM internal fault
	88	ECM internal fault
CC-CODE	87	ECM internal fault
-	8a	ECM internal fault
-	8c	ECM internal fault
-	8a	ECM internal fault

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
85	 Impossibility of reading on the EEPROM 	
83	 Impossibility of writing on the EEPROM 	
8b	Electrical interference on the injector control line	
88	Fault in the calibration file or in the software.	
87	 One or more cells are found to be defective during the testing of the cells of the entire RAM used by the ECM Incorrect injector specific data 	Injector control lineECM
8a		
8c	 Watchdog operation fault 	
8a		

INSPECTION PROCEDURE

[CASE 1] CC-CODE 8a, 8c, 83, 85, 87, 88

Relace the ECM

EWMF213D

[CASE 2] CC-CODE 8b

1. VERIFICATION OF INJECTOR SPECIFIC DATA

- 1. Connect the Hi-Scan (Pro) to the Data Link Connector (DLC).
- 2. Compare the injector specific data memorized in ECM memory with the one written on injector.

Are the two data same?

NO YES Input the injector specific data using Hi-Scan (Pro).	
--	--

2. CHECK INJECTOR CONTROL LINE

1. Inspect the wiring harness between the injector and ECM.

Does this wiring harness have normal condition?"

Ye	es
	- ~ · · · ·

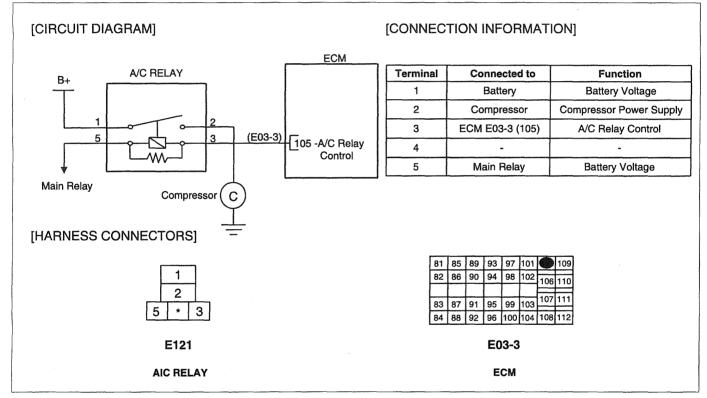
٦

No

Repair or replace the wiring harness.

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF203I


TROUBLESHOOTING FOR DTC E6981CE4

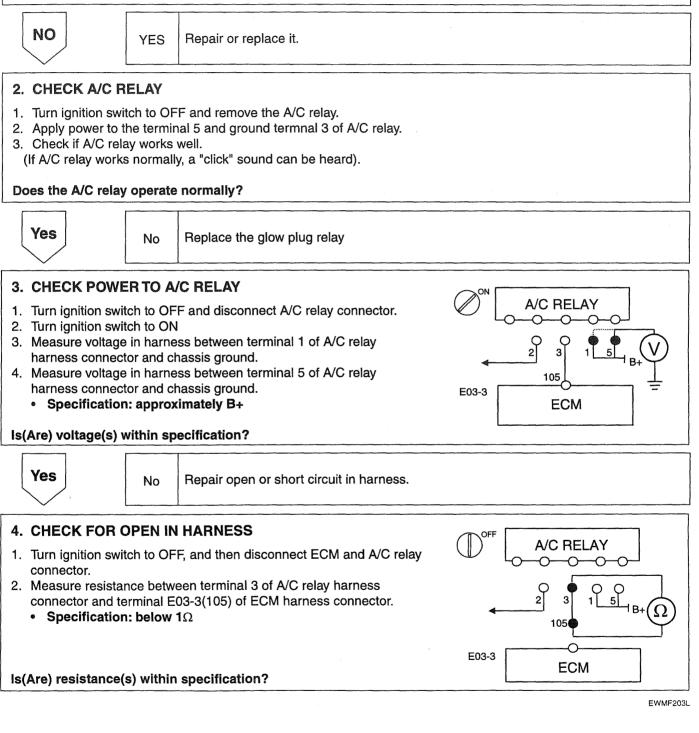
DTC	P1620	A/C Relay Circuit Malfunction
	0a	Open circuit or short circuit to ground
CC-CODE	03	Short circuit to battery line

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
0a	Open or short to ground in A/C relay circuit	Open or short in A/C
03	 Short to battery line in A/C relay circuit 	Relay cirucit • A/C Relay • ECM

[SCHEMATIC DIAGRAM]

EWMF203K


FLB -127

INSPECTION PROCEDURE

1. CHECK A/C RELAY AND ECM CONNECTORS

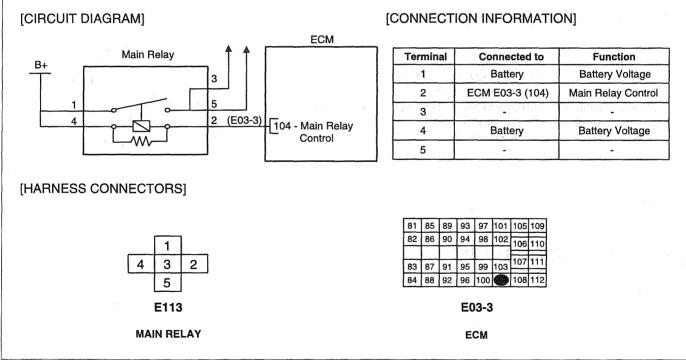
- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

=LB -128		FUEL SYSTEM (J3 TCI)
Yes	Repair open circuit in harness.	
 Turn ignition switch to O relay connector. 		$ \begin{array}{c} $
Is(Are) resistance(s) withi	n specification?	E03-3 ECM
Yes	Repair short or short to chassis ground ir	n harness.
 Turn ignition switch to C relay connector. Turn ignition switch to O 	en terminal 3 of A/C relay harness pround.	$ \begin{array}{c c} $
ls(Are) voltage(s) within s	pecification?	E03-3
Yes	Repair short to power in harness.	
Proceed with "ECM PRO	BLEM INSPECTION PROCEDURE" in	BASIC INSPECTION PROCEDURE.

EWMF203M

DTC	P1640	Main Relay Circuit Malfunction
00.0005	0a	Open circuit or short circuit to ground
CC-CODE	0b	Short circuit to battery line


DESCRIPTION

The charging system includes a battery, generator with a built in regulator, the charging indicator light, and connecting wiring. The generator uses diodes to rectify alternating current (AC) to direct current (DC). The ECM provides ground to one side of coil of main relay and the other side

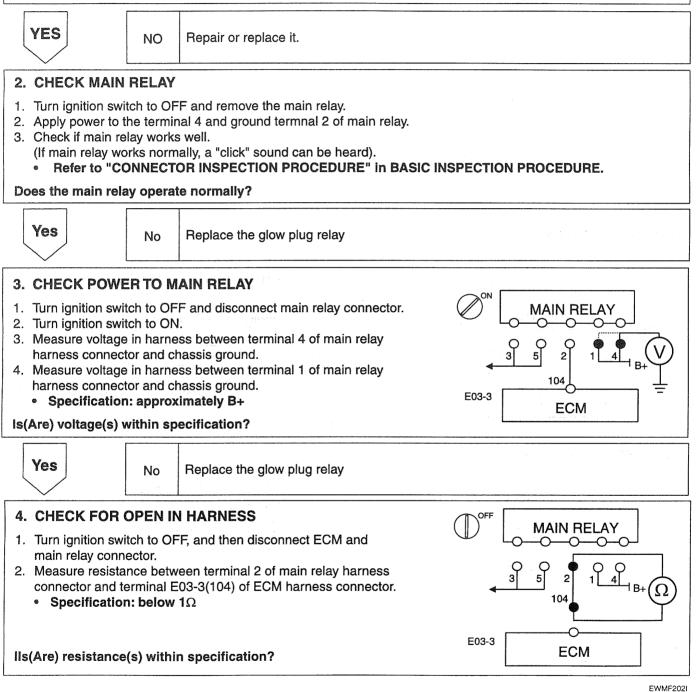
DTC DETECTING CONDITION

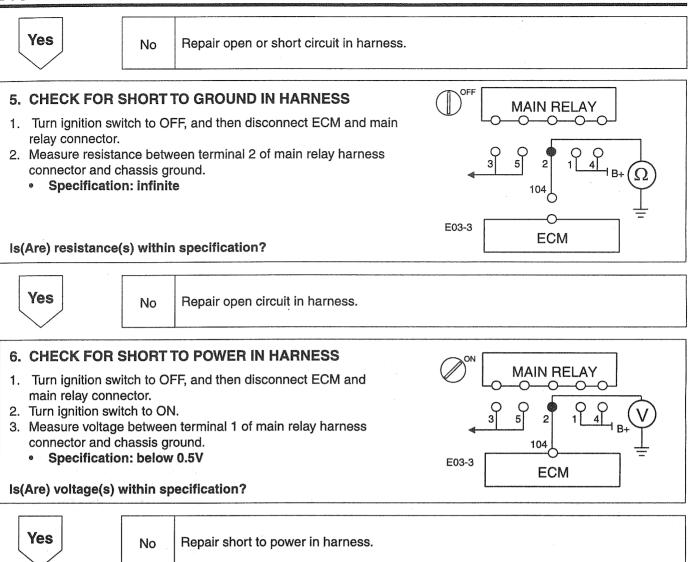
CC-CODE	Detecting Condition	Suspect Area
0a	Open or short to ground in main relay circuit	 Open or short in Main
Ob	 Short to battery line in main relay circuit 	Relay cirucit Main Relay ECM

[SCHEMATIC DIAGRAM]

EWMF201P

is connected to battery. The ECM monitors battery voltage


and the voltage after main relay.


INSPECTION PROCEDURE

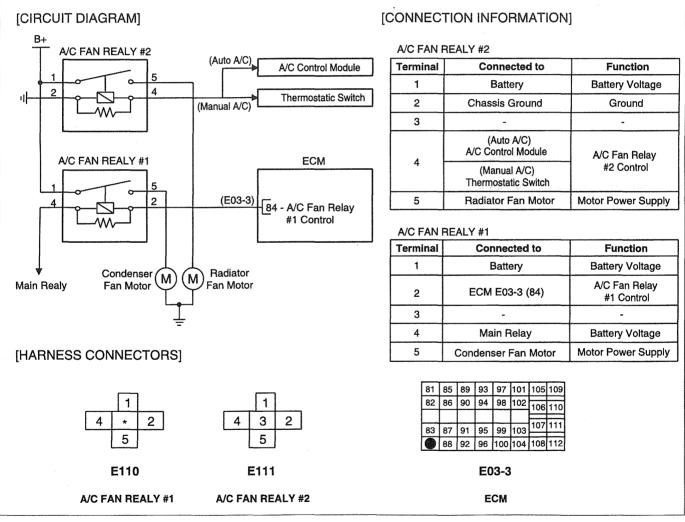
1. CHECK MAIN RELAY AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

Are all connectors good?

