ENGINE CONTROL SYSTEM

CONTENTS

DIAGNOSTIC TROUBLE CODE INDEX Alphabetical & Numerical Index for DTC	1
(KA engine)	1
PRECAUTIONS AND PREPARATION	
Special Service Tools	2
Commercial Service Tool	4
Supplemental Restraint System (SRS) "AIR	
BAG" (4WD models)	4
Supplemental Restraint System (SRS) "AIR	
BAG" (2WD models)	4

KA

PRECAUTIONS AND PREPARATION	5
Engine Fuel & Emission Control System	5
Precautions	6
ENGINE AND EMISSION CONTROL OVERALL	
SYSTEM	8
Circuit Diagram	8
System Diagram	9
ECCS Component Parts Location	.10
Vacuum Hose Drawing	.12
System Chart	.13
ENGINE AND EMISSION BASIC CONTROL	
SYSTEM DESCRIPTION	.14
Multiport Fuel Injection (MFI) System	.14
Distributor Ignition (DI) System	. 17
Air Conditioning Cut Control	.18
Fuel Cut Control (at no load & high engine	
speed)	.18
EVAPORATIVE EMISSION SYSTEM	.19
Description	.19
Inspection	. 19

POSITIVE CRANKCASE VENTILATION	21
Description	21
Inspection	21
BASIC SERVICE PROCEDURE	22
Fuel Pressure Release	22
Fuel Pressure Check	22
Injector Removal and Installation	23
Fast Idle Cam (FIC) Inspection and	
Adjustment	24
Idle Speed/Ignition Timing/Idle Mixture Ratio	
Adjustment	25
ON BOARD DIAGNOSTIC SYSTEM	
DESCRIPTION	36
Introduction	36
Diagnostic Trouble Code (DTC)	36
Malfunction Indicator Lamp (MIL)	38
CONSULT	45
TROUBLE DIAGNOSIS - Introduction	54
Introduction	54
Diagnostic Worksheet	54
TROUBLE DIAGNOSIS - Work Flow	56
Work Flow	56
Description for Work Flow	57
TROUBLE DIAGNOSIS - Basic Inspection	58
Basic Inspection	58
TROUBLE DIAGNOSIS - General Description	61
Fail-Safe Chart	61
Symptom Matrix Chart	62
CONSULT Reference Value in Data Monitor	
Mode	64
Major Sensor Reference Graph in Data	
Monitor Mode	66
ECM Terminals and Reference Value	68

TROUBLE DIAGNOSIS FOR POWER SUPPLY7	5
Main Power Supply and Ground Circuit7	5
TROUBLE DIAGNOSIS FOR "CAMSHAFT	
POSI SEN" (DTC 11)	
Camshaft Position Sensor (CMPS)8	2
TROUBLE DIAGNOSIS FOR "MASS AIR	
FLOW SEN" (DTC 12)	9
Mass Air Flow Sensor (MAFS)8	9
TROUBLE DIAGNOSIS FOR "COOLANT TEMP	
SEN'' (DTC 13)	5
Engine Coolant Temperature Sensor (ECTS)9	5
TROUBLE DIAGNOSIS FOR "IGN SIGNAL-	
PRIMARY'' (DTC 21)	9
Ignition Signal9	9
TROUBLE DIAGNOSIS FOR "OVER HEAT"	
(DTC 28)10	6
Overheat10	6
TROUBLE DIAGNOSIS FOR "INT AIR TEMP	
SEN" (DTC 41)10	
Intake Air Temperature Sensor10	9
TROUBLE DIAGNOSIS FOR "THROTTLE POSI	
SEN" (DTC 43)11	
Throttle Position Sensor11	3
TROUBLE DIAGNOSIS FOR	
NON-DETECTABLE ITEMS11	
Vehicle Speed Sensor (VSS)11	8
Heated Oxygen Sensor (HO2S)	
- LHD Models12	3
Heated Oxygen Sensor Heater	
- LHD Models12	27
Idle Air Control Valve (IACV) - Auxiliary Air	
Control (AAC) Valve13	
Neutral Position Switch13	
EVAP Canister Purge Control Solenoid Valve14	0
Injector14	
Start Signal14	.9
Fuel Pump15	
Power Steering Oil Pressure Switch15	
Swirl Control Valve Control Solenoid Valve 16	51
IACV-FICD Solenoid Valve16	
MIL & Data Link Connectors17	΄3

_____ TD _____

176
176
178
178
178
180
183
183
184

Removal and Installation	186
Disassembly	186
Inspection	187
Cleaning	187
Assembly	189
Test and Adjustment	189
FUEL SYSTEM CHECK	191
Bleeding Fuel System	191
Bleeding Fuel Filter	192
Checking Priming Pump	192
Checking Fuel Filter Switch	
POSITIVE CRANKCASE VENTILATION	193
Description	193
Inspection	193
QUICK-GLOW SYSTEM	194
Component Parts Location	194
Circuit Diagram	195
Description	
Wiring Diagram	
Glow Control Unit Circuit Inspection (For Co	bld
Areas)	
Glow Control Unit Circuit Inspection (Excep	t
for Cold Areas)	206
Component Inspection	
EGR SYSTEM	
Component Parts Location	
Description	
Operation	
Wiring Diagram	
System Inspection	
Component Inspection	
SOLENOID TIMER	220
Description	220
Operation	
Wiring Diagram	
Inspection	
FUEL CUT SYSTEM	225
Wiring Diagram	
FUEL HEATER SYSTEM	
Description	
Wiring Diagram	
System Inspection	
Component Inspection	
FAST IDLE CONTROL CIRCUIT	
Wiring Diagram	
Electrical Components Inspection	231
KA	

SERVICE DATA AND SPECIFICATIONS (SDS)	232
General Specifications	232
Inspection and Adjustment	232

	TD	
SERVICE DATA AND	SPECIF	(SDS) .233

VE-type Injection Pump233

Injection Nozzle	233
Injection Pump Calibration Standard	234

When you read wiring diagrams:

• Read GI section, "HOW TO READ WIRING DIAGRAMS".

• See EL section, "POWER SUPPLY ROUTING" for power distribution circuit. When you perform trouble diagnoses, read GI section, "HOW TO FOLLOW FLOW CHART IN TROUBLE DIAGNOSES" and "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT".

Alphabetical & Numerical Index for DTC (KA engine)

ALPHABETICAL INDEX FOR DTC

NUMERICAL INDEX FOR DTC	Nl	JMEF	RICAL	INDEX	FOR	DTC
-------------------------	----	------	-------	-------	-----	-----

			pplicable Not applicable
Items (CONSULT screen terms)	DTC	MIL illumination	Reference page
CAMSHAFT POSI SEN	11	—	EC-82
COOLANT TEMP SEN	13	х	EC-95
IGN SIGNAL-PRIMARY	21	—	EC-99
INT AIR TEMP SEN	41	_	EC-109
MASS AIR FLOW SEN	12	—	EC-89
NATS MALFUNCTION	141 - 148	Х	EL section*
NO SELF DIAGNOSTIC FAILURE INDICATED	55	_	_
OVER HEAT	28	х	EC-106
THROTTLE POSI SEN	43		EC-113

			pplicable lot applicable
DTC	MIL illumination	Items (CONSULT screen terms)	Reference page
11	_	CAMSHAFT POSI SEN	EC-82
12	_	MASS AIR FLOW SEN	EC-89
13	х	COOLANT TEMP SEN	EC-95
21	_	IGN SIGNAL-PRIMARY	EC-99
28	х	OVER HEAT	EC-106
41	_	INT AIR TEMP SEN	EC-109
43	_	THROTTLE POSI SEN	EC-113
55	_	NO SELF DIAGNOSTIC FAILURE INDICATED	_
141 - 148	Х	NATS MALFUNCTION	EL section*

*Refer to "NATS (Nissan Anti-Theft System)" in EL section.

Special Service Tools

FOR DIESEL ENGINE INJECTION PUMP

Tool number	Description		Engine application
Tool name			TD
 KV11229352 Measuring device 1 KV11229350 Holder 2 KV11229360 Nut 3 KV11229370 Pin 4 KV11254410 Dial gauge 	2 (1) NT570	Measuring plunger lift —	X
KV11103000 Pulley puller	NT676	Removing injection pump drive gear	x
KV10111100 Seal cutter	NT046	Removing injection pump drive gear cover	x
WS39930000 Tube presser		Pressing the tube of liquid gasket	x
	NT052		

X: Applicable

PRECAUTIONS AND PREPARATION

Special Service Tools (Cont'd)

FOR DIESEL ENGINE INJECTION NOZZLE

Tool number Tool name	Description	Engine application
		TD
 KV11289004 Nozzle cleaning kit (1) KV11290012 Box (2) KV11290110 Brush (3) KV11290122 Nozzle oil sump scraper (4) KV11290140 Nozzle needle tip (5) KV11290150 Nozzle seat scraper (6) KV11290210 Nozzle holder (7) KV11290220 Nozzle hole cleaning needle 	NT296	X
KV11292210 Nozzle cleaning device	NT293	x
KV11290632 Nozzle oil sump scraper	NT294	x
KV11290620 Nozzle seat scraper	NT295	x

X: Applicable

Commercial Service Tool

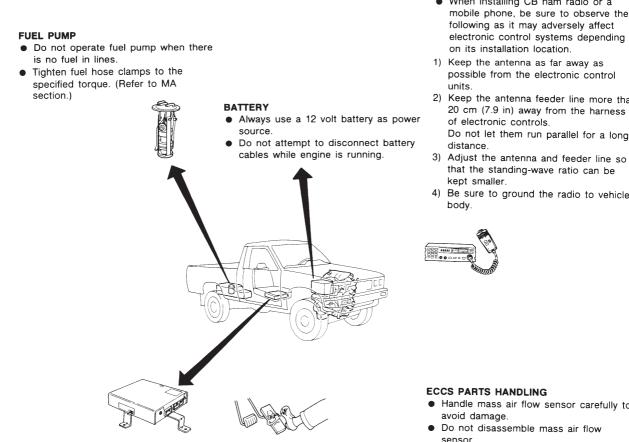
FOR KA ENGINE MODELS

Tool name	Description	
Fuel filler cap adapter	NT653	Checking fuel tank vacuum relief valve opening pressure

Supplemental Restraint System (SRS) "AIR BAG" (4WD models)

The Supplemental Restraint System "AIR BAG", used along with a seat belt, helps to reduce the risk or severity of injury to the driver in a frontal collision. The Supplemental Restraint System consists of an air bag module (located in the center of the steering wheel), a diagnosis sensor unit, warning lamp, wiring harness and spiral cable. Information necessary to service the system safely is included in the **RS section** of this Service Manual.

WARNING:


- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses are covered with yellow insulation either just before the harness connectors or for the complete harness, for easy identification.

Supplemental Restraint System (SRS) "AIR BAG" (2WD models)

The Supplemental Restraint System "AIR BAG", used along with a seat belt, helps to reduce the risk or severity of injury to the driver in a frontal collision. The Supplemental Restraint System consists of an air bag module (located in the center of the steering wheel), a diagnosis sensor unit, warning lamp, wiring harness and spiral cable. Information necessary to service the system safely is included in the **RS section** of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system.
- Do not use electrical test equipment on any circuit related to the SRS.

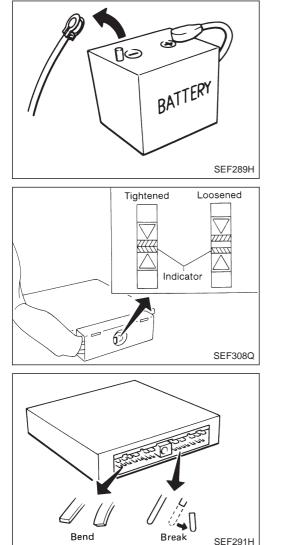
ECM

- Do not disassemble ECCS control module (ECM)
- Do not turn diagnosis mode selector forcibly
- If a battery terminal is disconnected, the memory will return to the ECM value

The ECCS will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.

WHEN STARTING

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.


WIRELESS EQUIPMENT

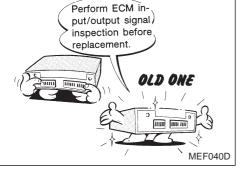
- When installing CB ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending
- 1) Keep the antenna as far away as possible from the electronic control
- Keep the antenna feeder line more than 20 cm (7.9 in) away from the harness
- that the standing-wave ratio can be
- 4) Be sure to ground the radio to vehicle

- Handle mass air flow sensor carefully to
- Do not disassemble mass air flow sensor
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble IACV-AAC valve.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor.

ECCS HARNESS HANDLING

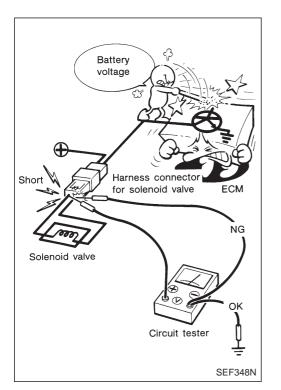
- Securely connect ECCS harness connectors. A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep ECCS harness at least 10 cm (3.9 in) away from adjacent harnesses, to prevent an ECCS system malfunction due to receiving external noise,
- Keep ECM parts and harnesses dry.
- Before removing parts, turn off ignition switch and then disconnect battery ground cable.

Precautions

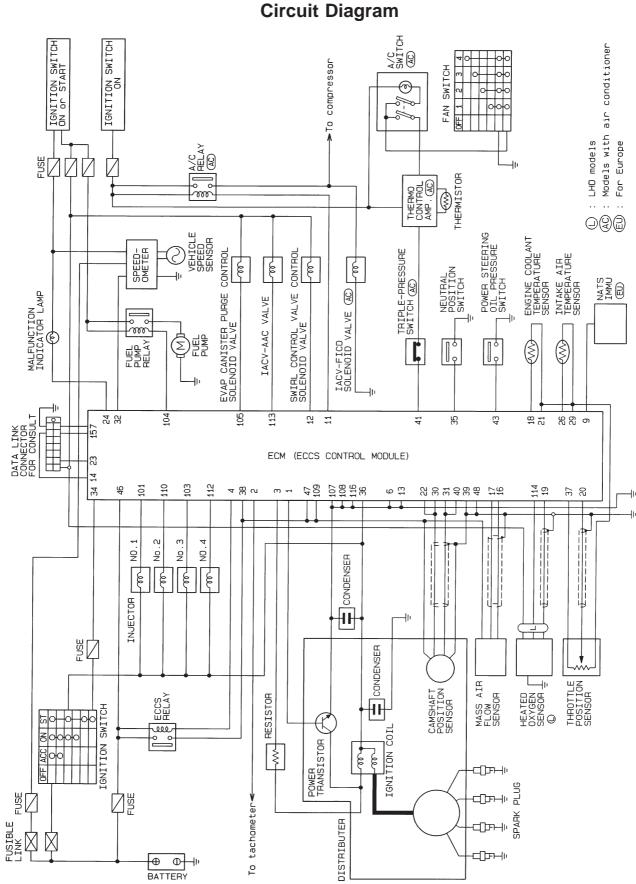

- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM. Because battery voltage is applied to ECM even if ignition switch is turned off.
- When connecting ECM harness connector, tighten securing bolt until the gap between the orange indicators disappears.

●: 3.0 - 5.0 N·m (0.3 - 0.5 kg-m, 26 - 43 in-lb)

• When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

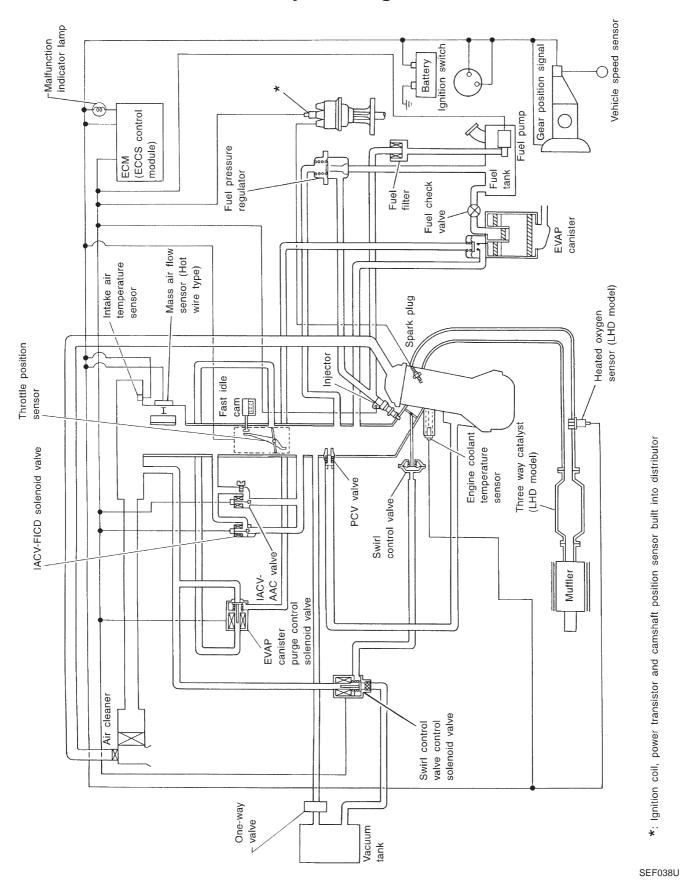

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.

• Before replacing ECM, perform ECM input/output signal inspection and make sure whether ECM functions properly or not. (See page EC-68.)

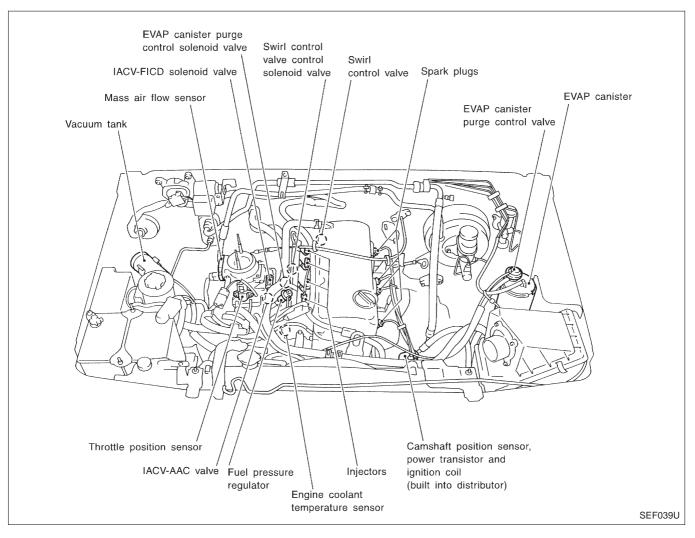


• After performing each TROUBLE DIAGNOSIS, perform "OVERALL FUNCTION CHECK" or "DTC (Diagnostic Trouble Code) CONFIRMATION PROCEDURE". The DTC should not be displayed in the "DTC CONFIR-MATION PROCEDURE" if the repair is completed. The "OVERALL FUNCTION CHECK" should be a good result if the repair is completed.

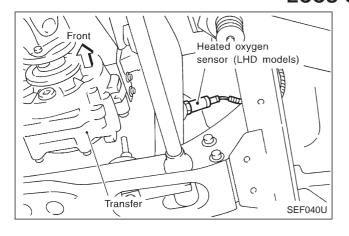
Precautions (Cont'd)

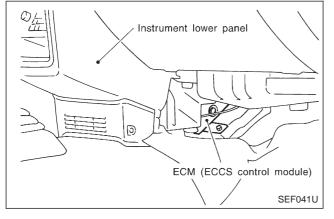

• When measuring ECM signals with a circuit tester, never bring the two tester probes into contact. Accidental contact of probes will cause a short circuit and damage the ECM power transistor.

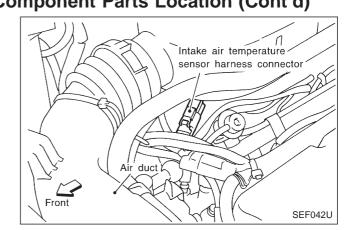
HEC557

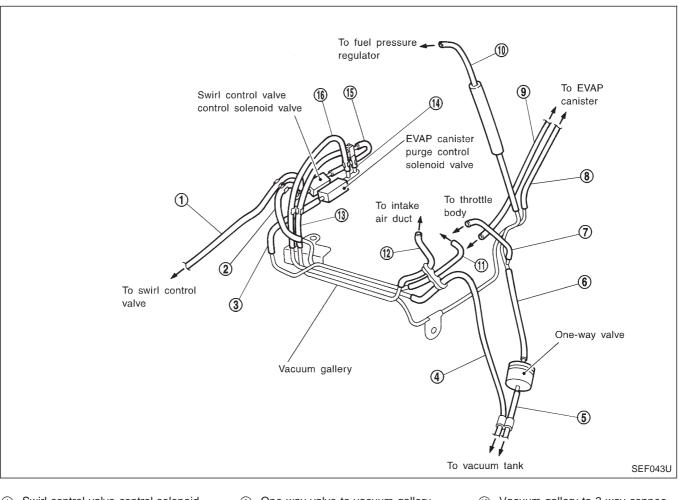

KA

System Diagram




 \star : Ignition coil, power transistor and camshaft position sensor built into distributor


ECCS Component Parts Location


ENGINE AND EMISSION CONTROL OVERALL SYSTEM ECCS Component Parts Location (Cont'd)

- (1) Swirl control valve control solenoid valve to swirl control valve
- Swirl control valve control solenoid valve to vacuum gallery
- ③ EVAP canister purge control solenoid valve to vacuum gallery
- 4 Vacuum tank to vacuum gallery
- (5) Vacuum tank to one-way valve
- (6) One-way valve to vacuum gallery
- 1 Throttle body to vacuum gallery
- (8) EVAP canister to vacuum gallery
- (9) EVAP canister to throttle body
- Fuel pressure regulator to vacuum gallery
- (1) Throttle body to vacuum gallery
- 12 Intake air duct to vacuum gallery

Refer to "System Diagram", EC-9, for vacuum control system.

- (13) Vacuum gallery to 3-way connector
- EVAP canister purge control solenoid valve to 3-way connector
- (5) Swirl control valve control solenoid valve to 3-way connector
- (f) EVAP canister purge control solenoid valve to vacuum gallery

Fuel injection & mixture ratio control Camshaft position sensor Injectors Mass air flow sensor Distributor ignition system Power transistor Engine coolant temperature sensor IACV-AAC valve IACV-FICD solenoid valve Idle air control system Heated oxygen sensor* Swirl control valve control Swirl control valve control solenoid valve Ignition switch EVAP canister purge control EVAP canister control solenoid valve Throttle position sensor ECM (ECCS control module) Neutral position switch Fuel pump control Fuel pump relay Vehicle speed sensor Heated oxygen sensor moni-tor & on board diagnostic Malfunction indicator lamp (On the instrument panel) system Air conditioner switch Acceleration cut control Air conditioner relay Battery voltage Heated oxygen sensor Heated oxygen sensor heater control* heater Power steering oil pressure switch Intake air temperature sensor

System Chart

*: LHD models

Multiport Fuel Injection (MFI) System

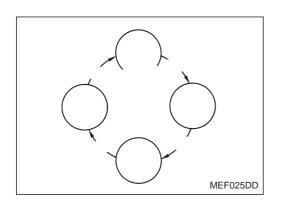
Camshaft position sensor	Engine speed and piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Heated oxygen sensor*	Density of oxygen in exhaust gas		
Throttle position sensor	Throttle position Throttle valve idle position	ECM (ECCS control module)	→ Injector
Neutral position switch	Gear position		
Vehicle speed sensor	Vehicle speed		
Ignition switch	Start signal		
Battery	Battery voltage		

INPUT/OUTPUT SIGNAL LINE

*: LHD models

BASIC MULTIPORT FUEL INJECTION SYSTEM

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.


VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

The amount of fuel injected is compensated for to improve engine performance. This will be made under various operating conditions as listed below. <Fuel increase>

- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- High-load, high-speed operation
- When swirl control valve operates

<Fuel decrease>

- During deceleration
- During high-engine speed operation
- Extremely high-engine coolant temperature

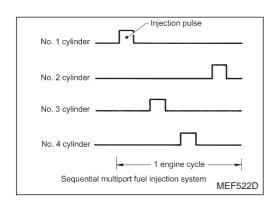
Multiport Fuel Injection (MFI) System (Cont'd)

MIXTURE RATIO FEEDBACK CONTROL

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a heated oxygen sensor in the exhaust manifold to monitor if the engine is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about heated oxygen sensor, refer to page EC-123. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

OPEN LOOP CONTROL


The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Engine idling
- Malfunction of heated oxygen sensor or its circuit
- Insufficient activation of heated oxygen sensor at low engine coolant temperature
- High-engine coolant temperature
- During warm-up
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the heated oxygen sensor. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both Manufacturing differences (i.e. mass air flow sensor hot wire) and characteristic changes during operation (i.e. injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

FUEL INJECTION SYSTEM

Two types of systems are used.

Sequential multiport fuel injection system

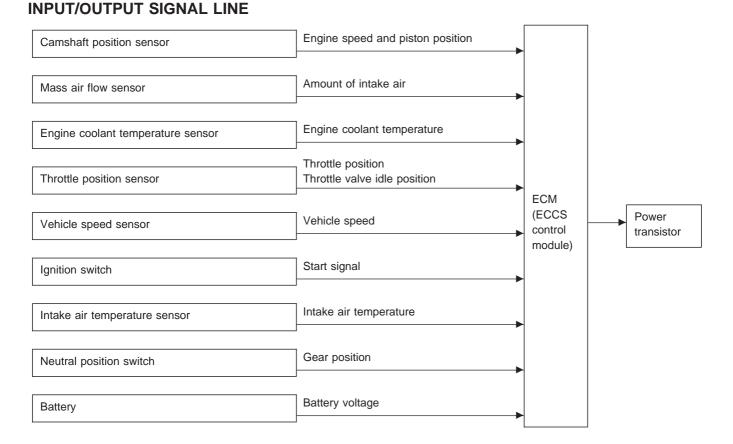
Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

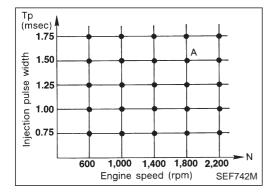
No. 1 cylinder				
No. 2 cylinder				
No. 3 cylinder				
No. 4 cylinder				
1 engine cycle ——				
Simultaneous multiport fuel injection system				
MEF523D				

Multiport Fuel Injection (MFI) System (Cont'd)

Simultaneous multiport fuel injection system

Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.


The four injectors will then receive the signals two times for each engine cycle.


This system is used when the engine is being started and/or if the fail-safe mode (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Distributor Ignition (DI) System

SYSTEM DESCRIPTION

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine.

The ignition timing data is stored in the ECM. This data forms the map shown left.

The ECM detects information such as the injection pulse width and camshaft position sensor signal. Responding to this information, ignition signals are transmitted to the power transistor.

e.g. N: 1,800 rpm, Tp: 1.50 msec A °BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

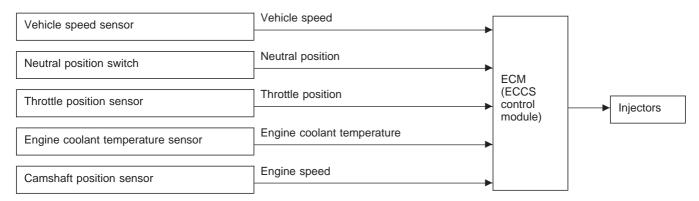
- 1 At starting
- 2 During warm-up
- 3 At idle
- 4 When swirl control valve operates
- 5 Hot-engine operation
- 6 At acceleration

Air Conditioning Cut Control

INPUT/OUTPUT SIGNAL LINE

Air conditioner switch	Air conditioner "ON" signal	_	
Throttle position sensor	Throttle valve opening angle	ECM (ECCS	Air condi-
Ignition switch	Start signal	control module)	→ tioner relay
Engine coolant temperature sensor	Engine coolant temperature		

SYSTEM DESCRIPTION

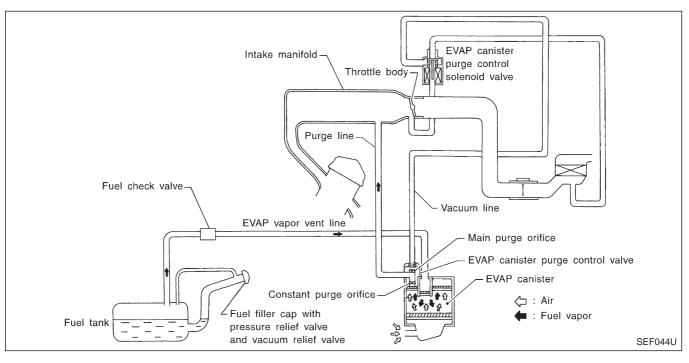

This system improves engine operation when the air conditioner is used.

Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed
- When cranking the engine
- When the engine coolant temperature becomes excessively high

Fuel Cut Control (at no load & high engine speed)

INPUT/OUTPUT SIGNAL LINE

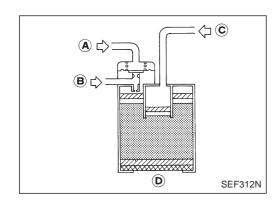

If the engine speed is above 3,500 rpm with no load (for example, in neutral and engine speed over 3,500 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed.

Fuel cut will operate until the engine speed reaches 1,500 rpm, then fuel cut is cancelled.

NOTE:

This function is different than deceleration control listed under multiport fuel injection on EC-14.

Description

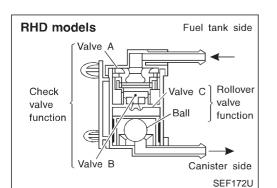

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

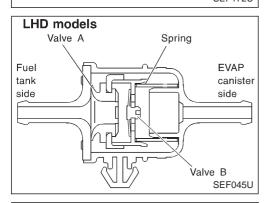
The fuel vapor from sealed fuel tank is led into the EVAP canister when the engine is off. The fuel vapor is then stored in the EVAP canister. The EVAP canister retains the fuel vapor until the EVAP canister is purged by air.

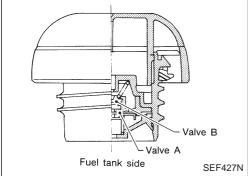
When the engine is running, the air is drawn through the bottom of the EVAP canister. The fuel vapor will then be led to the intake manifold.

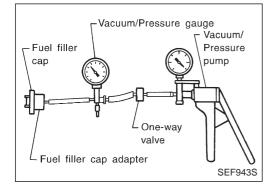
When the engine runs at idle, the EVAP canister purge control valve is closed. Only a small amount of vapor flows into the intake manifold through the constant purge orifice.

As the engine speed increases and the throttle vacuum rises, the EVAP canister purge control valve opens. The vapor is sucked through both main purge and constant purge orifices.


Inspection


EVAP CANISTER


Check EVAP canister as follows:


- 1. Blow air in port (A) and check that there is no leakage.
- 2. Apply vacuum to port (▲). [Approximately -13.3 to -20.0 kPa (-133 to -200 mbar, -100 to -150 mmHg, -3.94 to -5.91 inHg)]
- 3. Cover port D by hand.
- Blow air in port (c) and check that it flows freely out of port (B).

EVAPORATIVE EMISSION SYSTEM

Inspection (Cont'd) **FUEL CHECK VALVE**

- 1. Blow air through connector on fuel tank side. A considerable resistance should be felt and a portion of air flow should be directed toward the EVAP canister side.
- 2. Blow air through connector on EVAP canister side. Air flow should be smoothly directed toward fuel tank side.
- 3. If fuel check valve is suspected of not properly functioning in steps 1 and 2 above, replace it.

Rollover valve operation (RHD models only)

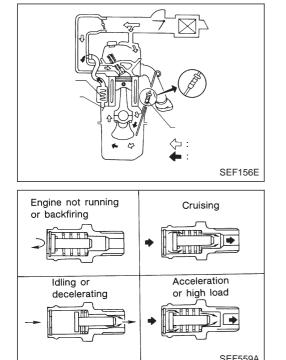
Ensure that continuity of air passage does not exist when the installed rollover valve is tilted to 90° or 180°.

FUEL TANK VACUUM RELIEF VALVE

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum. **Pressure:**

15.3 - 20.0 kPa (0.1530 - 0.2001 bar, 0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:


-6.0 to -3.3 kPa (-0.0598 to -0.0333 bar, -0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

3. If out of specification, replace fuel filler cap as an assembly. **CAUTION:**

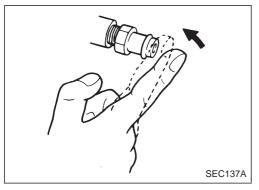
Use only a genuine fuel filler cap as a replacement.

EVAP CANISTER PURGE CONTROL SOLENOID VALVE

Refer to EC-140.

Description

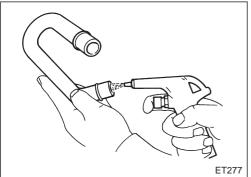
This system returns blow-by gas to the intake manifold collector. The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.


During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

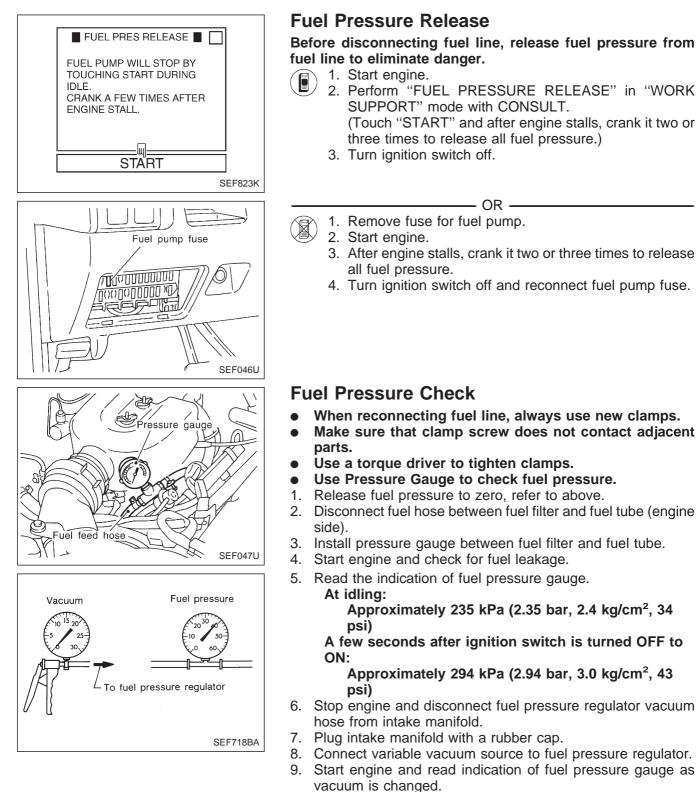
Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air.

The ventilating air is then drawn from the air duct into the crankcase. In this process the air passes through the hose connecting air inlet tubes to the rocker cover.

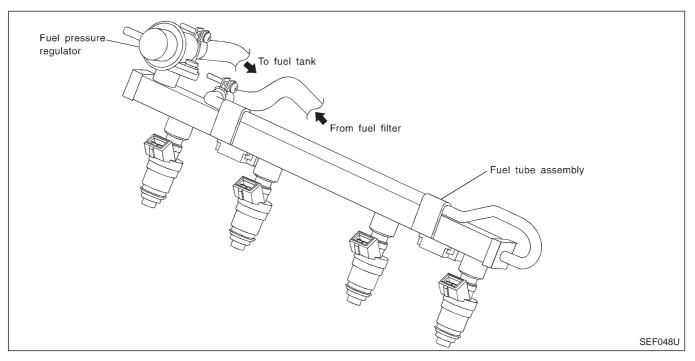
Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

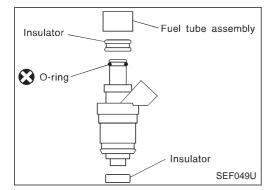

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the intake collector under all conditions.

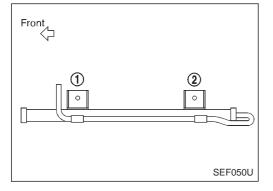
Inspection


PCV (Positive Crankcase Ventilation) VALVE

With engine running at idle, remove PCV valve from breather separator. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over the valve inlet.


PCV HOSE


- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

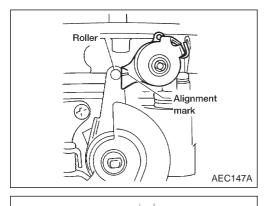


Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

Injector Removal and Installation

- 1. Release fuel pressure to zero.
- 2. Remove injector tube assembly with injectors from intake manifold.
- 3. Remove injectors from injector tube assembly.
- Do not pull on the connector.
- 4. Install injector to fuel tube assembly.
- a. Clean exterior of injector tail piece.
- b. Use new O-rings.

Always replace O-rings with new ones.


Lubricate O-rings with a smear of engine oil.

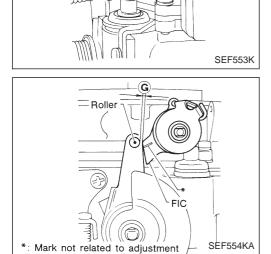
5. Install injectors with fuel tube assembly to intake manifold. **Tighten in numerical order shown in the figure.**

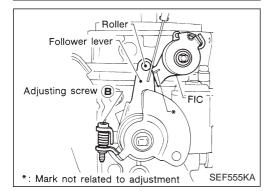
- a. First, tighten all bolts to 7.8 to 10.8 N·m (0.8 to 1.1 kg-m, 5.8 to 8.0 ft-lb).
- b. Then, tighten all bolts to 16 to 21 N⋅m (1.6 to 2.1 kg-m, 12 to 15 ft-lb).
- 6. Install fuel hoses to fuel tube assembly.

7. Reinstall any parts removed in reverse order of removal. **CAUTION:**

After properly connecting injectors to fuel tube assembly, check connections for fuel leakage.

(A)


Fast Idle Cam (FIC) Inspection and Adjustment


- 1. Remove air cleaner assembly.
- 2. Make sure the FIC alignment mark is centered on the lever roller as shown in the figure.
- An alignment mark is stamped on the FIC so that the top of the cam will face in the correct direction.
- If necessary, adjust the FIC screw (A) until the alignment mark is centered on the lever roller.

- 3. Start engine and warm up to operating temperature.
 - 4. Measure clearance (c) between the lever roller and the top of the FIC using a feeler gauge as shown in the figure.
 Clearance (c):

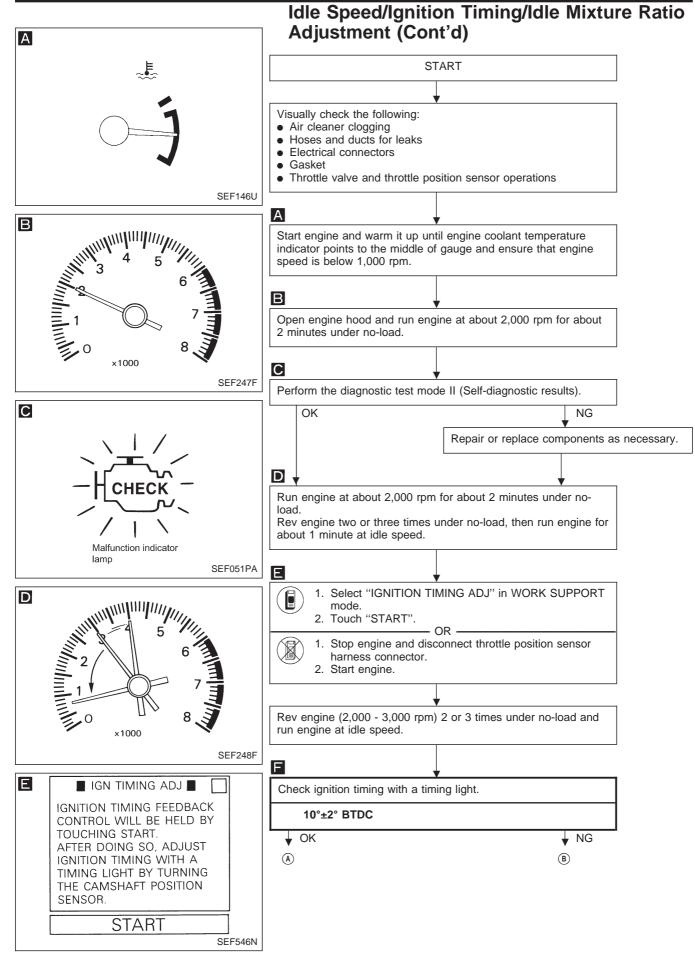
```
2.0 - 2.6 mm (0.079 - 0.102 in)
```

• If clearance (a) is out of specification, adjust clearance (b) using adjusting screw (b) to 2.3 mm (0.091 in).

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

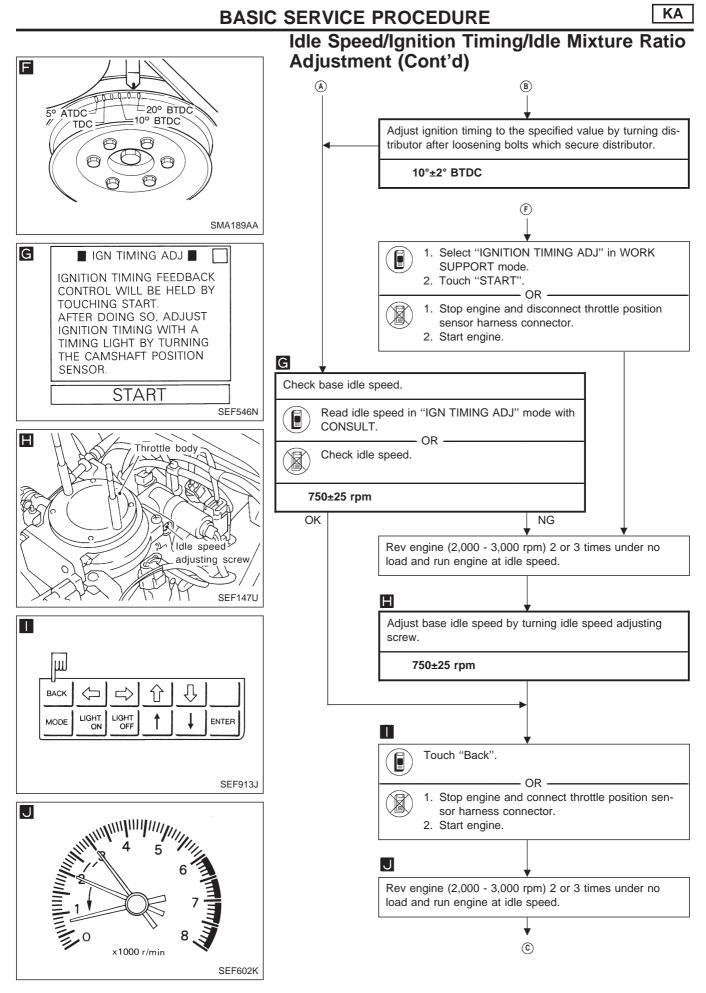
PREPARATION

- Make sure that the following parts are in good order.
- (1) Battery
- (2) Ignition system
- (3) Engine oil and coolant levels
- (4) Fuses
- (5) ECM harness connector
- (6) Vacuum hoses
- (7) Air intake system
- (Oil filler cap, oil level gauge, etc.)
- (8) Fuel pressure

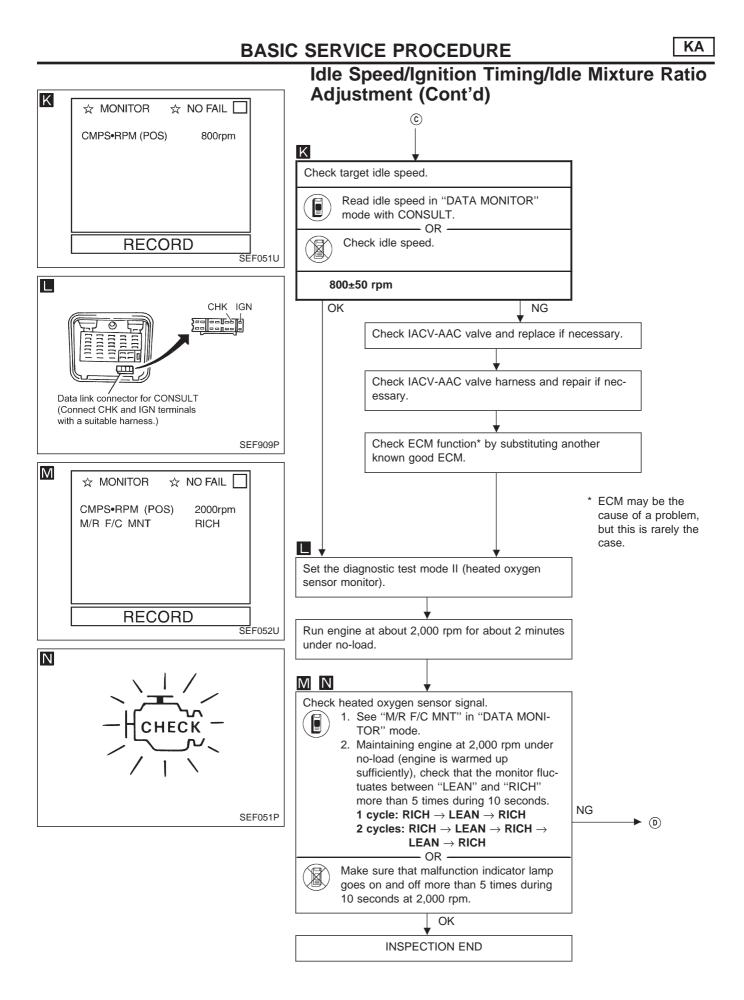

- (9) Engine compression
- (10) Throttle valve
- On air conditioner equipped models, checks should be carried out while the air conditioner is "OFF".
- When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- Turn off headlamps, heater blower, rear window defogger.
- Keep front wheels pointed straight ahead.