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF202J

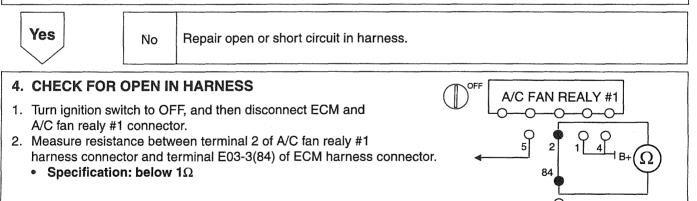

TROUBLESHOOTING FOR DTC EOFE59FA

DTC	P1674	A/C Fan Relay Circuit Malfunction
00.0005	0a	Open circuit or short circuit to ground
CC-CODE	03	Short circuit to battery line

DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
0a	Open or short to ground in A/C fan relay circuit	 Open or short in A/C Fan
03	 Short to battery line in A/C fan relay circuit 	 Relay cirucit A/C Fan Relay ECM

[SCHEMATIC DIAGRAM]


EWMF603K

INSPECTION PROCEDURE

1. CHECK A/C FAN RELAY #1 AND ECM CONNECTORS 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE. Are all connectors good? Yes Repair or replace it. No 2. CHECK A/C FAN RELAY #1 1. Turn ignition switch to OFF and remove the A/C fan realy #1. 2. Apply power to the terminal 3 and ground termnal 5 of A/C fan realy #1. 3. Check if A/C fan realy #1 works well. (If A/C fan realy #1 works normally, a "click" sound can be heard). Does the A/C fan realy #1 operate normally? Yes No Replace the glow plug relay 3. CHECK POWER TO A/C FAN RELAY #1

- 1. Turn ignition switch to OFF and disconnect A/C fan realy #1 connector.
- 2. Turn ignition switch to ON.
- 3. Measure voltage in harness between terminal 1 of A/C fan realy #1 harness connector and chassis ground.
- 4. Measure voltage in harness between terminal 4 of A/C fan realy #1 harness connector and chassis ground.
 - Specification: approximately B+

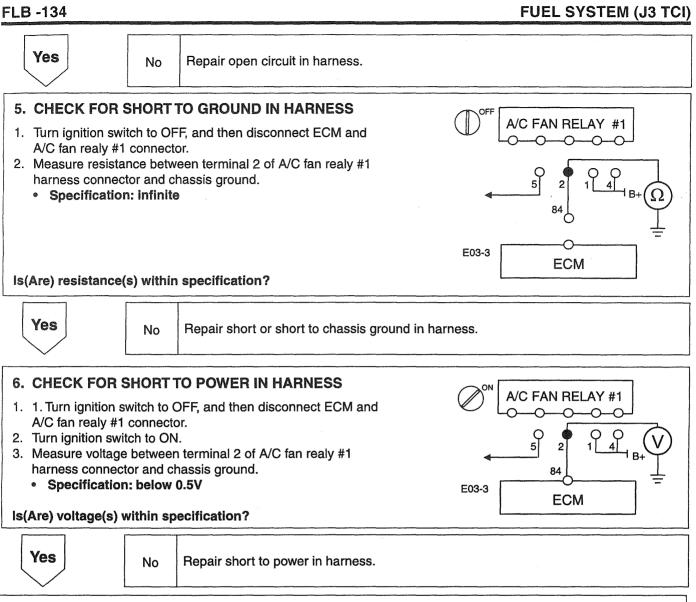
Is(Are) voltage(s) within specification?

Is(Are) resistance(s) within specification?

A/C FAN REALY #1

2

84


ECM

ECM

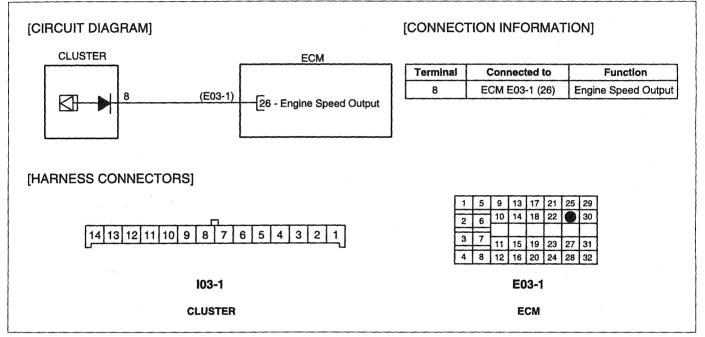
5

E03-3

E03-3

Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF2031

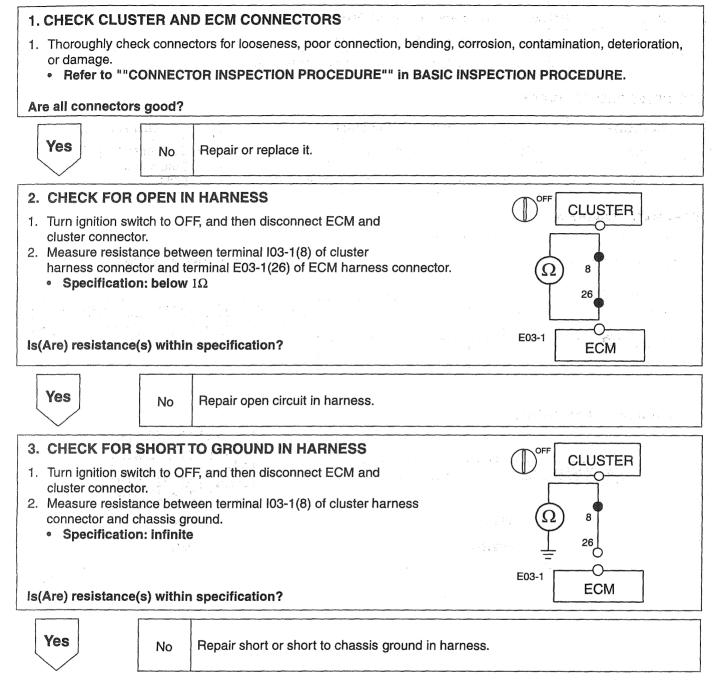

TROUBLESHOOTING FOR DTC ED5C53BD

DTC	P1786	Tachometer Output Fault
00.0005	0a	Signal low (Short cirucit to ground)
CC-CODE	03	Signal high (Short cirucit to battery line)

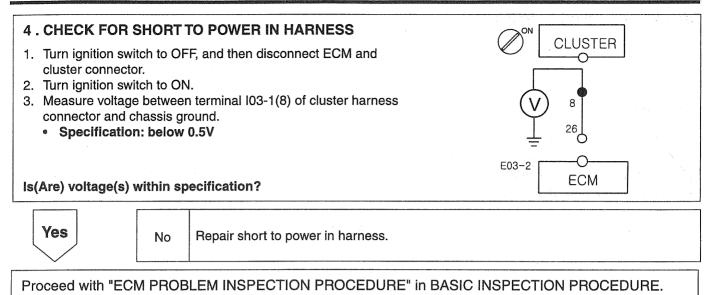
DTC DETECTING CONDITION

CC-CODÉ	Detecting Condition	Suspect Area
0a	Open or short to ground in tachometer output circuit	Open or short in Tachometer
03	Short to battery line in tachometer output circuit	Output cirucit ECM

[SCHEMATIC DIAGRAM]


EWMF203N

FLB -136


FUEL SYSTEM (J3 TCI)

INSPECTION PROCEDURE

人口的 整合某人的 医后神经氏神经病

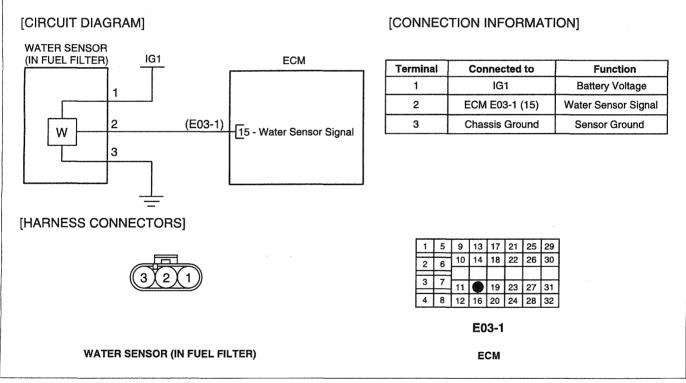
EWMF203O

EWMF203P

FLB -137

TROUBLESHOOTING FOR DTC E61190DB

DTC	P2264	Water Sensor Circuit Malfunction
CC-CODE	Ob	Permanent low level

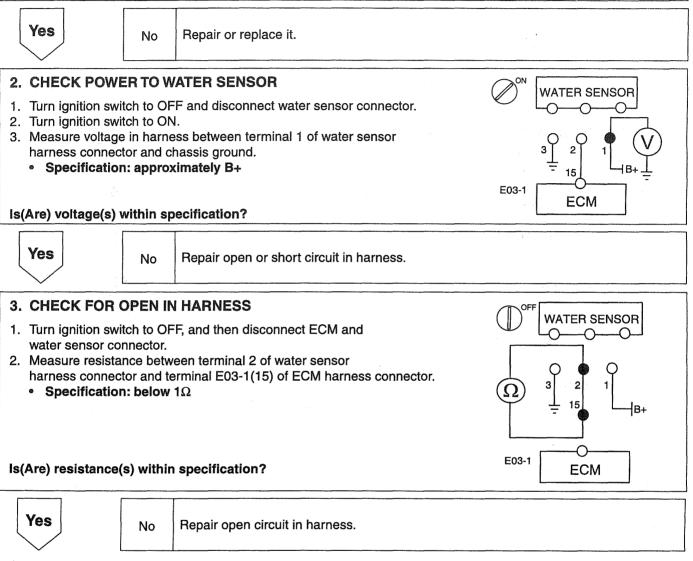

DESCRIPTION

Water Sensor is located in the fuel filter assembly and senses water in fuel. When water is detected, the ECM turns the Indicator Lamp in cluster on.

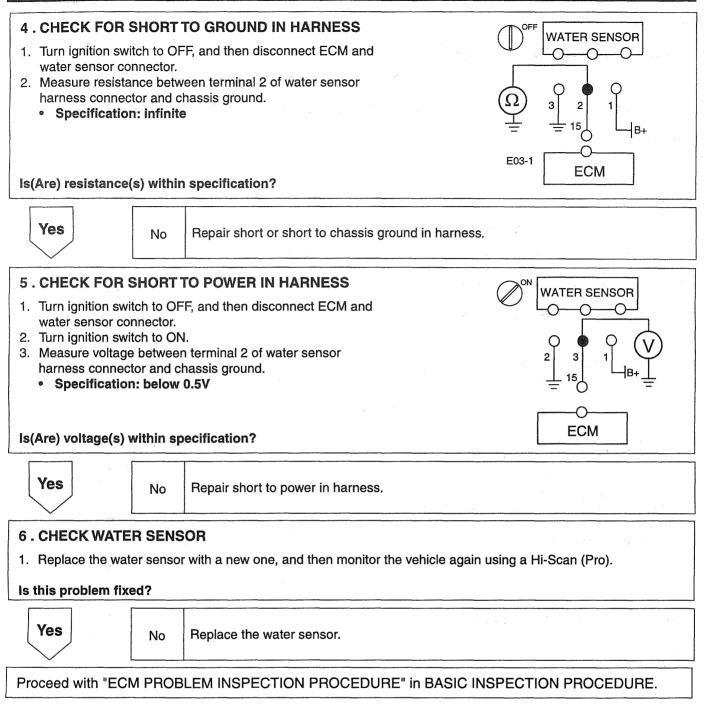
DTC DETECTING CONDITION

CC-CODE	Detecting Condition	Suspect Area
0b	 Open or short to ground in water sensor circuit 	 Open or short in Water Sensor cirucit Water Sensor ECM

[SCHEMATIC DIAGRAM]


EWMF603A

INSPECTION PROCEDURE


1. CHECK WATER SENSOR AND ECM CONNECTORS

- 1. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
 - Refer to "CONNECTOR INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

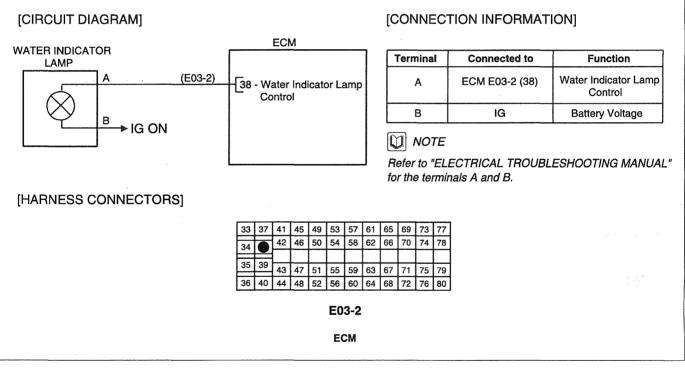
Are all connectors good?

EWMF2010

EWMF2011

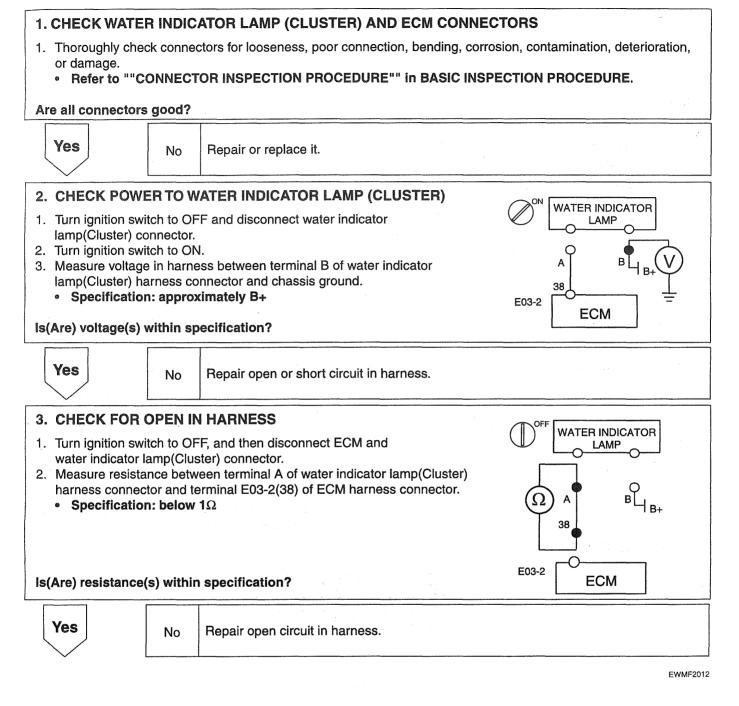
TROUBLESHOOTING FOR DTC EEC2D86D

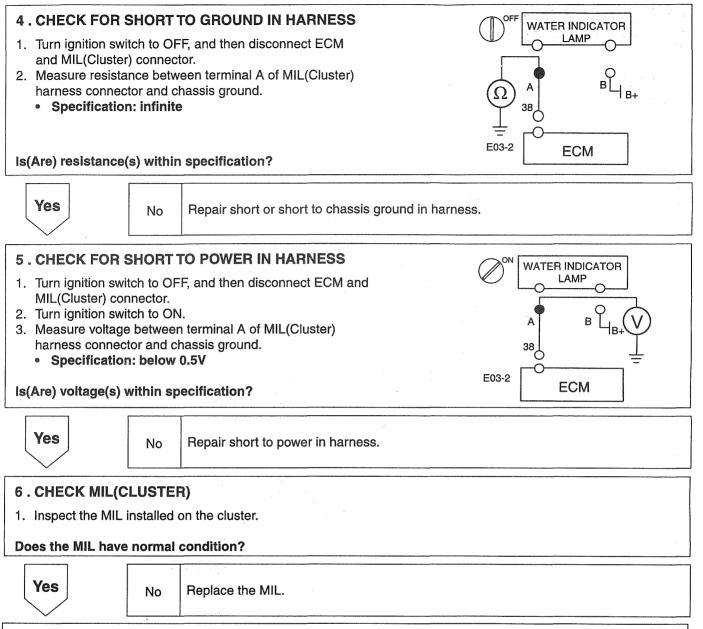
DTC	P2269	Water in Fuel Filter Indicator Lamp Circuit Malfunction	
00.0005	0a	Signal low (Open cirucit or short circuit to ground)	
CC-CODE	03	Signal high (Short circuit to battery line)	


DESCRIPTION

Water Sensor is located in the fuel filter assembly and senses water in fuel. When water is detected, the ECM turns the Indicator Lamp in cluster on.

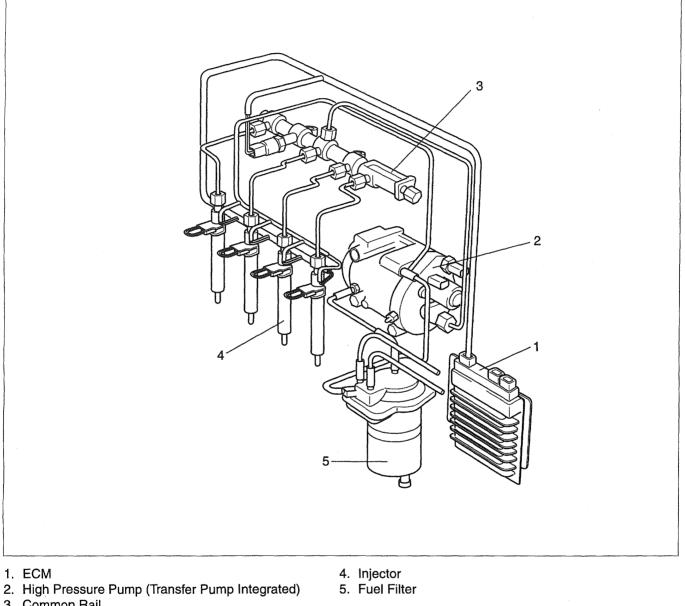
DTC DETECTING CONDITION


CC-CODE	Detecting Condition	Suspect Area
0a	 Open or short to ground in Water Indicator Lamp circuit 	 Open or short in Water Indicator Lamp cirucit Water Indicator Lamp ECM
03	Short to battery line in Water Indicator Lamp circuit	


[SCHEMATIC DIAGRAM]

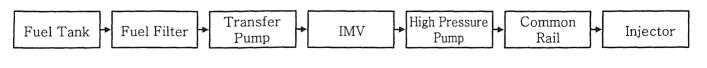
EWMF603B

INSPECTION PROCEDURE


Proceed with "ECM PROBLEM INSPECTION PROCEDURE" in BASIC INSPECTION PROCEDURE.

EWMF2013

FUEL DELIVERY SYSTEM-DIESEL


COMMON RAIL FUEL INJECTION

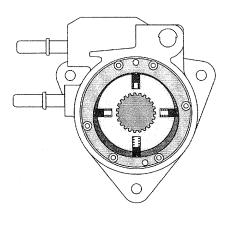
SYSTEM EBFF6ADE

3. Common Rail

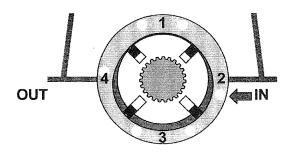
EWMF125A

EWMF101H

😮 WARNING


- Common Rail Fuel Injection System is subject to extremely high pressure (Approximately 1,600 bar)
- Never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Always pay attention to safety precaution.
- Ensure the absolute cleanliness.
- It is not recommended to remove the injectors without any notice.

LOW PRESSURE LINE


1. FUEL TANK

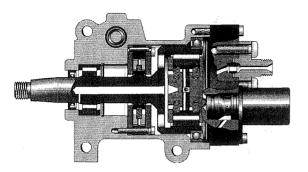
2. TRANSER PUMP

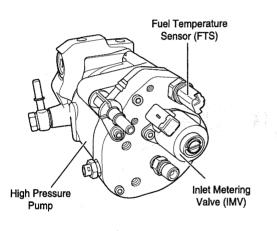
The transfer pump is included in the housing of the HP pump. The transfer pump is of the volumetric blade type pump. The pump draws the fuel from the fuel tank and continually delivers the required quantity of fuel in the direction of the high-pressure pump.