LHD MODELS

Overall inspection sequence

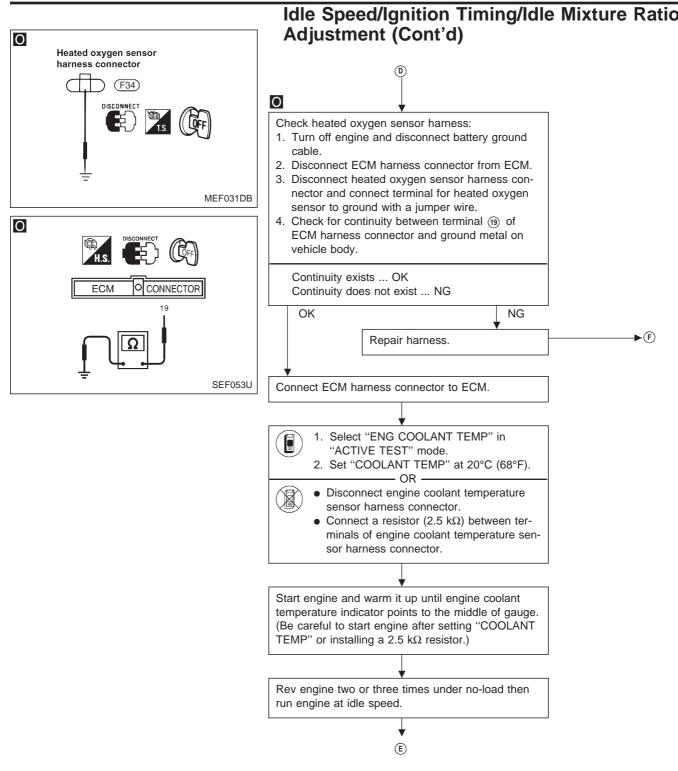

INSPECTION START			
Perform diagnostic test mod	e II (Self-diagnostic results).	NG Repair or replace.	
ок			
Check & adjust ignition timin	ıg.		
OK NG			
Check & adjust idle speed.			
OK ◀			
. ▲			
-	NG Check harnesses of heated oxygen sensor.	OK Check CO%.	
Check function of heated		ОК	
oxygen sensor.	NG		
	▼	♥	Check emission control
-	Repair or replace har- ness(es).		parts and repair or replace if necessary.
OK		Replace heated oxy- gen sensor.	
		Check function of	
	•	OK heated oxygen sensor.	

BASIC SERVICE PROCEDURE

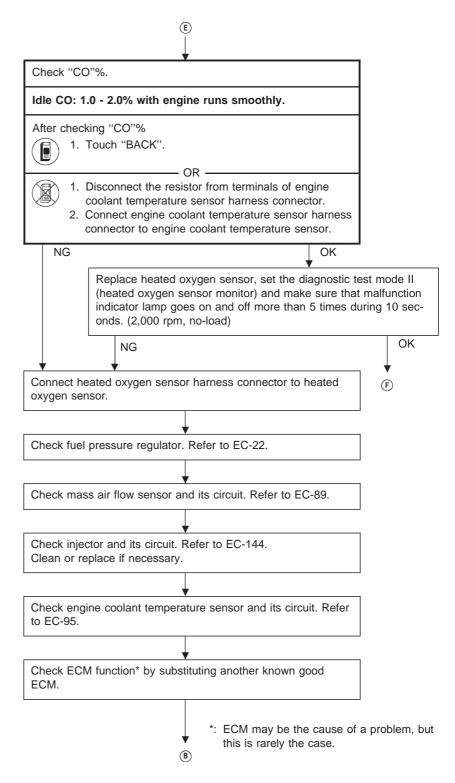


EC-26

KA

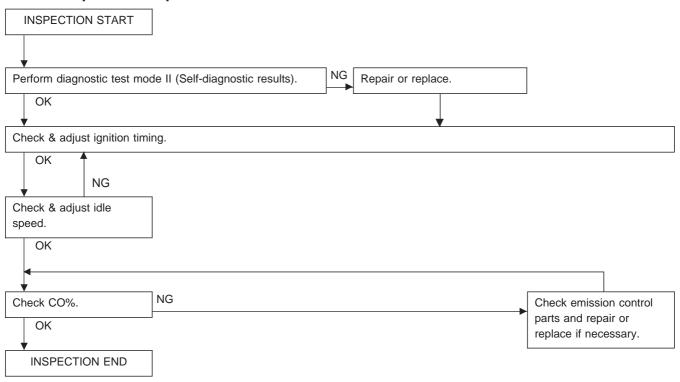


EC-27

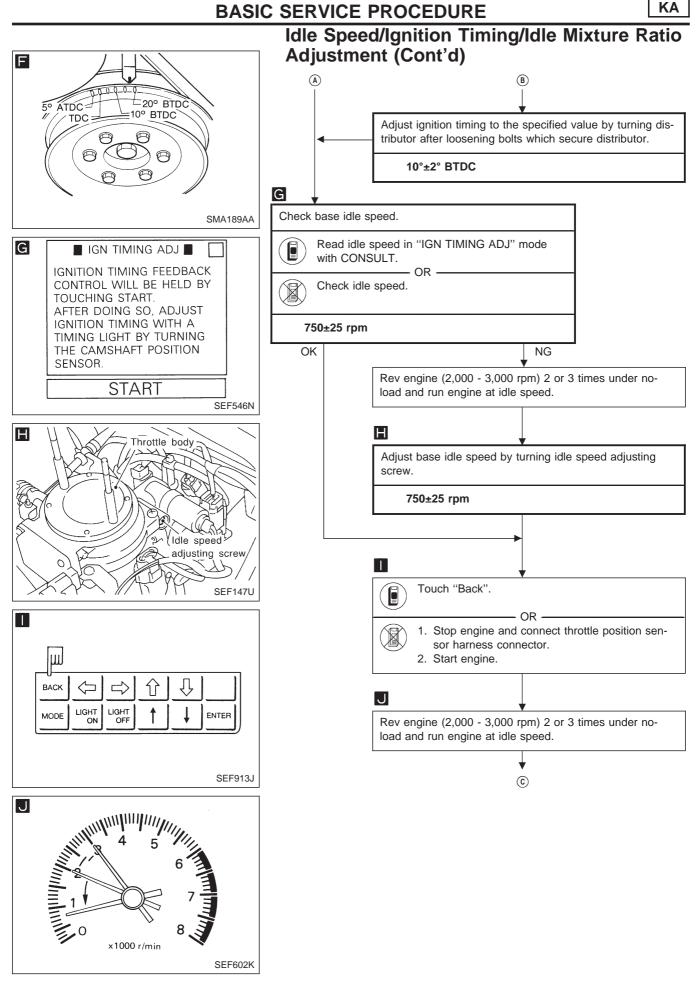


EC-28

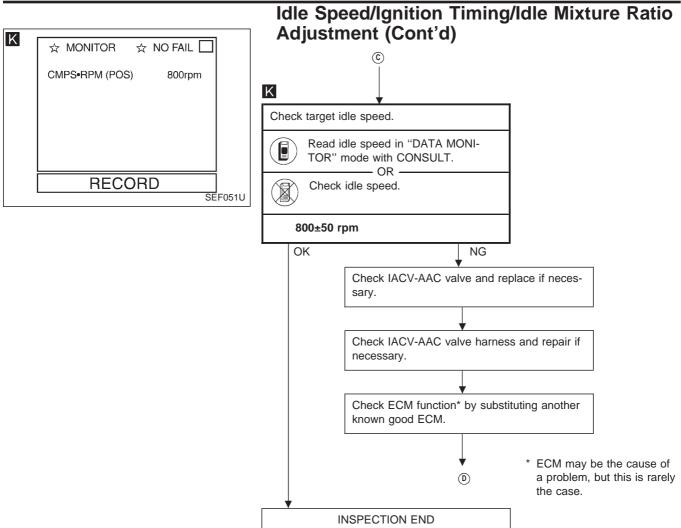
BASIC SERVICE PROCEDURE

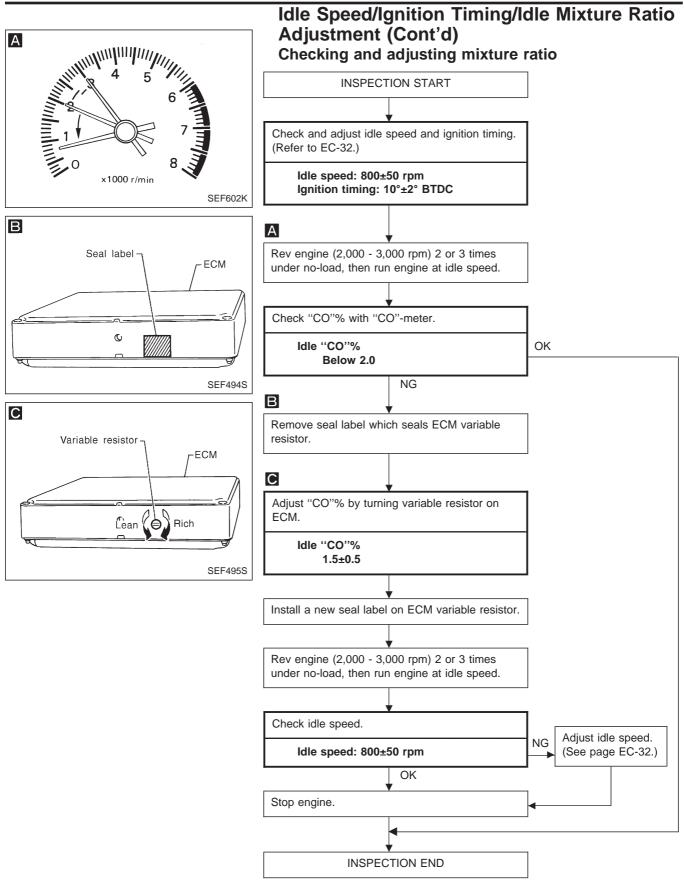

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


RHD MODELS

Overall inspection sequence


BASIC SERVICE PROCEDURE



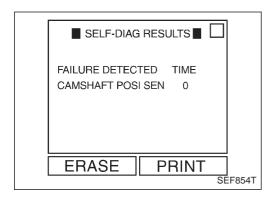
EC-33

BASIC SERVICE PROCEDURE

BASIC SERVICE PROCEDURE

Introduction

The ECM (ECCS control module) has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. Self-diagnosis items are listed in "DIAGNOSTIC TROUBLE CODE INDEX", EC-1.


The malfunction indicator lamp (MIL) on the instrument panel lights up when a malfunction is detected, or when the ECM enters fail-safe mode (Refer to EC-61).

Diagnostic Trouble Code (DTC)

HOW TO CONFIRM MALFUNCTION ITEMS

Malfunction items can be confirmed by the following methods.

- 1. The number of blinks of the malfunction indicator lamp in the Diagnostic Test Mode II (Self- Diagnostic Results) indicates the DTC. Examples: 11, 21 etc.
 - 2. CONSULT displays the malfunctioning component or system in "SELF DIAGNOSTIC RESULTS" mode.
- Output of a DTC indicates a malfunction. However, Mode II does not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT can identify malfunction status as shown below. Therefore, using CONSULT (if available) is recommended.

A sample of CONSULT display is shown at left. The malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CON-SULT. Time data indicates how many times the vehicle was driven after the last detection of a malfunction.

KA

If the malfunction is being detected currently, the time data will be "0".

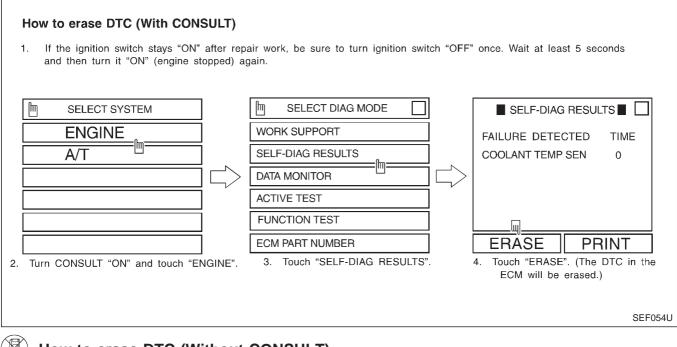
HOW TO ERASE DTC

The DTC can be erased from the back-up memory in the ECM by the following methods.

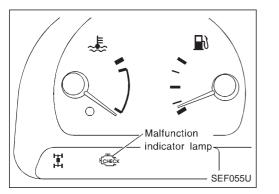
Selecting "ERASE" in the SELF- DIAG RESULTS" mode with CONSULT

Changing the diagnostic test mode from Diagnostic Test Mode II to Mode I by turning the mode selector on the ECM (RHD model only) or connecting the data link connector for CONSULT terminals. (Refer to EC-39, 41)

- If the battery terminal is disconnected, the DTC will be lost within 24 hours.
- Erasing the DTC, using CONSULT is easier and quicker than switching the mode selector on the ECM (RHD model only) or connecting the data link connector for CONSULT terminals.


ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

Diagnostic Trouble Code (DTC) (Cont'd)


How to erase DTC (With CONSULT)

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" (engine stopped) again.
- 2. Turn CONSULT "ON" and touch "ENGINE".
- 3. Touch "SELF-DIAG RESULTS".
- 4. Touch "ERASE". (The DTC in the ECM will be erased.)

How to erase DTC (Without CONSULT)

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" again.
- 2. Change the diagnostic test mode from Mode II to Mode I by turning the mode selector on the ECM (RHD model only) or connecting the data link connector for CONSULT terminals. (See EC-39, 41)

Malfunction Indicator Lamp (MIL)

The malfunction indicator lamp is located on the instrument panel.

- 1. The malfunction indicator lamp will light up when the ignition switch is turned ON without the engine running. This is for checking the blown lamp.
- If the malfunction indicator lamp does not light up, see the WARNING LAMPS AND CHIME in the EL section. (Or see EC-173, 174.)
- 2. When the engine is started, the malfunction indicator lamp should go off.

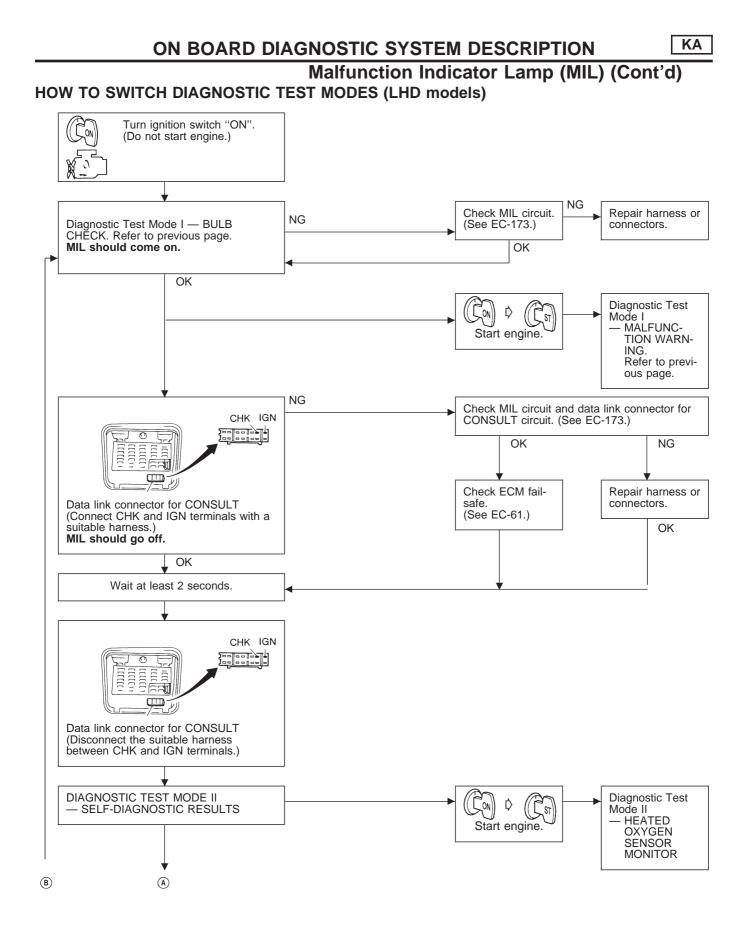
If the lamp remains on, the on board diagnostic system has detected an engine system malfunction.

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

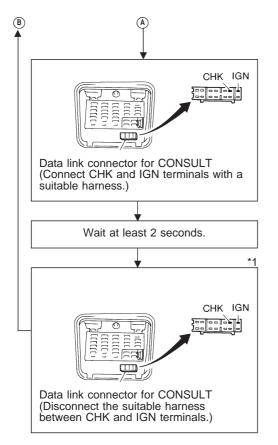
The on board diagnostic system has the following four functions.

Diagnostic Test Mode I

1. BULB CHECK	 This function checks the bulb for damage (blown, open circuit, etc.) of the malfunction indicator lamp. If the MIL does not come on, check MIL circuit and ECM test mode selector. (See next page.)
2. MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected, the MIL will light up to inform the driver that a malfunction has been detected.

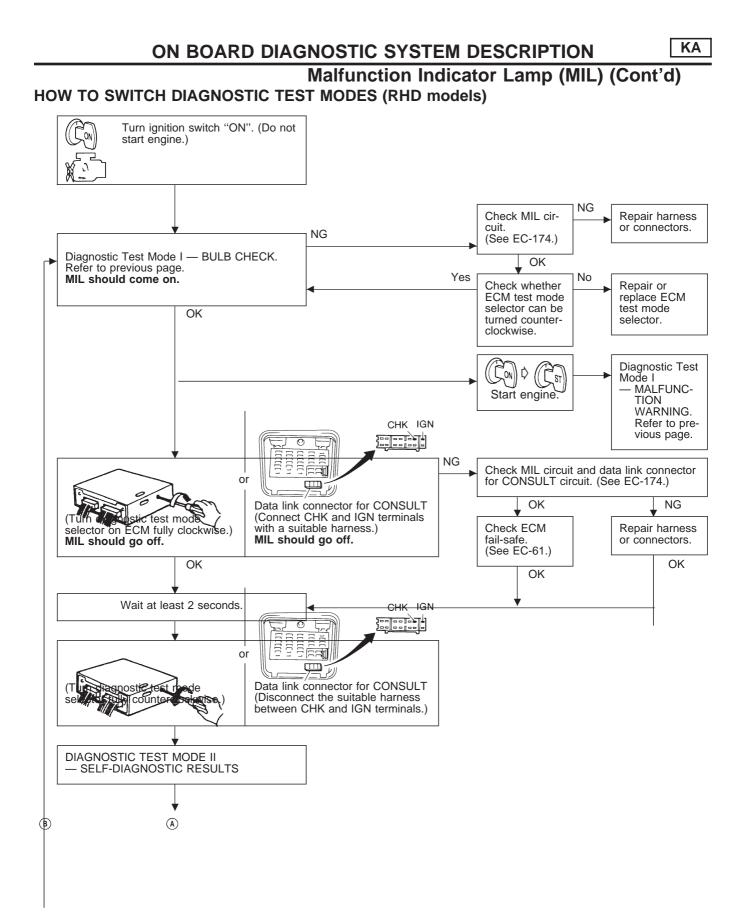

Diagnostic Test Mode II

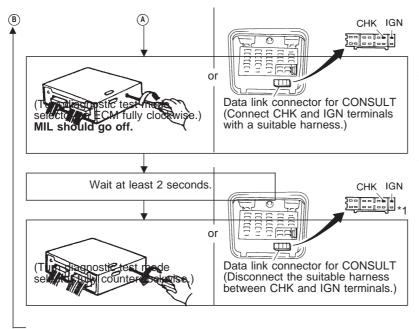
- 3. SELF-DIAGNOSTIC : This function allows DTCs to be read. RESULTS
- 4. HEATED OXYGEN SENSOR MONITOR : This function allows the fuel mixture condition (lean or rich), monitored by heated oxygen sensor, to be read.


MIL Flashing without DTC

If the ECM is in Diagnostic Test Mode II, the MIL may flash when the engine is running. In this case, check ECM test mode selector following "HOW TO SWITCH DIAGNOSTIC TEST MODES" on next page. How to switch the diagnostic test (function) modes and details of the above functions are described later. (See page EC-39, 41.)

Co	ndition	Diagnostic Test Mode I	Diagnostic Test Mode II
Ignition switch in "ON" posi-	Engine stopped	BULB CHECK	SELF-DIAGNOSTIC RESULTS
tion	Engine running	MALFUNCTION WARNING	HEATED OXYGEN SENSOR MONI- TOR


Malfunction Indicator Lamp (MIL) (Cont'd)


- Switching the modes is not possible when the engine is running.
- When ignition switch is turned OFF during diagnosis, power to ECM will drop after approx. 5 seconds.

The diagnosis will automatically return to Diagnostic Test Mode I.

*1: If the suitable harness is disconnected at this time, the diagnostic trouble code will be erased from the backup memory in the ECM.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION IS running.

Malfunction Indication Lightpr(Mit) (Gottiric) off during diagnosis, power to ECM will drop after approx. 5 seconds. The diagnosis will automatically return to Diagnostic Test Mode I.

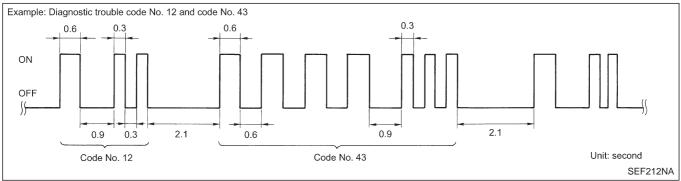
- Turn back diagnostic test mode selector to the fully counterclock-wise position whenever vehicle is in use.
- *1: If the selector is turned fully counterclockwise or suitable harness is disconnected at this time, the diagnostic trouble code will be erased from the backup memory in the ECM.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

Malfunction Indicator Lamp (MIL) (Cont'd)

DIAGNOSTIC TEST MODE I—BULB CHECK

In this mode, the MALFUNCTION INDICATOR LAMP on the instrument panel should stay ON. If it remains OFF, check the bulb. (See the WARNING LAMPS AND CHIME in the EL section. Or see EC-173, 174.)

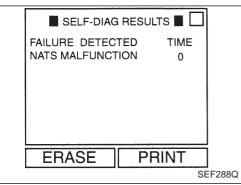

DIAGNOSTIC TEST MODE I—MALFUNCTION WARNING

MALFUNCTION INDICATOR LAMP	Condition
ON	When the malfunction is detected (Refer to EC-1.) or the ECM's CPU is malfunctioning.
OFF	No malfunction

These Diagnostic Trouble Code Numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS).

DIAGNOSTIC TEST MODE II—SELF-DIAGNOSTIC RESULTS

In this mode, a diagnostic trouble code is indicated by the number of blinks of the MALFUNCTION INDICA-TOR LAMP as shown below.


Long (0.6 second) blinking indicates the number of ten digits, and short (0.3 second) blinking indicates the number of single digits. For example, the malfunction indicator lamp blinks 4 times for about 5 seconds (0.6 sec x 8 times) and then it blinks three times for about 1 second (0.3 sec x 3 times). This indicates the DTC "43" and refers to the malfunction of the throttle position sensor.

In this way, all the detected malfunctions are classified by their diagnostic trouble code numbers. The DTC "55" refers to no malfunction. (See DIAGNOSTIC TROUBLE CODE INDEX, refer to page EC-1.)

How to erase diagnostic test mode II (Self-diagnostic results)

The diagnostic trouble code can be erased from the backup memory in the ECM when the diagnostic test mode is changed from Diagnostic Test Mode II to Diagnostic Test Mode I. (Refer to "HOW TO SWITCH DIAGNOSTIC TEST MODES".)

- If the battery terminal is disconnected, the diagnostic trouble code will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

- If the MIL blinks or "NATS MALFUNCTION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT using NATS program card (NATS-E940). Refer to EL section.
- Confirm no self-diagnostic results of NATS is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT.
- When replacing ECM, initialisation of NATS V2.0 system and registration of all NATS V2.0 ignition key IDs must be carried out with CONSULT using NATS program card (NATS-E940).

Therefore, be sure to receive all keys from vehicle owner.

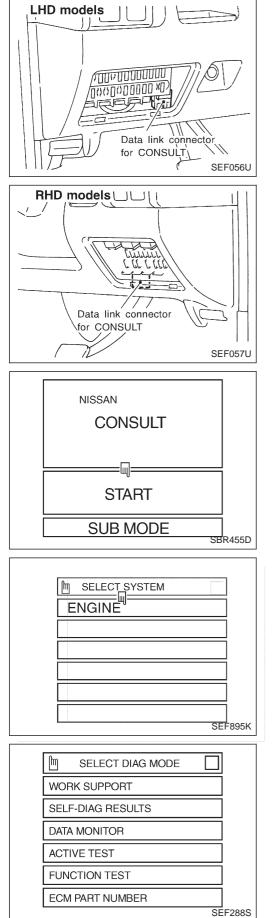
Regarding the procedures of NATS initialisation and NATS ignition key ID registration, refer to CONSULT operation manual, NATS V2.0.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

KA

Malfunction Indicator Lamp (MIL) (Cont'd)

DIAGNOSTIC TEST MODE II—HEATED OXYGEN SENSOR MONITOR


In this mode, the MALFUNCTION INDICATOR LAMP displays the condition of the fuel mixture (lean or rich) which is monitored by the heated oxygen sensor.

MALFUNCTION INDICATOR LAMP	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition	
ON	Lean		
OFF	Rich	Closed loop control	
*Remains ON or OFF	Any condition	Open loop control	

*: Maintains conditions just before switching to open loop.

To check the heated oxygen sensor function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MALFUNCTION INDICATOR LAMP comes ON more than 5 times every 10 seconds when measured at 2,000 rpm under no-load.

CONSULT

CONSULT INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- Connect "CONSULT" to data link connector for CONSULT. (Data link connector for CONSULT is located behind the fuse box cover.)

- 3. Turn ignition switch ON.
- 4. Touch "START".

5. Touch "ENGINE".

6. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT Operation Manual.

FUNCTION

Diagnostic test mode	Function
Work support	A technician can adjust some devices faster and more accurately by following indications on CONSULT.
Self-diagnostic results	Self-diagnostic results can be read and erased quickly.
Data monitor	Input/Output data in the ECM can be read.
Active test	CONSULT drives some actuators apart from the ECM's and also shifts some parameters in a specified range.
Function test	Conducted by CONSULT instead of a techni- cian to determine whether each system is "OK" or "NG".
ECM part number	ECM part number can be read.

WORK SUPPORT MODE

WORK ITEM	CONDITION	USAGE
THRTL POS SEN ADJ	CHECK THE THROTTLE POSITION SENSOR SIGNAL. ADJUST IT TO THE SPECIFIED VALUE BY ROTATING THE SENSOR BODY UNDER THE FOLLOWING CONDI- TIONS. • IGN SW "ON" • ENG NOT RUNNING • ACC PEDAL NOT PRESSED	When adjusting throttle position sensor initial position
IGNITION TIMING ADJ	• IGNITION TIMING FEEDBACK CONTROL WILL BE HELD BY TOUCHING "START". AFTER DOING SO, ADJUST IGNITION TIMING WITH A TIMING LIGHT BY TURNING THE CRANKSHAFT POSITION SENSOR.	When adjusting initial ignition timing
IACV-AAC VALVE ADJ	SET ENGINE SPEED AT THE SPECIFIED VALUE UNDER THE FOLLOWING CONDITIONS. • ENGINE WARMED UP • NO-LOAD	
FUEL PRESSURE RELEASE	 FUEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS. 	When releasing fuel pressure from fuel line

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

CONSULT (Cont'd)

ECCS COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

			DIAG	NOSTIC TEST N	IODE		
	ltem		WORK SUPPORT	SELF-DIAG- NOSTIC RESULTS	DATA MONITOR	ACTIVE TEST	FUNCTION TEST
		Camshaft position sensor		Х	Х		
		Mass air flow sensor		Х	Х		
		Engine coolant temperature sensor		x	х	Х	
		Heated oxygen sensor			Х		
		Vehicle speed sensor			Х		X
	⊢	Throttle position sensor	Х	Х	Х		X
	INPUT	Intake air temperature sensor		Х	Х		
ပ	=	Ignition switch (start signal)			Х		X
AR		Closed throttle position switch			Х		X
L L		Air conditioner switch			Х		
NEN		Neutral position switch			Х		X
ECCS COMPONENT PARTS		Power steering oil pressure switch			х		x
S C		Battery voltage			Х		
ECC		Injectors			Х	Х	Х
		Power transistor (Ignition timing)	Х	X (Ignition signal)	х	х	х
	╘	IACV-AAC valve	Х		Х	Х	X
	оитрит	Air conditioner relay			Х		
		Fuel pump relay	Х		Х	Х	X
		Swirl control valve control solenoid valve			х	Х	x
		EVAP canister purge control solenoid valve*			х	Х	x

X: Applicable * : This item is indicated as "EGRC SOL/V" on the CONSULT screen.

CONSULT (Cont'd)

SELF-DIAGNOSTIC MODE

Regarding items detected in "SELF-DIAG RESULTS" mode, refer to "DIAGNOSTIC TROUBLE CODE INDEX", EC-1.

DATA MONITOR MODE

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
CMPSRPM (POS) [rpm]	0	0	 Indicates the engine speed computed from the POS signal (1° signal) of the camshaft position sensor. 	
MAS AIR/FL SE [V]	\bigcirc	\bigcirc	 The signal voltage of the mass air flow sensor is displayed. 	 When the engine is stopped, a certain value is indicated.
COOLAN TEMP/S [°C] or [°F]	0	0	• The engine coolant temperature (deter- mined by the signal voltage of the engine coolant temperature sensor) is displayed.	• When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
O2 SEN [V]	\bigcirc	\bigcirc	 The signal voltage of the heated oxygen sensor is displayed. 	LHD models only
M/R F/C MNT [RICH/LEAN]	0	0	 Display of heated oxygen sensor signal during air-fuel ratio feedback control: RICH means the mixture became "rich", and control is being affected toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture. 	 After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback control begins. When the air-fuel ratio feedback is clamped, the value just before the clamp- ing is displayed continuously. LHD models only
VHCL SPEED SE [km/h] or [mph]	\bigcirc	\bigcirc	• The vehicle speed computed from the vehicle speed sensor signal is displayed.	
BATTERY VOLT [V]	\bigcirc	\bigcirc	 The power supply voltage of ECM is dis- played. 	
THRTL POS SEN [V]	\bigcirc	\bigcirc	 The throttle position sensor signal volt- age is displayed. 	
INT/A TEMP SE [°C] or [°F]	\bigcirc		 The intake air temperature (determined by the signal voltage of the intake air temperature sensor) is indicated. 	
START SIGNAL [ON/OFF]	\bigcirc	\bigcirc	 Indicates [ON/OFF] condition from the starter signal. 	 After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL/POSI [ON/OFF]	\bigcirc	\bigcirc	 Indicates [ON/OFF] condition from the throttle position sensor signal. 	
AIR COND SIG [ON/OFF]	\bigcirc	\bigcirc	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 	
P/N POSI SW [ON/OFF]	\bigcirc	\bigcirc	 Indicates [ON/OFF] condition from the park/neutral position switch signal. 	
PW/ST SIGNAL [ON/OFF]	0	0	 [ON/OFF] condition of the power steering oil pressure switch determined by the power steering oil pressure signal is indi- cated. 	

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION CONSULT (Cont'd)

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
INJ PULSE [msec]		\bigcirc	 Indicates the actual fuel injection pulse width compensated by ECM according to the input signals. 	• When the engine is stopped, a certain computed value is indicated.
IGN TIMING [BTDC]		\bigcirc	 Indicates the ignition timing computed by ECM according to the input signals. 	 When the engine is stopped, a certain value is indicated.
IACV-AAC/V [%]		\bigcirc	 Indicates the idle air control valve (AAC valve) control value computed by ECM according to the input signals. 	
A/F ALPHA [%]		\bigcirc	• The mean value of the air-fuel ratio feed- back correction factor per cycle is indi- cated.	 When the engine is stopped, a certain value is indicated. This data also includes the data for the air-fuel ratio learning control.
AIR COND RLY [ON/OFF]		\bigcirc	• The air conditioner relay control condition (determined by ECM according to the input signal) is indicated.	
FUEL PUMP RLY [ON/OFF]		\bigcirc	 Indicates the fuel pump relay control con- dition determined by ECM according to the input signals. 	
SWRL CONT S/V [ON/OFF]		0	 The control condition of the swirl control valve control solenoid valve (determined by the ECM according to the input signal) is indicated. ON Swirl control valve is closed OFF Swirl control valve is open 	
EGRC SOL/V (EVAP canister purge control solenoid valve) [ON/OFF]		\bigcirc	 The control condition of the EVAP canister purge control solenoid valve (determined by ECM according to the input signal) is indicated. ON EVAP canister purge control is not operating OFF EVAP canister purge control is operational. 	
VOLTAGE [V]			 Voltage measured by the voltage probe. 	
PULSE [msec] or [Hz] or [%]			 Pulse width, frequency or duty cycle measured by the pulse probe. 	 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary ones. They are the same figures as an actual piece of data which was just previously measured.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

CONSULT (Cont'd)

ACTIVE TEST MODE

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJECTION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Fuel injectors Heated oxygen sensor
IACV-AAC/V OPENING	 Engine: After warming up, idle the engine. Change the IACV-AAC valve opening percent using CONSULT. 	Engine speed changes according to the opening percent.	 Harness and connector IACV-AAC valve
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Engine coolant temperature sensor Fuel injectors
IGNITION TIMING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT. 	If trouble symptom disappears, see CHECK ITEM.	 Adjust ignition timing (by moving camshaft position sensor)
POWER BALANCE	 Engine: After warming up, idle the engine. A/C switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT. 	Engine runs rough or dies.	 Harness and connector Compression Injectors Ignition coil with power transistor Spark plugs
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT and listen to operating sound. 	Fuel pump relay makes the operating sound.	 Harness and connector Fuel pump relay
EGRC SOLENOID VALVE (EVAP canister purge control solenoid valve)	 Ignition switch: ON Turn solenoid valve "ON" and "OFF" with CONSULT and listen to operating sound. 	Solenoid valve makes an operating sound.	 Harness and connector EVAP canister purge control solenoid valve
SWIRL CONT SOL VALVE	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with CONSULT and listen to operating sound. 	Solenoid valve makes an operating sound.	 Harness and connector Swirl control valve control solenoid valve
SELF-LEARNING CONT	 In this test, the coefficient of self-learning screen. 	ng control mixture ratio returns to the origin	hal coefficient by touching "CLEAR" on the

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

FUNCTION TEST MODE

FUNCTION TEST ITEM	CONDITION	JUDGEMENT		CHECK ITEM (REMEDY)
SELF-DIAG RESULTS	 Ignition switch: ON (Engine stopped) Displays the results of on board diagnostic system. 			Objective system
CLOSED THROTTLE	 Ignition switch: ON (Engine stopped) Throttle position sensor circuit is tested when throttle is opened and closed fully. ("IDLE 	Throttle valve: opened	OFF	 Harness and connector Throttle position sensor (Closed throttle position) Throttle position sensor (Closed
POSI	POSITION" is the test item name for the vehicles in which idle is selected by throttle position sensor.)	Throttle valve: closed	ON	throttle position) adjustmentThrottle linkageVerify operation in DATA MONITOR mode.
THROTTLE POSI SEN CKT	 Ignition switch: ON (Engine stopped) Throttle position sensor circuit is tested when throttle is opened and closed fully. 	Range (Throttle valve fully opened — Throttle valve fully closed)	More than 3.0V	 Harness and connector Throttle position sensor Throttle position sensor adjustment Throttle linkage Verify operation in DATA MONITOR mode.
PARK/NEUT POSI SW CKT	 Ignition switch: ON (Engine stopped) Neutral position switch circuit is tested when shift lever is 	Out of N/P positions	OFF	 Harness and connector Neutral position switch Linkage adjustment
FUEL PUMP CIRCUIT	 manipulated. Ignition switch: ON (Engine stopped) Fuel pump circuit is tested by checking the pulsation in fuel pressure when fuel tube is pinched. 	There is pressure pulsation on the fuel feed hose.		 Harness and connector Fuel pump Fuel pump relay Fuel filter clogging Fuel level
EGRC SOL/V CIRCUIT (EVAP canister purge control solenoid valve circuit)	 Ignition switch: ON (Engine stopped) EVAP canister purge control solenoid valve circuit is tested by checking solenoid valve operating noise. 	The solenoid valve makes an operating sound every 3 seconds.		 Harness and connector EVAP canister purge control solenoid valve
START SIGNAL CIRCUIT	 Ignition switch: ON → START Start signal circuit is tested when engine is started by operating the starter. Battery voltage and water temperature before cranking, and average battery voltage, mass air flow sensor output voltage and cranking speed during cranking are displayed. 	Start signal OFF \rightarrow ON		 Harness and connector Ignition switch

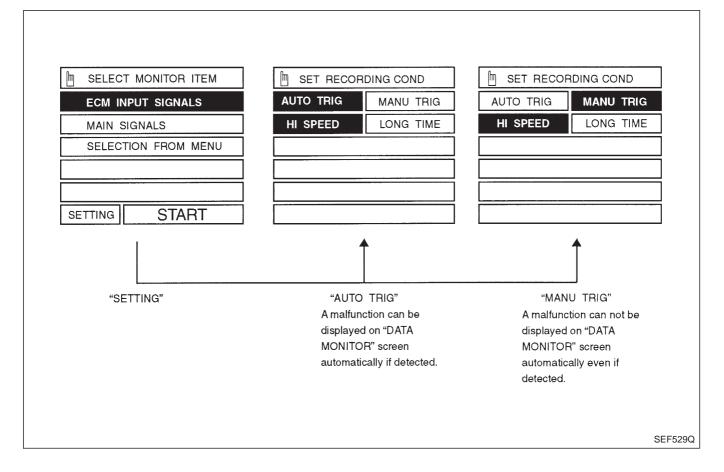
ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION CONSULT (Cont'd)

-			
FUNCTION TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
PW/ST SIGNAL	 Ignition switch: ON (Engine running) Power steering oil pressure switch 	Locked position ON	 Harness and connector Power steering oil pressure switch
CIRCUIT	circuit is tested when steering wheel is rotated fully and then set to a straight line running position.	Neutral position OFF	 Power steering oil pump
SWRL CONT S/V CIRCUIT	 Ignition switch: ON (Engine stopped) Swirl control valve control sole- noid valve circuit is tested by checking solenoid valve operating sound. 	The solenoid valve makes an operating sound every 3 seconds.	 Harness and connector Solenoid valve Swirl control valve Vacuum hose
VEHICLE SPEED SEN CKT	• Vehicle speed sensor circuit is tested when vehicle is running at a speed of 10 km/h (6 MPH) or higher.	Vehicle speed sensor input signal is greater than 4 km/h (2 MPH).	Harness and connectorVehicle speed sensorSpeedometer
IGN TIMING ADJ	 After warming up, idle the engine. Ignition timing is checked by reading ignition timing with a timing light and checking whether it agrees with specifications. 	The timing light indicates the same value on the screen.	 Adjust ignition timing (by moving camshaft position sensor or distributor) Camshaft position sensor drive mechanism
MIXTURE RATIO TEST	• Air-fuel ratio feedback circuit (injection system, ignition system, vacuum system, etc.) is tested by examining the heated oxygen sensor output at 2,000 rpm under non-loaded state.	Heated oxygen sensor COUNT: More than 5 times during 10 seconds	 INJECTION SYS (Injector, fuel pressure regulator, harness or connector) IGNITION SYS (Spark plug, ignition coil, power transistor harness or connector) VACUUM SYS (Intake air leaks) Heated oxygen sensor circuit Heated oxygen sensor operation Fuel pressure high or low Mass air flow sensor
POWER BALANCE	 After warming up, idle the engine. Injector operation of each cylinder is stopped one after another, and resultant change in engine rota- tion is examined to evaluate com- bustion of each cylinder. (This is only displayed for models where a sequential multiport fuel injection system is used.) 	Difference in engine speed is greater than 25 rpm before and after cutting off the injec- tor of each cylinder.	 Injector circuit (Injector, harness or connector) Ignition circuit (Spark plug, igni- tion coil, power transistor harness or connector) Compression Valve timing
IACV-AAC/V SYSTEM	 After warming up, idle the engine. IACV-AAC valve system is tested by detecting change in engine speed when IACV-AAC valve opening is changed to 0%, 20% and 80%. 	Difference in engine speed is greater than 150 rpm between when valve opening is at 80% and at 20%.	 Harness and connector IACV-AAC valve Air passage restriction between air inlet and IACV-AAC valve IAS (Idle adjusting screw) adjust- ment

EC-52

KA

CONSULT (Cont'd)


REAL TIME DIAGNOSIS IN DATA MONITOR MODE

CONSULT has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- 1. "AUTO TRIG" (Automatic trigger):
 - The malfunction will be identified on the CONSULT screen in real time. In other words, malfunction item will be displayed at the moment the malfunction is detected by ECM. DATA MONITOR can be performed continuously until a malfunction is detected. However, DATA MONITOR cannot continue any longer after the malfunction detection.
- 2. "MANU TRIG" (Manual trigger):
 - Malfunction item will not be displayed automatically on CONSULT screen even though a malfunction is detected by ECM.

DATA MONITOR can be performed continuously even though a malfunction is detected.

- Use these triggers as follows:
- 1. "AUTO TRIG"
 - While trying to detect the DTC by performing the "DTC CONFIRMATION PROCEDURE", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
 - While narrowing down the possible causes, CONSULT should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC CONFIRMATION PROCEDURE", the moment a malfunction is found the malfunction item will be displayed. (Refer to GI section, "Incident Simulation Tests" in "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT".)
- 2. "MANU TRIG"
 - If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

KEY POINTS

WHAT	Vehicle & engine model
WHEN	Date, Frequencies
WHERE	Road conditions
HOW	Operating conditions,
	Weather conditions,
	Symptoms
	SEF907L

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT or a circuit tester connected should be performed. Follow the "Work Flow" on EC-56.

Before undertaking actual checks, take just a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on next page should be used.

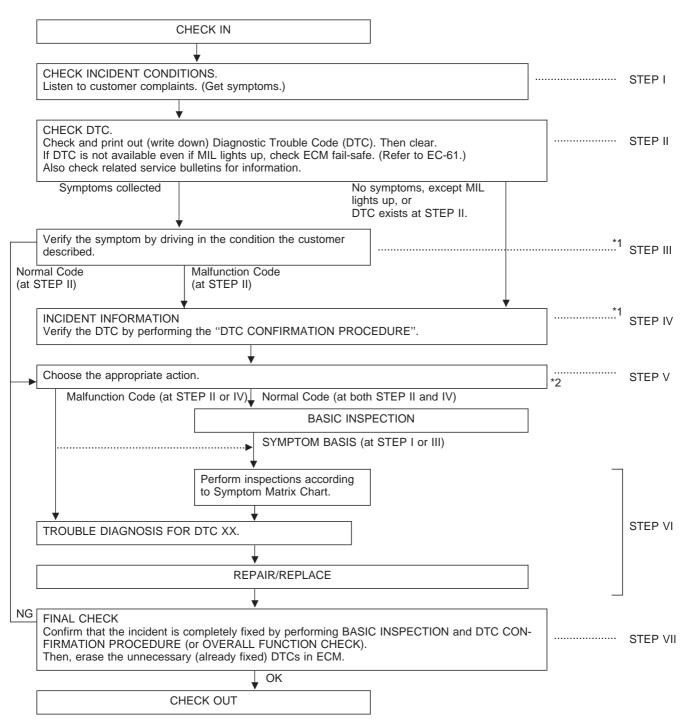
Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

Diagnostic Worksheet

There are many operating conditions that lead to the malfunctions of engine components. A good knowledge of such conditions can make troubleshooting faster and more accurate.

In general, each customer may feel differently about a given problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on next page in order to organize all the information for troubleshooting.

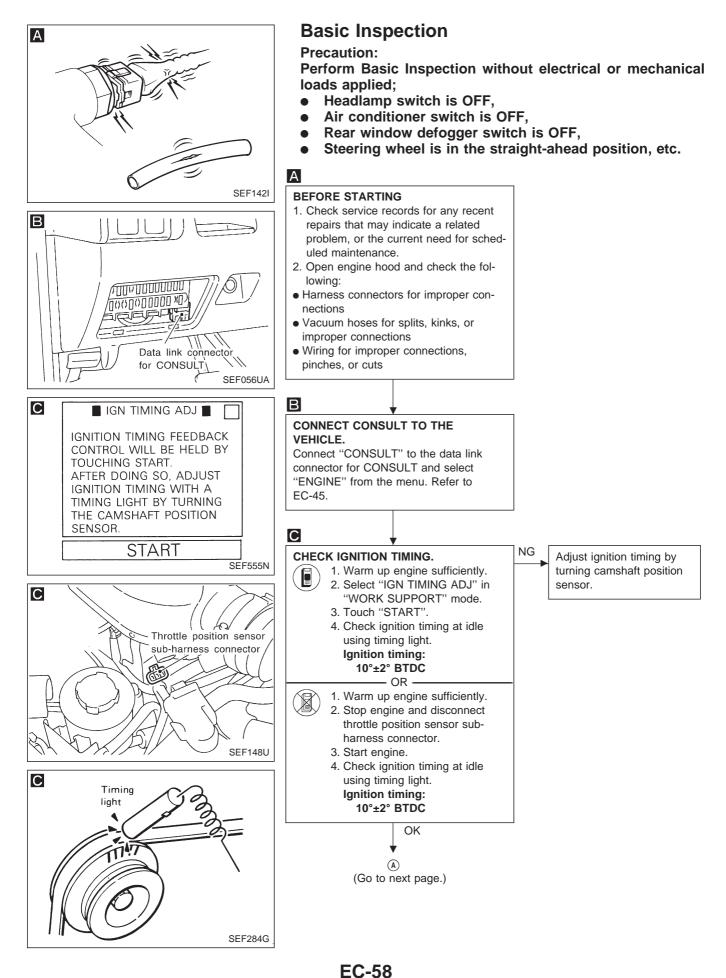

TROUBLE DIAGNOSIS — Introduction Diagnostic Worksheet (Cont'd)

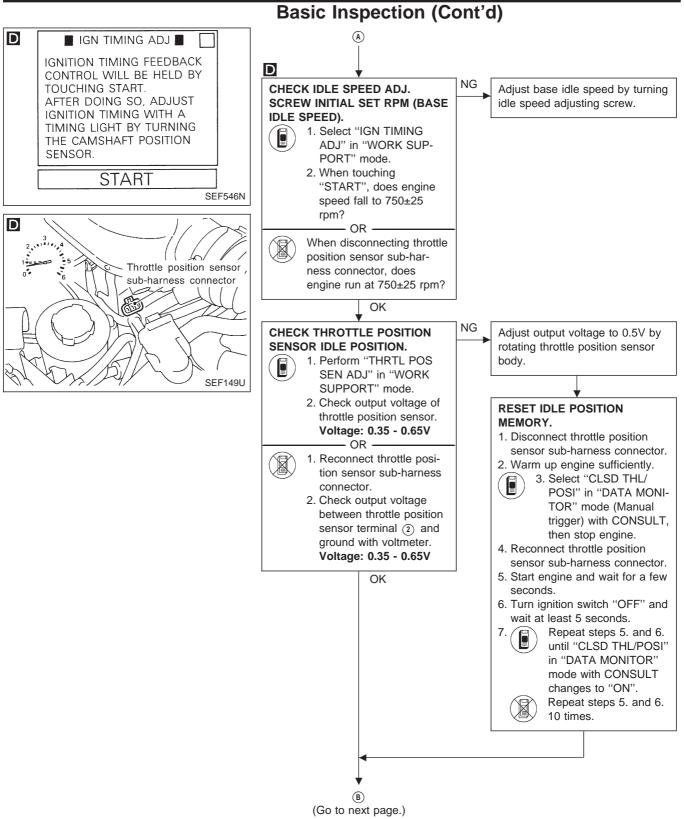
WORKSHEET SAMPLE

Customer nar	me MR/MS	Model & Year VIN							
Engine #		Trans. Mileage							
Incident Date		Manuf. Date In Service Date							
Fuel and fuel	filler cap	 Vehicle ran out of fuel causing misfire. Fuel filler cap was left off or incorrectly screwed on. 							
	□ Startability	□ Impossible to start □ No combustion □ Partial combustion □ Partial combustion affected by throttle position □ Partial combustion NOT affected by throttle position □ Possible but hard to start □ Others [
Symptoms		□ No fast idle □ Unstable □ High idle □ Low idle □ Others []							
Symptoms	Driveability	□ Stumble □ Surge □ Knock □ Lack of power □ Intake backfire □ Exhaust backfire □ Others []							
	□ Engine stall	□ At the time of start □ While idling □ While accelerating □ While decelerating □ Just after stopping □ While loading							
Incident occu	rrence	□ Just after delivery □ Recently □ In the morning □ At night □ In the daytime							
Frequency		□ All the time □ Under certain conditions □ Sometimes							
Weather cond	ditions	Not affected							
	Weather	□ Fine □ Raining □ Snowing □ Others []							
	Temperature	□ Hot □ Warm □ Cool □ Cold □ Humid °F							
Engine condit	tions	□ Cold □ During warm-up □ After warm-up Engine speed I I 0 2,000 4,000 6,000 8,000 rpm							
Road condition	ons	□ In town □ In suburbs □ Highway □ Off road (up/down)							
Driving condit	tions	 Not affected At starting While idling At racing While accelerating While cruising While decelerating While turning (RH/LH) Vehicle speed Image: Image: Ima							
Malfunction in	ndicator lamp	Turned on Not turned on							

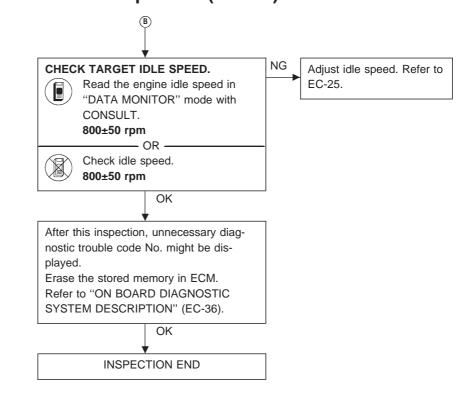
KA

Work Flow




*1: If the incident cannot be duplicated, see "Incident Simulation Tests" of "HOW TO PERFORM EFFICIENT DIAGNO-SIS FOR AN ELECTRICAL INCIDENT" in GI section.

*2: If the on board diagnostic system cannot be performed, check main power supply and ground circuit (See TROUBLE DIAGNOSIS FOR POWER SUPPLY, EC-75).


Description for Work Flow

STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-54.
STEP II	Before confirming the concern, check and write down (print out using CONSULT) the Diagnostic Trouble Code (DTC), then erase the code. (Refer to EC-36.) The DTC can be used when duplicating the incident at STEP III & IV. Study the relationship between the cause, specified by DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See page EC-62.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" is useful to verify the incident. Connect CONSULT to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI section.) If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	 Try to detect the Diagnostic Trouble Code by driving in (or performing) the "DTC CONFIRMATION PROCEDURE". Check and read the DTC by using CONSULT. During the DTC verification, be sure to connect CONSULT to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI section.) In case the "DTC CONFIRMATION PROCEDURE" is not available, perform the "OVERALL FUNCTION CHECK" instead. The DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "OVERALL FUNCTION CHECK" is the same as the DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC XX. If the normal code is indicated, proceed to the BASIC INSPECTION on next page. Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-62.)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CON- SULT. Refer to EC-64, EC-68. The "DIAGNOSTIC PROCEDURE" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the DIAGNOSTIC PROCEDURE. For details, refer to GI section ("HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", "Circuit Inspection"). Repair or replace the malfunction parts.
STEP VII	 Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC CONFIRMATION PROCEDURE" and confirm the normal code (Diagnostic trouble code No. 55) is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) DTC in ECM. (Refer to EC-36.)

Basic Inspection (Cont'd)

The ECM enters fail-safe mode, if any of the following malfunctions are detected due to the open or short circuit.

When the ECM enters the ECM fail-safe mode listed in the last column below, the MIL illuminates.

DTC No.	Detected items	Engine operating condition in fail-safe mode								
12	Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.								
13	Engine cool- ant tempera- ture sensor circuit	Engine coolant temperature will be determined by ECM based on the time after turning ignition sw "ON" or "START". CONSULT displays the engine coolant temperature decided by ECM.								
		Condition		Engine coolant temperature decided (CONSULT display)						
		Just as ignition switch is turned ON or	START	20°C (68°F)						
		More than 6 minutes after ignition STA	RT	80°C (176°F)						
		Except as shown above		20 - 80°C (68 - 176°F) (Depends on the time)						
41	Intake air temperature sensor cir- cuit	The ECM controls on the assumption that the intake air temperature is 20°C (68°F).								
43	Throttle position sen- sor circuit	Throttle position will be determined based on the amount of mass air flow and the engine speed. Therefore, acceleration will be poor.								
				Driving condition						
		When engine is idling		Normal						
		When accelerating		Poor acceleration						
Unable to access Diag- nostic Test Mode II	ECM	 ECM fail-safe activating condition The computing function of the ECM was judged to be malfunctioning. When the fail-safe system activates, i.e. if the ECM detects a malfunction condition in the CPU ECM, the MALFUNCTION INDICATOR LAMP on the instrument panel lights to warn the driver However, it is not possible to access ECCS and DTC cannot be confirmed. Engine control with ECM fail-safe When the fail-safe system is operating, fuel injection, ignition timing, fuel pump operation and IA AAC valve operation are controlled under certain limitations. 								
				ECM fail-safe operation						
		Engine speed	Engin	e speed will not rise more than 3,000 rpm.						
		Fuel injection	Simultaneous multiport fuel injection system							
		Ignition timing	Ignition timing is fixed at the preset value.							
		Fuel pump	Fuel pump relay is "ON" when engine is running and "(engine stalls.							
				Full open						

Symptom Matrix Chart

			SYMPTOM															
			HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	нісн ірге/гом ірге	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	OVERCOOLS	OVERCHARGING	Reference page
Wa	rranty Sympton	om Code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	1P	1X	
	Fuel	Fuel pump circuit		•	•	0	•		•	0			0		0			EC-151
		Fuel pressure regulator system		•	•	Ō	•	0	•		0							EC-22
		Injector circuit				Ō			•	•								EC-144
E		Evaporative emission system	0	0	0	Ō	•	0	0	0	0		0					EC-19
Basic engine control system	Air	Positive crankcase ventilation system	Ō	0	Õ	Õ		0	Ō	0	Ō		0	0				EC-21
l s)		Incorrect idle speed adjustment	Ō	Ō				Ō	Ō	Ō	Ō		Ō					EC-25
ntro		Swirl control valve circuit		0	0													EC-161
S		IACV-AAC valve circuit		Ĭ	Ĭ	0							0		0			EC-131
ine		IACV-FICD solenoid valve circuit	0	0	0	Õ	0	0	0	0	0		Ō					EC-168
bue	Ignition	Incorrect ignition timing adjustment	0	Ō	Ŏ	Ĭ	Ĭ		Ĭ	Ĭ			Ĭ					EC-25
sic e	5	Ignition circuit	Ĭ	Ĭ	•	•	•		•	•			•					EC-99
Bas	EVAP	EVAP canister purge control solenoid valve circuit		0	0	0	0		0				0					EC-140
	Main power	supply and ground circuit		•		0	0		0	0		0	0		0			EC-75
	Air condition	ner circuit	0	0	0	Ō	Ō	0	Ō	Ō	0		Ō		Ō			HA section
	ECCS	Camshaft position sensor circuit	۲	۲	۲	۲	۲		Õ	Õ			Õ					EC-82
		Mass air flow sensor circuit					•			0			0					EC-89
		Heated oxygen sensor circuit				0				0								EC-123, 127
_		Engine coolant temperature sensor circuit				0				0	0							EC-95
terr		Throttle position sensor circuit																EC-113
ECCS system		Incorrect throttle position sensor adjust- ment		•	0		0	•	0	0	•		0					EC-58
00		Vehicle speed sensor circuit		0	0		0						0					EC-118
ш		ECM	0	Ō	Ō	0	Ō	0	0	0	0	0	Ō					EC-61
		Start signal circuit	Ō		-	-				-	-	-						EC-149
		Neutral position switch circuit	\vdash		0		0		0	0			0					EC-136
		Power steering oil pressure switch circuit		0					$\overline{0}$	$\overline{0}$								EC-157
	liah Possibil																	

•; High Possibility Item ; Low Possibility Item

(continued on next page)

	супрести насти сести су SYMPTOM																
		<u> </u>							1		т						
SYSTEM — Engine mechanical & other		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDTE/TOM IDTE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	OVERCOOLS	OVERCHARGING	Reference page
Warranty Syr	mptom Code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	1P	1X	
Fuel	Fuel tank	•	•														
	Fuel piping	•	•	0	0			0	0			0					
	Vapor lock		0														
	Valve deposit	0	0	0	0	0		0	0			0					
	Poor fuel (Heavy weight gasoline, Low octane)	0	0	0	0	0		0	0			0					—
Air	Air duct		0	0		0		0	0			0					
	Air cleaner		0	Ĭ		Ĭ		Ĭ	Ō			0					
	Air leakage from air duct																
	(Mass air flow sensor — throttle body)	0	0	0	0	0	0	0	0	0		0					
	Throttle body, Throttle wire	0				0			0	0		0					FE section
	Air leakage from intake manifold/ Collector/Gasket	0	•	0	0	0	0	•	0	0		•					_
Cranking	Battery	0	0	0		0		0	0			0		0		0	
	Alternator circuit	0	0	0		0		0	0			0		0		0	EL section
	Starter circuit																
	Flywheel																
Engine	Cylinder head	•	0		0	0			0			0					
	Cylinder head gasket	0	0	0	0	0			0			0	0				
	Cylinder block	0	0	0	0			0	0			0	0				
	Piston	0	0	0	0	0		0				0	•				
	Piston ring	0	0	0	0			•	0			0	•				
	Connecting rod	•	0	0	0	0		0	0			0					
	Bearing	•	•	0	•	0		0	•			0					
Value	Crankshaft	0	0	0	0	0		0	0			0					
Valve mechanism	Timing chain	•	0		0			0	0			0					
meenamon	Camshaft Intake valve		0	0	0	0		0	0			0					1
	Exhaust valve			•	0	•		•	0	-		0		-			_
Exhaust	Exhaust valve Exhaust manifold/Tube/Muffler/Gasket	-		•	•	•		•	0			•					
LANduəl	Three way catalyst	0	•	0	0	•		0	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $			0		-		-	
Lubrication	Oil pan/Oil strainer/Oil pump/Oil filter/Oil	1								-			-	-			
	gallery	•	0	0	•	•		0	0			0	•				
<u> </u>	Oil level (Low)/Filthy oil	0	0	0	0	0		0	0			0	0				
Cooling	Radiator/Hose/Radiator filler cap	0	0	0	0	0		0	0		•	0					
	Thermostat	0	0	0	0	0	0		0	0		0			0		
	Water pump		0	0	0	0		0	0			0					
	Water gallery	0	0	0	0	0		0	0		0	0					
	Cooling fan	0	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	0	0		0		0	0		0			0		
	Coolant level (low)/Contaminated coolant	0	0	0	0	0		0	0		0	0					
•: High Poss	sibility Item																

•; High Possibility Item ; Low Possibility Item

CONSULT Reference Value in Data Monitor Mode

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
- * Specification data may not be directly related to their components signals/values/operations.
- i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.

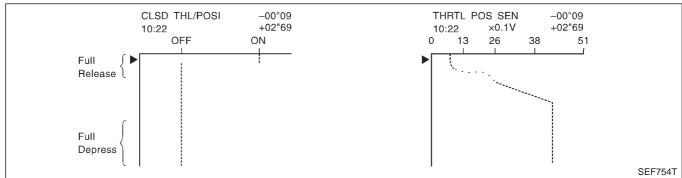
• If the real-time diagnosis results are NG and the on board diagnostic system results are OK when diagnosing the mass air flow sensor, first check to see if the fuel pump control circuit is normal.

MONITOR ITEM	CONI	SPECIFICATION			
CMPS•RPM (POS)	 Tachometer: Connect Run engine and compare tachometer i 	Almost the same speed as the CON- SULT value.			
MAS AIR/FL SE	 Engine: After warming up Air conditioner switch: "OFF" 	Idle	1.3 - 1.7V		
	Shift lever: Neutral positionNo-load	2,500 rpm	1.7 - 2.1V		
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)		
O2 SEN			$0 - 0.3V \leftrightarrow 0.6 - 1.0V$		
M/R F/C MNTR	• Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.		
VHCL SPEED SE	• Turn drive wheels and compare speed value	Almost the same speed as the CONSULT value			
BATTERY VOLT	Ignition switch: ON (Engine stopped)	11 - 14V			
	Ignition switch: ON	Throttle valve: fully closed	0.35 - 0.65V		
THRTL POS SEN	(Engine stopped)	Throttle valve: fully opened	Approx. 4.0V		
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$		$OFF\toON\toOFF$		
CLSD THL/POSI	Ignition switch: ON	Throttle valve: Idle position	ON		
CLOD THL/POSI	(Engine stopped)	Throttle valve: Slightly open	OFF		
		Air conditioner switch: "OFF"	OFF		
AIR COND SIG	• Engine: After warming up, idle the engine	Air conditioner switch: "ON" (Compressor operates.)	ON		
		Shift lever: Neutral position	ON		
P/N POSI SW	Ignition switch: ON	Except above	OFF		
PW/ST SIGNAL	• Engine: After warming up, idle the engine	Steering wheel in neutral position (forward direction)	OFF		
	engine 	The steering wheel is turned	ON		

TROUBLE DIAGNOSIS — General Description K CONSULT Reference Value in Data Monitor

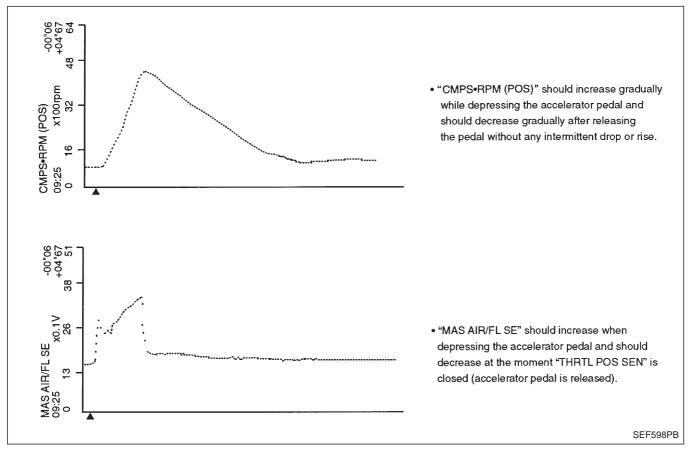
Mode (Cont'd)

MONITOR ITEM	CONE	SPECIFICATION				
INJ PULSE	Engine: After warming upAir conditioner switch: "OFF"	Idle	2.4 - 3.2 msec.			
INJ FOLSE	Shift lever: Neutral positionNo-load	2,000 rpm	1.9 - 3.2 msec.			
IGN TIMING	ditto	Idle	10° BTDC			
IGN HIVIING		2,000 rpm	More than 25° BTDC			
IACV-AAC/V	ditto	Idle	20 - 40%			
IAC V-AAC/V		2,000 rpm	—			
A/F ALPHA	Engine: After warming up	Maintaining engine speed at 2,000 rpm	65 - 140%			
AIR COND RLY	• Air conditioner switch: $OFF \rightarrow ON$	$OFF \to ON$				
FUEL PUMP RLY	 Ignition switch is turned to ON (Operate Engine running and cranking When engine is stopped (Stops in 1 set) 	ON				
	Except as shown above	OFF				
SWRL CONT S/V	• Engine is running at a speed of less the	ON				
SWRL CONT 5/V	Except above	OFF				
EGRC SOL/V	 Engine: After warming up Air conditioner switch: OFF 	Idle	OFF			
EGRC SOL/V	Shift lever: Neutral positionNo-load	Above 3,800 rpm	ON			

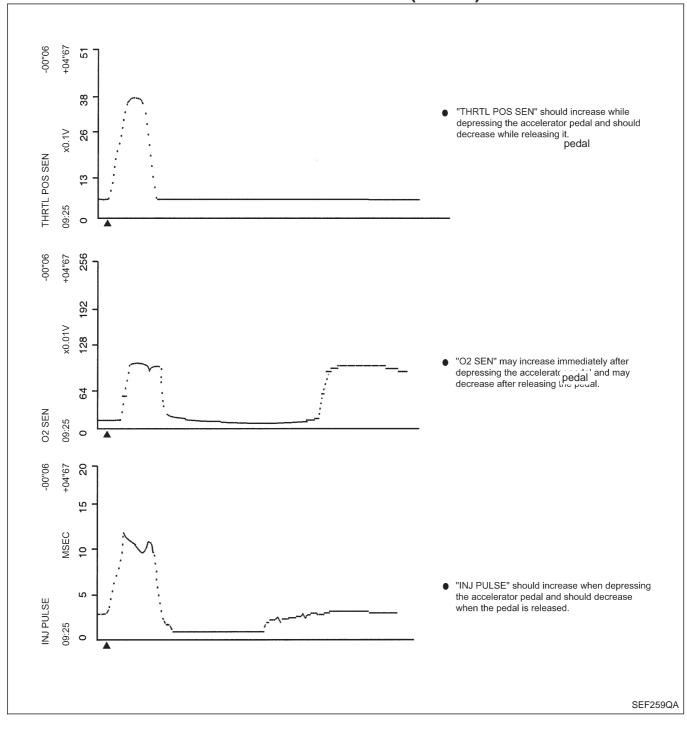

Major Sensor Reference Graph in Data Monitor Mode

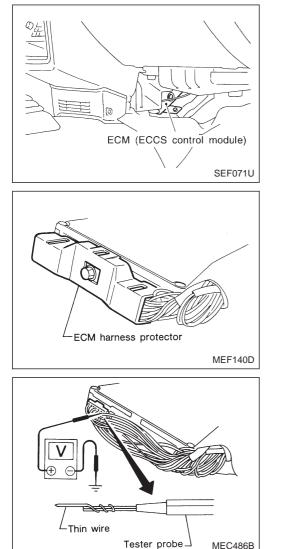
The following are the major sensor reference graphs in "DATA MONITOR" mode. (Select "HI SPEED" in "DATA MONITOR" with CONSULT.)

THRTL POS SEN, CLSD THL/POSI


Below is the data for "THRTL POS SEN" and "CLSD THL/POSI" when depressing the accelerator pedal with the ignition switch "ON".

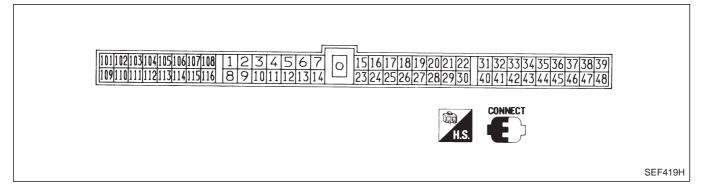
The signal of "THRTL POS SEN" should rise gradually without any intermittent drop or rise after "CLSD THL/POSI" is changed from "ON" to "OFF".


CMPS·RPM (POS), MAS AIR/FL SE, THRTL POS SEN, O2 SEN, INJ PULSE


Below is the data for "CMPSRPM (POS)", "MAS AIR/FL SE", "THRTL POS SEN", "O2 SEN" and "INJ PULSE" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently. Each value is for reference, the exact value may vary.

Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

KA


ECM Terminals and Reference Value PREPARATION

1. ECM is located behind the instrument lower panel.

2. Remove ECM harness protector.

3. Perform all voltage measurements with the connectors connected. Extend tester probe as shown to perform tests easily.

ECM HARNESS CONNECTOR TERMINAL LAYOUT

TROUBLE DIAGNOSIS — General Description ECM Terminals and Reference Value

(Cont'd)

ECM INSPECTION TABLE

Remarks: Specification data are reference values, and are measured between each terminal and (3) (ECCS ground) with a voltmeter.

TERMINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
			Engine is running.	Approximately 0.3V
1	W/PU	Ignition signal	Engine is running. Engine speed is 2,000 rpm.	Approximately 0.7V
2		Tachometer (Models with tachometer)	Engine is running.	Approximately 0.7V
	W		Engine is running. Engine speed is 2,000 rpm.	Approximately 1.6V
	WC		Engine is running.	Approximately 13V
	W/G		Engine is running. Engine speed is 2,000 rpm.	Approximately 13V

EC-69

			(cont d)	
TERMINAL	WIRE	ITEM	CONDITION	DATA (DC vieltage)
NO.	COLOR			(DC voltage)
4	L/R	ECCS relay (Self-	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V
		shutoff)	Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
6	B/P	ECCS ground	Engine is running.	Engine ground
7	W		Engine is running.	Approximately 0.1V
14	Y/R	Data link connec-	Lidle speed	Approximately 3.5V
15	L	tor for CONSULT	Connect CONSULT and select DATA	Approximately 4 - 6V
23	L	1	MONITOR mode.	Approximately 0V
11	G/R	Air conditioner relay	Engine is running. Both air conditioner switch and blower fan switch are "ON". (Compressor operates.)	Approximately 1V
		,	Engine is running. Air conditioner switch is "OFF".	BATTERY VOLTAGE (11 - 14V)
12	G/Y	Swirl control valve control solenoid	Engine is running.	0 - 1V
		valve	Engine is running. Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)
13	B/P	ECCS ground	Engine is running.	Engine ground
16	В	Mass air flow	Engine is running. (Warm-up condition)	1.3 - 1.7V
10	D	sensor	Engine is running. (Warm-up condition)	1.7 - 2.1V
17	W	Mass air flow sensor ground	Engine is running. (Warm-up condition)	0.005 - 0.02V
18	LG/R	Engine coolant temperature sen- sor	Engine is running.	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.
19	W	Heated oxygen sensor	Engine is running. After warming up sufficiently and engine speed is 2,000 rpm	0 - Approximately 1.0V (periodically change)
20	IG	Throttle position	Ignition switch "ON" (Warm-up condition) Accelerator pedal released	0.35 - 0.65V
20	20 LG sensor		Ignition switch "ON" Accelerator pedal fully depressed	Approximately 4V
21 29	B/G B/G	Sensors' ground	Engine is running. (Warm-up condition)	0.001 - 0.02V

TERMINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
		Camshaft position	Engine is running. (Warm-up condition)	Approximately 0.4V
22 30	W	sensor (REF) (180° signal)	Engine is running. (Warm-up condition)	SEF064U Approximately 0.4V
24	R/W	Malfunction indi- cator lamp	Ignition switch "ON" Engine is running. Idle speed	Approximately 1.5V BATTERY VOLTAGE (11 - 14V)
26	Y/L	Intake air tem- perature sensor	Engine is running.	Approximately 0 - 4.8V Output voltage varies with intake air temperature.
31	В	Camshaft position sensor (POS)	Engine is running. (Warm-up condition)	Approximately 2.5V
40	D	(1° signal)	Engine is running. (Warm-up condition)	Approximately 2.5V

TERMINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
32	W/L	Vehicle speed sensor	Ignition switch "ON" Jack up all wheels and run engine at idle in 1st position.	Varies from 0 to 5V (V) 10 5 0 200 ms
				SEF068U
	5.00		Ignition switch "ON"	Approximately 0V
34	B/Y	Start signal	Ignition switch "START"	BATTERY VOLTAGE (11 - 14V)
		Neutral position	Ignition switch "ON" Neutral position	OV
35	L/B	switch	Ignition switch "ON" Except the above gear position	Approximately 5V
			Ignition switch "OFF"	0V
36	36 B/L	Ignition switch	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
37	PU	Throttle position sensor power sup- ply	Ignition switch "ON"	Approximately 5V
38 47	B/W	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
39	В	ECCS ground	Engine is running.	Engine ground
41	Y	Air conditioner switch	Engine is running. Both air conditioner switch and blower fan switch are "ON". (Compressor operates.)	Approximately 0V
		Switch	Engine is running. Air conditioner switch is "OFF".	BATTERY VOLTAGE (11 - 14V)
43	G	Power steering oil	Engine is running. Steering wheel is being turned.	OV
+J		pressure switch	Engine is running. Steering wheel is not being turned.	Approximately 5V
46	GY/L	Power supply (Back-up)	Ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
48	В	ECCS ground	Engine is running.	Engine ground

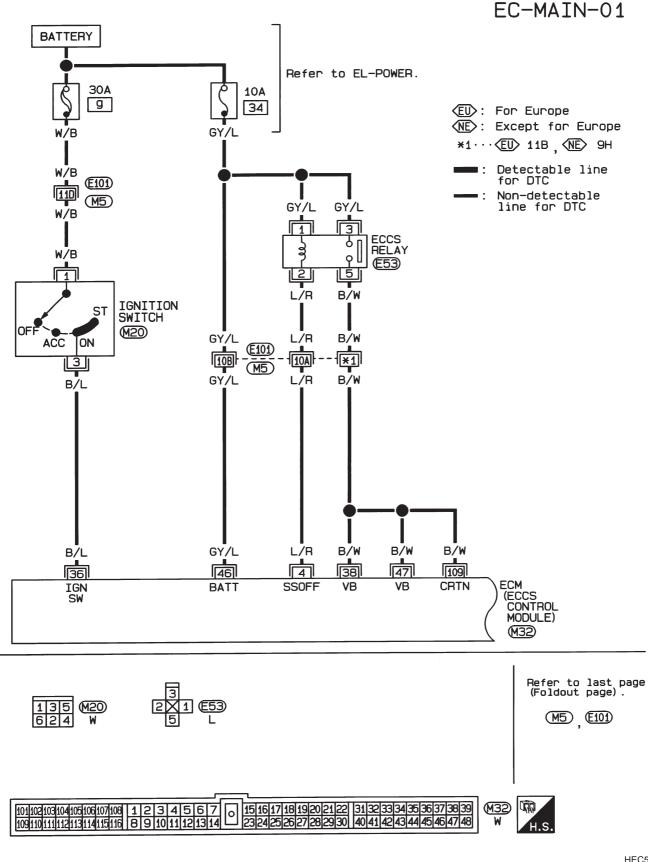
TERMINAL	WIRE	ITEM	CONDITION	DATA (DC voltage)
<u>NO.</u>	COLOR		Engine is running. (Warm-up condition)	(DC voltage) BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 0 50 ms
101 103	W/B W/R	Injector No. 1 Injector No. 3		SEF069U
110 112	W/L W/G	Injector No. 2 Injector No. 4		BATTERY VOLTAGE (11 - 14V)
			Engine is running. Engine speed is 2,000 rpm.	(V) 20 10 0 50 ms
104	W/R	Fuel pump relay	Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running.	SEF070U Approximately 1V
			Ignition switch "ON" 5 seconds after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
105	W/L	EVAP canister purge control	Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V)
105	VV/L	solenoid valve	Engine is running. (Warm-up condition)	Approximately 1V
107 108	B/P	ECCS ground	Engine is running.	Engine ground
109	B/W	Current return	Engine is running.	BATTERY VOLTAGE (11 - 14V)
			Engine is running.	10 - 13V
113	W/G	IACV-AAC valve	Engine is running. Steering wheel is being turned. Air conditioner is operating. Rear window defogger switch is "ON". Lighting switch is "ON".	5 - 10V
	_	Heated oxygen	Engine is running. Engine speed is below 3,200 rpm.	Approximately 0V
114	R	sensor heater	Engine is running. Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)

TERMINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
116	B/P	ECCS ground	Engine is running.	Engine ground

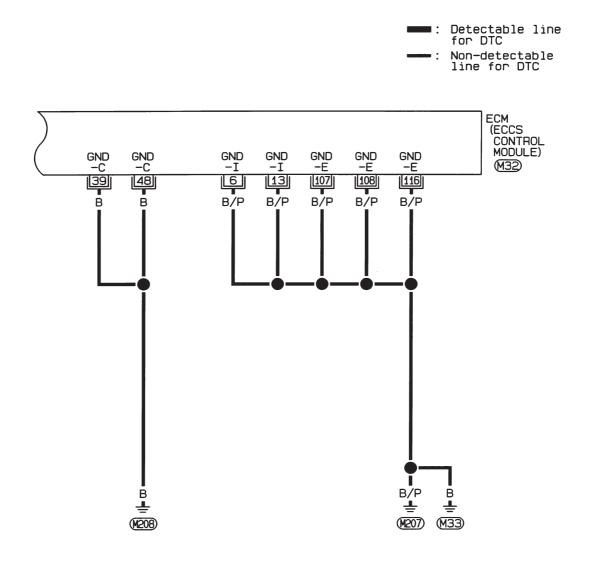
Main Power Supply and Ground Circuit

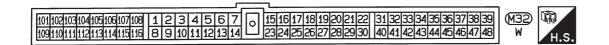
ECM TERMINALS AND REFERENCE VALUE

Remarks: Specification data are reference values, and are measured between each terminal and (3) (ECCS ground) with a voltmeter.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
4	L/R	ECCS relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V
			Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
			Ignition switch "OFF"	OV
36	36 B/L Igniti	Ignition switch	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
38 47	B/W	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
46	GY/L	Power supply (Back-up)	Ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
109	B/W	Current return	Engine is running.	BATTERY VOLTAGE (11 - 14V)

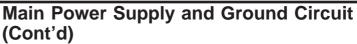
TROUBLE DIAGNOSIS FOR POWER SUPPLY

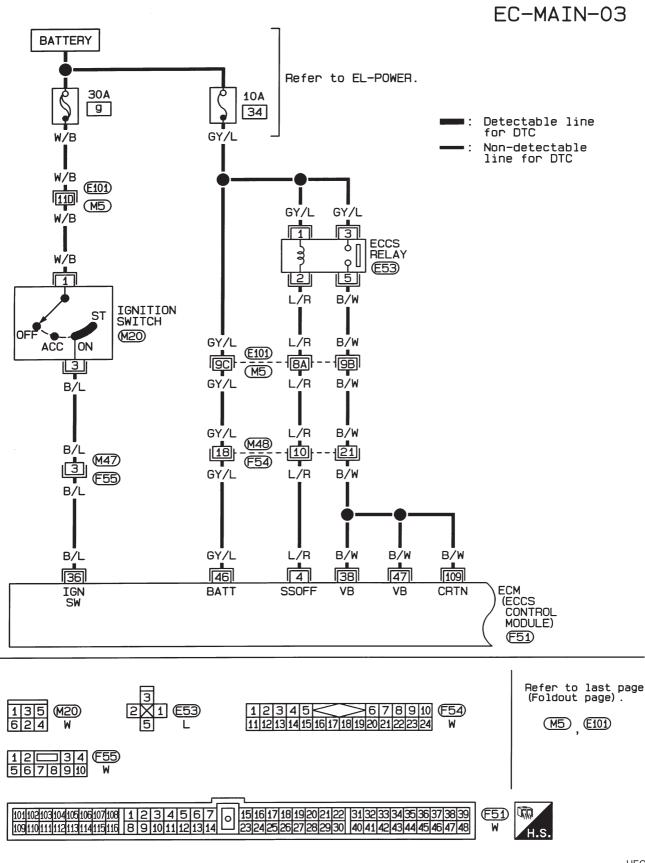

Main Power Supply and Ground Circuit (Cont'd)


LHD MODELS

HEC558

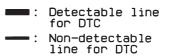
EC-MAIN-02

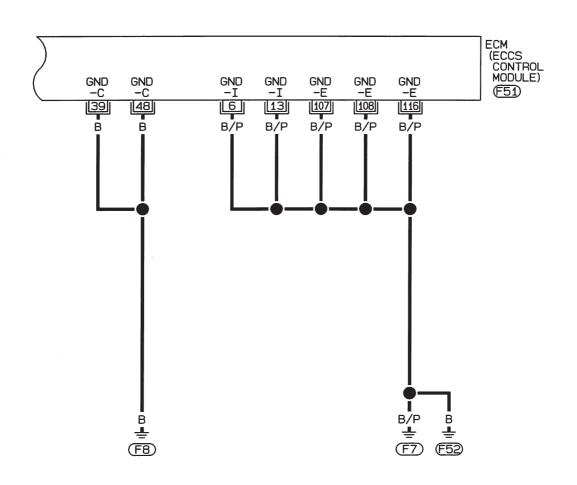


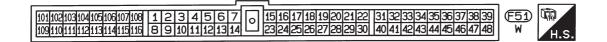

HEC336

EC-77

RHD MODELS

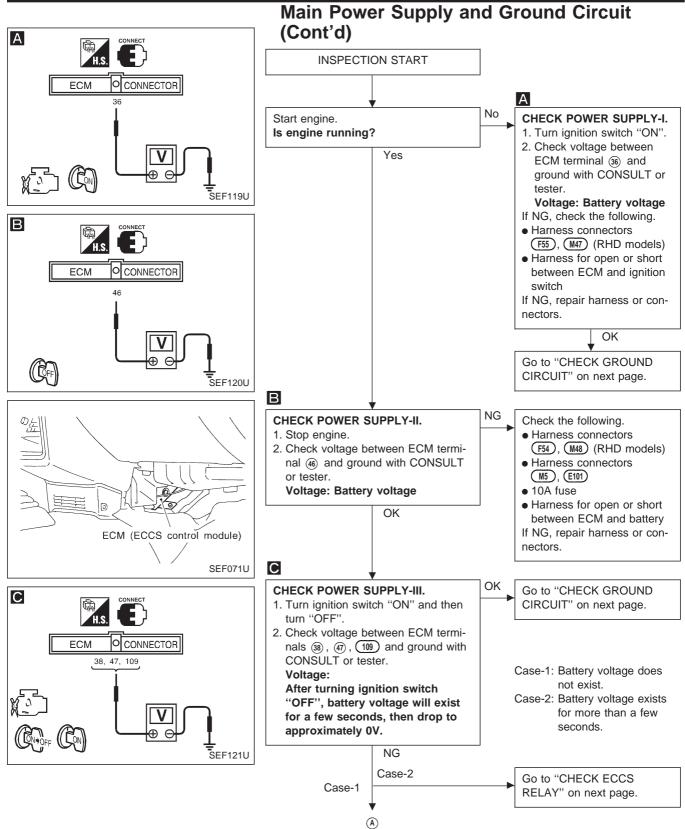



HEC337


KA

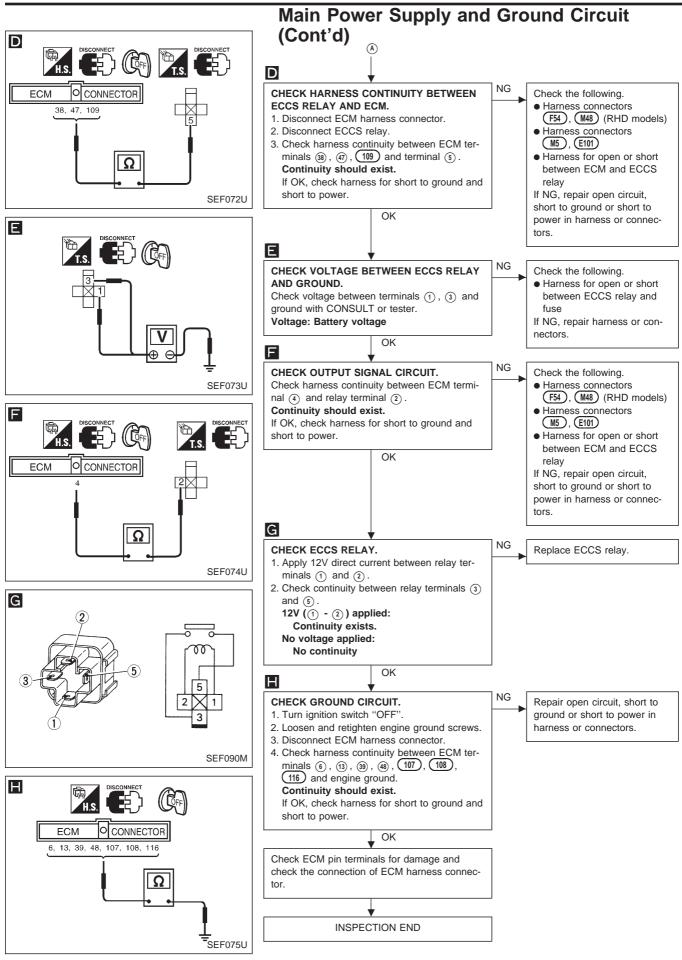
(Cont'd)

EC-MAIN-04



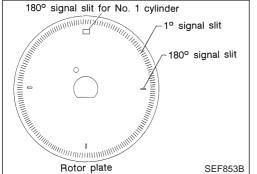
HEC338

KA


TROUBLE DIAGNOSIS FOR POWER SUPPLY

KA




TROUBLE DIAGNOSIS FOR POWER SUPPLY

KA

EC-81

Camshaft Position Sensor (CMPS) COMPONENT DESCRIPTION

The camshaft position sensor is a basic component of the ECCS. It monitors engine speed and piston position. These input signals to the ECM are used to control fuel injection, ignition timing and other functions.

The camshaft position sensor has a rotor plate and a waveforming circuit. The rotor plate has 360 slits for a 1° signal and 4 slits for a 180° signal. The wave-forming circuit consists of Light Emitting Diodes (LED) and photo diodes.

The rotor plate is positioned between the LED and the photo diode. The LED transmits light to the photo diode. As the rotor plate turns, the slits cut the light to generate rough-shaped pulses. These pulses are converted into on-off signals by the wave-forming circuit and sent to the ECM.

The distributor is not repairable and must be replaced as an assembly, except distributor cap.

TROUBLE DIAGNOSIS FOR "CAMSHAFT POSI SEN" (DTC 11) Camshaft Position Sensor (CMPS) (Cont'd) KA

ECM TERMINALS AND REFERENCE VALUE

Remarks: Specification data are reference values, and are measured between each terminal and (3) (ECCS ground) with a voltmeter.

	ter.			
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
22	W	Camshaft position sensor (REF) (180° signal)	Engine is running. (Warm-up condition)	Approximately 0.4V
30			Engine is running. (Warm-up condition)	Approximately 0.4V (V) 10 5 0 20 ms. SEF065U
31	31 B	Camshaft position sensor	Engine is running. (Warm-up condition)	Approximately 2.5V
40 B		(POS) (1° signal)	Engine is running. (Warm-up condition)	Approximately 2.5V (V) 10 5 0 0.2 ms SEF067U

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
-----------------------------------	------------------------------	---------------------------------

TROUBLE DIAGNOSIS FOR "CAMSHAFT POSI SEN" (DTC 11) Camshaft Position Sensor (CMPS) (Cont'd)

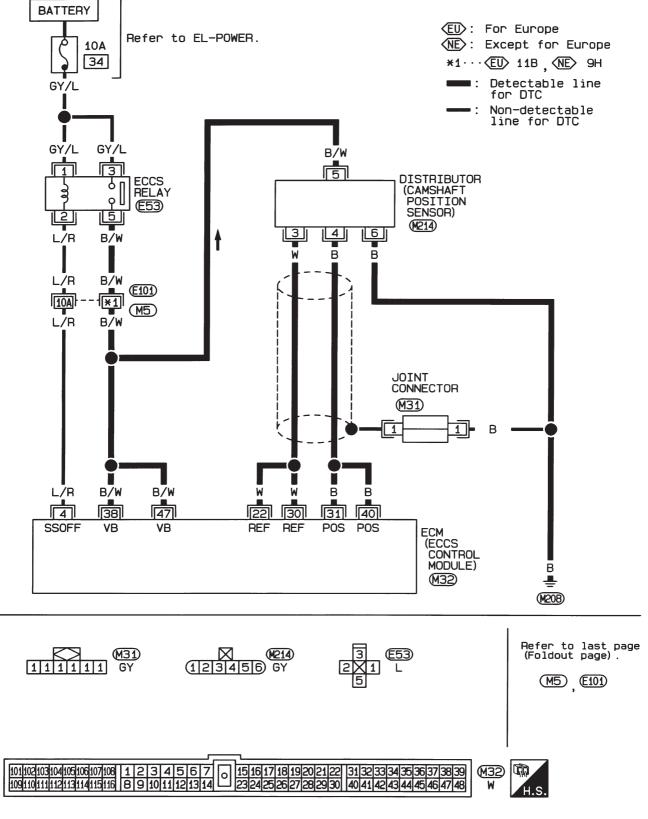
11

RECORD

SEF051U

• Either 1° or 180° signal is not sent to ECM for the first • Harness or connectors few seconds during engine cranking. (The camshaft position sensor circuit is open or shorted.) Camshaft position sensor • Either 1° or 180° signal is not sent to ECM during Starter motor (Refer to EL section.) engine running. Starting system circuit (Refer to EL section.) • Dead (Weak) battery • Either 1° or 180° signal is not in the normal pattern during engine running. **DIAGNOSTIC TROUBLE CODE CONFIRMATION** 🕁 NO FAIL 🗌 ☆ MONITOR PROCEDURE Before performing the following procedure, confirm that CMPS•RPM (POS) 800rpm battery voltage is more than 10V. 1) Turn ignition switch "ON" and select "DATA MONI-TOR" mode with CONSULT. 2) Start engine and run it for at least 2 seconds at idle

speed. (If engine does not run, turn ignition switch to "START" for at least 2 seconds.)