AFBE145A

AFBE145B

3. FUEL FILTER

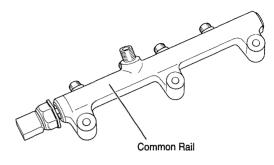

Inadequate filtering can lead to damage at the pump components, delivery valves, and injector nozzles. The fuel filter cleans the fuel before it reaches the lift pump, and thereby prevents premature wear at the pump's sensitive components.


4. HAND PRIME PUMP

HIGH PRESSURE CIRCUIT

1. HIGH PRESSURE PUMP

The high pressure pump pressurises the fuel to a system pressure of up to 1,600bar. This pressurized fuel then passes through a high-pressure line and into the tubular high-pressure common rail.



EWMF101K

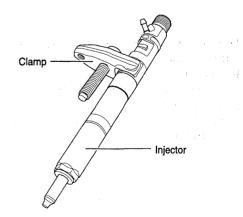
AEBE145E

2. COMMON RAIL

Even after an injector has taken fuel from the rail in order to inject it, the fuel pressure inside the common rail remains practically constant. This is due to the common rail effect arising from the fuel's inherent elasticity. Fuel pressure is measured by the rail pressure sensor and maintained at the desired level by the pressure control valve. It is the job of the imlet metering valve to limit the fuel pressure in the common rail to maximum 160 MPa (23,206 psi) The highly pressurized fuel is directed from the rail to the injectors by a flow limiter, which prevents excess fuel reaching the combustion chamber.

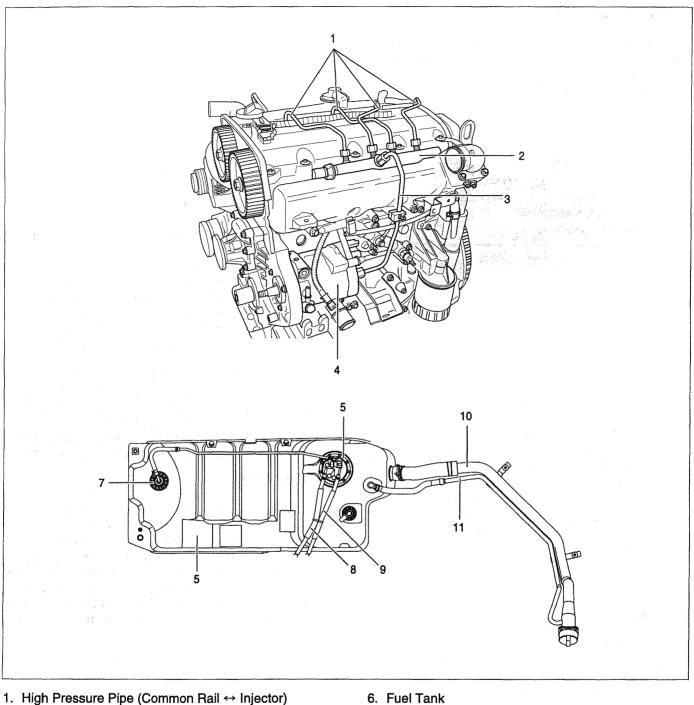
EWMF101L

3. HIGH PRESSURE PIPE


These fuel lines carry the high-pressure fuel. They must therefore be able to permanently withstand the maximum system pressure and, during the pauses in injection, the sometimes high frequency pressure fluctuations which occur. They are therefore manufactured from steel tubing.

Normally, they have an outside diameter of 6 mm and an internal diameter of 2.4 mm.

The injection lines between the common rail and the injectors must all be of the same length. The differences in length between the common rail and the individual injectors are compensated for by using slight or pronounced bends in the individual lengths of tubing. Nevertheless, the injection lines should be kept as short as possible.

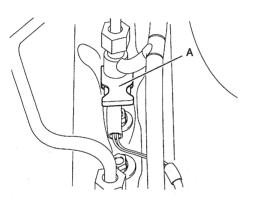

4. INJECTORS

The nozzles of these injectors open when the solenoid valve is triggered and permit the flow of fuel. They inject the fuel directly into the engine's combustion chamber. The excess fuel which was needed for opening the injector nozzles flowsback to the tank through a collector line. The return fuel from the pressure control valve and from the low-pressure stage is also led into this collector line together with the fuel used to lubricate the high-pressure pump.

EWMF101M

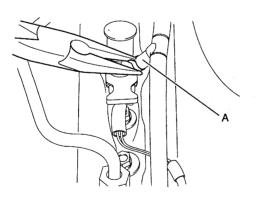
COMPONENTS ECCC9D93

- 2. Common Rail
- 3. High Pressure Pipe
- (High Pressure Pump ↔ Common Rail) 4. High Pressure Pump
- (FTS, IMV and Transfer Pump integrated)
- 5. Fuel Sender

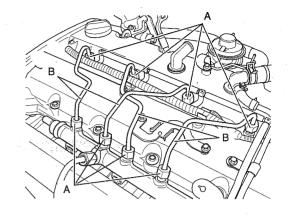

- 7. Fuel Sender (Sub)
- 8. Return Hose
- 9. Fuel Feed Hose
- **10. Fuel Filler Hose**
- 11.Breather Hose

INJECTOR

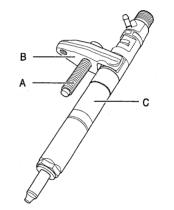
REMOVAL E0A9B2A1


🚱 WARNING

- Common Rail Fuel Injection System is subject to extremely high pressure (Approximately 1,600 bar)
- Never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Always pay attention to safety precaution.
- Ensure the absolute cleanliness.
- It is not recommended to remove the injectors without any notice.
- 1. Disconnect the injector connector (A).


AFBE100T

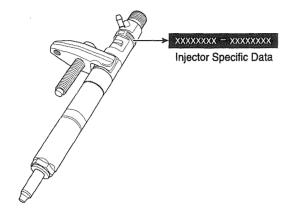
2. Disconnect the injector return hose (A).


AFBE100U

3. Remove the high pressure pipe mounting nut (A) on the common rail and injector, and then remove the high pressure pipe(B).

AFBE102L

4. Remove the injector clamp bolt (A) using a hexagonalwrench and remove the clamp(B) and injector(C).

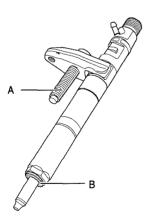


AFBE102M

INSTALLATION E56B54E3

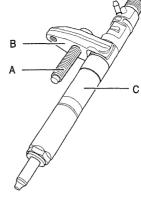
NOTE

The new injector possesses different characteristics from the one which was originally fitted to the engine. These characteristics are summarized in the 16-character code shown on the label stuck to the top of the injector holder. This code must be entered into the ECM memory with the Hi-Scan (Pro).



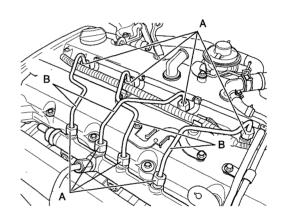
EWMF102O

1.



When installing a new injector, MUST replace the injector clamp bolt(A) and gasket(B) with a new one.

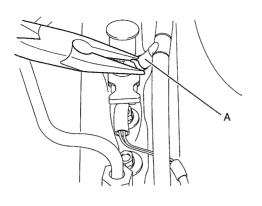
Place the injector(C) and clamp(B) on the engine


block and intall the injector clamp bolt(A).

AFBE102M

2. Install the high pressure pipe(B) in between the common rail and injector with installing the nut (A).

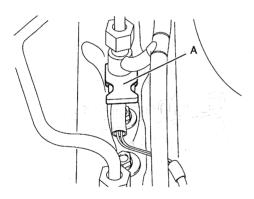
Tightening Torques: 3.65 ~ 4.35 Kgf·m (35.79 ~ 42.66 N·m, 26.40 ~ 31.46 lbf·ft)


AFBE102L

When installing the high pressure pipe, spread specified lubricating oil on the nut.

AFBE102N

3. Connect the injector return hose (A).

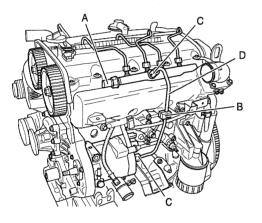


AFBE100U

CAUTION

When installing a new injector, MUST replace the injector return hose clamp with a new one.

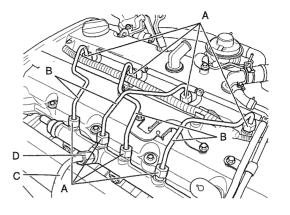
4. Connect the injector connector(A).


AFBE100T

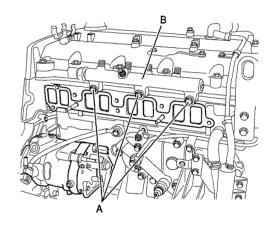
ACCUMULATOR

REMOVAL ED9CD89F

🕄 WARNING


- Common Rail Fuel Injection System is subject to extremely high pressure (Approximately 1,600 bar)
- Never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Always pay attention to safety precaution.
- · Ensure the absolute cleanliness.
- It is not recommended to remove the injectors without any notice.
- 1. Disconnect the rail pressure sensor connector (A).

AFBE102Q

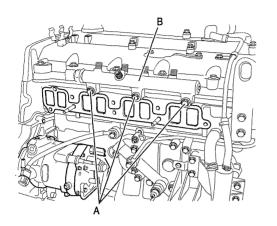

- 2. Remove the high pressure pipe fixing clip(B).
- 3. Remove the high pressure pipe (D) with unscrewing the mounting nut (C).
- 4. Remove the intake manifold (Refer to the group "EM" in this Shop Manual).

5. Remove the high pressure pipe mounting nut (A) on the common rail and injector, and then remove the high pressure pipe(B).

AFBE112L

- 6. Remove the high pressure pipe mounting nut (D) on the common rail and high pressure pump, and then remove the high pressure pipe(C).
- 7. Remove the common rail mounting bolts (A).

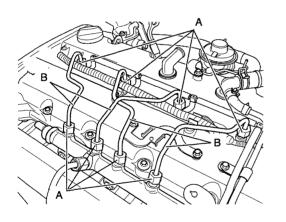
AFBE102P


8. Remove the common rail (B).

FUEL DELIVERY SYSTEM-DIESEL

INSTALLATION E3C81425

1. Place the common rail (B) on the engine block and screw the mounting bolts (A).

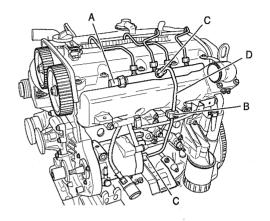

Tightening Torques: 1.90 ~ 2.30 Kgf·m (18.63 ~ 22.56 N·m, 13.74 ~ 16.64 lbf·ft)

AFBE102P

2. Install the high pressure pipe (B) in between injector and common rail with screwing the mounting nut (A).

Tightening Torques: 3.65 ~ 4.35 Kgf·m (35.79 ~ 42.66 N·m, 26.40 ~ 31.46 lbf·ft)

AFBE102L



When installing the high pressure pipe, spread specified lubricating oil on the nut.

3. Install the intake manifold (Refer to the group "EM" in this Shop Manual).

4. Install the high pressure pipe (D) in between high pressur pump and the common rail with screwing the mounting nut (C).

Tightening Torques: 3.65 ~ 4.35 Kgf·m (35.79 ~ 42.66 N·m, 26.40 ~ 31.46 lbf·ft)

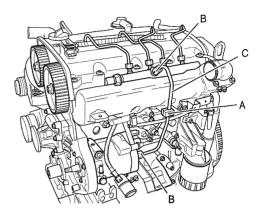
AFBE102Q

When installing the high pressure pipe, spread specified lubricating oil on the nut.

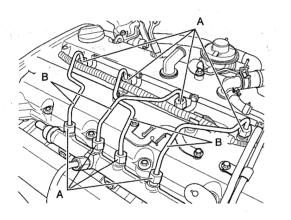
- 5. Install the fixing clip (B) on the intake manifold.
- 6. Connect the rail pressure sensor connector (A).

FUEL LINE

REMOVAL E2DB4DCB


- 🕄 WARNING
 - Common Rail Fuel Injection System is subject to extremely high pressure (Approximately 1,600 bar)
 - Never perform any work on injection system with engine running or within 30 seconds after the engine stops.
 - · Always pay attention to safety precaution.
 - Ensure the absolute cleanliness.
 - It is not recommended to remove the injectors without any notice.

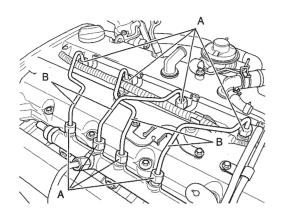
HIGH PRESSURE PIPE (INJECTOR \leftrightarrow COMMON RAIL)


1. Remove the high pressure pipe mounting nut (A) on the common rail and injector, and then remove the high pressure pipe(B).

HIGH PRESSURE PIPE (COMMON RAIL ↔ HIGH PRESSURE PIPE)

- 1. Remove the high pressure pipe fixing clip(A).
- 2. Remove the high pressure pipe mounting nut (B) on the common rail and high pressure pump, and then remove the high pressure pipe(C).

AFBE1010



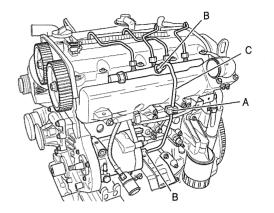
AFBE102L

INSTALLATION E1E0265D

HIGH PRESSURE PIPE (INJECTOR \leftrightarrow COMMON RAIL)

1. Install the high pressure pipe (B) in between injector and common rail with screwing the mounting nut (A).

AFBE102L


Tightening Torques: 3.65 ~ 4.35 Kgf·m (35.79 ~ 42.66 N·m, 26.40 ~ 31.46 lbf·ft)

When installing the high pressure pipe, spread specified lubricating oil on the nut.

HIGH PRESSURE PIPE (COMMON RAIL ↔ HIGH PRESSURE PIPE)

1. Install the high pressure pipe (C) in between injector and common rail with screwing the mounting nut (B).

AFBE101O

Tightening Torques: 3.65 ~ 4.35 Kgf·m (35.79 ~ 42.66 N·m, 26.40 ~ 31.46 lbf·ft)

\land CAUTION

When installing the high pressure pipe, spread specified lubricating oil on the nut.

2. Install the fixing clip (A) on the intake manifold.

Transaxle / Transmission

GENERAL

SPECIFICATION (M/T)	TR-2
SPECIFICATION (A/T)	TR-3

TRANSFER CASE ASSEMBLY

AUTOMATIC TRANSAXLE SYSTEM

1

ſ

INSPECTION CHART FOR DIAGNOSTIC TROUBLE CODES DTC TROUBLESHOOTING PROCEDURE	TR-7
P0707	TR-8
P0708	TR-10
P0710	TR-11
P0716	TR-13
P0717	TR-15
P0722	TR-16
P0727	TR-18
P0743	TR-19
P0748	TR-21
P0753	TR-23
P0758	
P1121	TR-27
P1630	TR-28
P1631	TR-29

GENERAL

SPECIFICATION(M/T) EAFD5123

	Eng	ine	2.9 TCI	3.5 V6		
	Manual tra	nsmission	M5SR1			
	4WD Dri	ve type	PART TIME 4WD (EST) or FULL TIME 4WD (TOD)			
	CLUTCH COVER		DIAPHIRA	M SPRING		
	CLUTCH	DISC	Dry sing	gle plate		
	CHANC	BE CONTROL TYPE	FLOOR DIF	RECT TYPE		
	TRAN	SMISSION TYPE	Forward 5th Reverse 1st	, Constant Synchromesh		
		1st	3.9)15		
NA/T		2nd	2.126			
M/T	Gear ratio	3rd	1.338			
	Geariallo	4th	1.000			
		5th	0.801			
		Reverse	4.2	270		
		Gear ratio	API GL-4, S	SAE 75W-90		
	Oil	Capacity(1)	3.21			
-	Gear ratio	HIGH(EST), AUTO(YOD)	1.000			
Transfer		LOW	2.480			
case	Oil	Gerar ratio	ATF DEXRON III			
 		Capacity(<i>l</i>)	1.	42		

TIGHTENING TORQUE(M/T)

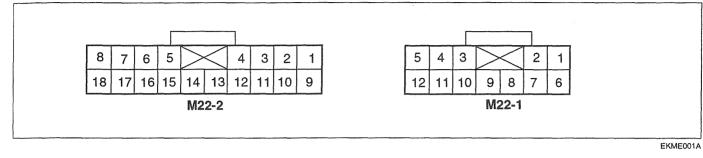
Model	ltem	N·m	Kg∙cm	lb·ft
M5SR1	Engine to transmission(12×40) Engine to transmission(12×55) Poppet spring seal bolt Front bearing retainer Back-up lamp switch Main shft lock nut Count shft lock nut Clutch release cylinder Transfer dynamic damper Control lever mounting Magnet plug Clutch release level fucrum Front oil guide Control lever housing cover mounting Control housing reamer bolt Control housing seal plug(2EA) (1EA) Control housing stopper braket	$\begin{array}{c} 65-85\\ 80-100\\ 30-42\\ 15-22\\ 30-35\\ 250-270\\ 250-270\\ 30-42\\ 47~52\\ 15-22\\ 60-80\\ 55-60\\ 8-10\\ 15-22\\ 31-35\\ 55-69\\ 30-42\\ 10-12\\ \end{array}$	$\begin{array}{c} 650-850\\ 800-1000\\ 300-420\\ 150-220\\ 300-350\\ 2500-2700\\ 2500-2700\\ 300-420\\ 470-520\\ 150-220\\ 600-800\\ 550-600\\ 80-100\\ 150-220\\ 310350\\ 550-690\\ 300-420\\ 100-200\\ \end{array}$	$\begin{array}{r} 48-62\\ 59-74\\ 22-30\\ 11-16\\ 22-25\\ 185-200\\ 185-200\\ 22-30\\ 35-38\\ 11-16\\ 44-59\\ 41-44\\ 6-7\\ 11-16\\ 23-26\\ 40-51\\ 22-31\\ 7-9\end{array}$

GENERAL

TR -3

LUBRICANTS(M/T)

		LUBRI-	LUBBI- CHECK &		NGE		CA-
	MODEL	CANTS	REPLEN- ISHMENT	NOMAL USE	SEVER USE	METHOD	PAC- ITY
TRANSFER ASSY	EST (ELECTRIC SHIFT TRANSFER)	DUXRONIII	EVERY 20.000Km	NO SERVICE REOUIRED	EVERY 100.000Km	SUPPLY TO THE LEVEL OF OIL FILLER PLUG HOLE BOTTOM.	1.42L
	ATT(ACTIVE TORQUE TRANSFER) or TOD	DUXRONIII	EVERY 20.000Km	NO SERVICE REQUIRED	EVERY 100.000Km	SUPPLY TO THE LEVEL OF OIL FILLER PLUG HOLE BOTTOM.	1.42L


SPECIFICATION(A/T) EA1FAD3F

	Engir	ne	2.9 TCI	3.5 V6			
Aut	Automatic transmission		30 - 40 LEI				
		1st	2.8	304			
		2nd	1.5	531			
	Gear ratio	3rd	1.0	000			
		4th	0.705				
A/T		Reverse	2.3	393			
		Final ratio	4.222	4.625			
	Type Oil		2WD : CASTLE AUTO FLUID (MOBIL D-11) 4WD : CASTLE AUTO FLUID D11 (DIAMOND TF SPI)				
		Capacity(ℓ)	10.2(; 10.5(

TRANSFER CASE ASSEMBLY

PIN LIST EEA227BF

TCCM(TOD) PIN LIST

Term	inal No.	Wire Color	Terminal Description
· · ·	1	G/B	Ignition
	2	Р	Battrty
	3	Y	Emc
	4	L	Motor output(LOW-HI)
	5	G	Motor output(HI-LOW)
M22-1	6	R	K-LINE
IVIZZ-1	7	Br	Battery
	8	B	Ground for ECU
	9	В	Ground for ECU
	10	P	Speed reference
	11	L	Motor output(LOW-HI)
	12	G	Motor output(HI-LOW)

TRANSFER CASE ASSEMBLY

Terr	ninal No.	Wire Color	Terminal Description
	1	W	Speed sensor(Ground)
	2		-
	3	Gr	Front speed sensor
	4	P	Position encoder2
	5		HI/LOW switch
	6	4	TPS analog/PWM
	7	Gr/O	Diagnosic display
	8	Gr	Encuder ground
	9	L/O	Position encoger4
M22-2	10	R	Rear speed sensor
	11	Y	Position encoger3
	12	G	
	13	L	Brake switch
	14	Y/O	ABS input
	15	G/B	M/T : clutch pedal position switch
	· ·	Р	A/T : neutral relay
	16		CAN(-)
	17		CAN(+)
	18	Gr	4 LOW display