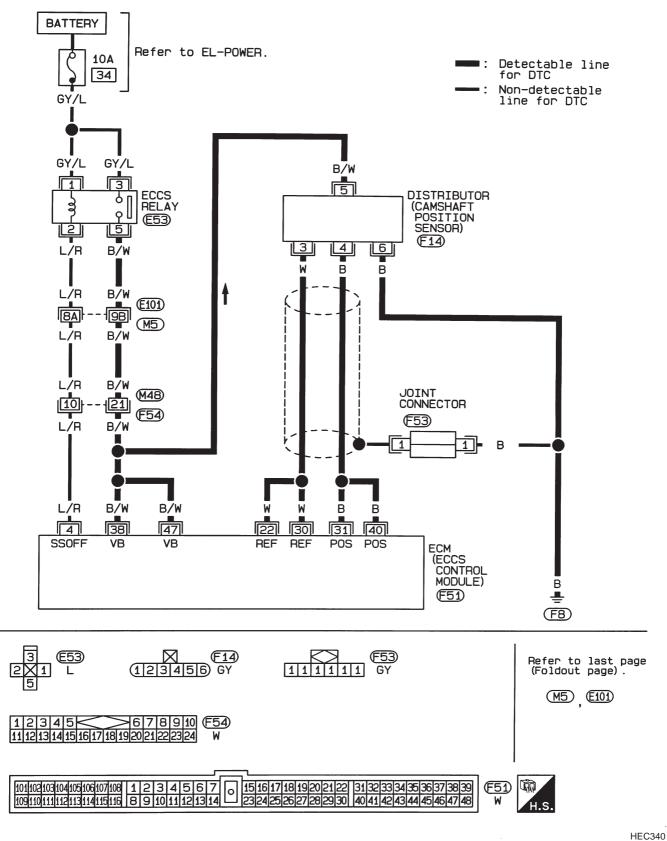

(If engine does not run, turn ignition switch to "START" for at least 2 seconds.)

- 2) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 3) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.

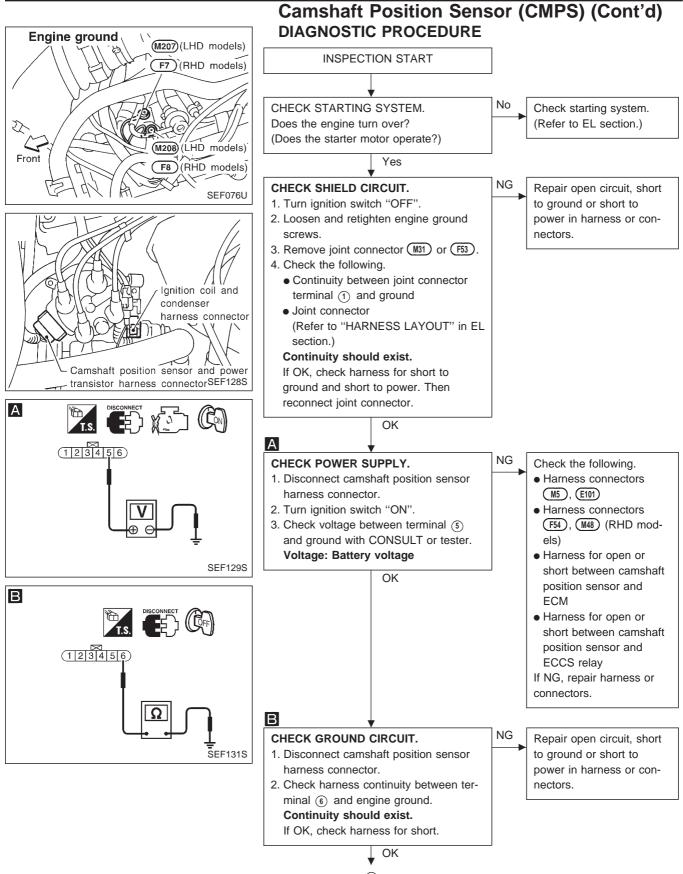
TROUBLE DIAGNOSIS FOR "CAMSHAFT POSI SEN" (DTC 11) Camshaft Position Sensor (CMPS) (Cont'd)

LHD MODELS

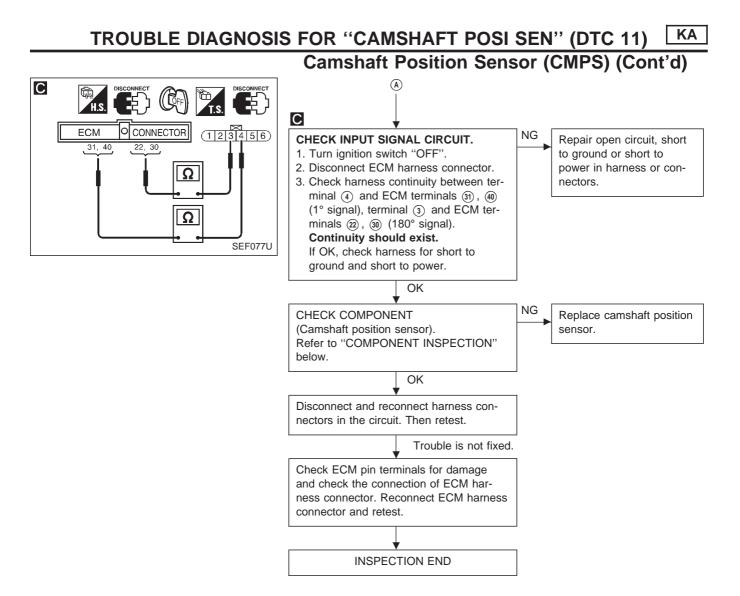
EC-CMPS-01

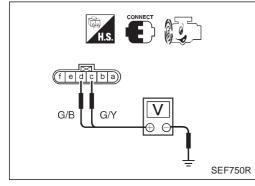


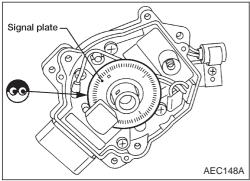
HEC559


TROUBLE DIAGNOSIS FOR "CAMSHAFT POSI SEN" (DTC 11) KA Camshaft Position Sensor (CMPS) (Cont'd)

RHD MODELS


EC-CMPS-02

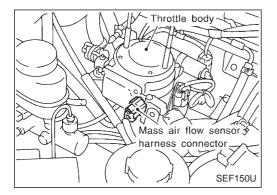



TROUBLE DIAGNOSIS FOR "CAMSHAFT POSI SEN" (DTC 11)

A

COMPONENT INSPECTION

Camshaft position sensor


- 1. Start engine.
- 2. Check voltage between terminals (3), (4) and ground with DC range.

Condition	Terminals	Voltage
Engine running at idle	③ and ground	Approximately 0.4V*
Engine running at lule	(4) and ground	Approximately 2.5V*

*: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

If NG, replace distributor assembly with camshaft position sensor.

3. Visually check signal plate for damage or dust.

Mass Air Flow Sensor (MAFS) COMPONENT DESCRIPTION

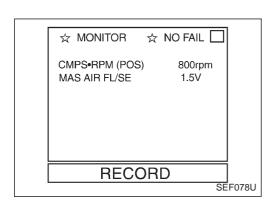
The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot wire that is supplied with electric current from the ECM. The temperature of the hot wire is controlled by the ECM a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to the hot wire as air flow increases. This maintains the temperature of the hot wire. The ECM detects the air flow by means of this current change.

CONSULT REFERENCE VALUE IN DATA MONITOR MODE

Remarks: Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAS AIR/FL SE	 Engine: After warming up Air conditioner switch: "OFF" 	Idle	1.3 - 1.7V
	Shift lever: Neutral positionNo-load	2,500 rpm	1.7 - 2.1V

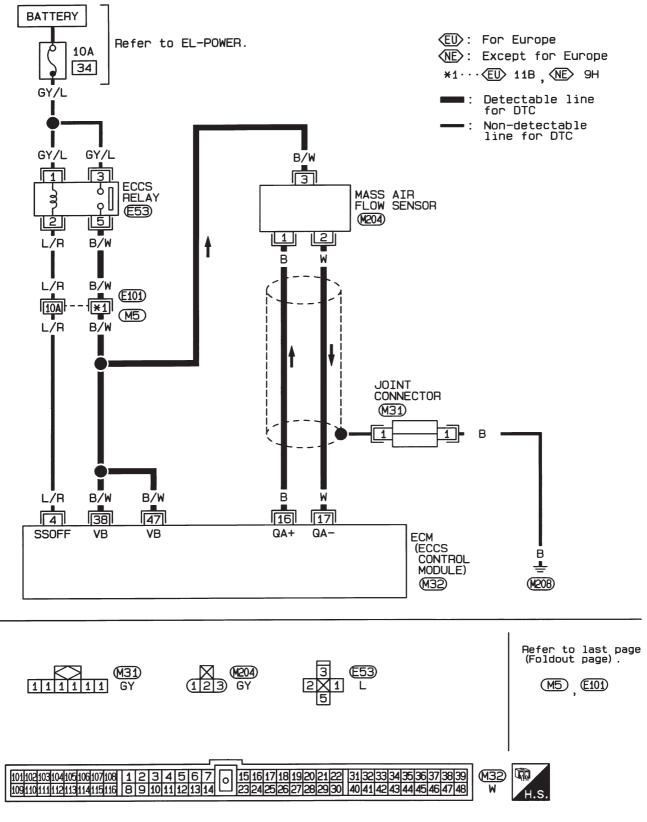

ECM TERMINALS AND REFERENCE VALUE

Remarks: Specification data are reference values, and are measured between each terminal and
(B) (ECCS ground) with a voltmeter.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
16	16 B	Mass air flow sensor	Engine is running. (Warm-up condition)	1.3 - 1.7V
10			Engine is running. (Warm-up condition)	1.7 - 2.1V
17	w	Mass air flow sensor ground	Engine is running. (Warm-up condition)	0.005 - 0.02V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when		Check Items (Possible Cause)			
12	• An excessively high or low voltage from the sensor is sent to ECM.*		 Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor 			
*: When this ma	*: When this malfunction is detected, the ECM enters fail-safe mode.					
Engine	operating condition in fail-safe mode	Engine spe	ed will not rise more than 2,400 rpm due to the fuel cut.			

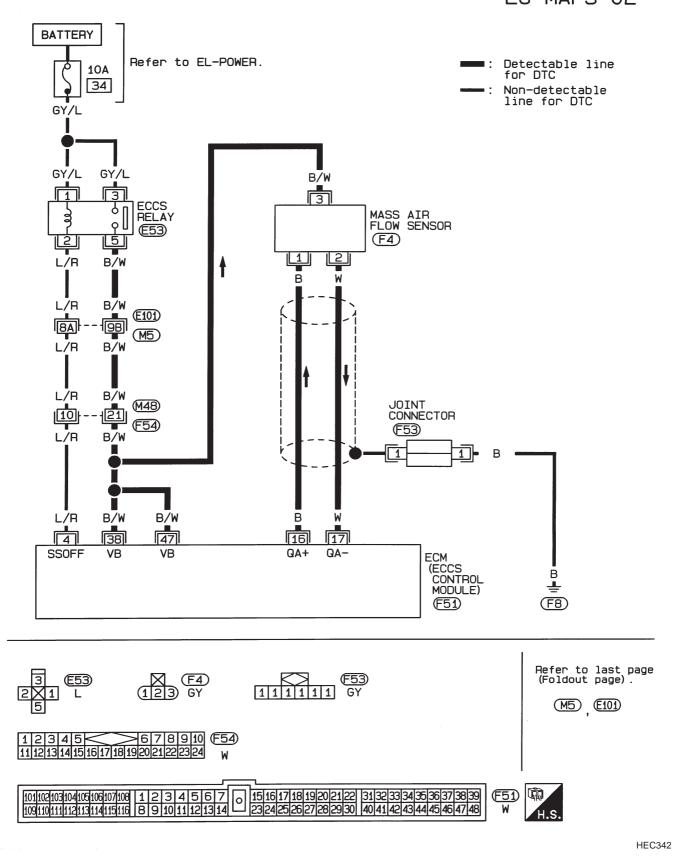

Mass Air Flow Sensor (MAFS) (Cont'd) **DIAGNOSTIC TROUBLE CODE CONFIRMATION** PROCEDURE

- 1) Turn ignition switch "ON", and wait at least 6 seconds.
 - 2) Select "DATA MONITOR" mode with CONSULT. 3) Start engine and wait at least 3 seconds.
- OR 1) Turn ignition switch "ON", and wait at least 6 seconds. R
 - 2) Start engine and wait at least 3 seconds.
 - 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
 - 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.

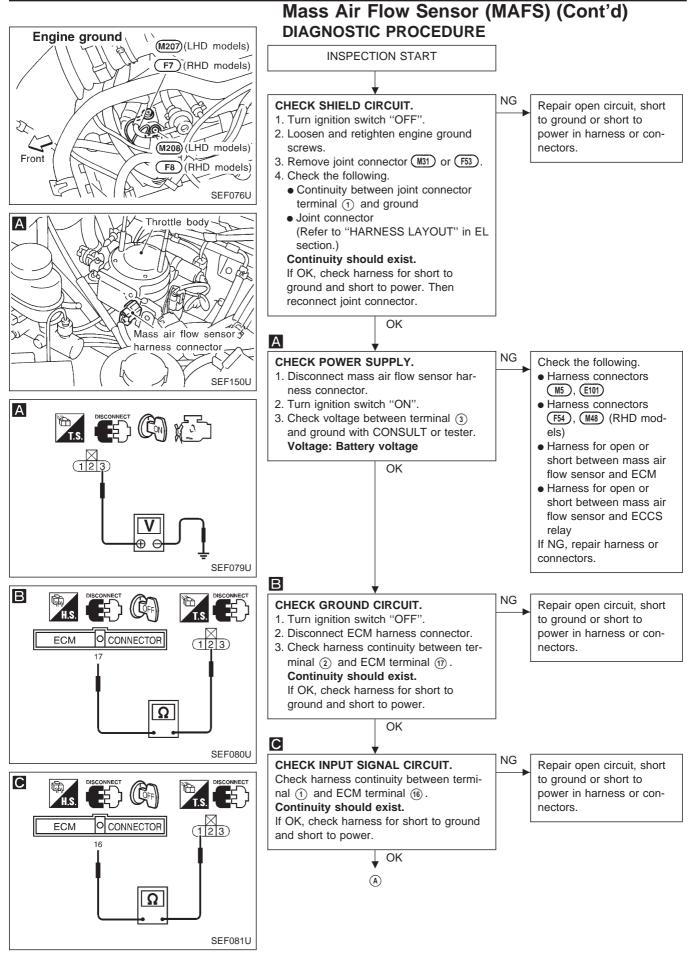
TROUBLE DIAGNOSIS FOR "MASS AIR FLOW SEN" (DTC 12) Mass Air Flow Sensor (MAFS) (Cont'd)

LHD MODELS

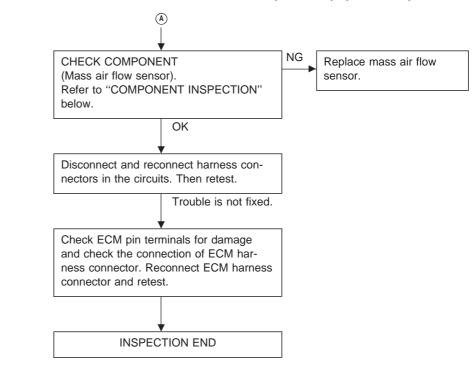
EC-MAFS-01

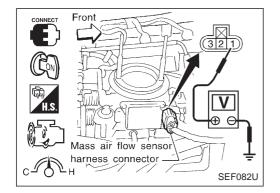


HEC560


TROUBLE DIAGNOSIS FOR "MASS AIR FLOW SEN" (DTC 12) Mass Air Flow Sensor (MAFS) (Cont'd)

RHD MODELS


TROUBLE DIAGNOSIS FOR "MASS AIR FLOW SEN" (DTC 12)

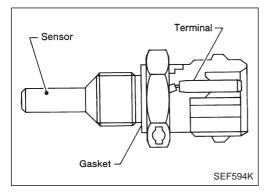


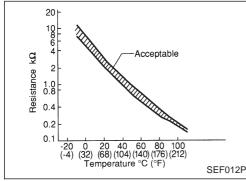
EC-93

TROUBLE DIAGNOSIS FOR "MASS AIR FLOW SEN" (DTC 12)

Mass Air Flow Sensor (MAFS) (Cont'd)

COMPONENT INSPECTION


Mass air flow sensor


- 1. Turn ignition switch "ON".
- 2. Start engine and warm it up sufficiently.
- 3. Check voltage between terminal ① and ground.

Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up sufficiently.)	1.3 - 1.7
2,500 rpm	1.7 - 2.1
Idle to about 4,000 rpm*	1.3 - 1.7 to Approx. 4.0

*: Check for linear voltage rise in response to increase to about 4,000 rpm in engine speed.

4. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

Engine Coolant Temperature Sensor (ECTS) COMPONENT DESCRIPTION

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant tempera- ture °C (°F)	Voltage* (V)	Resistance (kΩ)
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	1.0	0.236 - 0.260

: These data are reference values and are measured between ECM terminal (18) (Engine coolant temperature sensor) and ECM terminal (19) (ECCS ground).

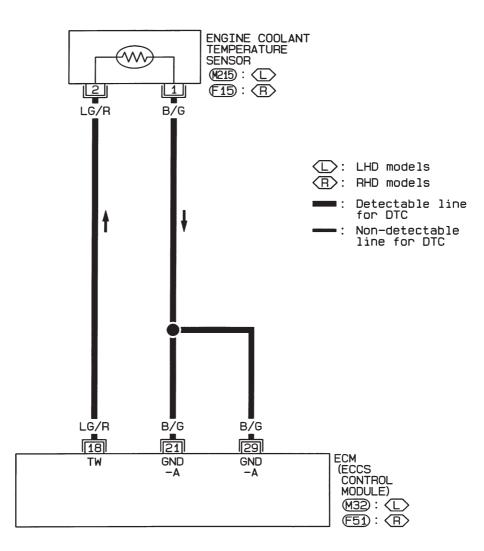
ON BOARD DIAGNOSIS LOGIC

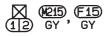
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
13	 An excessively high or low voltage from the sensor is sent to ECM.* 	Harness or connectors (The sensor circuit is open or shorted.)Engine coolant temperature sensor	

*: When this malfunction is detected, the ECM enters fail-safe mode.

Engine operating condition in fail-safe mode	Condition	Engine coolant temperature decided (CONSULT DISPLAY)
Engine coolant temperature will be determined	Just as ignition switch is turned ON or START	20°C (68°F)
by ECM based on the time after turning igni- tion switch "ON" or "START". CONSULT displays the engine coolant tem- perature decided by ECM.	More than 6 minutes after ignition START	80°C (176°F)
	Except as shown above	20 - 80°C (68 - 176°F) (Depends on the time)

[☆ MONITOR ☆ NO FAIL 🗌	
	CMPS•RPM (POS) 0rpm COOLAN TEMP/S 25°C	
ļ		
	RECORD	
	SEF	759

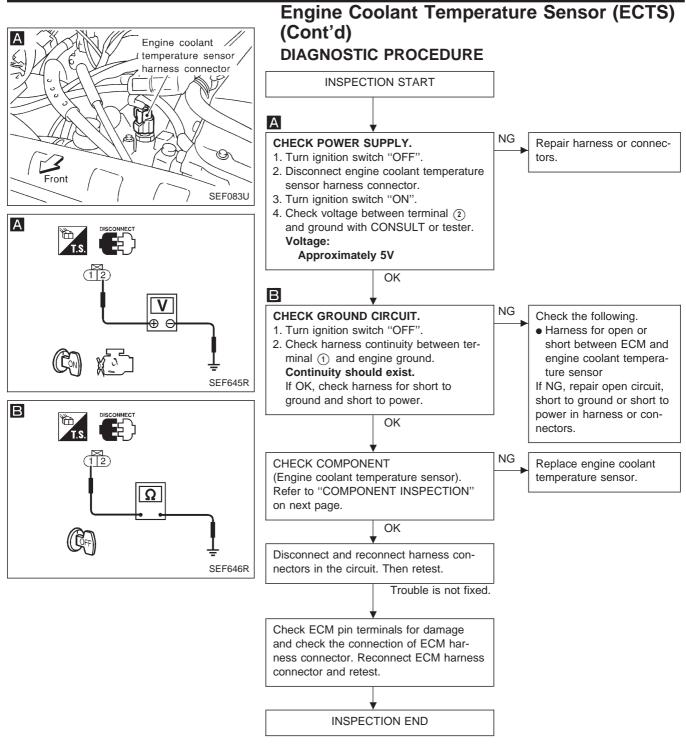

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

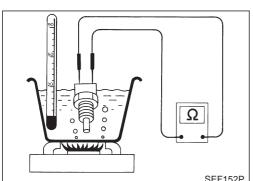

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT.
 3) Wait at least 5 seconds.
- OR OR OR 1) Turn ignition switch "ON" and wait at least 5 seconds.
 - Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
 - 3) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.


EC-95

TROUBLE DIAGNOSIS FOR "COOLANT TEMP SEN" (DTC 13) Engine Coolant Temperature Sensor (ECTS) (Cont'd)

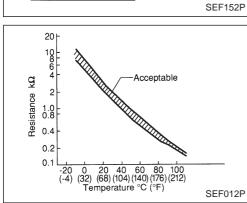
EC-ECTS-01





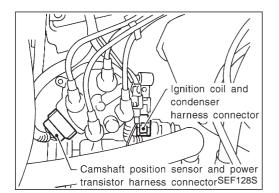
HEC343

TROUBLE DIAGNOSIS FOR "COOLANT TEMP SEN" (DTC 13)



TROUBLE DIAGNOSIS FOR "COOLANT TEMP SEN" (DTC 13)

Engine Coolant Temperature Sensor (ECTS) (Cont'd) COMPONENT INSPECTION Engine coolant temperature sensor


Check resistance as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

Ignition Signal COMPONENT DESCRIPTION

Ignition coil & power transistor (Built into distributor)

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns on and off the ignition coil primary circuit. This on-off operation induces the proper high voltage in the coil secondary circuit.

CONSULT REFERENCE VALUE IN DATA MONITOR MODE

Remarks: Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
IGN TIMING	 Air conditioner switch: "OFF" Shift lever: Neutral position 	Idle	10° BTDC
		2,000 rpm	More than 25° BTDC

ECM TERMINALS AND REFERENCE VALUE

Remarks: Specification data are reference values, and are measured between each terminal and
(B) (ECCS ground) with a voltmeter.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
				Approximately 0.3V
			Engine is running.	2 0 20 ms
1			SEF058U	
I	W/PU	Ignition signal		Approximately 0.7V
			Engine is running. Engine speed is 2,000 rpm.	(V) 4 2 0 20 ms
				SEF059U

TROUBLE DIAGNOSIS FOR "IGN SIGNAL-PRIMARY" (DTC 21)

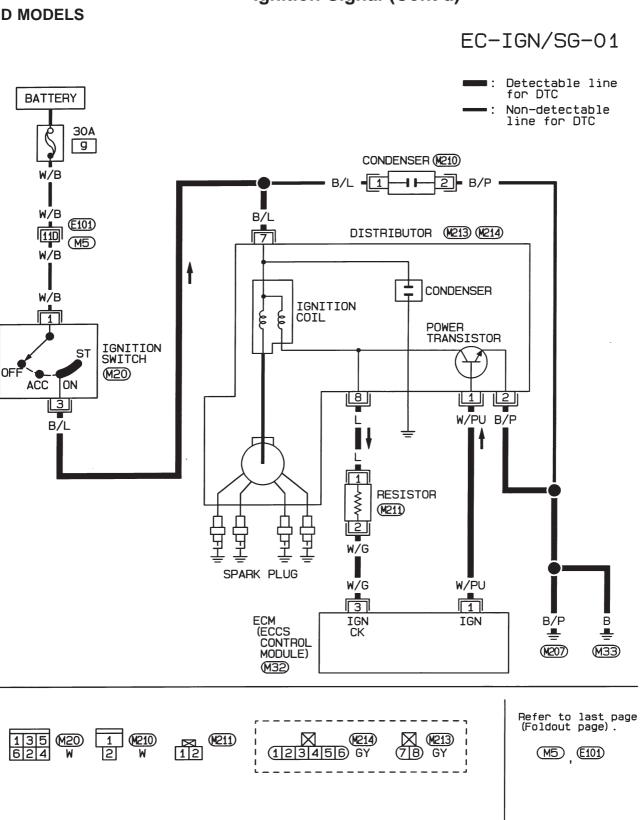
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
			Engine is running.	Approximately 13V
3	W/G	Ignition check		SEF062U
3	WG		Engine is running. Engine speed is 2,000 rpm.	Approximately 13V
				SEF063U

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
21	 The ignition signal in the primary circuit is not sent during engine cranking or running. 	 Harness or connectors (The ignition primary circuit is open or shorted.) Power transistor Resistor Camshaft position sensor Camshaft position sensor circuit

	☆ MONITOR ☆ NO FAIL	
	CMPS•RPM (POS) 800rpm	
	RECORD	
	SEF	051

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE


- Note: If both DTC 21 and DTC 11 are displayed, perform TROUBLE DIAGNOSIS FOR DTC 11 first. (See EC-82.)
- 1) Turn ignition switch "ON".
 - 2) Select "DATA MONITOR" mode with CONSULT.
 3) Start engine and wait at least 2 seconds. (If engine does not run, turn ignition switch to "START" for at least 5 seconds.)

Turn ignition switch "ON".

- 2) Start engine and wait at least 2 seconds. (If engine does not run, turn ignition switch to "START" for at least 5 seconds.)
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.

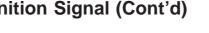
KA **TROUBLE DIAGNOSIS FOR "IGN SIGNAL-PRIMARY" (DTC 21)** Ignition Signal (Cont'd)

LHD MODELS

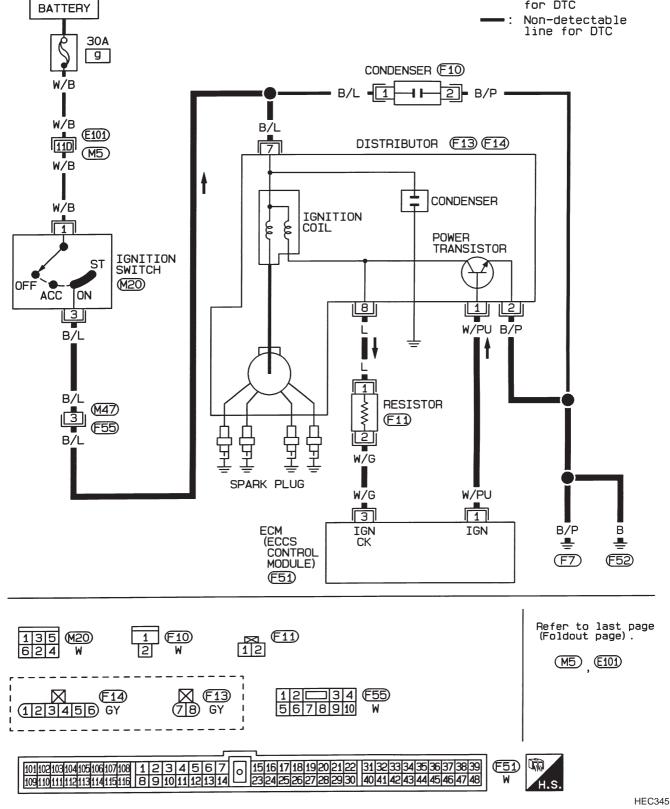
HEC344

Ŵ

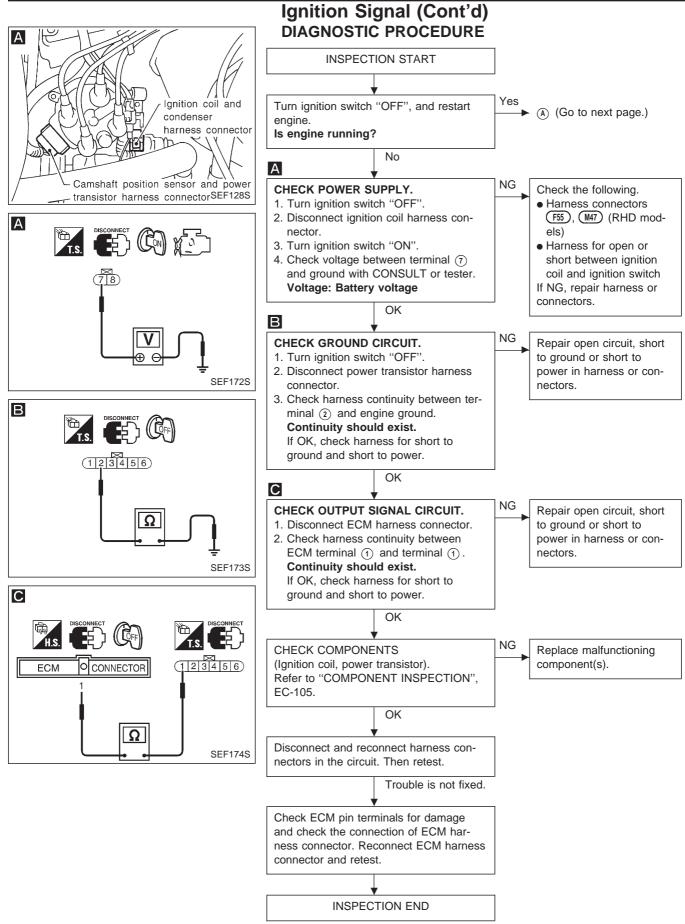
H.S


(M32) W

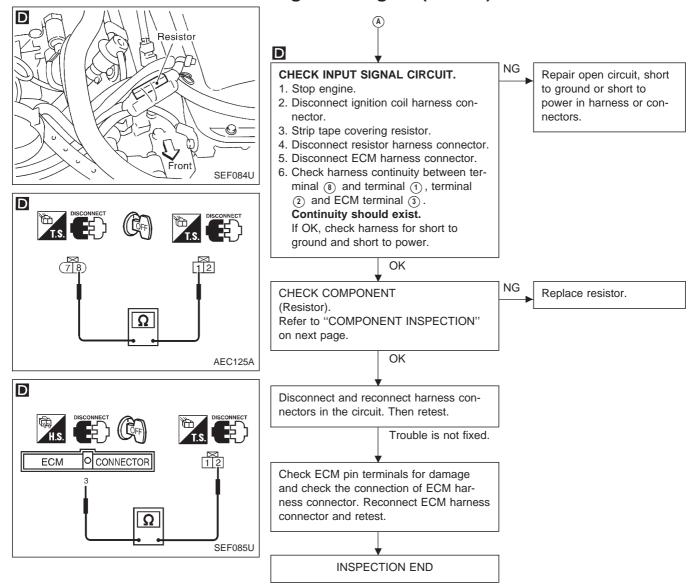
15 16 17 18 19 20 21 22 31 32 33 34 35 36 37 38 39 23 24 25 26 27 28 29 30 40 41 42 43 44 45 46 47 48

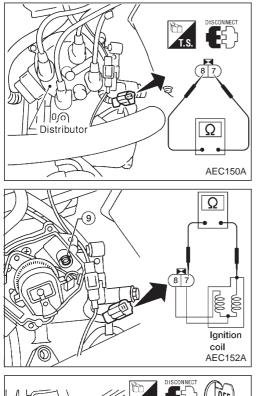

 $\frac{101102103104105106107108}{10911011112113114115116} \frac{1234567}{8910111121314} \circ$

KA **TROUBLE DIAGNOSIS FOR "IGN SIGNAL-PRIMARY" (DTC 21)** Ignition Signal (Cont'd)



EC-IGN/SG-02 Detectable line for DTC

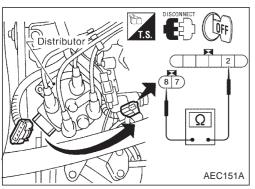




EC-103

TROUBLE DIAGNOSIS FOR "IGN SIGNAL-PRIMARY" (DTC 21)

Ignition Signal (Cont'd)


Ignition Signal (Cont'd) COMPONENT INSPECTION

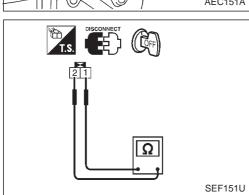
Ignition coil

- 1. Disconnect ignition coil harness connector.
- 2. Remove distributor cap.
- 3. Check resistance as shown in the figure.

Terminal	Resistance [at 25°C (77°F)]
(7) - (8)	Less than 1Ω
(7) - (9)	7 - 13 kΩ

If NG, replace distributor assembly.

Power transistor


- 1. Disconnect camshaft position sensor & power transistor harness connector and ignition coil harness connector.
- Check power transistor resistance between terminals (2) and (8).

Terminals	Resistance	Result
 and (8) 	Except 0Ω	OK
	0Ω	NG

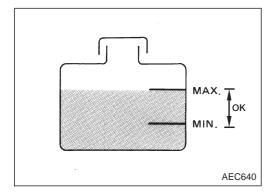
If NG, replace distributor assembly.

Resistor

- 1. Disconnect resistor harness connector.
- 2. Check resistance between terminals (1) and (2). Resistance: Approximately 2.2 k Ω If NG, replace resistor.

ON BOARD DIAGNOSIS LOGIC

If the cooling fan or another component in the cooling system malfunctions, the engine coolant temperature will rise.


When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

Diagnostic trouble code No.	Malfunction is detected when	Check Items (Possible Cause)
28	 Engine coolant temperature reaches an abnormally high temperature. 	 Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-108.

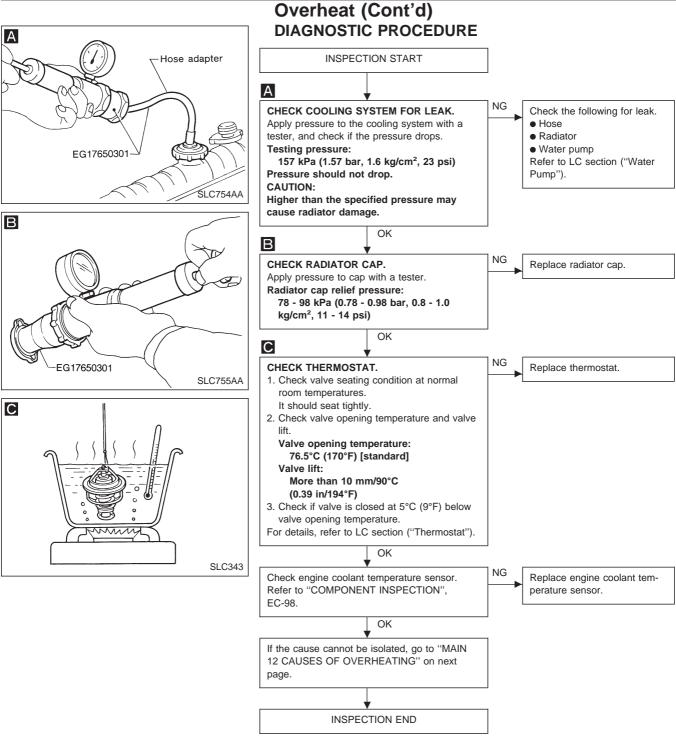
CAUTION:

When a malfunction is indicated, be sure to replace the coolant following the procedure in MA section ("Changing Engine Coolant", "ENGINE MAINTENANCE"). Also, replace the engine oil.

- Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to MA section ("Anti-freeze Coolant Mixture Ratio", "RECOMMENDED FLUIDS AND LUBRICANTS").
- After refilling coolant, run engine to ensure that no water-flow noise is emitted.

OVERALL FUNCTION CHECK

WARNING:


Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

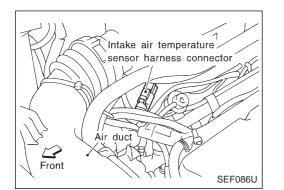
Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

- Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following step and go to "DIAGNOSTIC PROCEDURE" on next page.
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, go to "DIAGNOSTIC PROCEDURE" on next page.

TROUBLE DIAGNOSIS FOR "OVER HEAT" (DTC 28)

KA

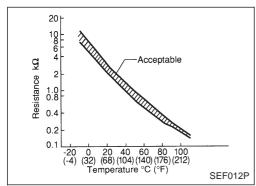
Perform FINAL CHECK by the following procedure after repair is completed.


- 1. Warm up engine. Run the vehicle for at least 20 minutes. Pay attention to engine coolant temperature gauge on the instrument panel. If the reading shows an abnormally high temperature, another part may be malfunctioning.
- 2. Stop vehicle and let engine idle. Check the intake and exhaust systems for leaks by listening for noise or visually inspecting the components.
- 3. Allow engine to cool and visually check for oil and coolant leaks. Then, perform "OVERALL FUNCTION CHECK".

Overheat (Cont'd)

MAIN 12 CAUSES OF OVERHEATING

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	 Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper 	● Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See "RECOMMENDED FLUIDS AND LUBRI- CANTS" in MA section.
	3	Coolant level	● Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See "Changing Engine Coolant", "ENGINE MAINTENANCE" in MA section.
	4	• Radiator cap	Pressure tester	78 - 98 kPa (0.78 - 0.98 bar, 0.8 - 1.0 kg/cm ² , 11 - 14 psi) 59 - 98 kPa (0.59 - 0.98 bar, 0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	See "System Check", "ENGINE COOLING SYSTEM" in LC section.
ON*2	5	Coolant leaks	Visual	No leaks	See "System Check", "ENGINE COOLING SYSTEM" in LC section.
ON*2	6	Thermostat	 Touch the upper and lower radiator hoses 	Both hoses should be hot.	See "Thermostat" and "Radiator", "ENGINE COOLING SYSTEM" in LC section.
ON*1	7	• Cooling fan	Visual	Operating	See "Cooling Fan", "ENGINE COOLING SYSTEM" in LC section.
OFF	8	Combustion gas leak	 Color checker chemical tester 4 gas analyzer 	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to res- ervoir tank	Visual	No overflow during driving and idling	See "Changing Engine Coolant", "ENGINE MAINTENANCE" in MA section.
OFF*4	10	Coolant return from res- ervoir tank to radiator	Visual	Should be initial level in reservoir tank	See "ENGINE MAINTE- NANCE" in MA section.
OFF	11	Cylinder head	 Straight gauge feeler gauge 	0.1 mm (0.004 in) Maxi- mum distortion (warping)	See "Inspection", "CYL- INDER HEAD" in EM section.
	12	Cylinder block and pis- tons	Visual	No scuffing on cylinder walls or piston	See "Inspection", "CYL- INDER BLOCK" in EM section.

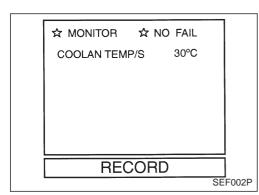

*1: Engine running at idle.
*2: Engine running at 3,000 rpm for 10 minutes.
*3: Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.
*4: After 60 minutes of cool down time.
For more information, refer to "OVERHEATING CAUSE ANALYSIS" in LC section.

Intake Air Temperature Sensor

The intake air temperature sensor is mounted to the air duct. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor, which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

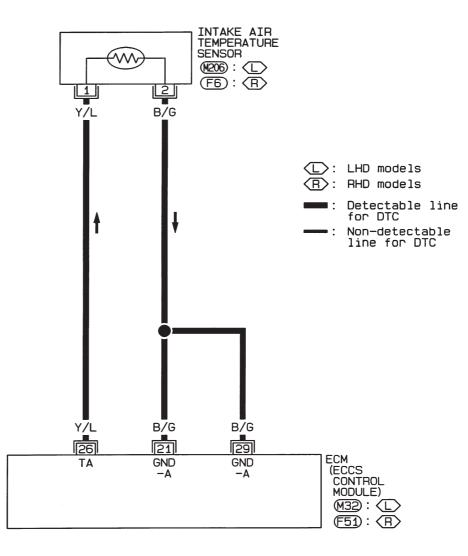

Intake air temperature °C (°F)	Resistance $k\Omega$
-10 (14)	7.0 - 11.4
20 (68)	2.1 - 2.9
80 (176)	0.27 - 0.38

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
41	 An excessively low or high voltage from the sensor is sent to ECM*. 	 Harness or connectors (The sensor circuit is open or shorted.) Intake air temperature sensor

*: When this malfunction is detected, the ECM enters fail-safe mode.

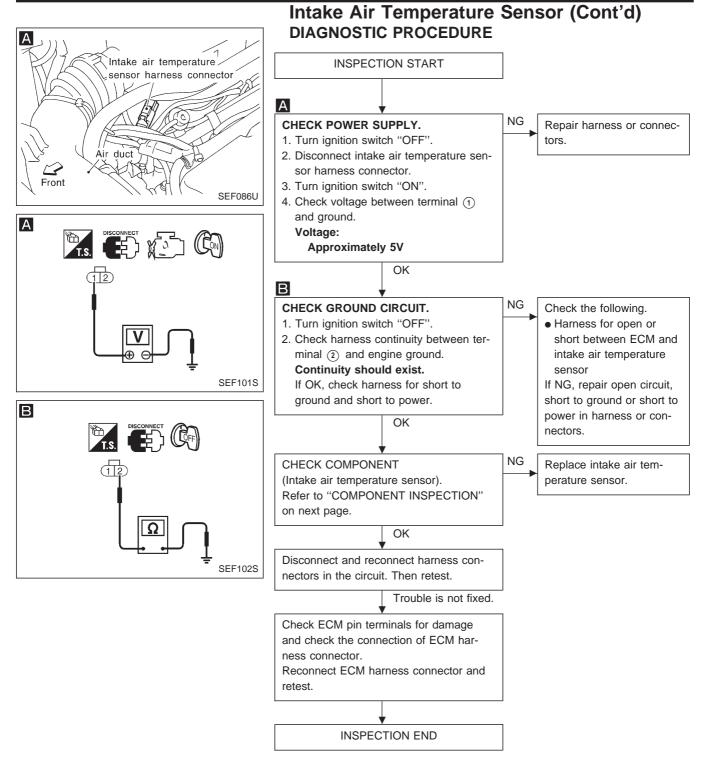
Engine operating condition in tail-sate mode	The ECM controls on the assumption that the intake temperature is 20°C (68°F).
--	--

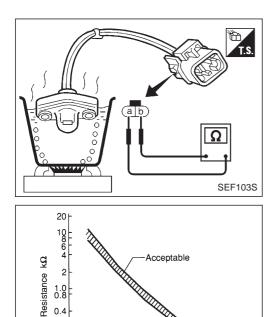

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT.
 3) Wait at least 2 seconds.
- - Turn ignition switch "ON" and wait at least 2 seconds.
 Turn ignition switch "OFF", wait at least 5 seconds and
 - then turn "ON".3) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.

EC-109

EC-IATS-01





HEC346

TROUBLE DIAGNOSIS FOR "INT AIR TEMP SEN" (DTC 41)

KA

0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F)

SEF012P

0.2 0.1

-20

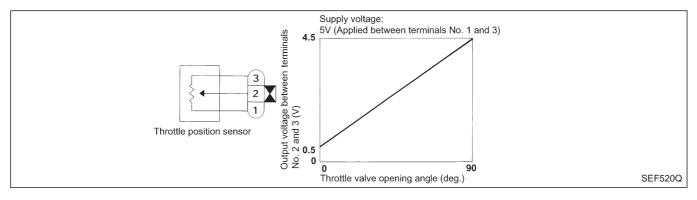
Intake Air Temperature Sensor (Cont'd) COMPONENT INSPECTION

Intake air temperature sensor

Check resistance as shown in the figure.

<Reference data>

Intake air temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
80 (176)	0.27 - 0.38


If NG, replace intake air temperature sensor.

Throttle Position Sensor

COMPONENT DESCRIPTION

The throttle position sensor responds to the accelerator pedal movement. This sensor is a kind of potentiometer which transforms the throttle position into output voltage, and emits the voltage signal to the ECM. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the ECM.

Idle position of the throttle valve is determined by the ECM receiving the signal from the throttle position sensor. This one controls engine operation such as fuel cut.

CONSULT REFERENCE VALUE IN DATA MONITOR MODE

Remarks: Specification data are reference values.