TCCM(EST) PIN LIST

6	3		7		6		5	4	Ļ];	3	2			1
	1	5	1	4	1	3		12		11	.1	0		9	
	T	22	2	21		20	5	19		18		17	,	1(6)
-	M23														

EKME002A

Termi	nal No.	Wire Color	Terminal Description
	1	W	Mortor 2H-4H-4L
	2	W	Mortor 2H-4H-4L
	3	В	Ground
	4	0	Clutch coil
	5	R	Position 1 motor
	6	L	Speed sensor
	7	Y	2H switch
	8	Br	4H display
	9	Р	Battery
	10	Р	Battery
	11	В	Ground
M23	12	G	Position 2 motor
	13	Br	4L switch
	14	G/B	Cluch interlock switch
	15	R	4L display
	16	G	Motor 4L-4H-2H
	17	G	Motor 4L-4H-2H
	18	L	Ground(common return)
	19	O/B	Ignition 1
	20	L	Posion 4 motor
	21	0	Position 4 motor
	22	R	Diagnostic display
	23	Br/B	CenterAxle Disconnect Solenoid

AUTOMATIC TRANSAXLE SYSTEM

INSPECTION CHART FOR DIAGNOSTIC

TROUBLE CODES E614E67D

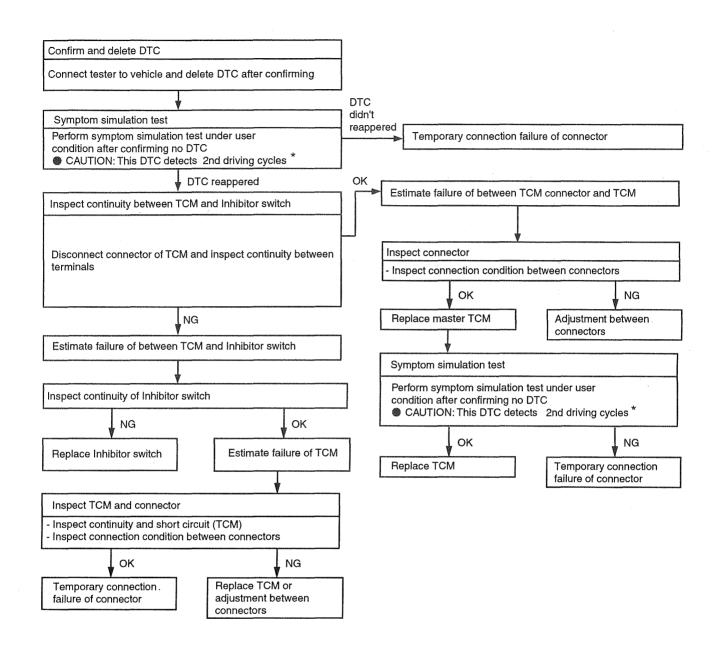
DTC No.	DESCRIPTION	Fault Type	Warning Lamp
P0707	Transaxle range Sensor	В	-
P0708	Transaxle range Sensor	В	-
P0710	Oil temperature sensor system	В	~
P0716	Input speed sensor range/performasce	В	-
P0717	Pulse generator A	В	0
P0722	Pulse generator B	В	0
P0727	Engine speed signal	B	-
P0743	Torque converter clutch circuit - Electrical	В	-
P0748	Pressure control solenoid circuit malfunction	A	-
P0753	Shift solenoid A circuit malfunction	Α	-
P0758	Shift solenoid B circuit malfunction	A	-
P1121	Throttle position sensor signal invalid	В	0
P1630	CAN communication bus off	В	0
P1631	CAN-time out ECU	В	0

Fault Type :

Type A - DTC stored on the 1st driving Type B - DTC stored on the 2nd driving

MIL/Warning :

"O" - Supported (To be performed at the same tine as DTC steres)


"---" - Not supported

PROCEDURE E83E28B9

DTC P0707

TRANSAXLE RANGE SWITCH CIRCUIT LOW INPUT

Item	Detecting Condition	Possible cause	
DTC Strategy	check for No signal		
Enable Conditions	 Output revolution is more than 1130 rpm. Engine revolution is more than 1500rpm. 2sec passed from change of range sensor 		
Threshold Value	No signal detected	Open or short in circuit	
Diagnostic Time	More than 30sec	Faulty TRANSAXLE RANGE SWITCH	
Fail Safe	 TCU judges the position of Range Sensor is D range To inhibit failure detection(Output Sensor/Input Sensor /Sol Malfunction/L4 SW Malfunction). No Coast Down/Up Slope Mode/Down Slope Mode 	●Faulty TCM	
Pass Criteria	To detect no failure more than 2 min.		

EKME003A

* The definition of 'Driving cycle' of TCM : Driving cycle is counted up at 10 senconds passed after Ignition ON or 'Clear code' of scan tool.

PROCEDURE EF2ED5EE

DTC P0708

TRANSAXLE RANGE SWITCH CIRCUIT HIGH INPUT

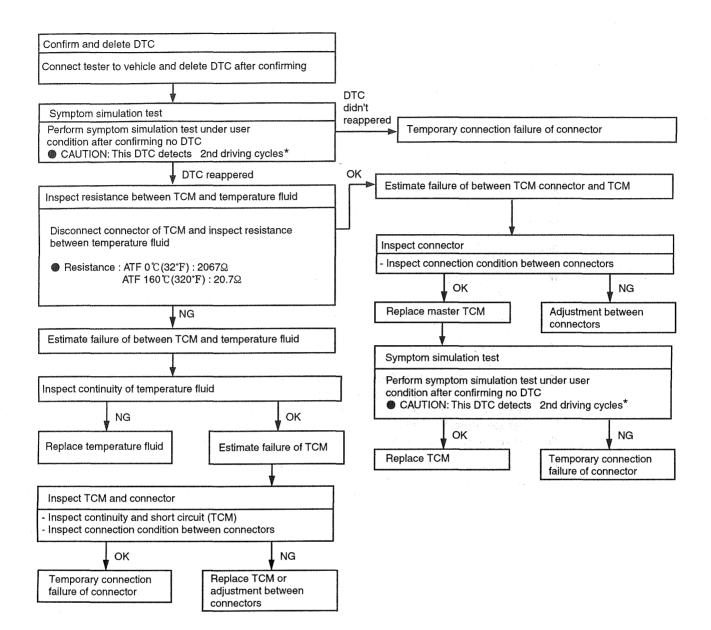
DTC DETECTING CONDITION

Item	Detecting Condition	Possible cause
DTC Strategy	check for No signals	
Enable Conditions	Sec passed from change of range sensor	
Threshold Value	2 or more signals detected at the same time	
Diagnostic Time	More than 10sec	 Open or short in circuit Faulty TRANSAXLE RANGE
Fail Safe	 TCU judges the position of Range Sensor with following priority. D>2>L>R>N>P To inhibit failure detection(Output Sensor/Input Sensor /Sol Malfunction/L4 SW Malfunction). No Coast Down/Up Slope Mode/Down Slope Mode 	SWITCH Faulty TCM
Pass Criteria	To detect no failure more than 2 min.	

INSPECTION PROCEDURE

Refer to DTC P0707

PROCEDURE E6A8EFDA


DTC P0710

FLUID(OIL) TEMPERATURE SENSOR SYSTEM MALFUNCTION

Item	Detecting Condition	Possible cause
DTC Strategy	Check for sensor resistance and A/D value	
Enable Conditions	 SHORT/ OPEN: During no failure of Engine Speed Signal /CAN(No ID/BUS OFF) Engine revolution ? 400rpm. SHORT: No detection of normal condition (between 0°C and 150°C for 10sec) after IG ON. OPEN: D,2,L,R range continuously. 	
Threshold Value	 SHORT: TCU detects out of sensor resistance from operating range for 5min. continuously. OPEN:Fluctuation A/D value is less than 15 and minimum A/D value is more than 1000 	_ ● Faulty sensor
Diagnostic Time	More than 5min. Continuously (SHORT	
Fail Safe	 TCU judges the Transmission Fluid Temperature is 200°C. No L-UP/Up Slope Mode/Down Slope Mode/Torque Reduction at shifting/Line Pressure Reduction at shifting/Squat Control/Coast Control/High Transmission Fluid Temperature Warnning To inhibit failure detection(SOL Malfunction). 	
Pass Criteria	● To detect the Transmission Fluid Temperature is between 0℃ and 150℃ for 15 min. continuously.	

TR -12

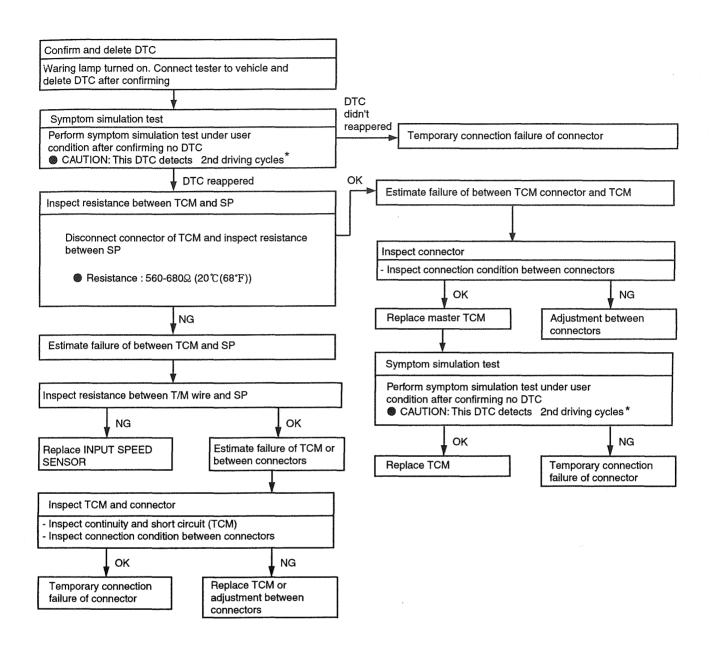
INSPECTION PROCEDURE

EKME004A

* The definition of 'Driving cycle' of TCM : Driving cycle is counted up at 10 senconds passed after

Ignition ON or 'Clear code' of scan tool.