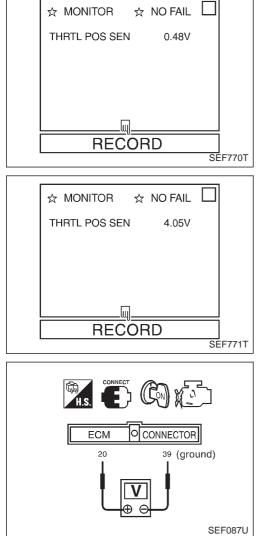
MONITOR ITEM	CONDITION		SPECIFICATION
THRTL POS SEN	 Ignition switch: ON (Engine stopped) 	Throttle valve: fully closed	0.35 - 0.65V
		Throttle valve: fully opened	Approx. 4.0V
CLSD THL/POSI	(Engine stepped)	Throttle valve: Idle position	ON
		Throttle valve: Slightly open	OFF

ECM TERMINALS AND REFERENCE VALUE

Remarks: Specification data are reference values, and are measured between each terminal and (3) (ECCS ground) with a voltmeter.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
20	LG	Throttle position sensor	Ignition switch "ON" (Warm-up condition) Accelerator pedal released	0.35 - 0.65V
20 10	signal	Ignition switch "ON" Accelerator pedal fully depressed	Approximately 4V	
37	PU	Throttle position sensor power supply	Ignition switch "ON"	Approximately 5V
21 29	B/G B/G	Sensors' ground	Engine is running. (Warm-up condition)	0.001 - 0.02V

TROUBLE DIAGNOSIS FOR "THROTTLE POSI SEN" (DTC 43)

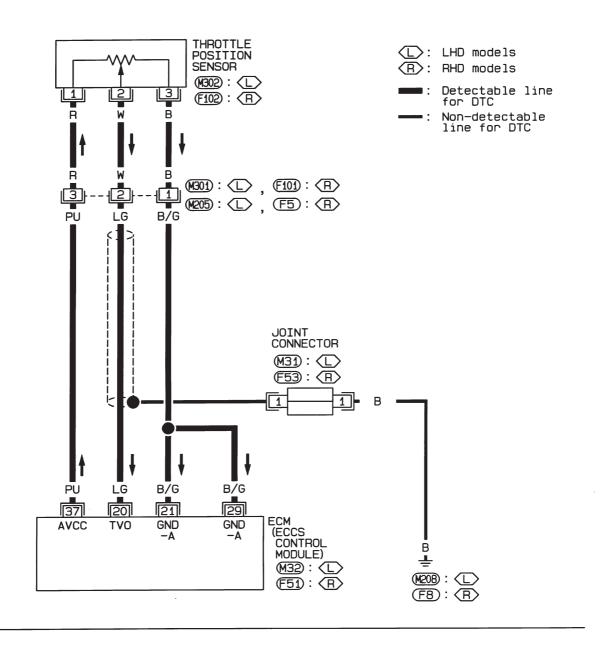

Throttle Position Sensor (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
43 • An excessively low or high voltage from the sensor is sent to ECM.*		 Harness or connectors (The sensor circuit is open or shorted.) Throttle position sensor

*: When this malfunction is detected, the ECM enters fail-safe mode.

Engine operating condition in fail-safe mode	Condition	Driving condition
Throttle position will be determined based on the amount of mass air flow and the engine speed. Therefore, acceleration will be poor.	When engine is idling	Normal
	When accelerating	Poor acceleration

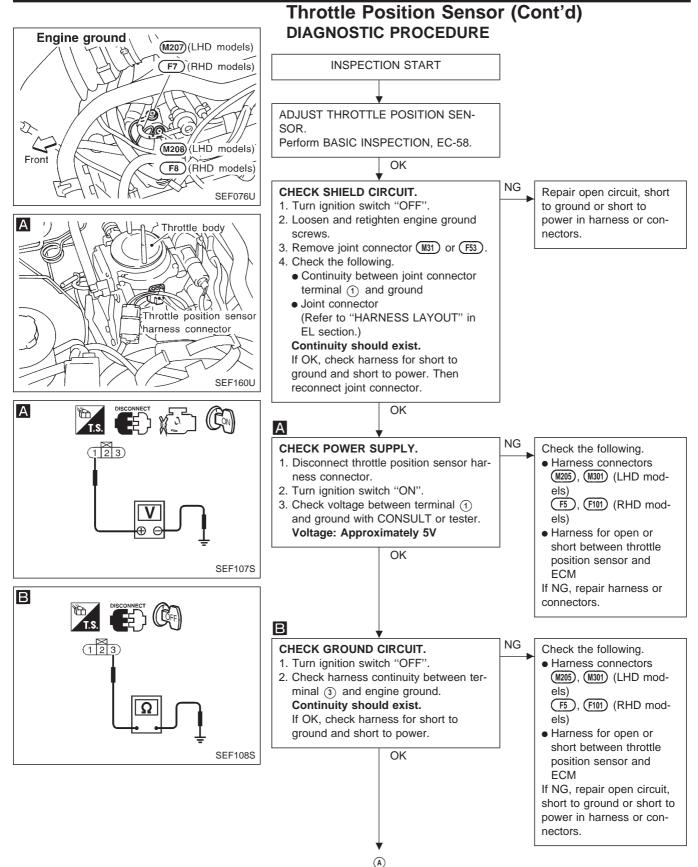


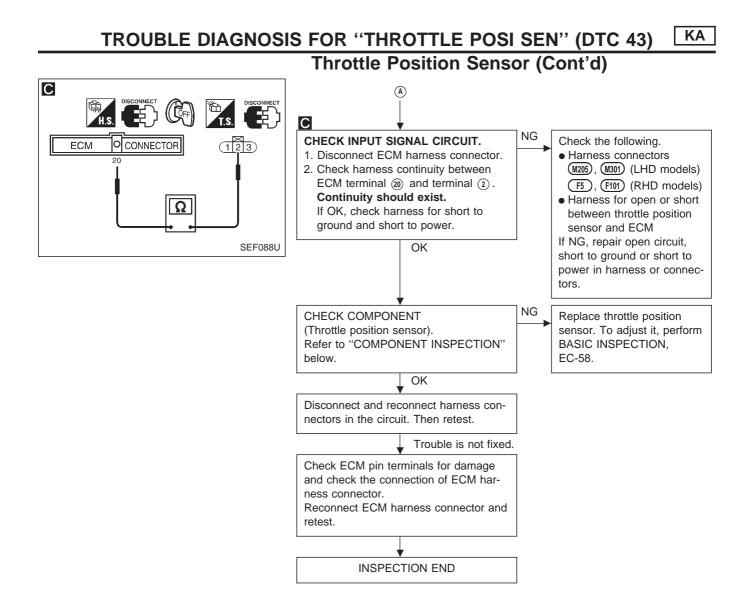
OVERALL FUNCTION CHECK

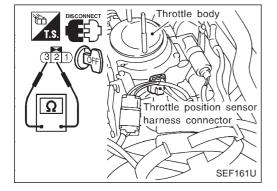

Use this procedure to check the overall function of the throttle position sensor circuit. During this check, a DTC might not be confirmed.

- 1) Start engine and warm it up sufficiently.
 - 2) Turn ignition switch "OFF" and wait at least 5 seconds.
 3) Turn ignition switch "ON".
 - 4) Select "THRTL POS SEN" in "DATA MONITOR" mode with CONSULT.
 - 5) Read "THRTL POS SEN" signal and check the following:
 - The voltage when accelerator pedal fully released is approximately 0.35 0.65V.
 - The voltage when accelerator pedal fully depressed is approximately 4V.
 OR
 - 1) Start engine and warm it up sufficiently.
 - 2) Turn ignition switch "OFF" and wait at least 5 seconds.
 - 3) Turn ignition switch "ON".
 - 4) Check the voltage between ECM terminals (2) and (3) (ground) and check the following:
 - The voltage when accelerator pedal fully released is approximately 0.35 0.65V.
 - The voltage when accelerator pedal fully depressed is approximately 4V.

TROUBLE DIAGNOSIS FOR "THROTTLE POSI SEN" (DTC 43) KA Throttle Position Sensor (Cont'd) EC-TPS-01



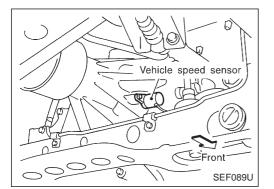




HEC347

TROUBLE DIAGNOSIS FOR "THROTTLE POSI SEN" (DTC 43)

COMPONENT INSPECTION


Throttle position sensor

- 1. Start engine and warm it up sufficiently.
- 2. Turn ignition switch "OFF".
- 3. Disconnect throttle position sensor harness connector.
- 4. Make sure that resistance between terminals (2) and (3) changes when opening throttle valve manually.

Throttle valve conditions	Resistance at 25°C (77°F)	
Completely closed	Approximately 0.6 kΩ	
Partially open	0.6 - 4.0 kΩ	
Completely open	Approximately 4 kΩ	

If NG, replace throttle position sensor.

To adjust throttle position sensor, perform "BASIC INSPECTION", EC-58.

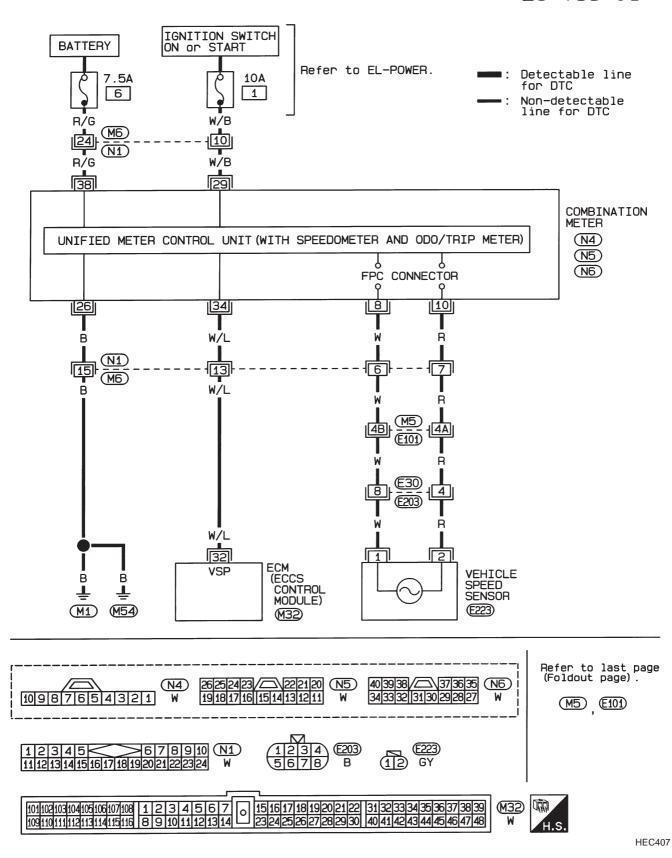
Vehicle Speed Sensor (VSS)

COMPONENT DESCRIPTION

The vehicle speed sensor is installed in the transmission. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM.

ECM TERMINALS AND REFERENCE VALUE

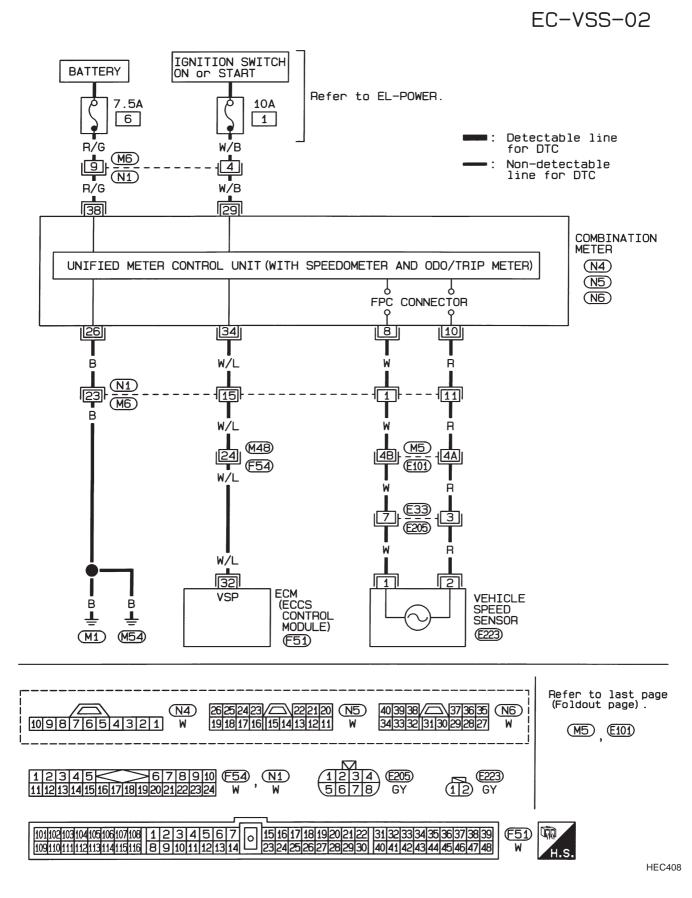
Remarks: Specification data are reference values, and are measured between each terminal and
(B) (ECCS ground) with a voltmeter.

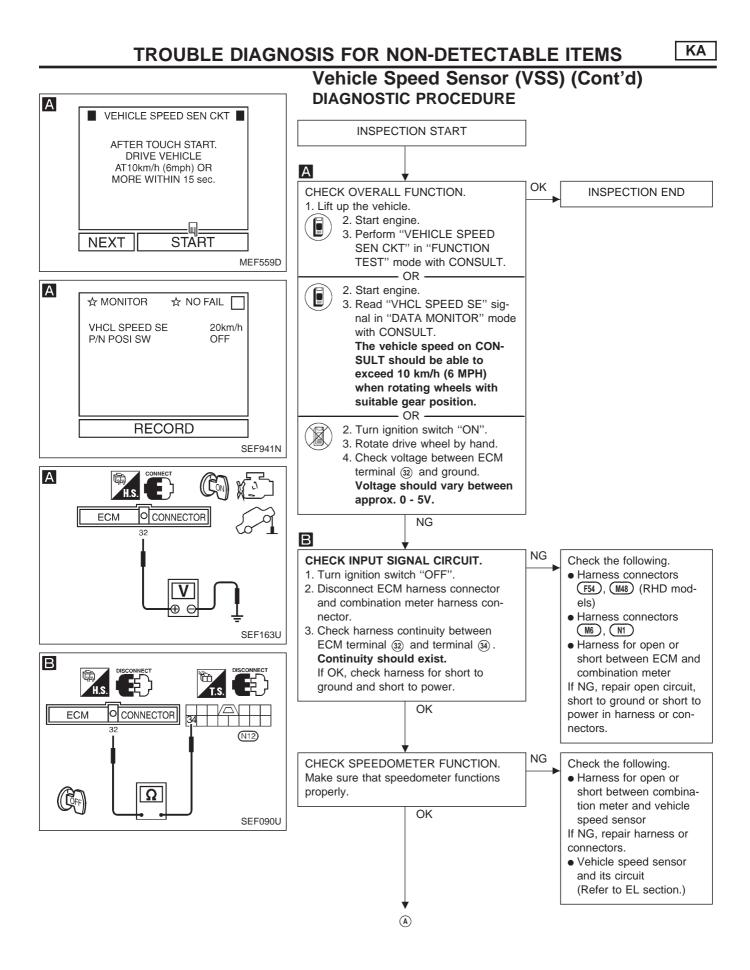

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
32	W/L	Vehicle speed sensor	Engine is running. Jack up all wheels and run engine at idle in 1st position.	Varies from 0 to 5V (V) 10 5 0 200 ms SEF068U

TROUBLE DIAGNOSIS FOR NON-DETECTABLE ITEMS Vehicle Speed Sensor (VSS) (Cont'd)

LHD MODELS

EC-VSS-01

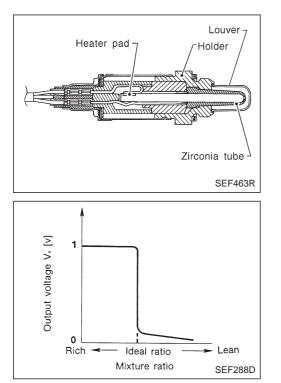

KA



TROUBLE DIAGNOSIS FOR NON-DETECTABLE ITEMS Vehicle Speed Sensor (VSS) (Cont'd)

RHD MODELS


KA



Vehicle Speed Sensor (VSS) (Cont'd)

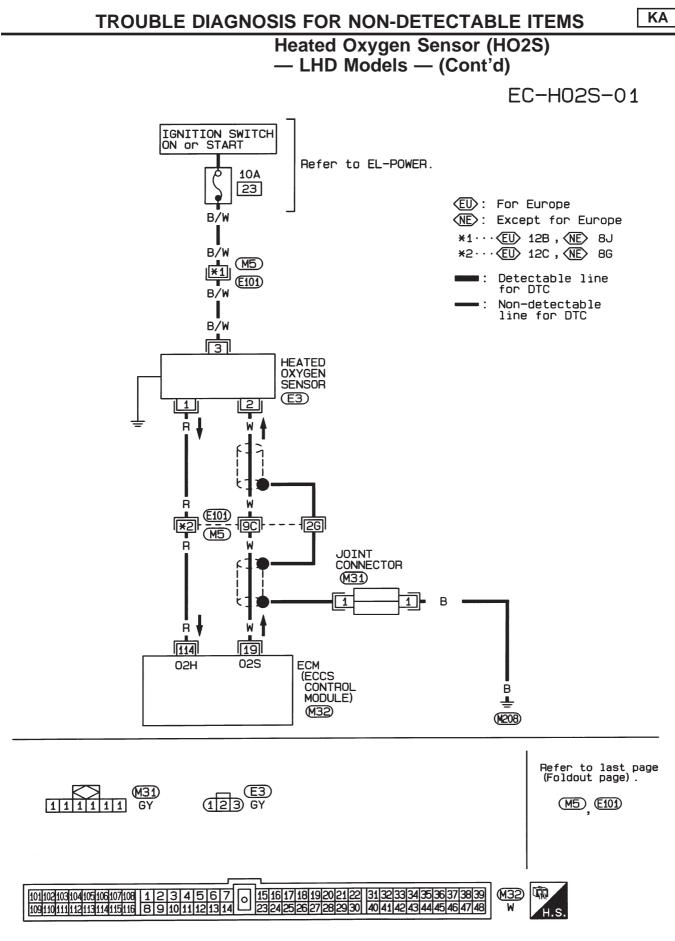
Heated Oxygen Sensor (HO2S) — LHD Models —

COMPONENT DESCRIPTION

The heated oxygen sensor is placed into the front exhaust tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT REFERENCE VALUE IN DATA MONITOR MODE

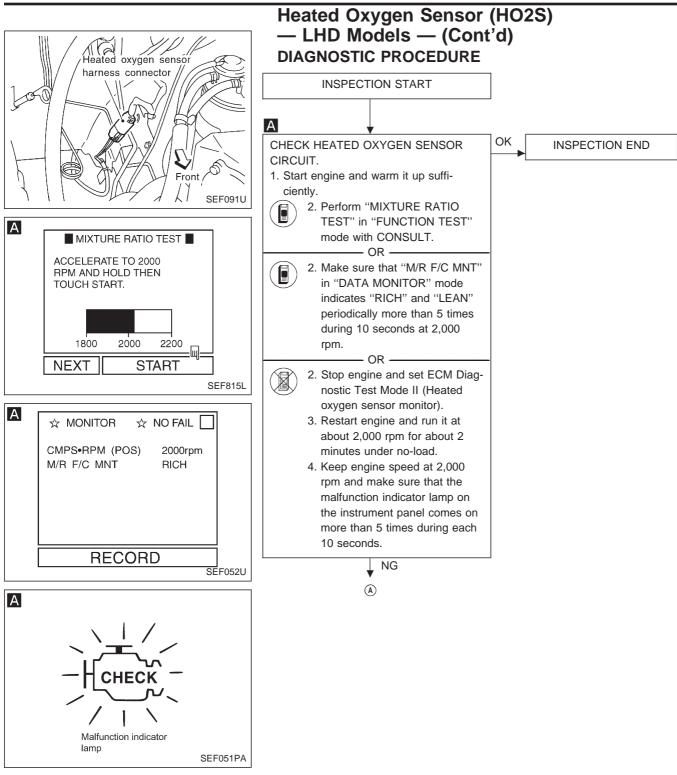
Remarks: Specification data are reference values.

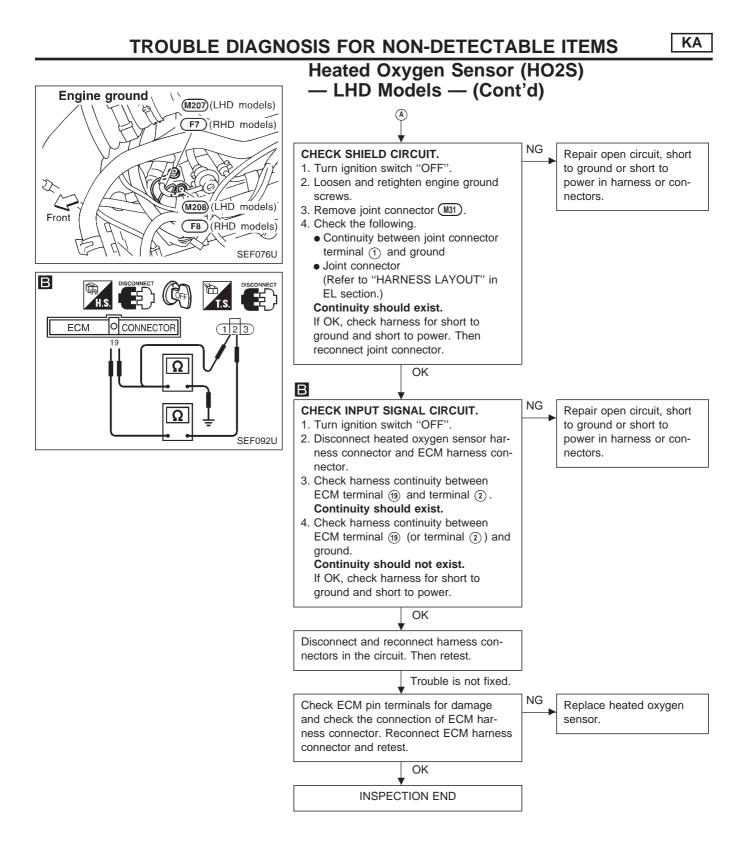

MONITOR ITEM	CONDITION		SPECIFICATION
O2 SEN	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ↔ 0.6 - 1.0V

ECM TERMINALS AND REFERENCE VALUE

Remarks: Specification data are reference values, and are measured between each terminal and (3) (ECCS ground) with a voltmeter.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
19	W	Heated oxygen sensor	Engine is running. After warming up sufficiently and engine speed is 2,000 rpm.	0 - Approximately 1.0V (periodically change)


KA



HEC561

TROUBLE DIAGNOSIS FOR NON-DETECTABLE ITEMS

KA



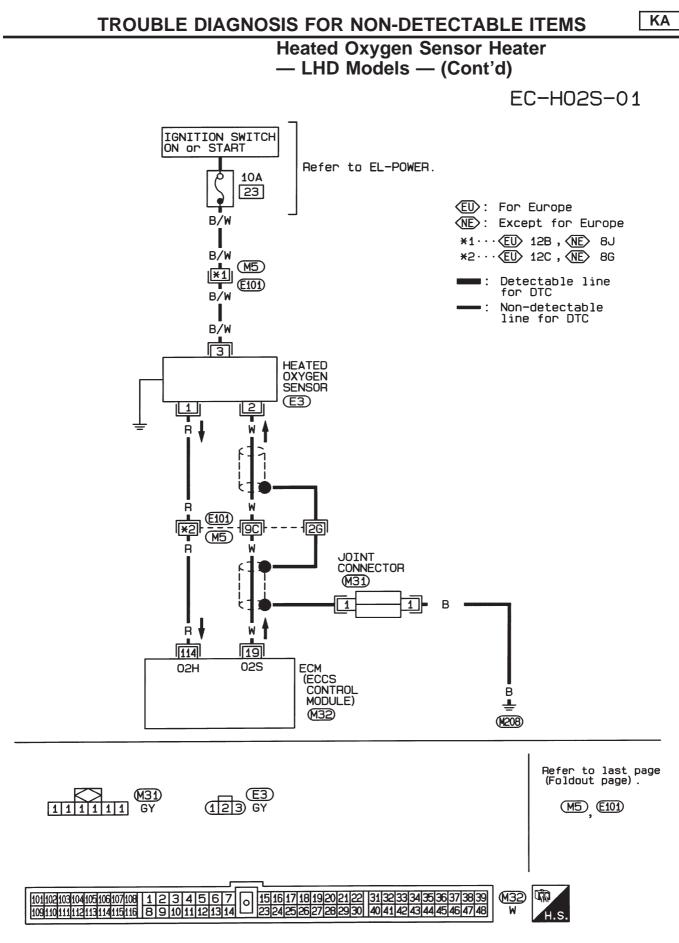
Heated Oxygen Sensor Heater — LHD Models —

SYSTEM DESCRIPTION

Camshaft position sensor

Engine speed

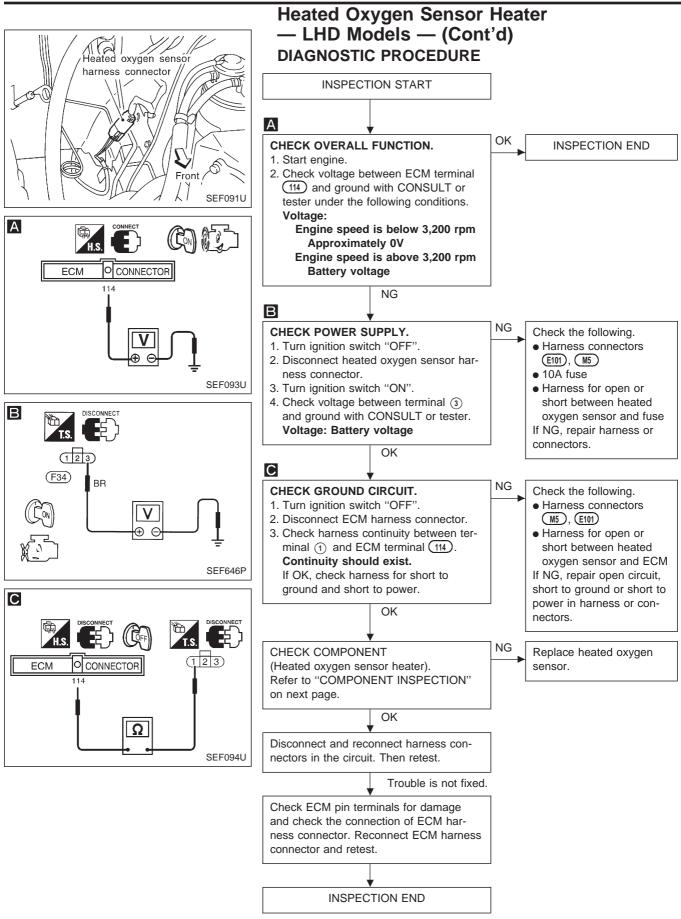
The ECM performs ON/OFF control of the heated oxygen sensor heater corresponding to the engine speed.


OPERATION

Engine speed rpm	Heated oxygen sensor heater
Above 3,200	OFF
Below 3,200	ON

ECM TERMINALS AND REFERENCE VALUE

Remarks: Specification data are reference values, and are measured between each terminal and (3) (ECCS ground) with a voltmeter.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
	Heated oxygen sensor	Engine is running. Engine speed is below 3,200 rpm.	Approximately 0V	
114	R	heater	Engine is running. Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)

HEC561

TROUBLE DIAGNOSIS FOR NON-DETECTABLE ITEMS

KA

EC-129

DISCONNECT CONNECT

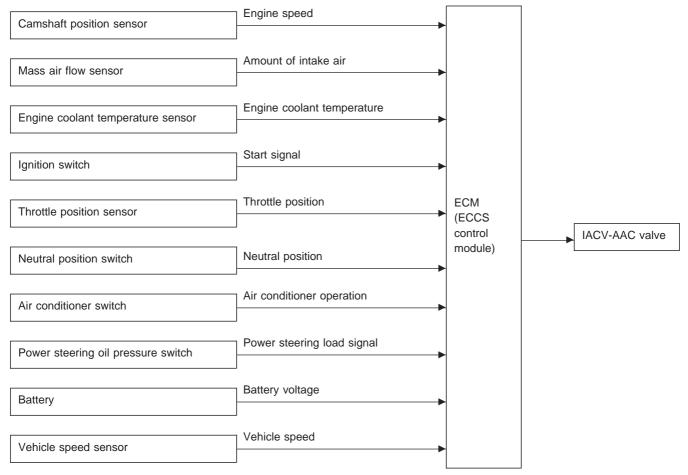
Heated Oxygen Sensor Heater — LHD Models — (Cont'd) COMPONENT INSPECTION

Heated oxygen sensor heater

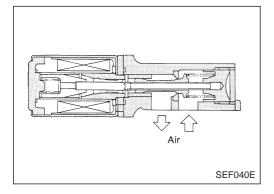
Check resistance between terminals (3) and (1). Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals (2) and (1), (3) and (2). Continuity should not exist.

KA


If NG, replace the heated oxygen sensor.

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve

SYSTEM DESCRIPTION

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which by-passes the throttle valve via IACV-AAC valve. The IACV-AAC valve repeats ON/OFF operation according to the signal sent from the ECM. The camshaft position sensor detects the actual engine speed and sends a signal to the ECM. The ECM then controls the ON/OFF time of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner and power steering operation).

COMPONENT DESCRIPTION

IACV-ACC valve

The IACV-AAC valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of air that will flow through the valve. The more air that flows through the valve, the higher the idle speed.

TROUBLE DIAGNOSIS FOR NON-DETECTABLE ITEMS

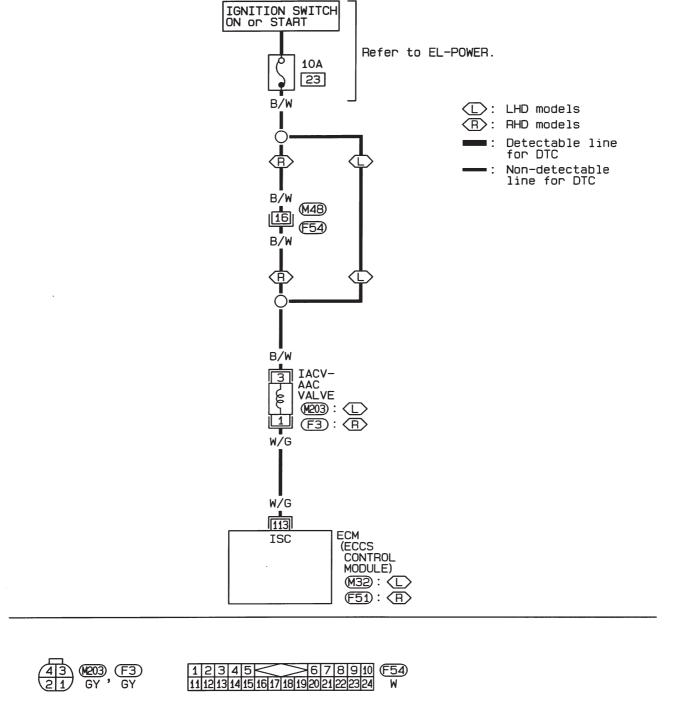
KA

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd)

CONSULT REFERENCE VALUE IN DATA MONITOR MODE

Remarks: Specification data are reference values.

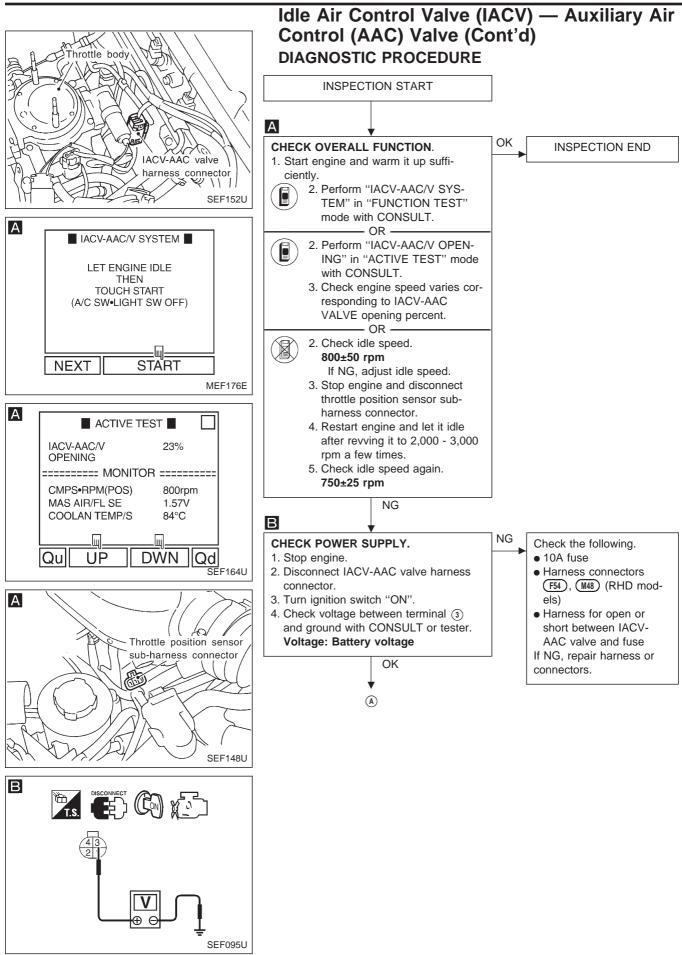
MONITOR ITEM	CONDITION		SPECIFICATION
IACV-AAC/V	 Air conditioner switch: "OFF" Shift lever: Neutral position 	Idle	20 - 40%
		2,000 rpm	_


ECM TERMINALS AND REFERENCE VALUE

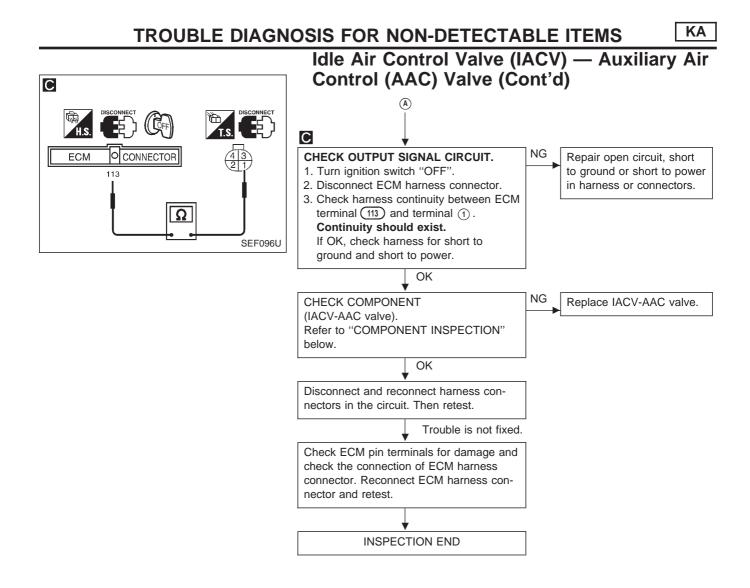
Remarks: Specification data are reference values, and are measured between each terminal and (3) (ECCS ground) with a voltmeter.

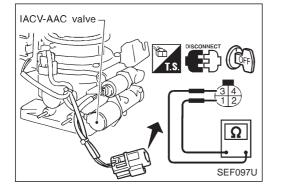
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
			Engine is running.	10 - 13V
113	W/G	IACV-AAC valve	Engine is running. Steering wheel is being turned. Air conditioner is operating. Rear window defogger switch is "ON". Lighting switch is "ON".	5 - 10V

EC-133


EC-AAC/V-01

HEC355

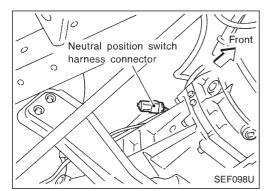

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd)


TROUBLE DIAGNOSIS FOR NON-DETECTABLE ITEMS

KA

EC-134

COMPONENT INSPECTION


IACV-AAC valve

Disconnect IACV-AAC valve harness connector.

Check IACV-AAC valve resistance. Resistance:

Approximately 10 Ω at 25°C (77°F)

- Check plunger for seizing or sticking.
- Check for broken spring.

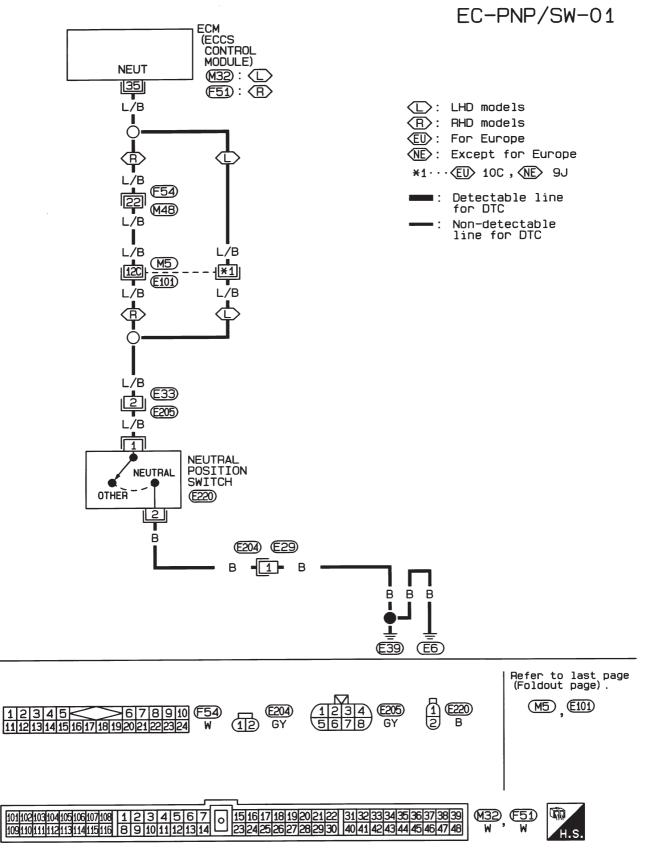
Neutral Position Switch

COMPONENT DESCRIPTION

When the gear position is in "Neutral", neutral position is "ON". ECM detects the position because the continuity of the line (the "ON" signal) exists.

KA

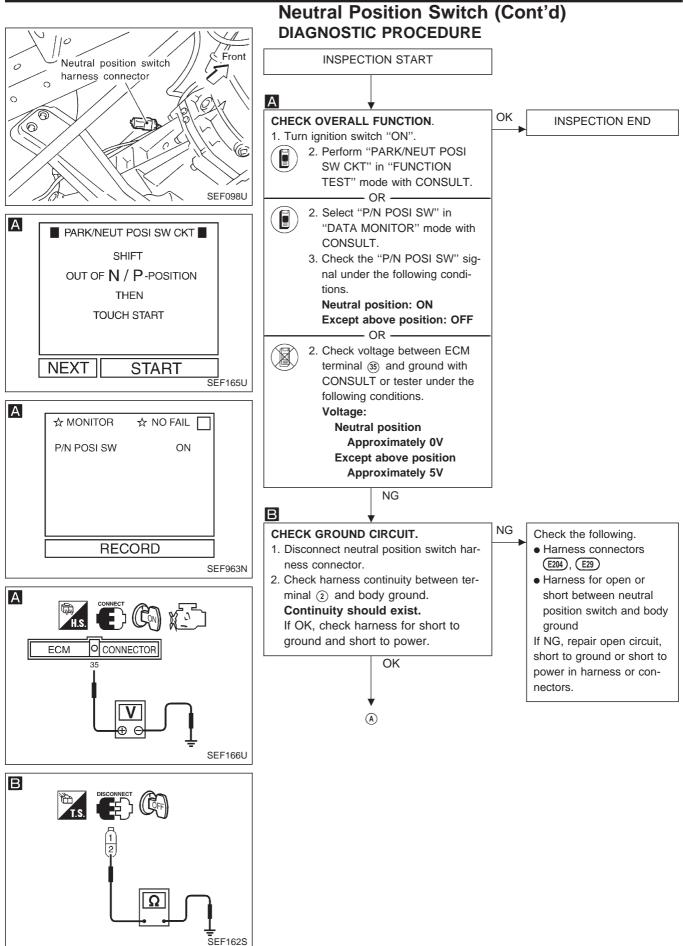
CONSULT REFERENCE VALUE IN DATA MONITOR MODE

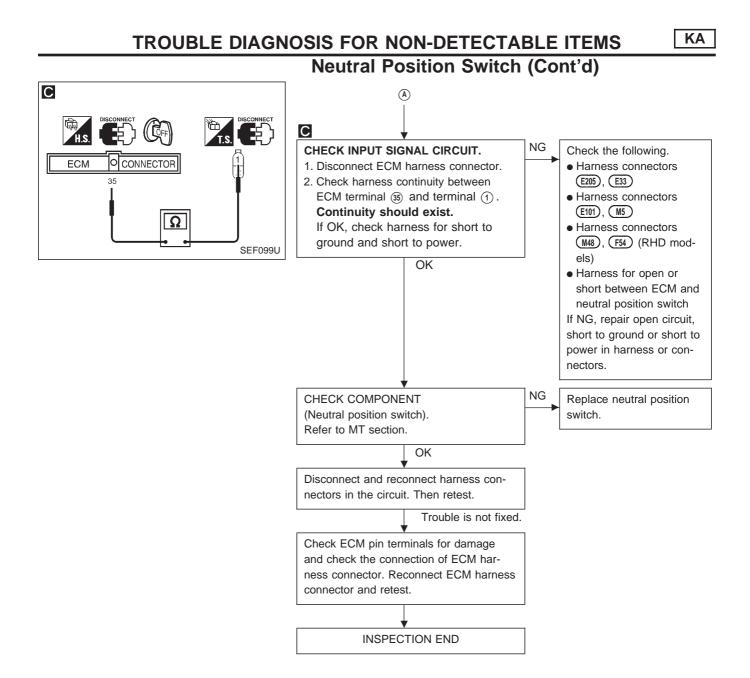

Remarks: Specification data are reference values.

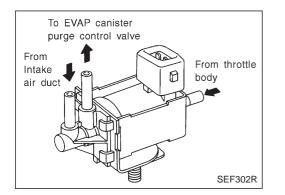
MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	 Ignition switch: ON 	Shift lever: Neutral position	ON
		Except above	OFF

ECM TERMINALS AND REFERENCE VALUE

Remarks: Specification data are reference values, and are measured between each terminal and (3) (ECCS ground) with a voltmeter.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
		Ignition switch "ON" Veutral position	Approximately 0V	
35	L/B	Neutral position	Ignition switch "ON" Except the above gear position	Approximately 5V




HEC562

TROUBLE DIAGNOSIS FOR NON-DETECTABLE ITEMS

KA

EVAP Canister Purge Control Solenoid Valve

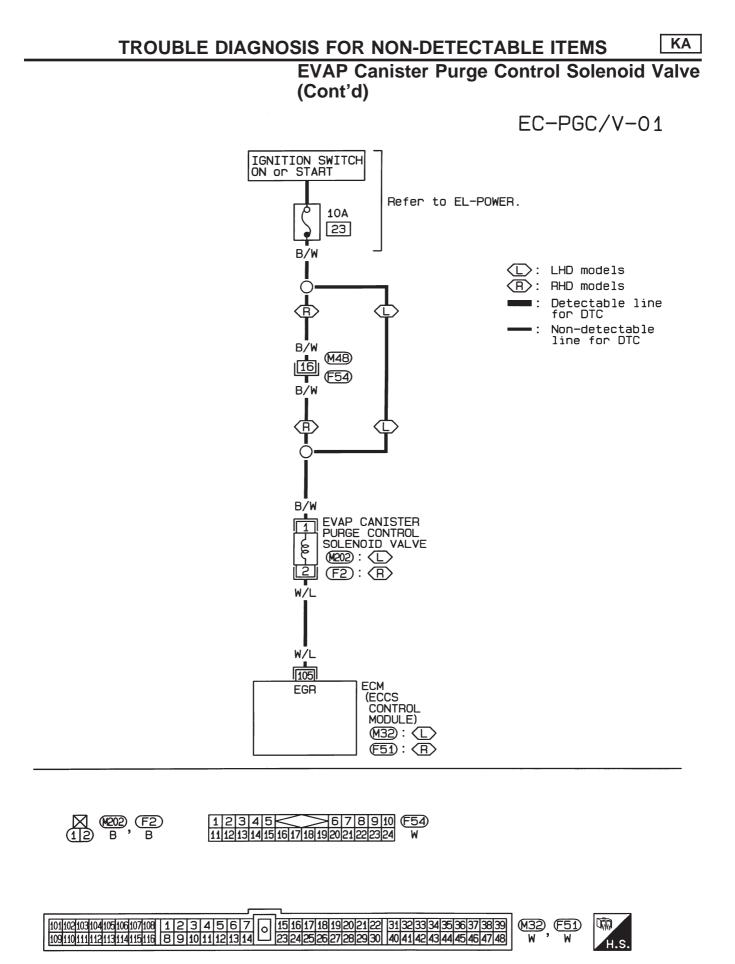
COMPONENT DESCRIPTION

EVAP canister purge control solenoid valve

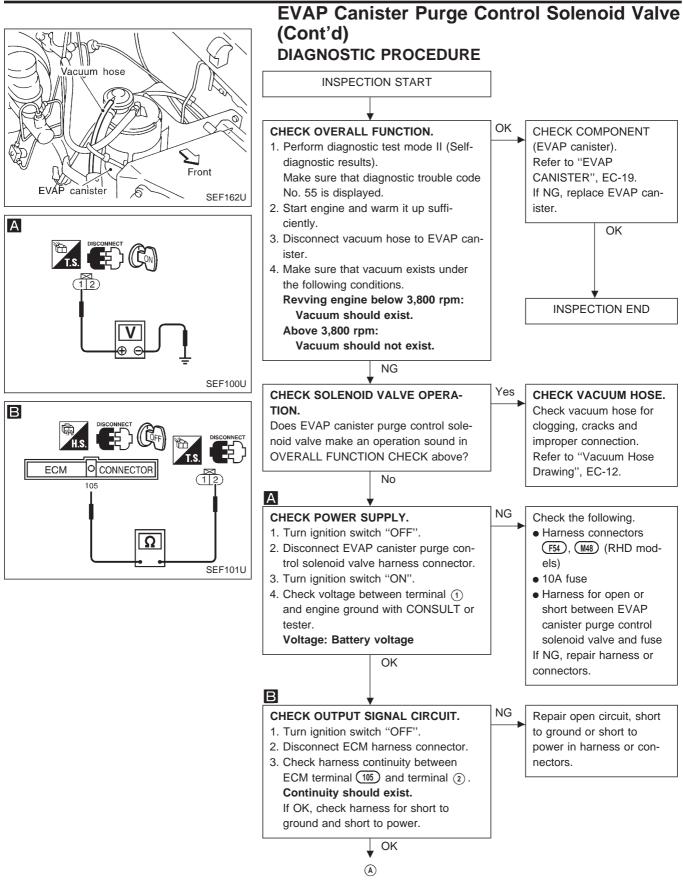
The EVAP canister purge control solenoid valve responds to signals from the ECM. When the ECM sends an OFF signal, the vacuum signal (from the throttle body to the EVAP canister purge control valve) passes through the EVAP canister purge control solenoid valve. The signal then reaches the EVAP canister purge control valve.