DTC TROUBLESHOOTING PROCEDURE EFACD7BF


DTC P0716

INPUT SPEED SENSOR RANGE/PERFORMANCE

Item	Detecting Condition	Possible cause
DTC Strategy	Check for input revolution	
Enable Conditions	-	Signal circuit is open or short.
Threshold Value	• TCU detects Input Revolution \geq 7000 rpm.	Sensor power circuit is open
Diagnostic Time	● for 10.0 sec.	 Sensor ground circuit is open Faulty input speed sensor
Fail Safe	-	Faulty TCM
Pass Criteria	0< Input Revolution < 7000 rpm for 20 sec.	

TR -14

INSPECTION PROCEDURE

EKME005A

* The definition of 'Driving cycle' of TCM :

Driving cycle is counted up at 10 senconds passed after Ignition ON or 'Clear code' of scan tool.

PROCEDURE EA9ECCAD

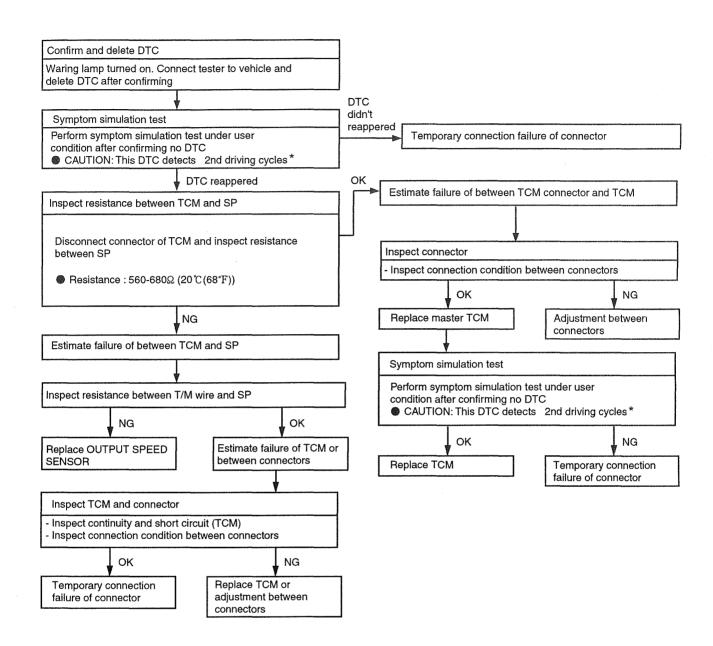
DTC P0717

PULSE GENERATOR A

DTC DETECTING CONDITION

Item	Detecting Condition	Possible cause
DTC Strategy	Check for pulses of input/ouput speed sensors.	
Enable Conditions	 Output Revolution more than 775 rpm. Range Sensor is D,2, L range selected. 1st, 2nd, 3rd gear (C0 rotation is stopped at 4th gear). 25 sec. later after changing the Range Sensor. 3.5 sec. later after changing the Gear. Engine Revolution more than 400 rpm. During No failure of Shift SOL electrical/Shift SOL Malfunction/Engine Speed Signal/Range Sensor. 	
Threshold Value	 TCU detects no pulse of input Speed Sensor Circuit Signal while. TCU detects 12 pulses of output speed sensor. The above detection 1000 times continuously. No pulse of 2nd gear. 	 Signal circuit is open or short Sensor power circuit is open Sensor ground circuit is open Faulty pulse generator Faulty TCM
Diagnostic Time	for 1 sec. continuously.	
Fail Safe	 No L-UP/Up Slope Mode/Down Slope Mode/Line Pressure Reduction at shifting/Torque Reduction at shifting. To inhibit failure detection(Output Sensor) 	
Pass Criteria	To detect Output Revolution more than 400rpm(Calculate by input Sensor) for 70 sec. Continuously.	

INSPECTION PROCEDURE


Refer to DTC P0716

PROCEDURE EE8ADCA4

DTC P0722

PULSE GENERATOR B

Item	Detecting Condition	Possible cause
DTC Strategy	Check for pulses of input/ouput speed sensors.	
Enable Conditions	 Range Sensor is D,2, L range. 25sec passed after N-D shifting Output Revolution calculated by Input Revolution ≥ 5 Km/h To inhibit failure detection Input Sensor/Range Sensor/S1, S2 Electorical 	
Threshold Value	 (1st,2nd,3rd) TCU detects NO pulse of output speed sensor while TCU detects 45 pulses of input speed signal(500 times continuously). (4th) Output speed calculation data decrease over 1500 rpm compare with previous calculation, and 0rpm. 	
Diagnostic Time	-	
Fail Safe	 (1st,2nd,3rd) TCU uses Input Sensor signal as a vehicle speed No L-up No 4th gear No LinePressure Reduction at Shifting No Torque Reduction at Shifting No Reverse Control No squat Control No Up Slope Mode/Down Slope Mode To inhibit failure detection(Sol Malfunction/L4 SW Malfunction) 	 Signal circuit is open or short Sensor power circuit is open Sensor ground circuit is open Faulty pulse generator Faulty TCM
	 (4th) L-up off and the following operation is applied.1. E/G revolution > first idle + 300 rpm 4th gear fixed2. E/G revolution ≤ first idle + 300 rpm OD off after 1 sec. To be operated according to failure operation in 1,2,3rd gear after 5 sec. from OD off 	
Pass Criteria	To detect output speed more than 400rpm for 70 seconds continuously.	

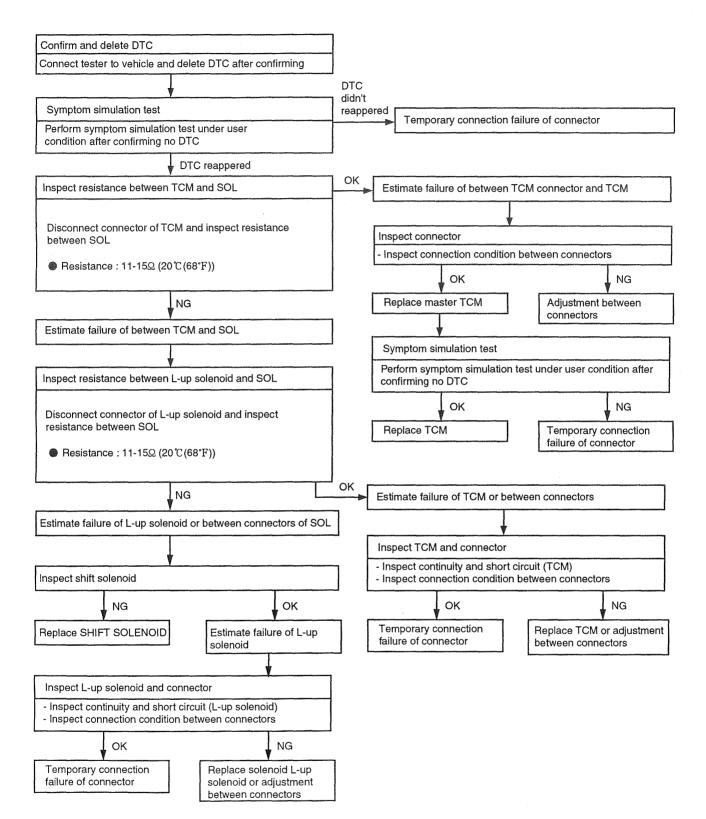
EKME006A

* The definition of 'Driving cycle' of TCM : Driving cycle is counted up at 10 senconds passed after Ignition ON or 'Clear code' of scan tool.

PROCEDURE E0A1FAC2

DTC P0727

ENGING SPEED SIGNAL INVALID

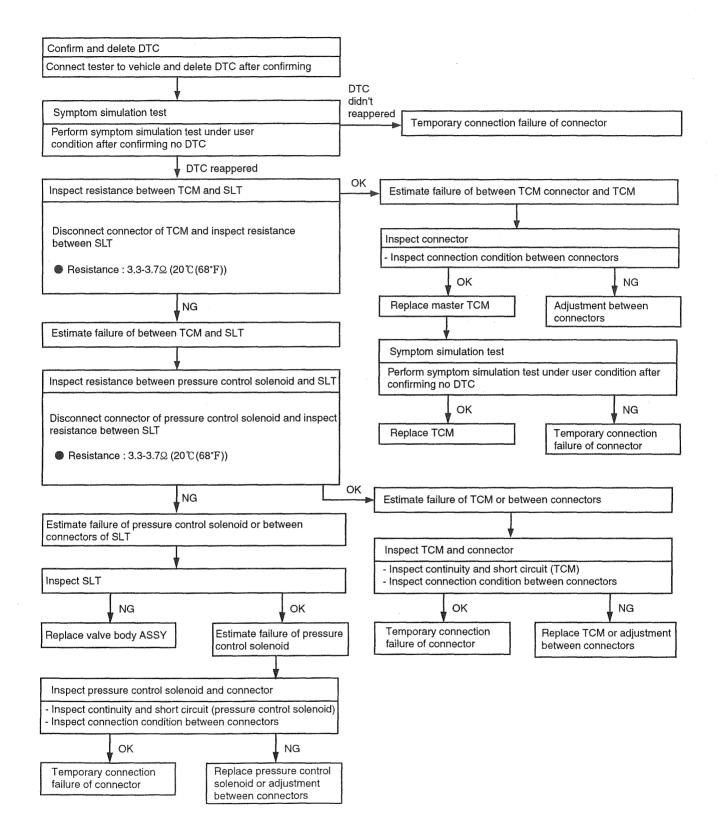

Item	Detecting Condition	Possible cause
DTC Strategy	Check for signal of speed sensor	
Enable Conditions		
Threshold Value	F_N_ENG bit ON in EMS1 signal from ECU	
Diagnostic Time	for 2.0 sec.	 Signal circuit is open or short Sensor power circuit is open
Fail Safe	 TCU detects that Engine Revolution is 7000rpm. To inhibit failure detection(Engine High Range/Input Sensor/SOL Malfunction/L4 SW Malfunction). No Coast Down/Up Slope Mode/Down Slope Mode. 	 Sensor ground circuit is open Faulty TCM
Pass Criteria	To detect F_N_ENG bit OFF for 2.0sec.	