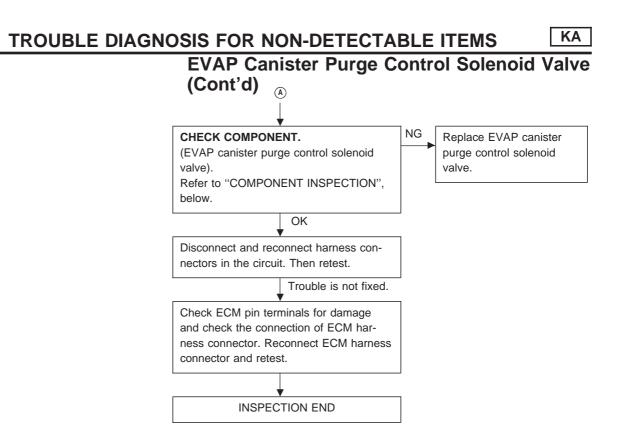
When the ECM sends an ON (ground) signal, the vacuum signal is cut.

CONSULT REFERENCE VALUE IN DATA MONITOR MODE


Remarks: Specification data are reference values.

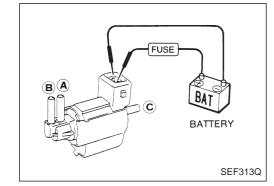
MONITOR ITEM	CONDITION		SPECIFICATION
	 Engine: After warning up Air conditioner switch: "OFF" 	Idle	OFF
	Shift lever: Neutral position	Above 3,800 rpm	ON

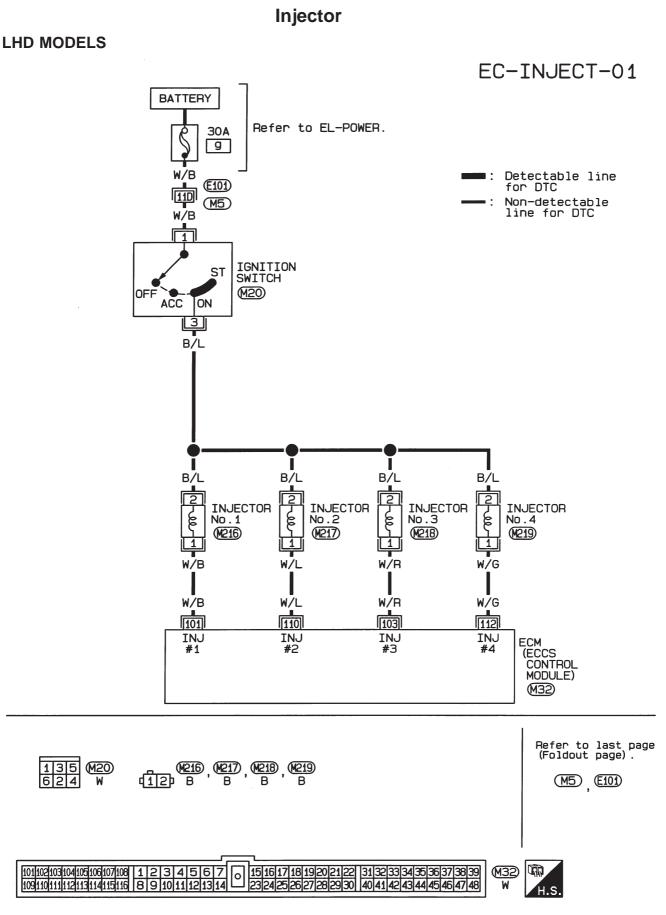

ECM TERMINALS AND REFERENCE VALUE


Remarks: Specification data are reference values, and are measured between each terminal and (3) (ECCS ground) with a voltmeter.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
105	W/L	EVAP canister purge con-	Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V)
105	VV/L	trol solenoid valve	Engine is running. (Warm-up condition)	Approximately 1V

HEC358

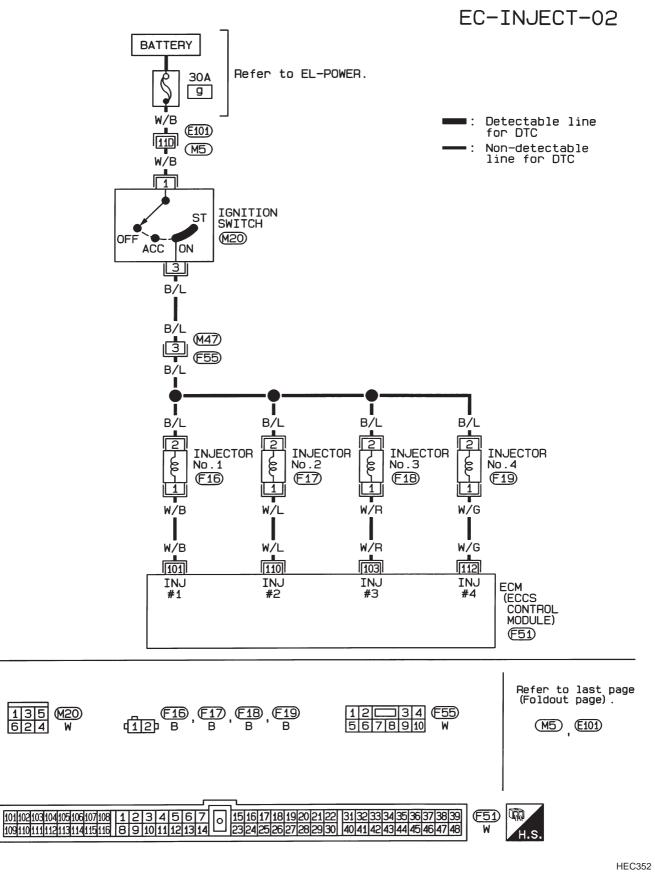


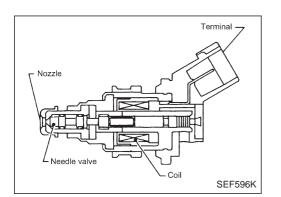

EVAP canister purge control solenoid valve

Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals	Yes	No
No supply	No	Yes

If NG, replace solenoid valve.



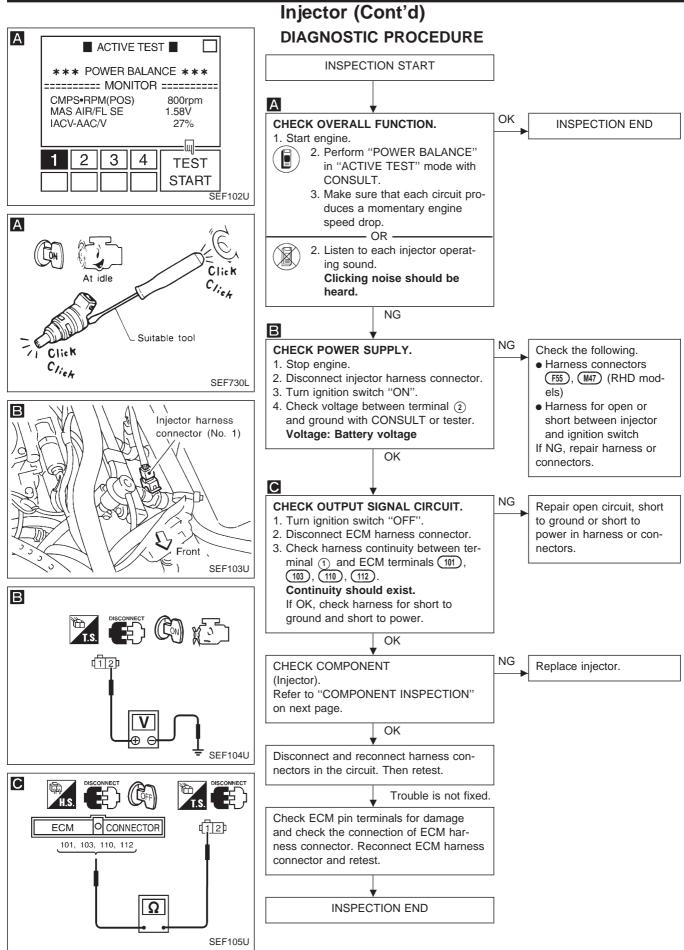


KA

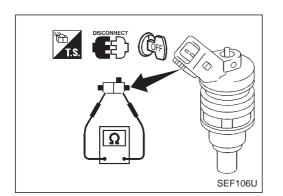
Injector (Cont'd)

RHD MODELS

Injector (Cont'd) COMPONENT DESCRIPTION


The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

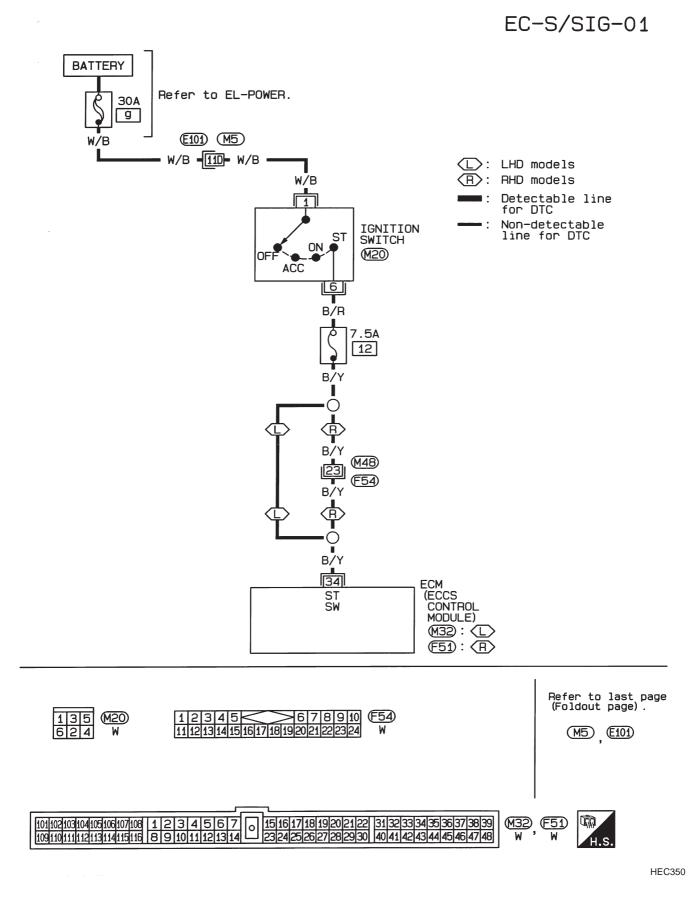
ECM TERMINALS AND REFERENCE VALUE


Remarks: Specification data are reference values, and are measured between each terminal and ⁽³⁾ (ECCS ground) with a voltmeter.

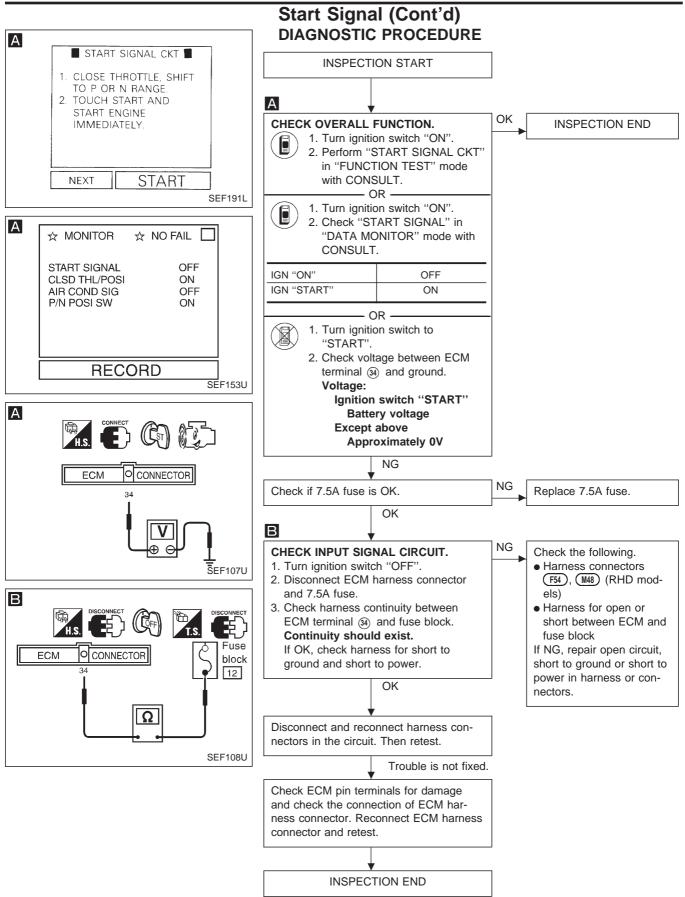
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
101	W/B	Injector No. 1	Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 0 50 ms
103 110 112	W/R W/L W/G	Injector No. 3 Injector No. 2 Injector No. 4	Engine is running. Engine speed is 2,000 rpm.	SEF069U BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms SEF070U

KA

KA

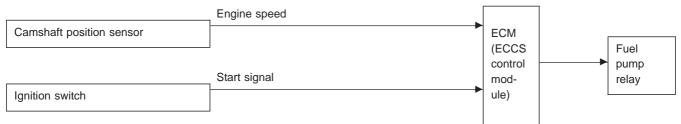


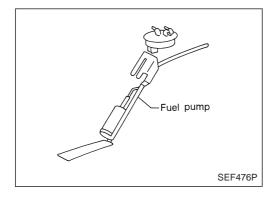
Injector (Cont'd) COMPONENT INSPECTION


Injector

- 1. Disconnect injector harness connector.
- Check resistance between terminals as shown in the figure. Resistance: 10 - 14Ω at 25°C (77°F)
 If NG, replace injector.

Start Signal




Fuel Pump

SYSTEM DESCRIPTION

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a 180° signal from the camshaft position sensor, it knows that the engine is rotating, and causes the pump to operate. If the 180° signal is not received when the ignition switch is on, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation
Ignition switch is turned to ON.	Operates for 5 seconds.
Engine running and cranking	Operates.
When engine is stopped	Stops in 1 second.
Except as shown above.	Stops.

COMPONENT DESCRIPTION

The fuel pump with a fuel damper is an in-tank type (the pump and damper are located in the fuel tank).

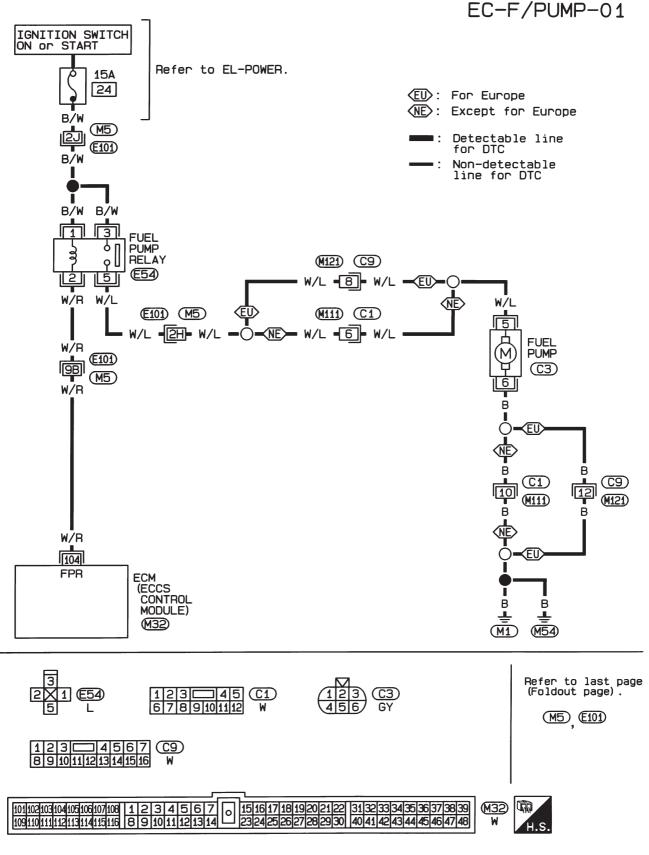
CONSULT REFERENCE VALUE IN DATA MONITOR MODE

Remarks: Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	 Ignition switch is turned to ON (Operates for 5 seconds). Engine running and cranking When engine is stopped (Stops in 1 second) 	ON
	Except as shown above	OFF

KA

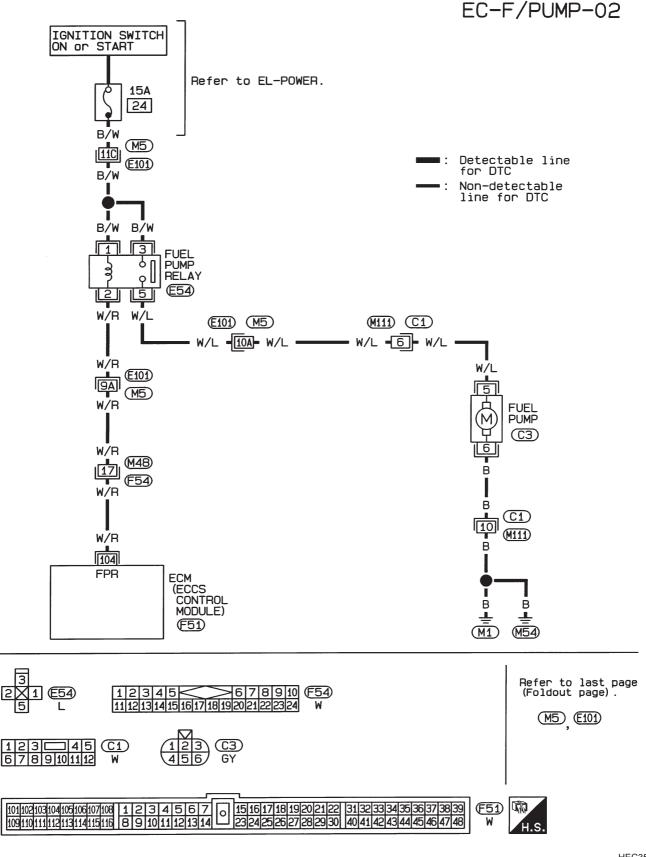
Fuel Pump (Cont'd)

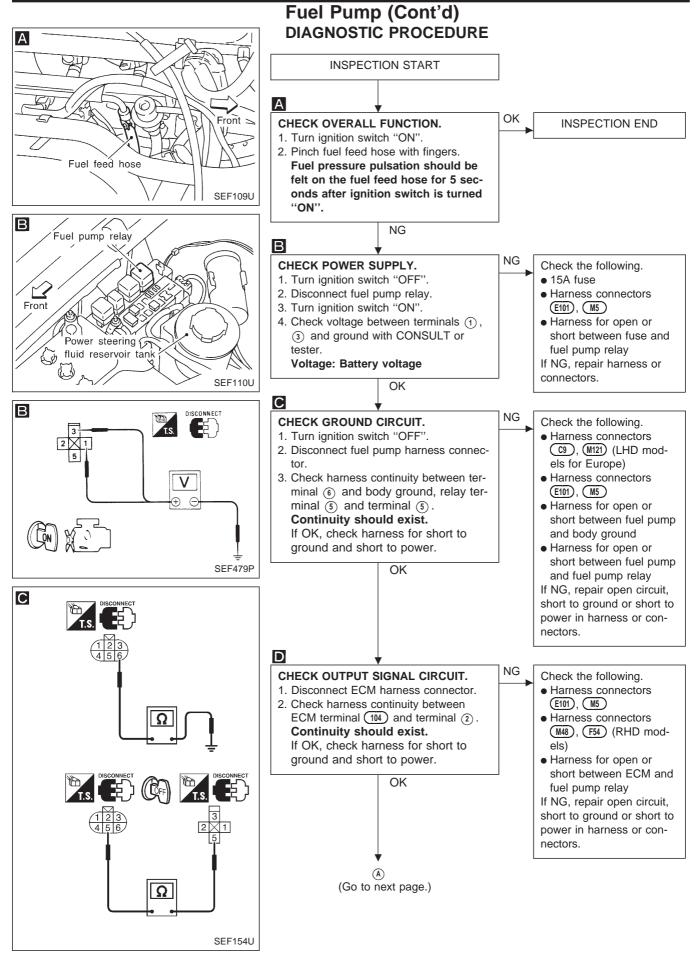

ECM TERMINALS AND REFERENCE VALUE

Remarks: Specification data are reference values, and are measured between each terminal and (39) (ECCS ground) with a voltmeter.

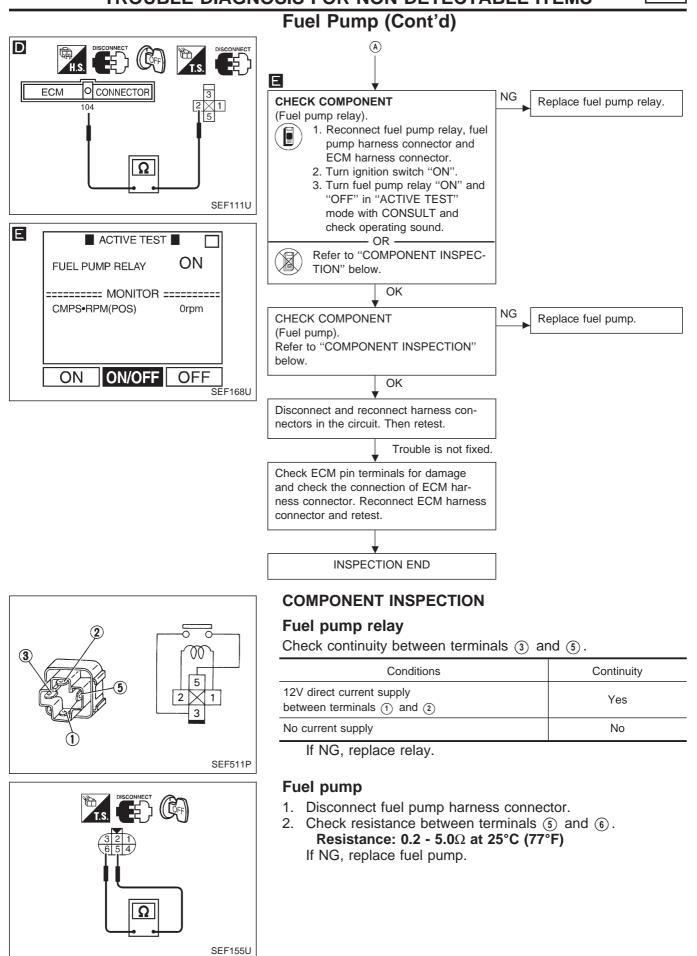
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
104	W/R	Fuel pump relay	Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running.	Approximately 1V
			Ignition switch "ON" 5 seconds after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

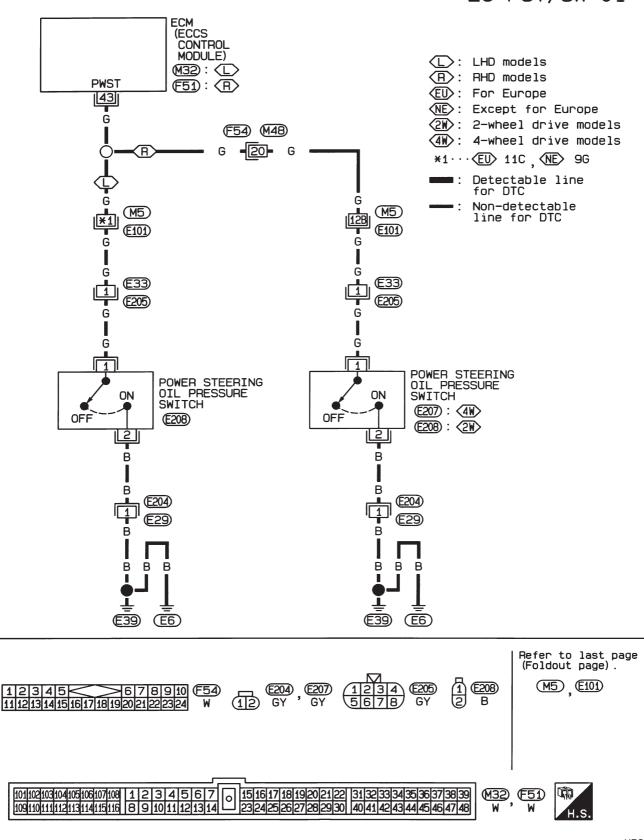
Fuel Pump (Cont'd)


LHD MODELS

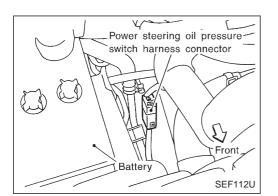

HEC563

Fuel Pump (Cont'd)


RHD MODELS



KA



Power Steering Oil Pressure Switch

EC-PST/SW-01

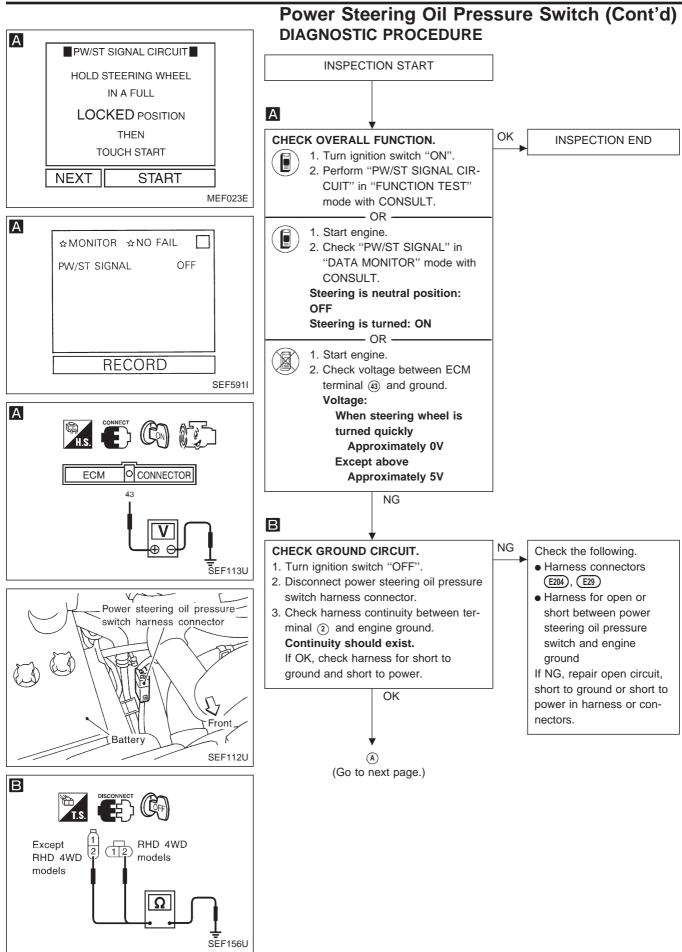
HEC564

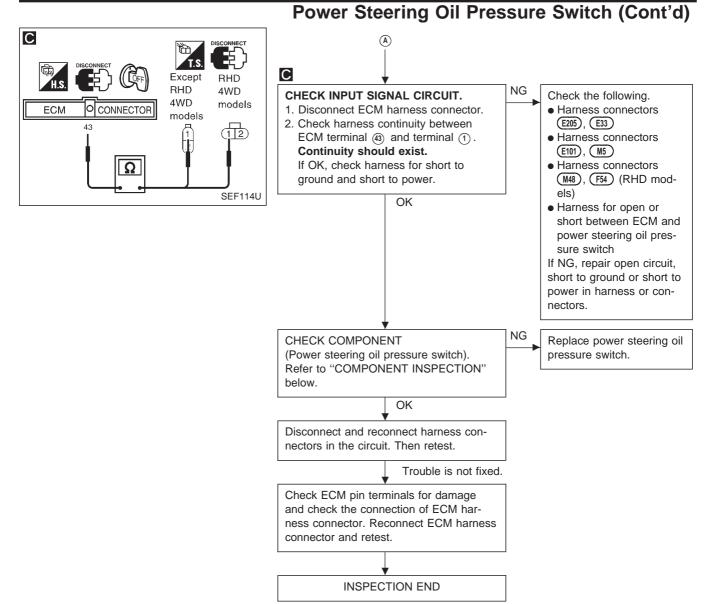
Power Steering Oil Pressure Switch (Cont'd) COMPONENT DESCRIPTION

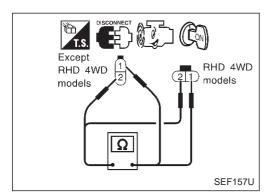
The power steering oil pressure switch is attached to the power steering high-pressure tube and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM adjusts the IACV-AAC valve to increase the idle speed and adjust for the increased load.

CONSULT REFERENCE VALUE IN DATA MONITOR MODE

Remarks: Specification data are reference values.


MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	• Engine: After warming up, idle the	Steering wheel in neutral position (forward direction)	OFF
	engine	The steering wheel is turned	ON


ECM TERMINALS AND REFERENCE VALUE

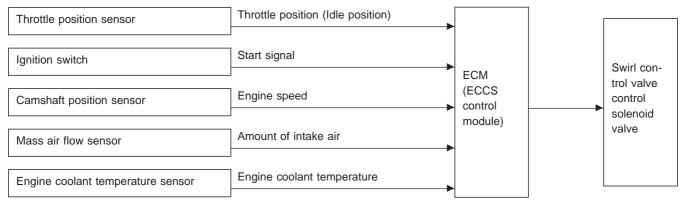

Remarks: Specification data are reference values, and are measured between each terminal and (3) (ECCS ground) with a voltmeter.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
10 0	G	Power steering oil pres-	Engine is running.	0V
43	G	sure switch	Engine is running. Steering wheel is not being turned.	Approximately 5V

KA

COMPONENT INSPECTION

Power steering oil pressure switch


- 1. Disconnect power steering oil pressure switch harness connector then start engine.
- 2. Check continuity between terminals 1 and 2.

Conditions	Continuity
Steering wheel is being turned	Yes
Steering wheel is not being turned	No

If NG, replace power steering oil pressure switch.

Swirl Control Valve Control Solenoid Valve

SYSTEM DESCRIPTION

This system has a swirl control valve in the intake passage of each cylinder.

While idling and during low engine speed operation, the swirl control valve closes. Thus the velocity of the air in the intake passage increases, promoting the vaporization of the fuel and producing a swirl in the combustion chamber.

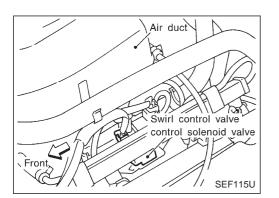
Because of this operation, this system tends to increase the burning speed of the gas mixture, improve fuel consumption, and increase the stability in running conditions.

Also, except when idling and during low engine speed operation, this system opens the swirl control valve. In this condition, this system tends to increase power by improving intake efficiency via reduction of intake flow resistance, intake flow. The solenoid valve controls swirl control valve's shut/open condition. This solenoid valve is operated by the ECM.

Throttle posi- tion switch	Engine speed	Swirl control valve control solenoid valve	Swirl control valve
Idle	Below 3,600 rpm	ON	Closed
Except idle	More than 3,600 rpm	OFF	Open

When engine coolant temperature is below 0°C (32°F) swirl control valve is kept open.

CONSULT REFERENCE VALUE IN DATA MONITOR MODE

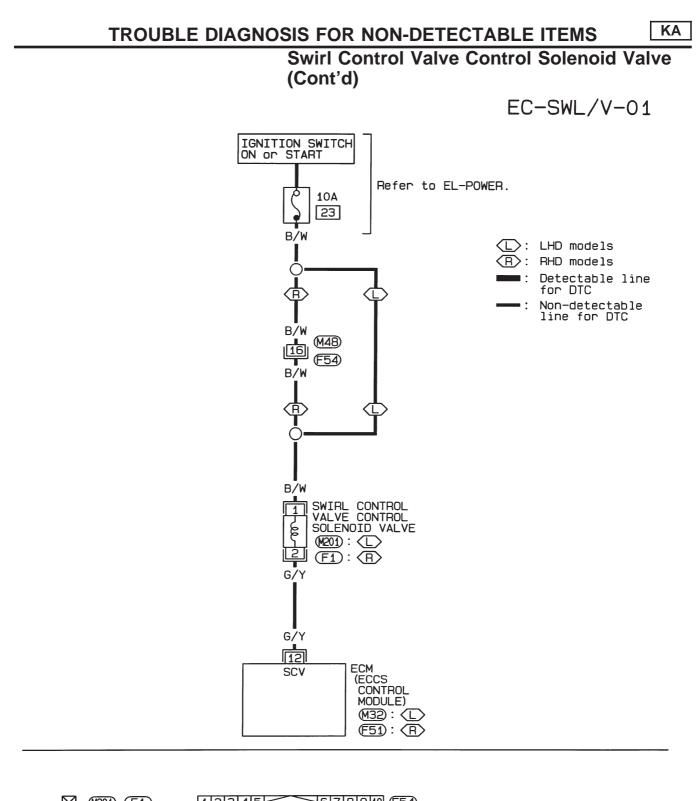

Remarks: Specification data are reference values.

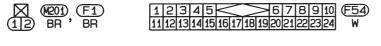
MONITOR ITEM	CONDITION	SPECIFICATION
SWRL CONT S/V	• Engine is running at a speed of less than 3,600 rpm.	ON
SVIRE CONT 5/V	Except above	OFF

ECM TERMINALS AND REFERENCE VALUE

Remarks: Specification data are reference values, and are measured between each terminal and
(B) (ECCS ground) with a voltmeter.

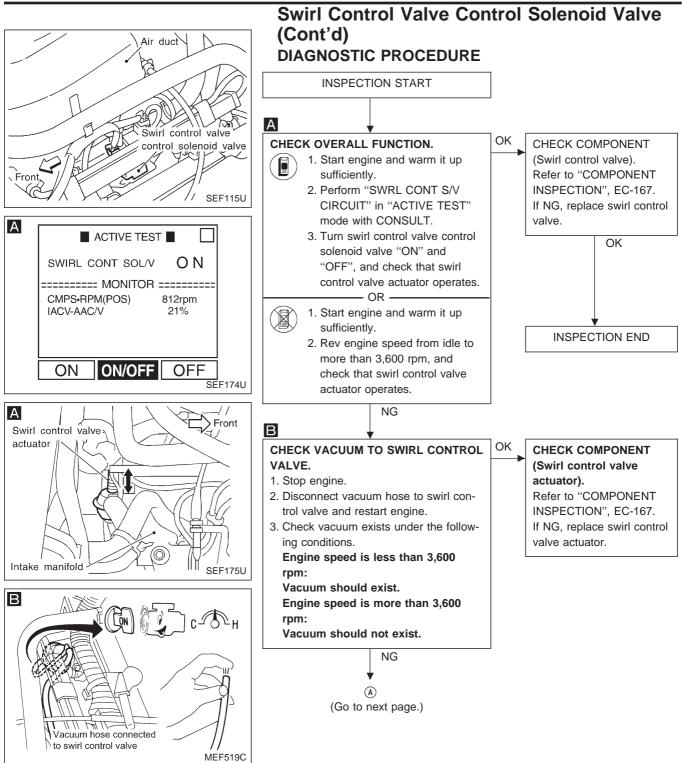
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
12	Swirl control valve control	Engine is running.	0 - 1V	
12	GY	solenoid valve	Engine is running. Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)

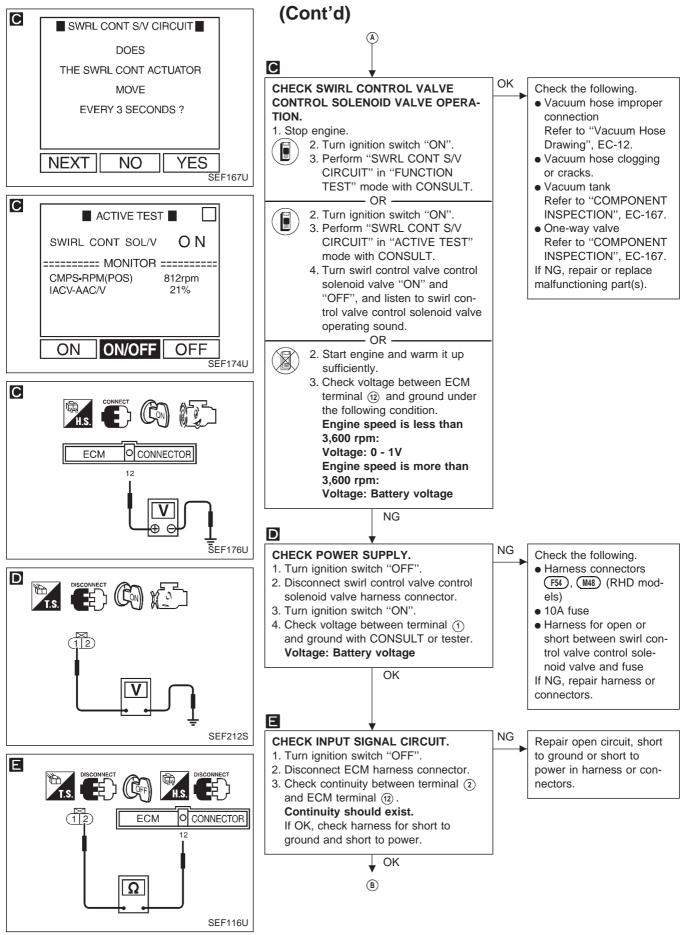



Swirl Control Valve Control Solenoid Valve (Cont'd)

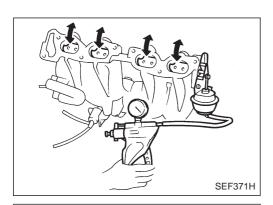
COMPONENT DESCRIPTION

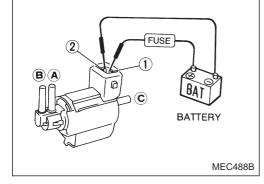
Swirl control valve control solenoid valve


The swirl control valve control solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the solenoid valve is bypassed to apply intake manifold vacuum to the swirl control valve actuator. This operation closes the swirl control valve. When the ECM sends an OFF signal, the vacuum signal is cut and the swirl control valve opens.


HEC360

KA




Swirl Control Valve Control Solenoid Valve (Cont'd)

 B
 Disconnect and reconnect harness connectors in the circuit. Then retest.
 Trouble is not fixed.

Check ECM pin terminals for damage and check the connection for ECM harness connector. Reconnect ECM harness connector and retest.

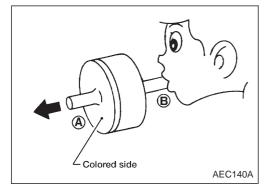
INSPECTION END

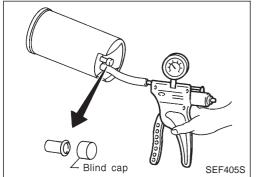
Swirl Control Valve Control Solenoid Valve (Cont'd) COMPONENT INSPECTION

KA

Swirl control valve

Supply vacuum to actuator and check swirl control valve operation.


Condition	Swirl control valve	
Supply vacuum to actuator	Close	
No supply	Open	


Swirl control valve control solenoid valve

Check solenoid valve air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and ⓒ
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

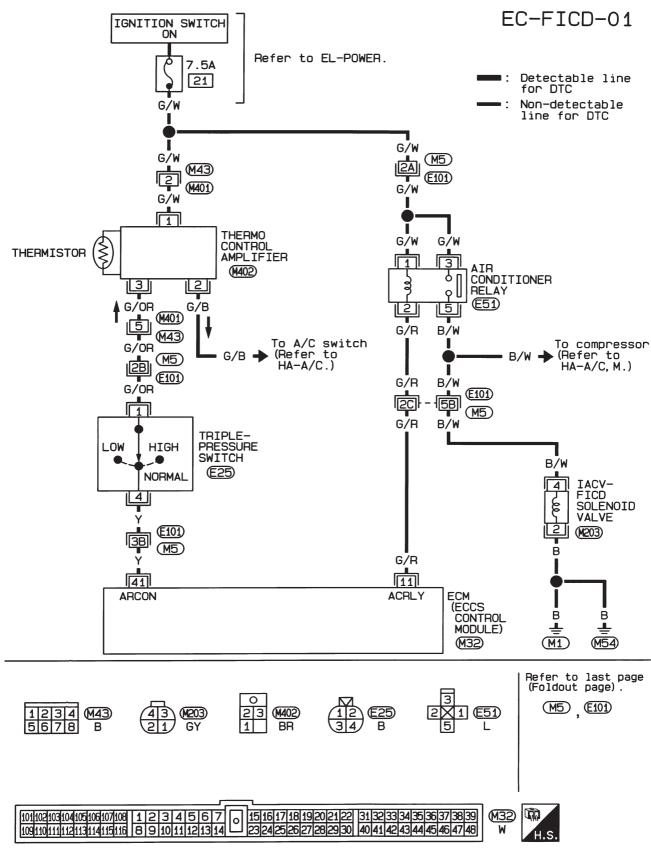
If NG, replace solenoid valve.

One-way valve

Check one-way valve air passage continuity.

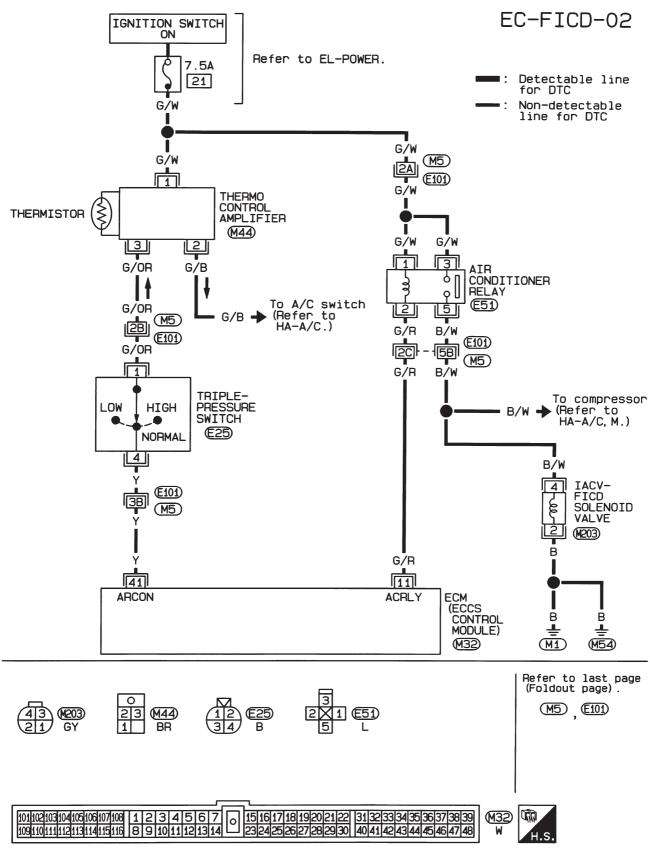
Condition	Air passage continuity	
Blow air from side B to A	Yes	
Blow air from side A to B	No	

If NG, replace one-way valve.

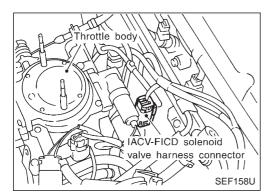

Vacuum tank

Check vacuum tank leakage.

Apply vacuum -80.0 kPa (-800 mbar, -600 mmHg, -23.62 inHg). Then keep it for 10 seconds and check there is no leak-age.


IACV-FICD Solenoid Valve

EXCEPT FOR EUROPE

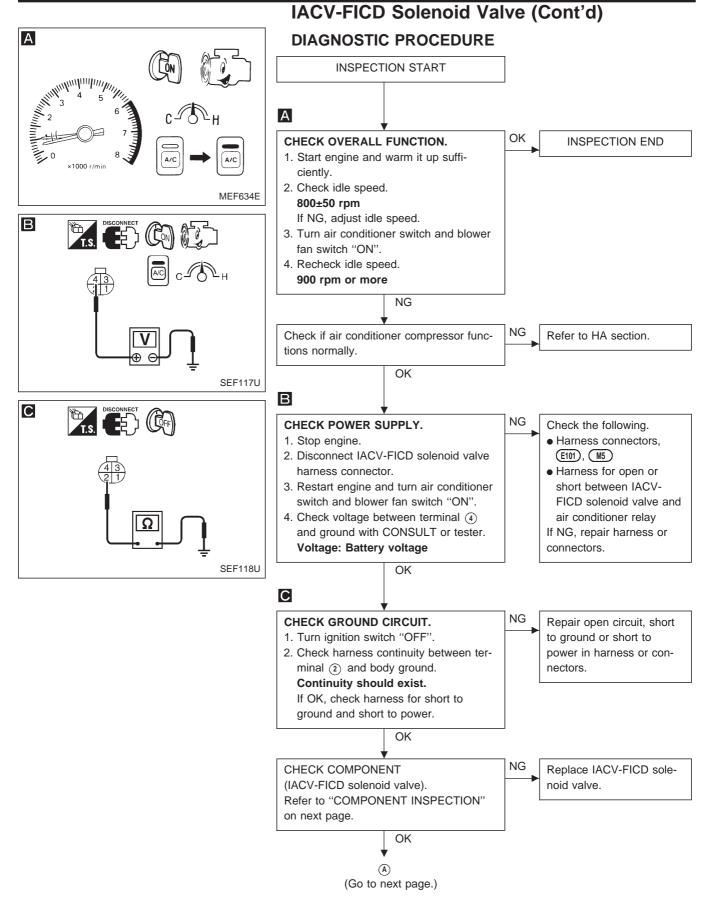


HEC565

FOR EUROPE

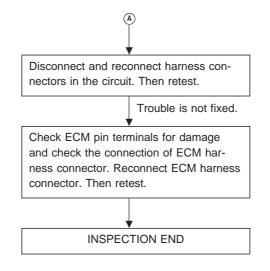
HEC566

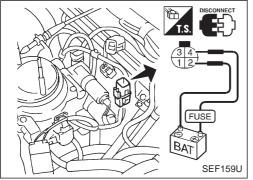
IACV-FICD Solenoid Valve (Cont'd) COMPONENT DESCRIPTION


The idle air adjusting (IAA) unit is made up of the IACV-AAC valve, IACV-FICD solenoid valve and idle adjusting screw. It receives the signal from the ECM and controls the idle speed at the preset value.

KA

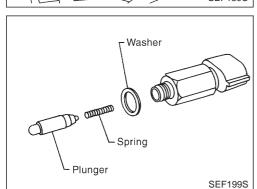
ECM TERMINALS AND REFERENCE VALUE


Remarks: Specification data are reference values and are measured between each terminal and
(B) (ECCS ground) with a voltmeter.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
11	G/R	Air conditioner relay	Engine is running. Both air conditioner switch and blower switch are "ON". (Compressor operates.)	Approximately 1V
			Engine is running. Air conditioner switch is "OFF".	BATTERY VOLTAGE (11 - 14V)
41	Y	Air conditioner switch	Engine is running. Both air conditioner switch and blower switch are "ON". (Compressor operates.)	Approximately 0V
			Engine is running. Air conditioner switch is "OFF".	BATTERY VOLTAGE (11 - 14V)

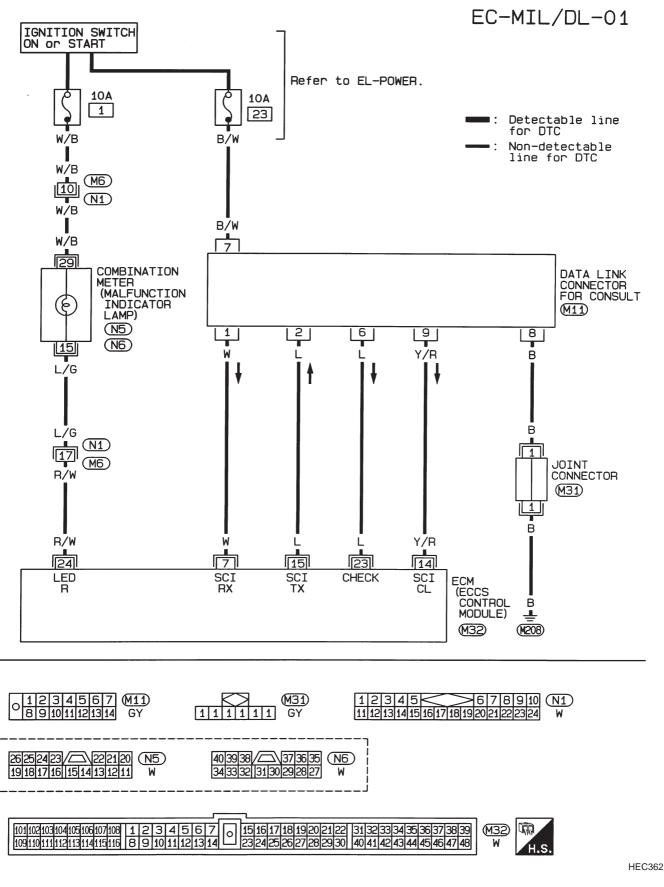
IACV-FICD Solenoid Valve (Cont'd)

KA

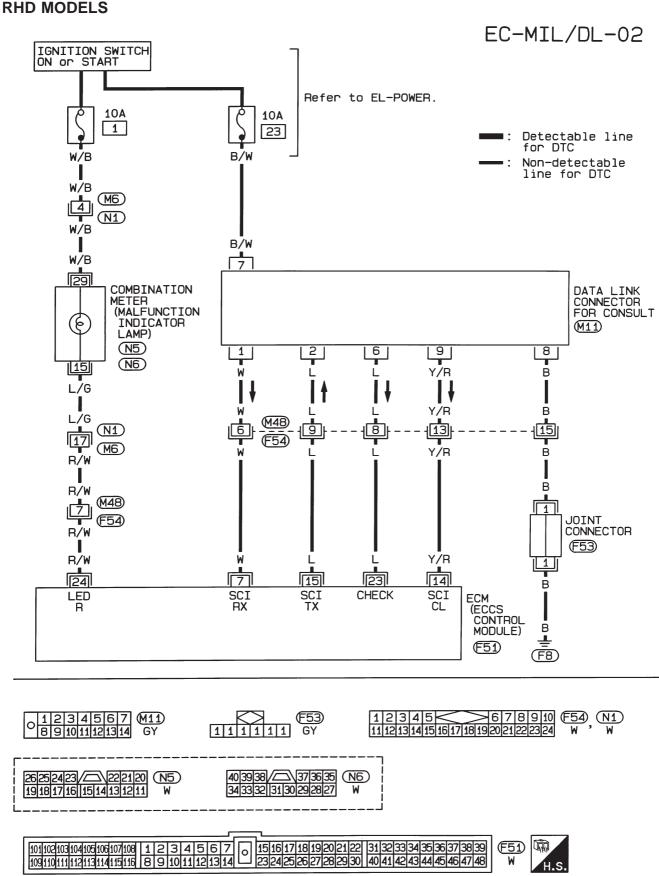


COMPONENT INSPECTION

IACV-FICD solenoid valve


Disconnect IACV-FICD solenoid valve harness connector.

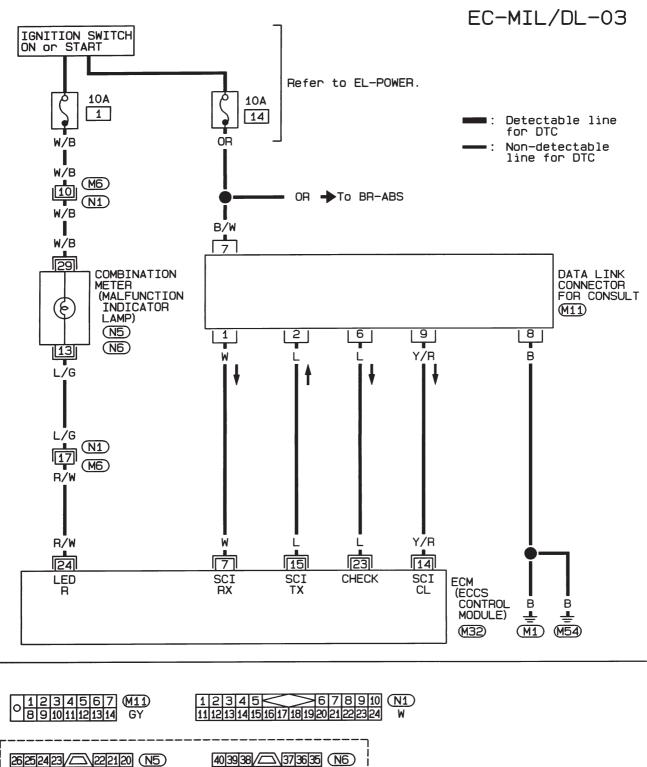
- Check for clicking sound when applying 12V direct current to terminals.
- Check plunger for seizing or sticking.
- Check for broken spring.

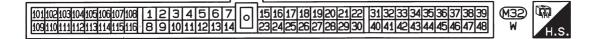


MIL & Data Link Connectors

LHD MODELS EXCEPT FOR EUROPE

MIL & Data Link Connectors (Cont'd)




MIL & Data Link Connectors (Cont'd)

FOR EUROPE

19 18 17 16 15 14 13 12 11

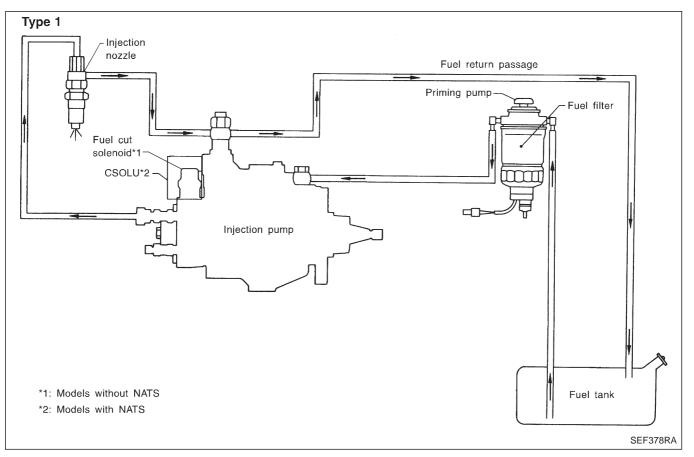
W

343332 31 30 29 28 27

HEC567

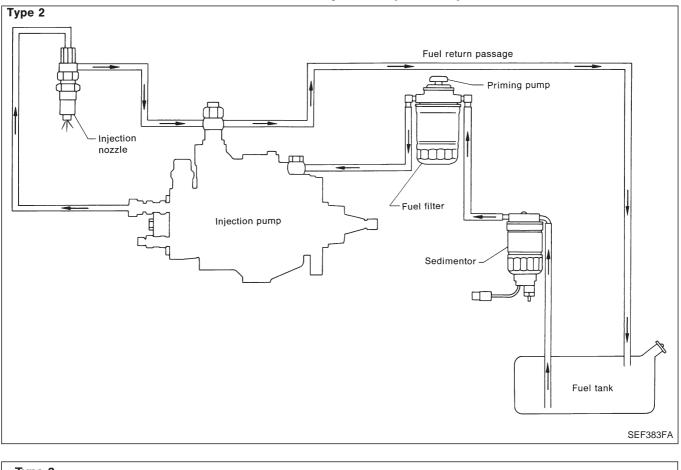
KA

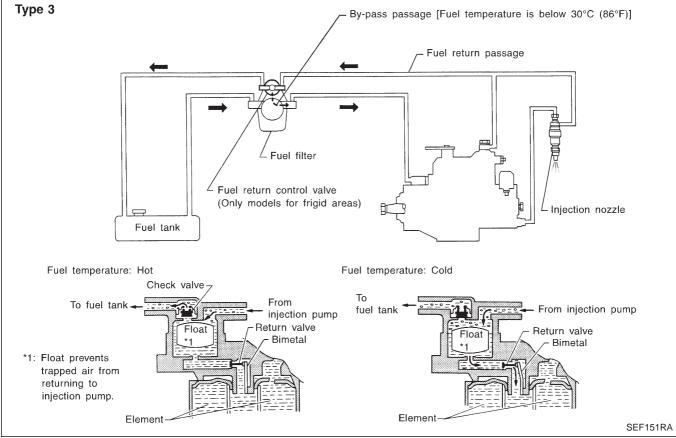
W

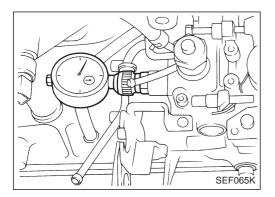

CAUTION:

- Disassembly and assembly of the injection pumps should be done only in service shops authorized by NISSAN or by the pump manufacturer.
- The pump tester is required for servicing the pump.
- Before removing fuel injection pump from vehicle, check closely to make sure that it is definitely malfunctioning.

For TD25 engine models with Nissan Anti-Theft System (NATS)

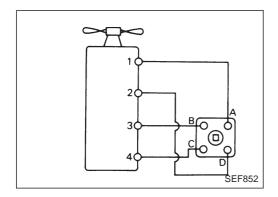

- For inspection of coded solenoid unit (CSOLU), refer to NATS (Diesel) in EL section.
- When replacing injection pump assembly along with CSOLU, perform NATS initialisation with CONSULT.


For initialisation procedure, refer to NATS (Diesel) in EL section.



Fuel System

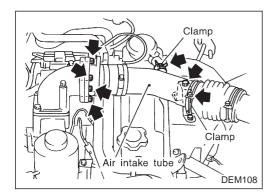
Fuel System (Cont'd)



Inspection

PLUNGER LIFT INSPECTION

- 1. Remove injection tubes.
- Remove plug bolt from distributor head and install dial gauge.
 Plunger lift measurement
- (1) Turn crankshaft counterclockwise 20 to 25 degrees from No.
 1 piston at TDC.
- (2) Find dial gauge's needle rest position at step (1) set position, then set the gauge to zero.
- (3) Turn crankshaft clockwise until No. 1 piston is set at TDC.
- (4) Read dial gauge indication.
 0.71±0.05 mm (0.0280±0.0020 in)
- (5) If it is not within the above range, adjust it within adjustment standard range.


Refer to EC-181.

- 4. Disconnect dial gauge and reinstall plug bolt with new washer.
 - **[**]: 14 20 N·m (1.4 2.0 kg-m, 10 14 ft-lb)
- 5. Connect injection tubes.
 Flare nut:
 20 25 N·m (2.0 2.5 kg-m, 14 18 ft-lb)
- 6. Bleed air from fuel system. Refer to EC-191.

INJECTION PUMP CALIBRATION

Calibrate injection pump on injection pump tester. Refer to "Injection Pump Calibration Standard" in SDS, EC-235.

Removal

1. Disconnect air duct and air intake housing.

Loosen Tighten. DEM025 DEM058 SEF061K Dust cover DEF012 0111 100 C 0

Removal (Cont'd)

2. Remove injection tube.

Cover the injection nozzle assembly with a plug to prevent dust entry.

3. Turn ignition switch to OFF position and disconnect wire harness connectors connected to the injection pump.

4. Remove accelerator wire and disconnect overflow hose, fuel inlet hose and fuel return hose.

5. Remove injection pump drive gear cover.

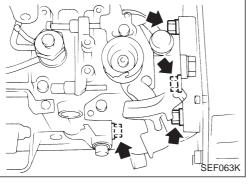
6. Loosen injection pump drive gear nut and remove drive gear by using puller.

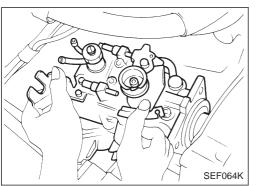
EC-179

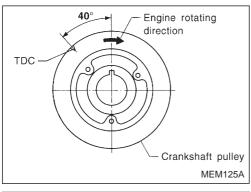
DEM062

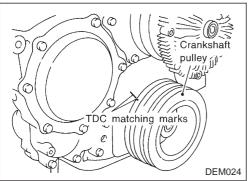
Removal (Cont'd)

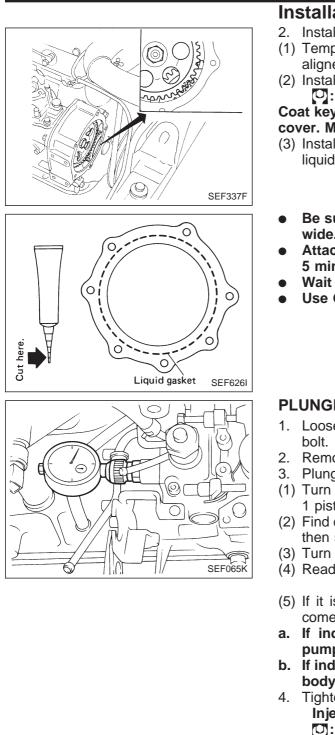
- 7. Remove vacuum pump.
- Remove the eye bolt securing the oil tube. Remove the vacuum pump. Be careful not to bend the oil tube during vacuum pump removal.


8. Remove injection pump fixing nuts and bolts.


9. Remove injection pump with injection tubes. **Disconnect injection tube from pump once it is removed.**


Installation and Adjustment

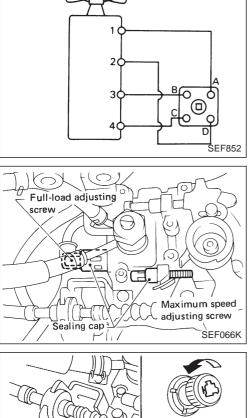

1. Confirm that No. 1 piston is set at TDC on its compression stroke.

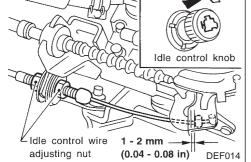


Installation and Adjustment (Cont'd)

- 2. Install injection pump.
- (1) Temporarily set injection pump so that the flange of pump is aligned with aligning mark on front cover.
- (2) Install injection drive gear over the key.
 [□]: 59 69 N·m (6 7 kg-m, 43 51 ft-lb)

Coat key with grease to prevent it from falling into the front cover. Make sure that "Z" marks are aligned.


- (3) Install drive gear cover while applying a continuous bead of liquid gasket.
- Be sure liquid gasket is 2.5 to 3.5 mm (0.098 to 0.138 in) wide.
- Attach timing gear case cover to timing gear case within 5 minutes after coating.
- Wait at least 30 minutes before refilling engine oil.
- Use Genuine Liquid Gasket or equivalent.


PLUNGER LIFT ADJUSTMENT

- 1. Loosen injection pump mounting nuts and mounting bracket bolt.
- 2. Remove plug bolt from distributor head and install dial gauge.
- 3. Plunger lift measurement and adjustment
- (1) Turn crankshaft counterclockwise 20 to 25 degrees from No. 1 piston at TDC.
- (2) Find dial gauge's needle rest position at step (1) set position, then set the gauge to zero.
- (3) Turn crankshaft clockwise until No. 1 piston is set at TDC.
- (4) Read dial gauge indication.
 - 0.71±0.02 mm (0.0280±0.0008 in)
- (5) If it is not within the above range, turn pump body until it comes within standard range.
- a. If indication is smaller than the specified value, turn pump body counterclockwise.
- b. If indication is larger than the specified value, turn pump body clockwise.
- 4. Tighten injection pump securely.

Injection pump fixing bolt:

- ⊡: 20 25 N·m (2.0 2.5 kg-m, 14 18 ft-lb)
- Injection pump to mounting bracket:
- [□]: 30 41 N·m (3.1 4.2 kg-m, 22 30 ft-lb)

Installation and Adjustment (Cont'd)

- 5. Disconnect dial gauge and reinstall plug bolt with new washer.
- [○]: 14 20 N·m (1.4 2.0 kg-m, 10 14 ft-lb)
 6. Connect injection tubes.

Flare nut:

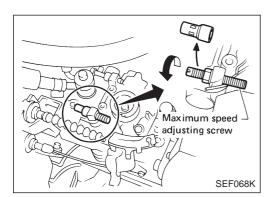
[]: 20 - 25 N·m (2.0 - 2.5 kg-m, 14 - 18 ft-lb)

7. Bleed air from fuel system. Refer to EC-191.

IDLE AND MAXIMUM SPEED ADJUSTMENT CAUTION:

- Do not remove sealing wires unless absolutely necessary.
- Disturbing full-load adjusting screw will change fuel flow characteristics, resulting in an improperly adjusted engine. Readjustment of fuel injection pump should be done using a pump tester.
- If maximum speed adjusting screw is turned in direction that increases control lever angle, engine damage may result.

Throttle control wire adjustment


- 1. Turn idle control knob fully counterclockwise.
- 2. Make sure that clearance between idle control lever pin and fuel injection pump control lever is within the specified range. **Clearance:**

1 - 2 mm (0.04 - 0.08 in)

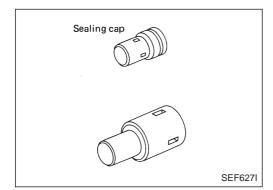
- 3. If not within the specified range, adjust with idle control wire adjusting nut.
- 4. After adjusting clearance, tighten lock nut.

Idle adjustment

Refer to "Checking Idle Speed", "ENGINE MAINTENANCE" in MA section.

Maximum speed adjustment

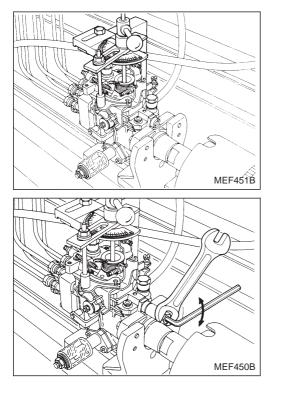
Maximum speed adjusting screw is retained by sealing wire and need not be adjusted under normal circumstances. However, if it becomes necessary to adjust it, the following procedure should be followed:


- 1. Start engine and warm it up until coolant temperature indicator points to middle of gauge.
- 2. Connect tachometer's pick-up to No. 1 fuel injection tube.

To obtain accurate reading of engine rpm, remove clamps that secure No. 1 fuel injection tube.

3. Depress accelerator pedal fully under no load and, at this point, read the tachometer indication.

Maximum engine speed (Under no load):


5,000⁺¹⁰⁰₋₂₀₀ rpm

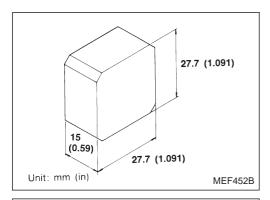
- 4. If indication is lower than specified maximum engine speed, turn maximum speed adjusting screw counterclockwise 1 or 2 rotations. Then depress accelerator pedal to floor under no load and, at this point, read indication.
- 5. If indication is still lower than specified speed, repeat step 4 above until specified engine speed is reached.
- 6. After adjustment, tighten lock nut securely.
- 7. Seal with a sealing wire or install a sealing cap.

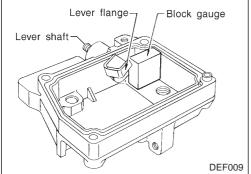
Disassembly

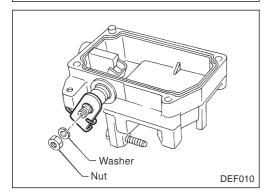
Refer to "VE INJECTION PUMP" in EF section of Service Manual for TD series diesel engine (1st Revision).

Load Timer Adjustment

- 1. After adjusting the timer stroke, find the control lever position where the injection quantity is as specified and then fix the control lever using the adjusting device (KV11282617).
- Run the injection pump at the specified speed and then adjust the governor shaft installation position so that the timer stroke is as specified.
 Refer to "Injection Pump Calibration Standard" in SDS for the timer stroke.


Start Q Adjustment Lever


DISASSEMBLY

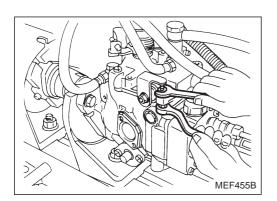

- 1. Attach injection pump to bracket using two bolts.
- 2. Remove start Q adjustment lever by removing nut after marking the installation position.
- 3. Remove nut and washer from the tip of lever shaft and then remove start Q adjustment lever, spring, washer and O-ring.
- 4. Remove lever shaft and washer from the inside of governor cover.

INSPECTION

- Check that lever shaft's sliding surface is not worn, scratched or damaged excessively and that lever shaft's flange is not bent, worn or damaged excessively. Replace lever shaft it defective.
- 2. Inspect the other parts carefully. If they are damaged, worn, rusted or bent excessively they must be replaced.

REASSEMBLY

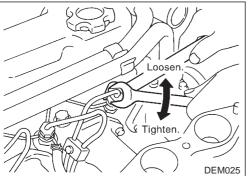
During reassembly of a fuel injection pump equipped with start Q adjustment lever, a block gauge must be used to determine the start Q adjustment lever installation position.

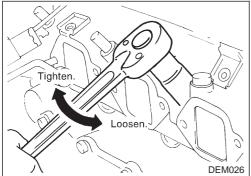

 Using block gauge, ensure that the distance from the inside face of cover to the tip of lever flange is 27.7 mm (1.091 in). Maintain lever shaft in this position.

2. Install start Q adjustment lever on lever shaft so that start Q adjustment lever contacts (or almost contacts) the under side of the adjusting bolt base.

Then, fix start Q adjustment lever on lever shaft using washer and nut.

If start Q adjustment lever cannot be installed as described above, use start Q adjustment lever with differently phased serrations.


TD



Start Q Adjustment Lever (Cont'd) ADJUSTMENT

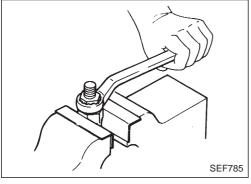
Adjust adjusting bolt on the normal operating side so that the starting injection quantity is as specified. Refer to "Injection Pump Calibration Standard" in SDS for the

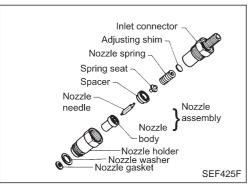
starting injection quantity.

Removal and Installation

- 1. Remove injection tube assembly.
- 2. Remove spill tube assembly.

To prevent spill tube from breaking, remove it by gripping nozzle holder.


- 3. Remove injection nozzle assembly using deep socket wrench.
- 4. Install injection nozzle in the reverse order of removal. Injection nozzle to cylinder head:

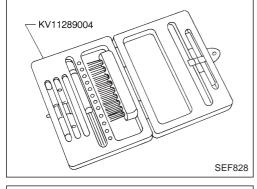

[]: 54 - 64 N·m (5.5 - 6.5 kg-m, 40 - 47 ft-lb)

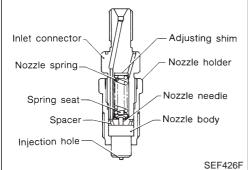
Spill tube nut:

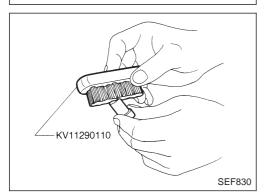
[□]: 29 - 39 N·m (3.0 - 4.0 kg-m, 22 - 29 ft-lb)

- Injection tube flare nut:
- [□]: 20 25 N·m (2.0 2.5 kg-m, 14 18 ft-lb)
- a. Nozzle gaskets should always be replaced.
- b. To prevent spill tube from breaking later, spill tube nuts should be tightened gradually in sequence.
- Bleed air from fuel system. 5.
- Refer to "Bleeding Fuel System", EC-191.

Disassembly

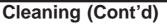

1. Loosen inlet connector while keeping nozzle top from turning.


2. Arrange all disassembled parts in order shown at left.


Inspection

Thoroughly clean all disassembled parts with fresh kerosene or solvent.

- If nozzle needle is damaged or fused, replace nozzle assembly with a new one.
- If end of nozzle needle is seized or excessively discolored, replace nozzle assembly.
- Check nozzle body and distance piece for proper contact. If excessively worn or damaged, replace nozzle assembly or nozzle holder assembly.
- Check spacer and nozzle holder for proper contact. If excessively worn or damaged, replace spacer or nozzle holder.
- Check nozzle spring for excessive wear or damage. If excessively worn or damaged, replace it with a new spring.



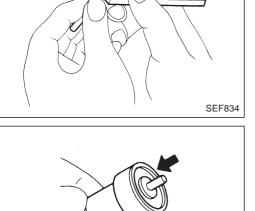
Cleaning

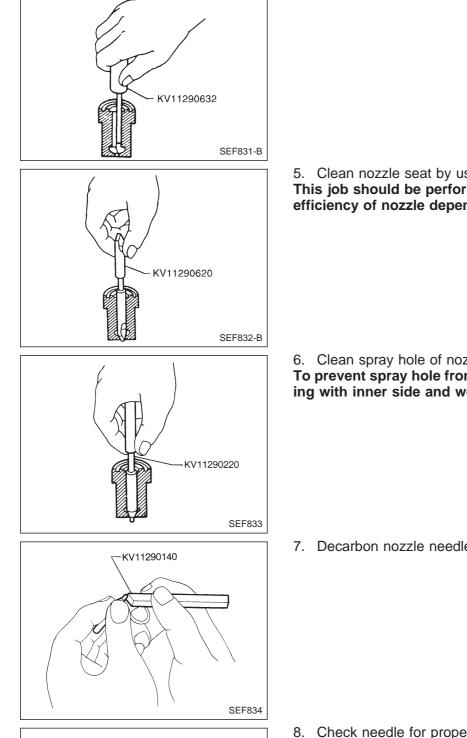
- a. Do not touch the nozzle mating surface with your fingers.
- b. To wash the nozzles, use a wooden stick and brass brush with clean diesel fuel.
- 1. Clean nozzle assembly using the Nozzle Cleaning Kit.
- 2. Portions which should be cleaned are indicated in the left figure.

3. Remove any carbon from exterior of nozzle body (except wrapping angle portion) by using Tool.

EC-187

4. Clean fuel sump of nozzle body using Tool.


5. Clean nozzle seat by using Tool. This job should be performed with extra precautions, since efficiency of nozzle depends greatly on a good nozzle seat.

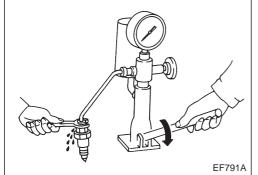

6. Clean spray hole of nozzle body by using Tool. To prevent spray hole from canting, always clean it by starting with inner side and working towards outside.

7. Decarbon nozzle needle tip by using Tool.


- 8. Check needle for proper position.
- (1) Pull needle about halfway out from body and then release it.
- (2) Needle should sink into body very smoothly from just its own weight.
- (3) Repeat this test and rotate needle slightly each time.

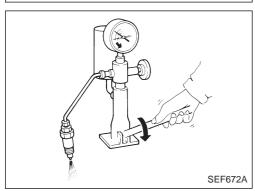
If needle fails to sink smoothly from any position, replace both needle and body as a unit.

SEF835


Assembly

Assemble in the reverse order of disassembly. Inlet connector to nozzle holder: []: 29 - 49 N·m (3.0 - 5.0 kg-m, 22 - 36 ft-lb)

Test and Adjustment


WARNING:

When using nozzle tester, be careful not to allow diesel fuel sprayed from nozzle to contact your hand or body, and make sure your eyes are properly protected with goggles.

INJECTION PRESSURE TEST

1. Install nozzle to injection nozzle tester and bleed air from flare nut.

- 2. Pump the tester handle slowly (one time per second) and watch the pressure gauge.
- 3. Read the pressure gauge when the injection pressure just starts dropping.

Initial injection pressure:

Used 9,807 - 10,297 kPa (98.1 - 103.0 bar, 100 - 105 kg/cm²,

1,422 - 1,493 psi) New 10.297 - 11.278 kPa

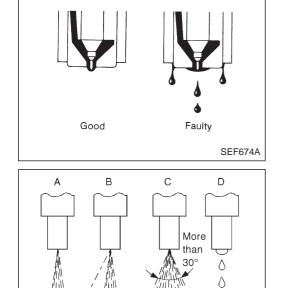
10,297 - 11,278 kPa (103.0 - 112.8 bar, 105 - 115 kg/cm²,

1,493 - 1,635 psi)

Always check initial injection pressure using a new nozzle.

Test and Adjustment (Cont'd)

- 4. To adjust injection pressure, change adjusting shims.
- a. Increasing the thickness of adjusting shims increases initial injection pressure. Decreasing thickness reduces initial pressure.
- b. A shim thickness of 0.04 mm (0.0016 in) corresponds approximately to a difference of 471 kPa (4.71 bar, 4.8 kg/cm², 68 psi) in initial injection pressure.


Refer to "Injection Nozzle" in SDS for adjusting shims, EC-233.

LEAKAGE TEST

- 1. Maintain the pressure at about 981 to 1,961 kPa (9.8 to 19.6 bar, 10 to 20 kg/cm², 142 to 284 psi) below initial injection pressure.
- 2. Check that there is no dripping from the nozzle tip or around the body.
- If there is leakage, clean, overhaul injection nozzle or replace 3. it.

SPRAY PATTERN TEST

- 1. Check spray pattern by pumping tester handle one full stroke per second.
- a. If main spray angle is within 30 degrees as shown, injection nozzle is good.
- b. It is still normal even if a thin stream of spray deviates from main spray (pattern B).
- 2. If injection nozzle is not normal, adjust or clean injection nozzle or replace it.

Good

Adjusting shim

SEF427F

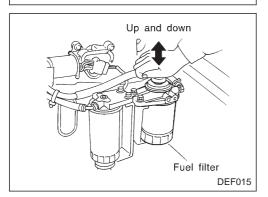
0

SEF079S

Wrong

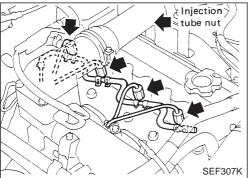
Bleeding Fuel System

Air should be bled out of fuel system when injection pump is removed or fuel system is repaired.


Protect pump and engine mounts from fuel splash with rags. If engine will not start after bleeding air, loosen injection tubes at nozzle side and crank engine until fuel overflows from injection tube. Tighten injection tube flare nuts.

If the engine does not operate smoothly after it has started, race it two or three times.

CAUTION:


Wipe up any fuel discharged while bleeding air during each step.

- Step 1: Fuel filter and injection pump bleeding
- 1. Loosen air bleeder screw to injection pump.
- 2. Move fuel filter priming pump up and down until no further air comes out of air bleeder screw.
- 3. Tighten air bleeder screw.

Air bleeder screw)

SEEU83K

- Step 2: Fuel injection tube and spill tube air bleeding
- 1. Loosen injection tube nuts on nozzle holder side.
- 2. Move the priming pump up and down until no further air comes out of the injection tube nuts.
- Tighten the injection tube nuts.
 20 25 N·m (2.0 2.5 kg-m, 14 18 ft-lb)

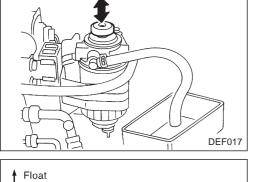
Bleeding Fuel Filter

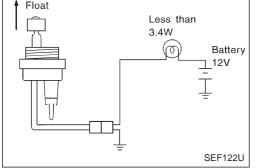
- 1. Move the priming pump up and down to bleed air from the fuel filter.
- 2. When air is completely bled from the fuel pump, priming pump operation becomes noticeably heavy. Stop pump operation.

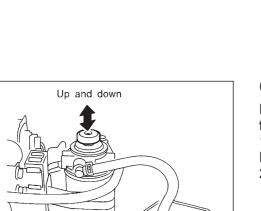
Checking Priming Pump

Before checking priming pump, make sure that fuel filter is filled with fuel.

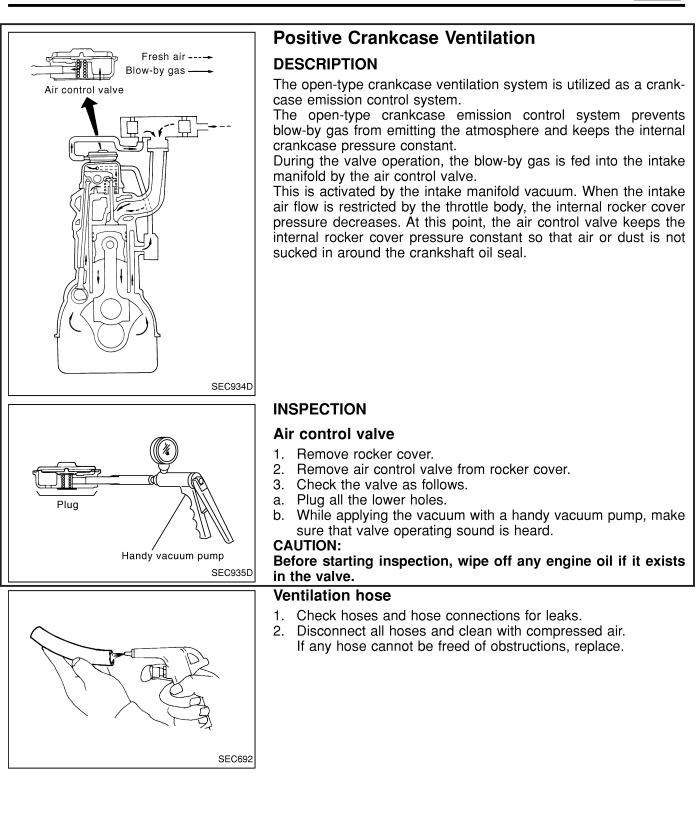
1. Disconnect fuel return hose.

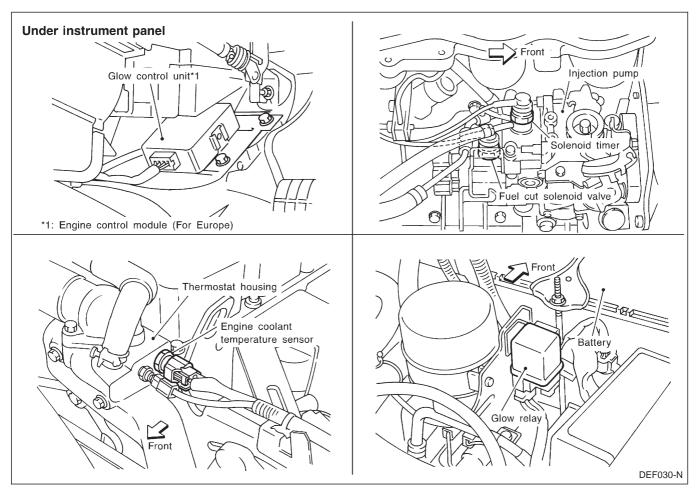

Place a suitable container beneath hose end.

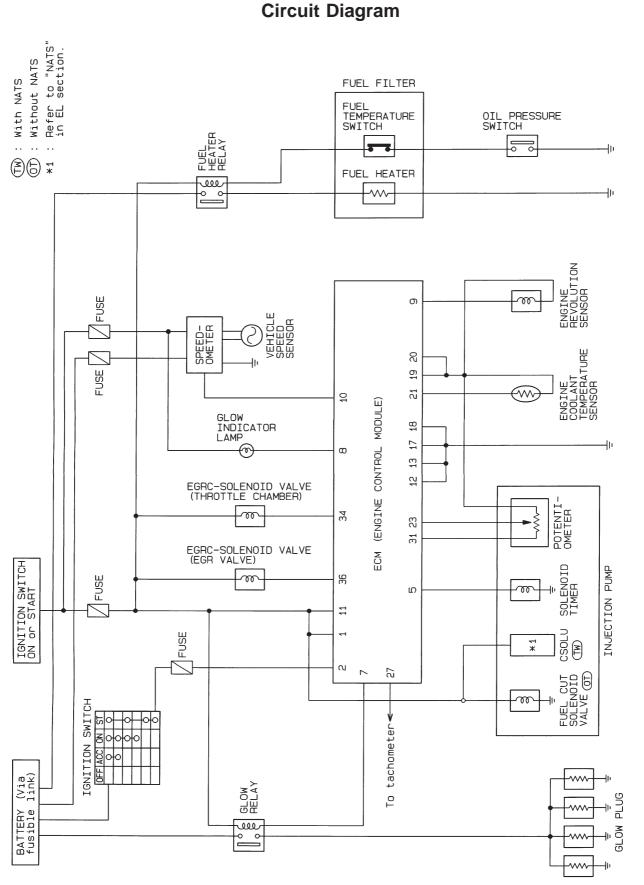

2. Pump priming pump and check that the fuel overflows from the hose end. If not, replace priming pump.


Checking Fuel Filter Switch

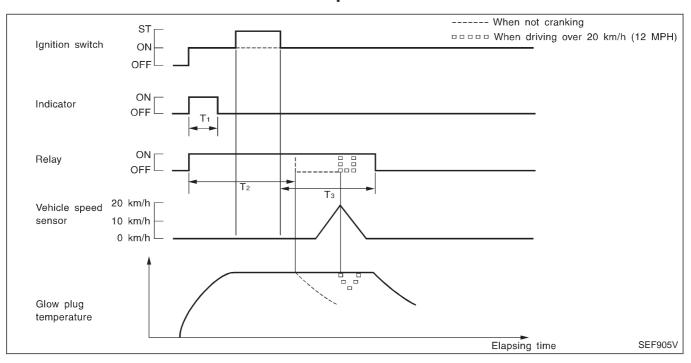
- 1. Remove the connector from filter and fuel filter switch.
- 2. Turn the key switch "ON". Lift the float to ensure that the warning lamp turns on.


Fuel filter switch tightening torque: (**○**): 3.9 - 5.9 N·m (0.4 - 0.6 kg-m, 35 - 52 in-lb) Discard the old O-ring and replace it with a new one.





TD

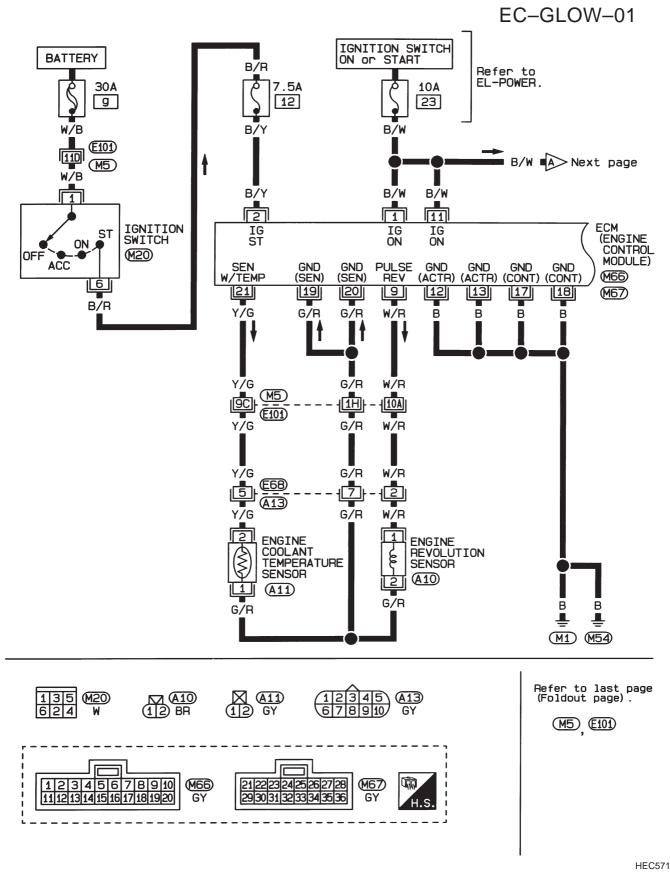


Component Parts Location

HEC570

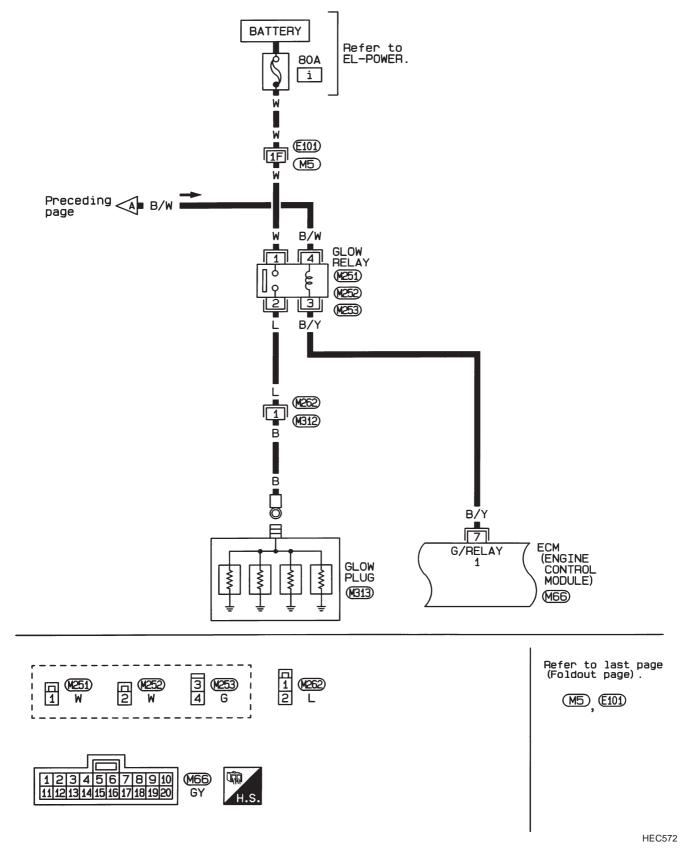
When coolant temperature is lower than 50°C (122°F), the relay is turned on at the same time that the ignition switch is turned on. From this time, the electric current flows through the glow plugs and heats them up quickly. After T_1 seconds have passed, the control unit turns off the indicator. The relay automatically turns off after it has been on for T_2 seconds or the cranking time, whichever is longer.