DTC TROUBLESHOOTING PROCEDURE ED7BE99F

DTC P0743

TORQUE CONVERTER CLUTCH CIRCUIT - ELECTRICAL

Item	Detecting Condition	Possible cause
DTC Strategy	Check for GROUND SHORT/OPEN/+B SHORT	
Enable Conditions	—	
Threshold Value	 GND SHORT is : To detect the "OFF " signal of the SL monitor during 300msec.when SL driver outputs the "ON" signal.(The above detection 1 times at shifting continuously). OPEN / +B SHORT is: To detect the "ON " signal of the SL monitor during 500msec. when SL driver outputs the "OFF" signal. (The above detection 2 times at shifting continuously) 	* TORQUE CON- VERTER(DAMPER) CLUTCH : TCC
Diagnostic Time		Open or short in circuit
Fail Safe	 GND SHORT / OPEN / +B SHORT is : No L-UP To inhibit failure detection(SOL Malfunction). OPEN / +B SHORT is: 1st gear fixed under the 375 rpm. No Squat Control. 	 Faulty TCC SOLENOID VALVE Faulty TCM
Pass Criteria	 GND SHORT To detect no fail for 1 sec. when L-UP on. OPEN / +B SHORT To detect no fail for 1 sec. when L-UP off. 	

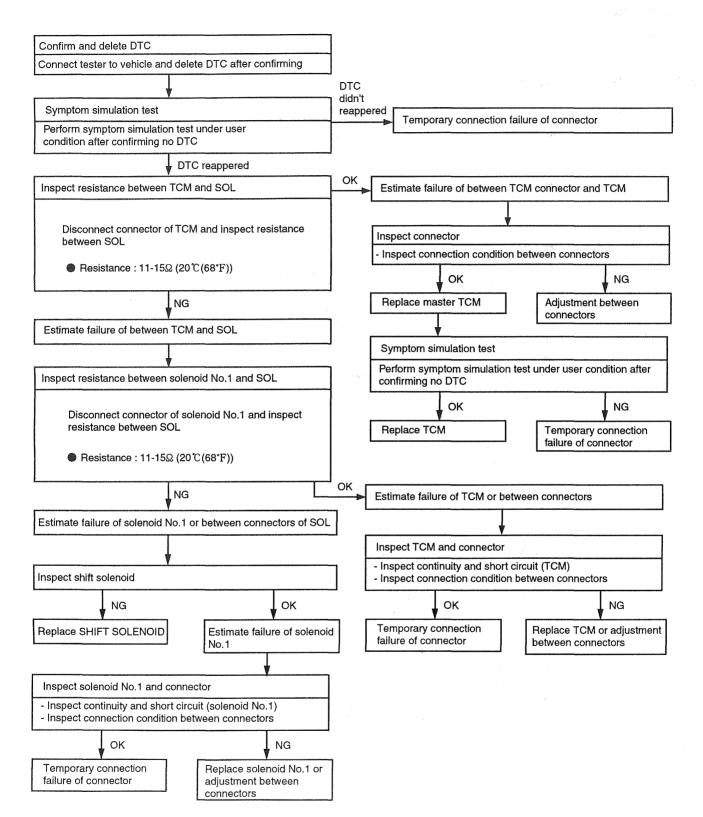

EKME007A

PROCEDURE EEDDD6E2

DTC P0748

PRESSURE CONTROL SOLENOID CIRCUIT MALFUNCTION

ltem	Detecting Condition	Possible cause
DTC Strategy	Check for GROUND SHORT/OPEN/+B SHORT	
Enable Conditions		
Threshold Value	 GND SHORT /OPEN : To detect that the feed back A/D value is less than 15 BATTERY SHORT : To detect that the feed back A/D value is more than 1000 	
Diagnostic Time	 GND SHORT / OPEN: 12.5sec. continuously BATTERY SHORT: for 500msec. continuously. 	Open or short in circuit
Fail Safe	 After failure detection: NO L- UP/Line Pressure Reduction at shifting/Up Slope Mode/Down Slope Mode/Squat Control. After failure decision Emergency mode 	
Pass Criteria	GND SHORT To detect the no failure detection for 12.5 sec continuously.	

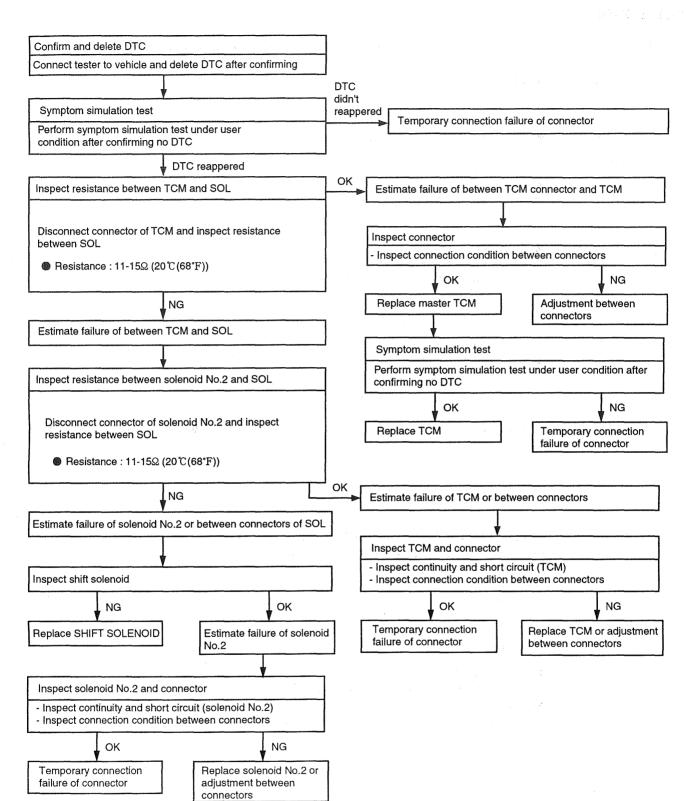

EKME008A

PROCEDURE EB5CA5DA

DTC P0753

SHIFT SILENOID CIRCUIT MALFUNCTION

Item		De	tecting Condition	Possible cause	
DTC Strategy	Check f	or GROUN	ID SHORT/OPEN		
Enable Conditions					
Threshold Value	300msec w OPEN To detect th 500msec w	he "OFF " : vhen S1 dr is: he "ON " s vhen S1 dri	signal of the S1 r iver outputs the " ignal of the S1 m iver outputs the " 2 times at shifting		
Diagnostic Time					
Fail Safe	GEAR 1 2 3 4 -No L-UP/T Reduction Mode/Down	ates shiftin S1FAIL 3 3 4 orque Red at shifting/ n Slope Ma failure dete L Malfunct lure decisi	g as following pa S2FAIL 1 4 4 4 4 Squat Control/Up ode ction(Output Ser ion)	S1 & S2 FAIL 4 4 4 4 4 (Line Pressure 5 Slope	Open or short in circuit
Pass Criteria	 GND SI To detect n OPEN 	HORT o fail for 1	sec. when Sol. c sec. when Sol. c		


EKME009A

DTC TROUBLESHOOTING PROCEDURE EFEB76F9

DTC P0758

SHIFT SILENOID CIRCUIT MALFUNCTION

Item		Det	Possible cause			
DTC Strategy	Check	for GROUN	D SHORT/OPE			
Enable Conditions						
	To detect t	HORT is : he "OFF " s vhen S2 dri				
Threshold Value		he "ON " si	gnal of the S1 m ver outputs the "			
	The above	detection 2	times at shifting	g continuously.		
Diagnostic Time						
	 After failure detection: -TCU operates shifting as following pattern. 					
	GEAR	S1FAIL	S2FAIL	S1 & S2 FAIL		
	1	3	1	4	Open or sh	ort in circuit
	2	3	4	4		
	3	3	4	4		
Fail Safe	4	4	4	EKME011A		
	Reduction Mode/Dow -To inhibit	at shifting/S n Slope Mo	ction(Output Ser	7		
	After fa -Emergence	ilure decisio y mode	on:			
Pass Criteria	OPEN	o fail for 1 s	ec. when Sol. c			

EKME010A

DTC TROUBLESHOOTING PROCEDURE ECBDB6BC

DTC P1121

THROTTLE POSITION SENSOR SIGNAL INVALID

Item	Detecting Contion	Possible cause
DTC Strategy	Check for GROUND SHORT/OPE	
Enable Conditions		
Threshold Value	TCU detects TPS data is FFH	
Diagnostic Time	for 0.2sec	• Open or short in sireuit
Fail Safe	 TCU judges Throttle Opening is 0% for shifting. Line Pressure is full No Torque Reduction at shifting/Coast Down/L-UP. 	 Open or short in circuit
Pass Criteria	To detect TPS data is between 20h~ F5h for 2.0sec. continuously.	

PROCEDURE E31BA5E8

DTC P1630

CONTROL MODULE COMMUNICATION ERROR

Item	Detecting Contion	Possible cause
DTC Strategy	-	₽
Enable Conditions	After 0.2sec. passed from IG ON.	
Threshold Value	To detect the BUS OFF signal in CPU.	
Diagnostic Time	for 0.2sec.	
Fail Safe	 Line Pressure is full. No Torque Reduction at shifting/Squat Control/Up Slope Mode/Down Slope Mode/L-UP/Coast Control. TCU judges Throttle Opening is 0% for shifting. To inhibit failure detection(No ID/L4 SW Malfunction/Engine High Range/Transmission Fluid Sensor/SOL Malfunction). TCU judges Engine Water Temperature is normal condition(80Degrees)/Engine Revolution 7000rpm/Engine Torque 350Nm/Driving cycle Detect. 	 Open or Short in CAN communication harness Faulty ECM Faulty TCM
Pass Criteria	To detect the BUS normal signal for 2.0sec continuously	

PROCEDURE E4BB55BD

DTC P1631

COMMUNICATION ERROR WITH ECM

Item	Detecting Contion	Possible cause
DTC Strategy	—	 Open or Short in CAN communication harness Faulty ECM Faulty TCM
Enable Conditions	 After 0.2sec. passed from IG ON. During No failure of BUS OFF 	
Threshold Value	To detect the nothing of EMS1 or EMS2 signal on CAN BUS	
Diagnostic Time	continued for 2.0 sec.	
Fail Safe	 Line Pressure is full. No Torque Reduction at shifting/Squat Control/Up Slope Mode/Down Slope Mode/L-UP/Coast Control. TCU judges Throttle Opening is 0% for shifting. To inhibit failure detection(No ID/L4 SW Malfunction/Engine High Range/Transmission Fluid Sensor/SOL Malfunction). TCU judges Engine Water Temperature is normal condition(80Degrees)/Engine Revolution 7000rpm/Engine Torque 350Nm/Driving cycle Detect. 	
Pass Criteria	To detect the BUS normal signal for 2.0sec continuously.	