The relay remains on for T_3 seconds after the ignition switch has returned to "ON" from "START". These features improve the combustion performance of the engine after it has started.

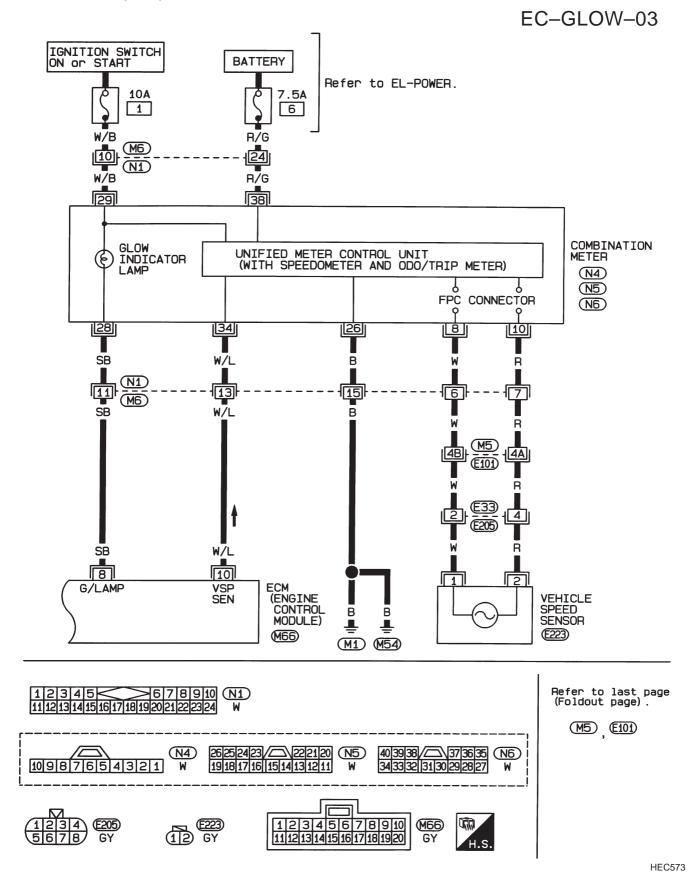

When the coolant temperature is higher than 50°C (122°F), the relay is turned on only during engine cranking.

T ₁ : approx. 2 - 6	[sec.]	(Varies with coolant temperature.)
T ₂ : 30	[sec.]	[When coolant temperature is below 50°C (122°F).]
5	[sec.]	[When coolant temperature is over 50°C (122°F).]
T ₃ : 600	[sec.]	[When coolant temperature is below 50°C (122°F).]
0	[sec.]	[When coolant temperature is over 50°C (122°F).]
5 T ₃ : 600	[sec.]	[When coolant temperature is over 50°C (122°F).] [When coolant temperature is below 50°C (122°F).]

Description

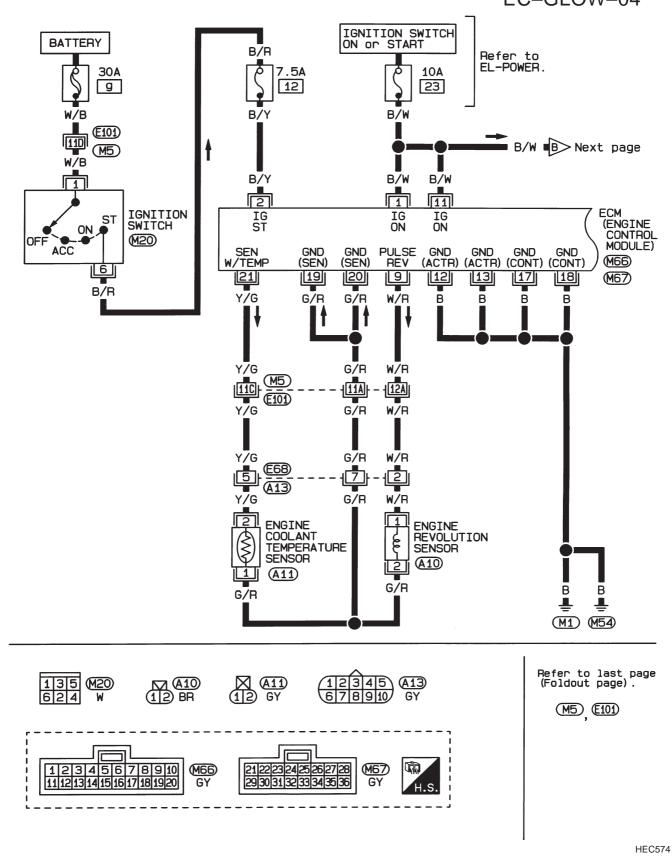

Wiring Diagram

TD25 ENGINE (LHD)

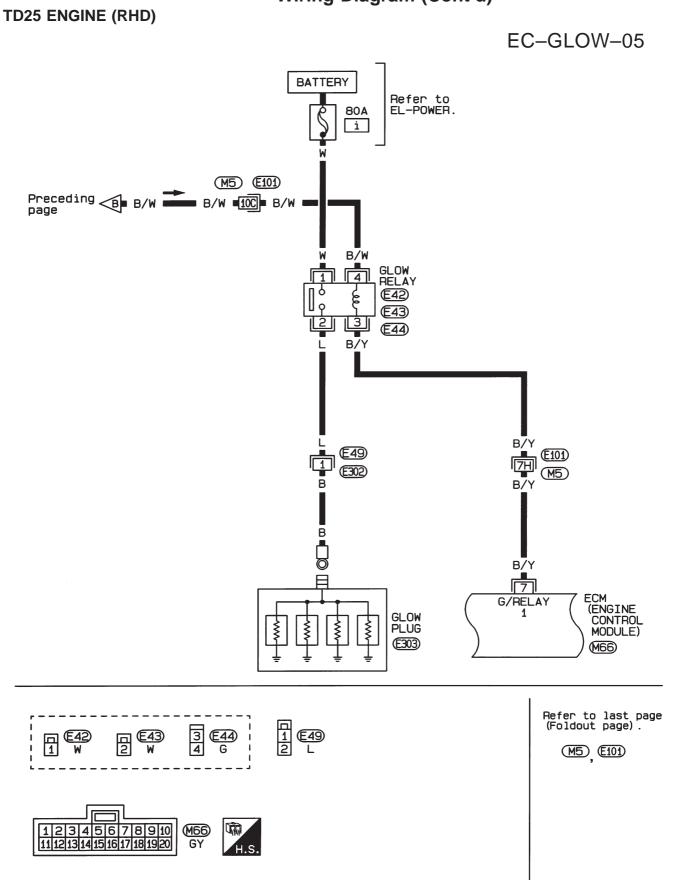


TD25 ENGINE (LHD)

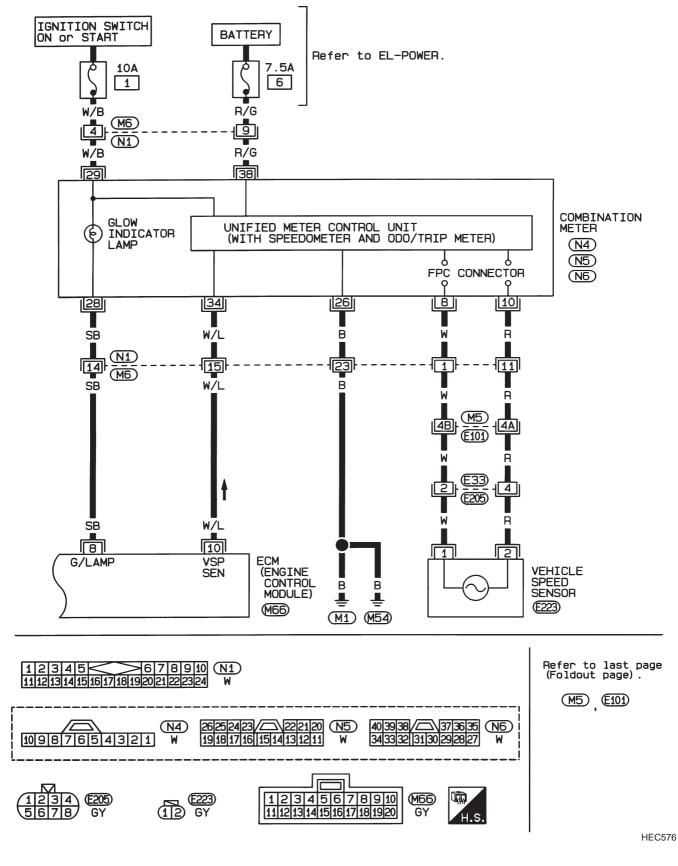
EC-GLOW-02

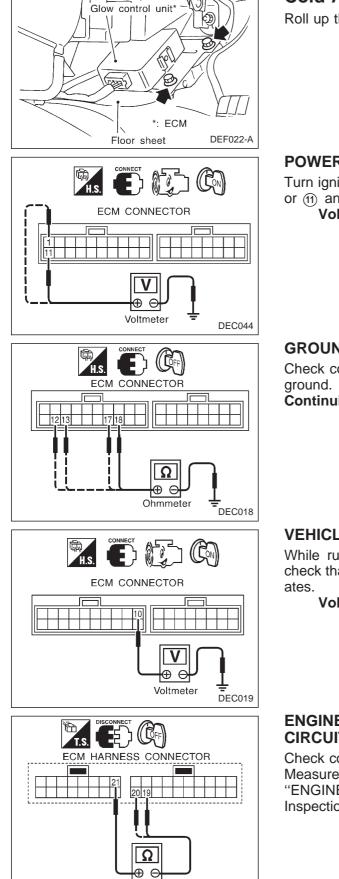


TD25 ENGINE (LHD)



TD25 ENGINE (RHD)


EC-200



HEC575

TD25 ENGINE (RHD)

ſ

Glow Control Unit Circuit Inspection (For Cold Areas)

Roll up the floor sheet. Check the glow control unit.

POWER SUPPLY CIRCUIT

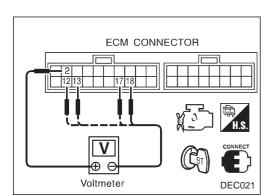
Turn ignition switch ON and check voltage between terminal ① or ① and body ground. Voltage: approx. 12V

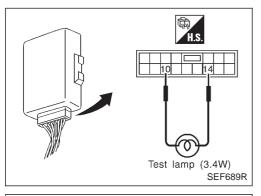
GROUND CIRCUIT

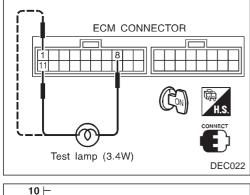
Check continuity between terminal $\textcircled{1}{2}$, $\textcircled{1}{3}$, $\textcircled{1}{7}$ or $\textcircled{1}{8}$ and body ground. Continuity should exist.

VEHICLE SPEED SENSOR CIRCUIT

While running vehicle or lifting rear wheels in 2WD position, check that voltage between terminal 0 and body ground fluctuates.


Voltage: approx. 5V


ENGINE COOLANT TEMPERATURE SENSOR CIRCUIT

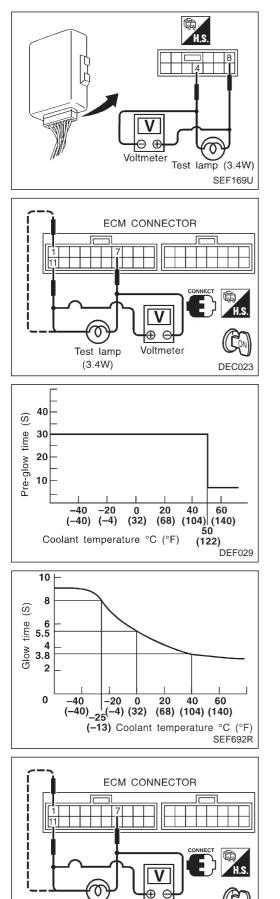

Check continuity between terminals (2) and (19) or (20). Measure resistance to temperature approximately as shown in "ENGINE COOLANT TEMPERATURE SENSOR", "Component Inspection", EC-209.

DEC020

Ohmmeter

10 8 ŝ time (6 4 Lamp 3.5 2 1.8 0 20 40 -40 -20 0 60 (-40) | (-4) (-(-13) Coolant temperature °C (°F) **DEF031**

Glow Control Unit Circuit Inspection (For Cold Areas) (Cont'd) START SIGNAL INPUT CIRCUIT


- 1. Turn ignition switch OFF.
- 2. Disconnect harness connector from the starter motor's "S" terminal.
- 3. Check terminal voltage between terminals (2) and (2), (3),
 (7) or (18) when the ignition switch is at "START".
 Voltage: approx. 12V

GLOW INDICATOR CONTROL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Leave harness connector joined to glow control unit.
- 3. Connect test lamp to glow control unit as shown.
- 4. Turn ignition switch to ON and measure the time the test lamp stays lit.

Time the test lamp should stay lit: Approx. 2 - 6 seconds (The time will vary according to coolant tempera-

ture.)

Test lamp

(3.4W)

Voltmeter

DEC023

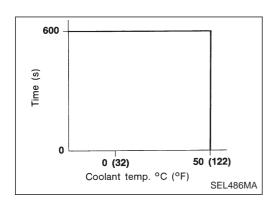
Glow Control Unit Circuit Inspection (For Cold Areas) (Cont'd)

PRE-GLOW CONTROL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Leave harness connector joined to glow control unit.
- 3. Connect test lamp to glow control unit as shown below.
- 4. Turn ignition switch ON and measure terminal voltage and the time the test lamp stays lit.

Battery voltage should appear for 30 seconds at coolant temperature below 50°C (122°F).

Battery voltage should appear for 5 seconds at coolant temperature over 50°C (122°F).


• The time will be shortened if ignition switch is OFF for only a brief period.

Therefore, when measuring the time, leave ignition switch OFF for more than 1 minute, and then turn ignition switch ON.

• When the coolant temperature is below 10°C (50°F), the battery voltage should appear for 30 seconds.

AFTER-GLOW CONTROL CIRCUIT

- 1. Connect test lamp to glow control unit as shown.
- 2. Turn ignition switch to START and run engine, then measure glow plug terminal voltage and the time the test lamp stays lit.

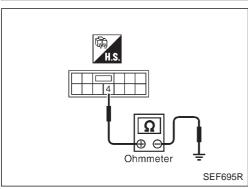
Glow Control Unit Circuit Inspection (For Cold Areas) (Cont'd)

Battery voltage should continue for 10 minutes at coolant temperature below 50°C (122°F).

[If vehicle speed is above 20 km/h (12 MPH), glow plug terminal voltage should drop to 0V. If the speed drops below 10 km/h (6 MPH), the battery voltage should appear.]

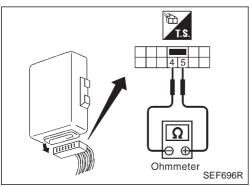
The voltage should not appear at coolant temperature over 50°C (122°F).

Glow Control Unit Circuit Inspection (Except for Cold Areas)

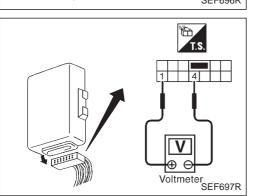

POWER SUPPLY CIRCUIT

Turn ignition switch ON and check voltage between terminal and body ground.

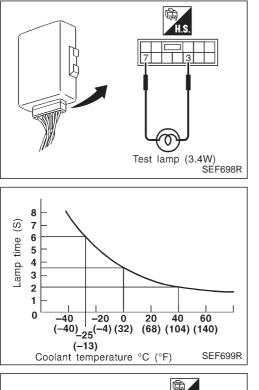
Voltage: approx. 12V

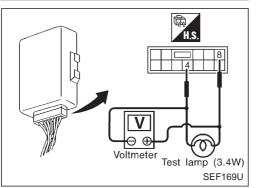

GROUND CIRCUIT

Check continuity between terminal 4 and body ground. Continuity should exist.


-⊕ ⊖ Voltmeter

SEF694R

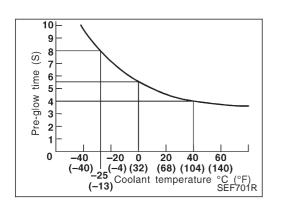



Check continuity between terminals (5) and (4). Measure resistance to temperature approximately as shown in "ENGINE COOLANT TEMPERATURE SENSOR", "Component Inspection", EC-209.

START SIGNAL INPUT CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect harness connector from the starter motor's "S" terminal.
- Check terminal voltage between terminals ① and ④ when the ignition switch is at "START".
 Voltage: approx. 12V

Glow Control Unit Circuit Inspection (Except for Cold Areas) (Cont'd) GLOW INDICATOR CONTROL CIRCUIT

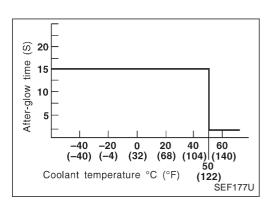

- 1. Turn ignition switch OFF.
- 2. Leave harness connector joined to glow control unit.
- 3. Connect test lamp to glow control unit as shown.
- 4. Turn ignition switch to ON and measure the time the test lamp stays lit.

Time the test lamp should stay lit: Approx. 2 - 6 seconds (The time will vary according to coolant temperature.)

GLOW CONTROL CIRCUIT

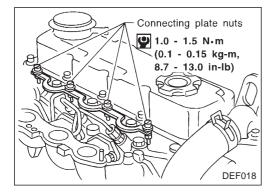
Pre-glow control

- 1. Turn ignition switch OFF.
- 2. Leave harness connector joined to glow control unit.
- 3. Connect test lamp to glow control unit as shown.
- 4. Turn ignition switch ON and measure terminal voltage and the times the test lamp turns on and off.
- 1) At coolant temperature below 50°C (122°F) the battery voltage appears for 15 seconds.
- Battery voltage should appear for 4 to 8 seconds*, and then be chopped intermittently for the rest time.
 - * Pre-glow time (Varies with coolant temperature)



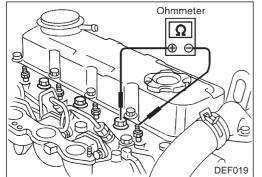
• The time will be shortened if ignition switch is OFF for only a brief period.

Therefore, when measuring the time, leave ignition switch OFF for more than 1 minute, and then turn ignition switch ON.


The test lamp turns on and off approx. 1 - 3 times after it stayed lit.

2) At coolant temperature over 50°C (122°F) the battery voltage appears for approximately 3 seconds.

Glow Control Unit Circuit Inspection (Except for Cold Areas) (Cont'd) After-glow control


- 1. Turn ignition switch OFF.
- 2. Leave harness connector joined to glow control unit.
 - 3. Connect test lamp to glow control unit as shown in "Pre-glow control".
 - 4. Turn ignition switch to START and return to ON. Measure terminal voltage and count the times the test lamp turns on and off.
 - At coolant temperature below 50°C (122°F) the battery voltage appears intermittently for 15 seconds. Test lamp turns on and off approx. 3 times.
 - 2) At coolant temperature over 50°C (122°F) the battery voltage appears for 2 seconds.

Component Inspection

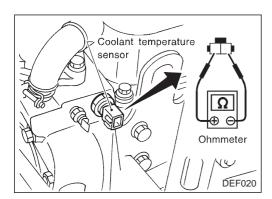
GLOW PLUG CONNECTING PLATE NUTS

Check that all glow plug connecting plate nuts and harness nut are installed securely.

Ohmmeter SEF680R

GLOW PLUG

Remove glow plug connecting plate and perform continuity test between each glow plug and cylinder head.

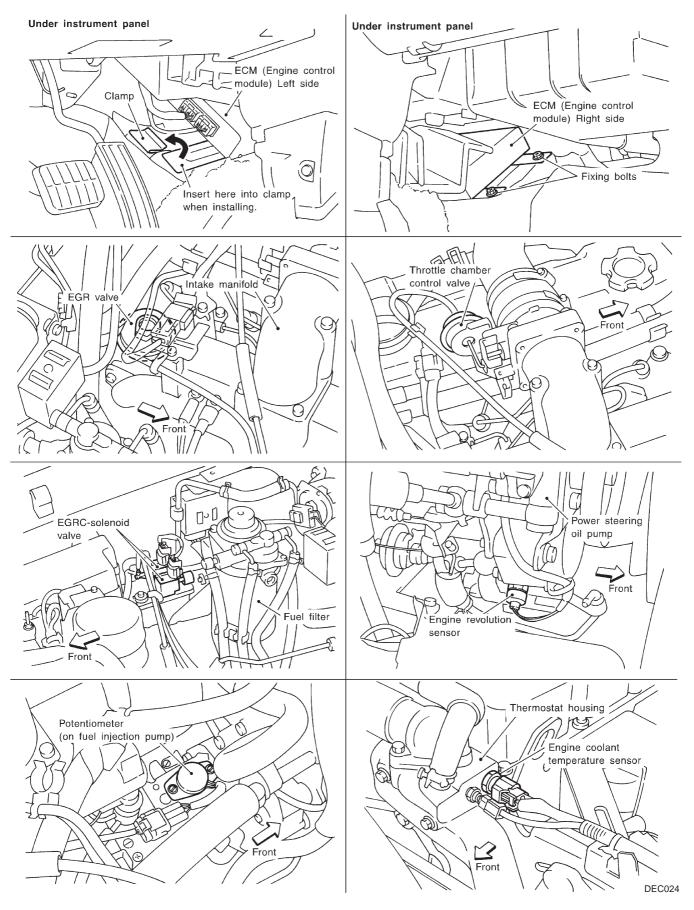

No continuity ... Replace glow plug.

Two manufacturer's ceramic glow plugs are provided on TD25 engine.

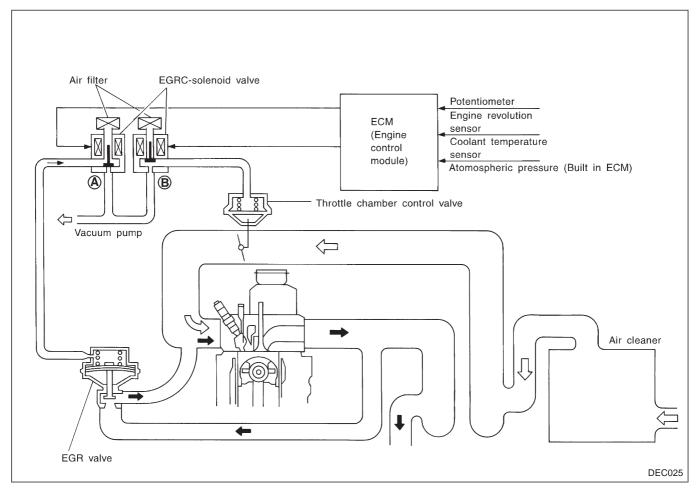
A color mark of orange or blue is put on the glow plug head. Do not mix them in one engine. Do not use if dropped on the floor.

GLOW RELAY

The glow relay is normally open.

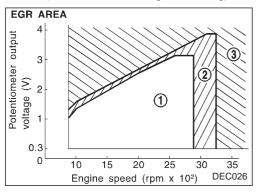


Component Inspection (Cont'd) ENGINE COOLANT TEMPERATURE SENSOR


Disconnect engine coolant temperature harness connector and measure resistance.

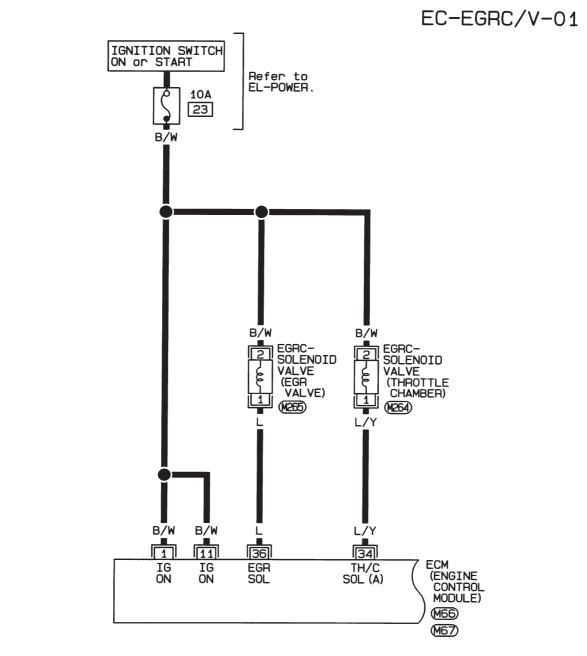
Coolant temp. °C (°F)	Resistance k Ω		
-25 (-13)	19		
0 (32)	5.6		
20 (68)	2.5		
40 (104)	1.2		

Description

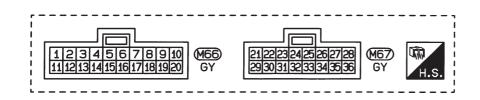

The EGR system is designed to control the formation of NOx emission by recirculating the exhaust gas into the intake manifold passage through the EGR valve.

For electrical circuit of the EGR system, refer to "Circuit Diagram" in "QUICK-GLOW SYSTEM", EC-195.

	,					
Coolant temperature °C (°F)	Engine load	EGRC-solenoid valve		EGR valve	Throttle chamber	Amount of EGR
	(EGR area)	А	В		control valve	gas
Below 60 (140)	All	OFF (Closed)	OFF (Closed)	Closed	Open	—
Above 60 (140)	Low load (Area ①)	ON (Open)	ON (Open)	Open	Nearly closed	High
	Middle load (Area ②)	OFF (Closed)	ON (Open)	Open	Open	Low
	High load*1 (Area ③)	OFF (Closed)	OFF (Closed)	Closed	Open	_


Operation

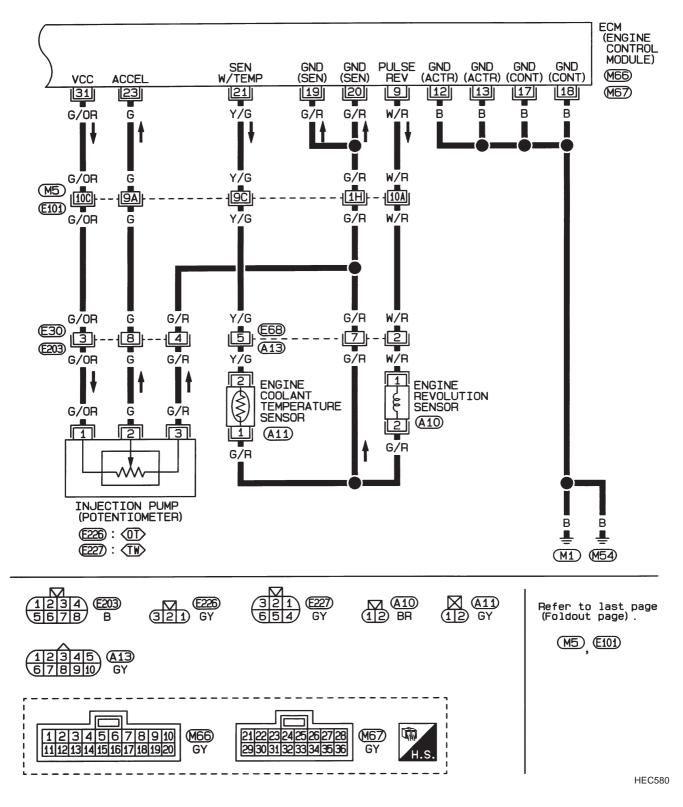
*1: Also includes conditions, in which the engine is stopped with the ignition switch ON or the atmospheric pressure is below 90.0 kPa (900 mbar, 675 mmHg, 26.57 inHg).



Wiring Diagram

TD25 ENGINE (LHD)

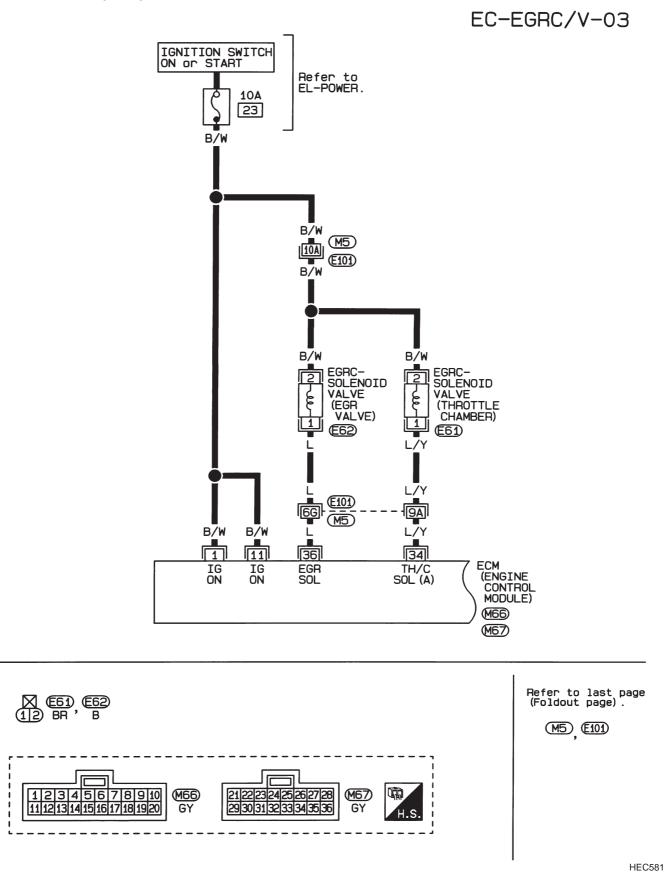
(12) (1264), (1265) (12) BR, B


HEC579

EGR SYSTEM Wiring Diagram (Cont'd)

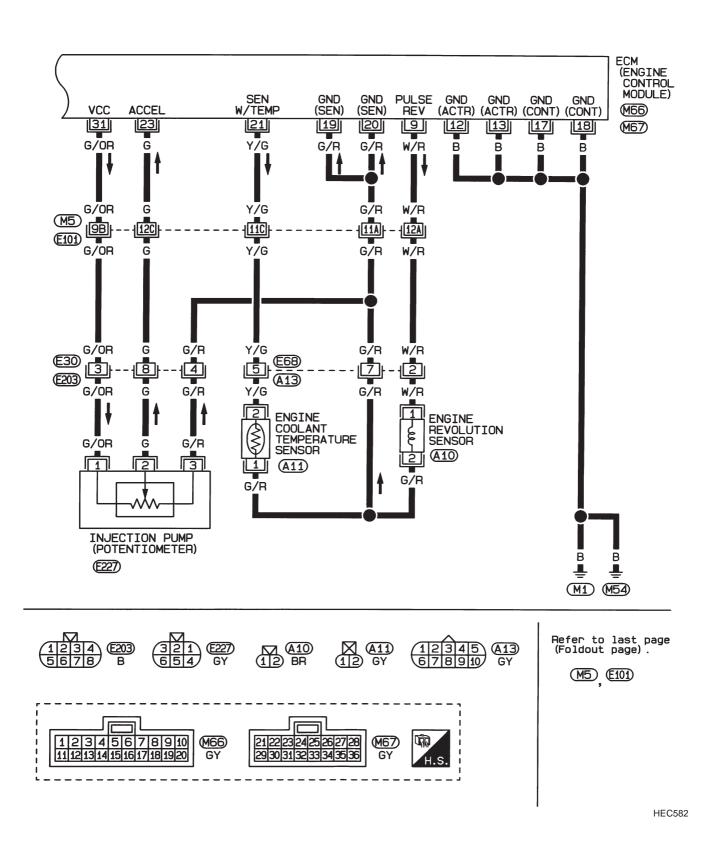
TD25 ENGINE (LHD)

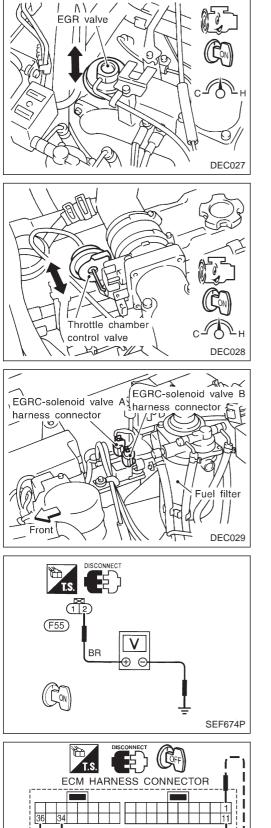
EC-EGRC/V-02


(TW): With NATS
(OT): Without NATS

EC-214

Wiring Diagram (Cont'd)


TD25 ENGINE (RHD)



EGR SYSTEM Wiring Diagram (Cont'd)

TD25 ENGINE (RHD)

EC-EGRC/V-04

Ω

System Inspection OVERALL FUNCTION

1. Start engine and warm it up sufficiently.

2. Make sure that EGR valve diaphragm and throttle chamber control valve rod movement (Use your finger to confirm EGR valve diaphragm movement) under the following conditions. At idle:

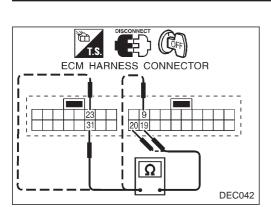
Diaphragm and rod do not move.

Revving engine from idle to between 1,000 and 2,800 rpm:

Diaphragm and rod move.

Keeping engine speed between 2,900 and 3,200 rpm: Diaphragm and rod stay in open position.

POWER SUPPLY CIRCUIT


- 1. Turn ignition switch OFF.
- 2. Disconnect EGRC-solenoid valve A and B harness connector.
- 3. Turn ignition switch ON.
- 4. Check voltage between terminal ② and ground. Voltage: Battery voltage

OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between terminals.
 Continuity should exist. If OK, check harness for short.
 EGRC-solenoid valve A: ECM terminal (3) and terminal (1) or (1)
 EGRC-solenoid valve B: ECM terminal (3) and terminal (1) or (1)

EC-217

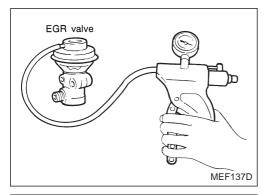
DEC041

EGR SYSTEM

System Inspection (Cont'd) INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between terminals. Continuity should exist. If OK, check harness for short.

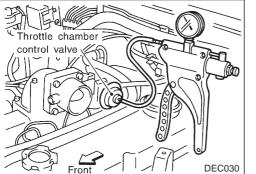
Potentiometer:


ECM terminal (3) and terminal (19) or (20).

ECM terminal $\overline{\mathfrak{B}}$ and terminal $\overline{\mathfrak{B}}$ or $\overline{\mathfrak{D}}$. Engine revolution sensor:

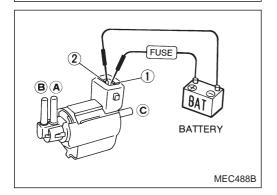
ECM terminal (9) and terminal (19) or (20).

Engine coolant temperature sensor:


Refer to "Glow Control Unit Inspection" in "QUICK-GLOW SYSTEM", EC-206.

Component Inspection

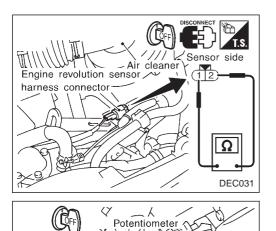
EGR valve


Apply vacuum to EGR vacuum port with a hand vacuum pump. **EGR valve diaphragm should lift.** If NG, replace EGR valve.

Throttle chamber control valve

Apply vacuum to throttle chamber control valve vacuum port with a hand vacuum pump. Throttle chamber control valve should close.

If NG, replace throttle chamber control valve.



EGRC-solenoid valve A and B

Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals (1) and (2)	Yes	No
No supply	No	Yes

If NG, replace solenoid valve(s).

Ω

DEC032

EGR SYSTEM

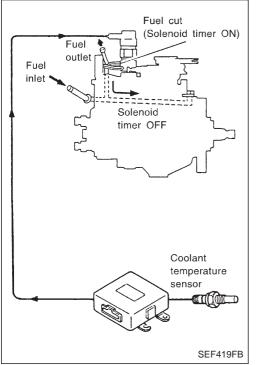
Disconnect engine revolution sensor harness connector.

 Check resistance between terminals ① and ②.
 Resistance: Approximately 1.6 kΩ [at 25°C (77°F)] If NG, replace sensor.

Potentiometer

- 1. Disconnect potentiometer harness connector.
- 2. Make sure that resistance between terminals (2) and (3) changes when accelerator operated.

Accelerator pedal condition	Resistance kΩ [at 20°C (68°F)]
Completely released	Approximately 0.7
Partially depressed	0.7 - 5
Completely depressed	Approximately 5


If NG, replace potentiometer.

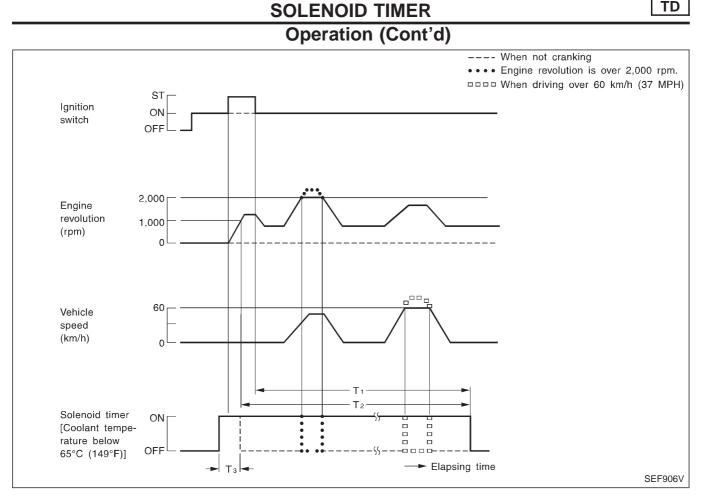
Atmospheric pressure sensor

This sensor is inside ECM and not replaceable. EGR system should not operate under atmospheric pressure below 90.0 kPa (900 mbar, 675 mmHg, 26.57 inHg).

Engine coolant temperature sensor

Refer to "Component Inspection" in "QUICK-GLOW SYSTEM", EC-209.

Description

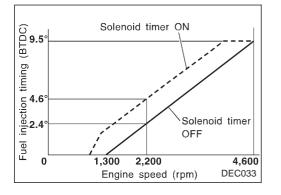

To improve startability, a solenoid timer is used on models for cold areas. Its purpose is to advance fuel injection timing in relation to coolant temperature for a certain period after starting the engine.

This timer is controlled by the signal from the glow control unit (or ECM). The control unit sends a signal to activate the advance mechanism of the fuel injection pump during cold starting. Refer to "Circuit Diagram", "QUICK-GLOW SYSTEM", EC-195.

Solenoid timer Fuel overflow Fuel injection Fuel injection nozzle SEF914H

Operation

Part of the fuel in the return line returns to the fuel injection pump inlet, when the solenoid timer is OFF. When cold starting, the solenoid timer comes ON to stop the return of fuel to the inlet. This increases the fuel pressure in the fuel injection pump so that fuel injection timing advances. The duration of fuel injection timing advance varies with changes in coolant temperature.



When coolant temperature is lower than 65°C (149°F), and the engine runs within conditions defined with the engine speed and the potentiometer, the solenoid timer operates. It turns on when the ignition switch is turned to START position.

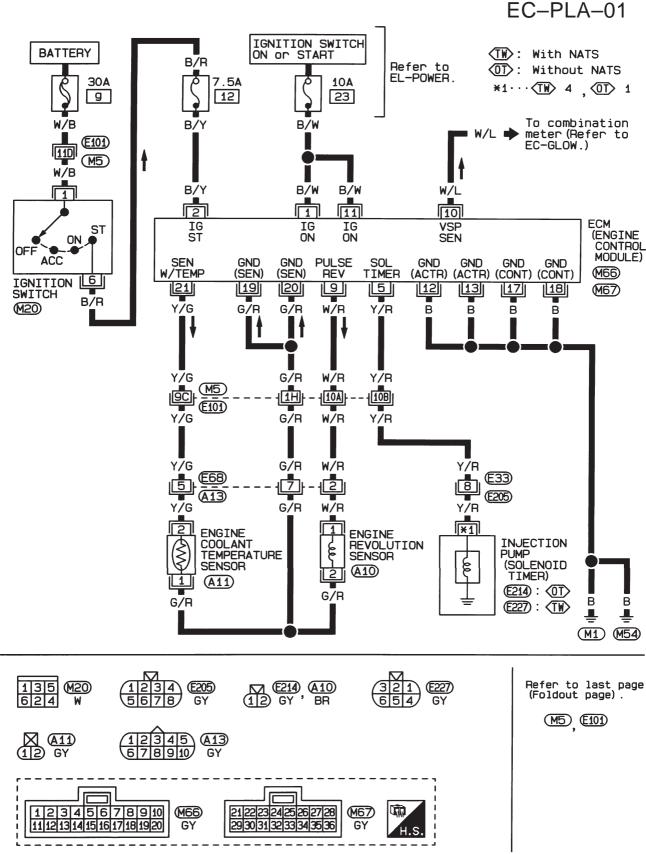
The solenoid timer remains on for T_1 or T_2 seconds. The T_1 starts after engine speed has rised over 1,000 rpm in START position. The T_2 starts after ignition switch has been returned to ON position with engine running.

If the engine does not start within T_3 seconds or if the engine stops for more than T_3 seconds the solenoid timer turns off. Also it turns off if the engine speed rises over 2,000 rpm or the vehicle speed rises over 60 km/h but it recovers if these figures become lower than the limit.

T₁, T₂: 30 [sec.] T₃: approx. 1 [sec.]

TIMER CHARACTERISTICS

The figures show the differences in fuel injection timing in relation to engine speed when the solenoid timer is both ON and OFF.


When the solenoid timer turns ON, fuel injection timing advances by approximately 2°. Thus, cold engine starting in cold weather is greatly improved.

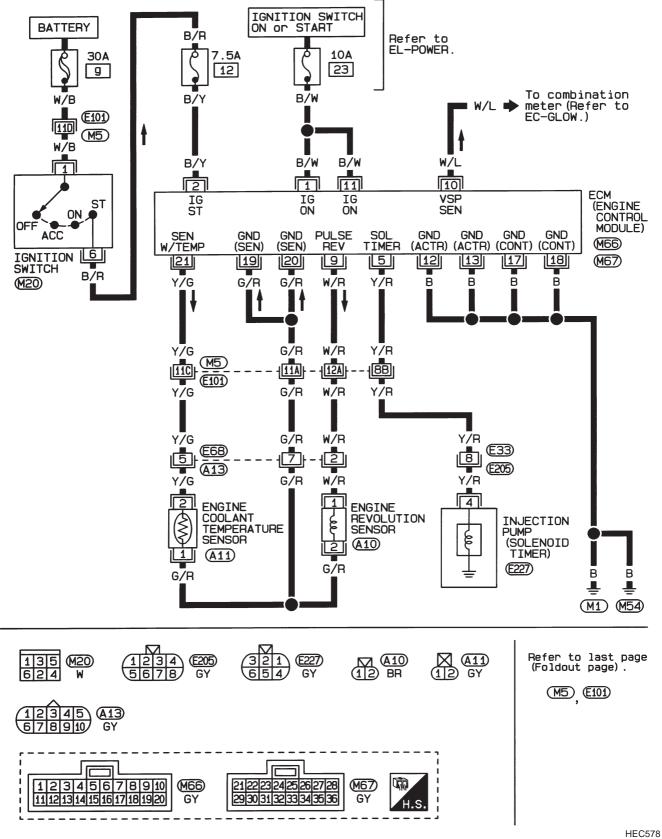
Application:

	Part No.	Pump assembly No.
TD25	16700 3S301	104780-4961
1025	16700 3S300	104780-4951

Wiring Diagram

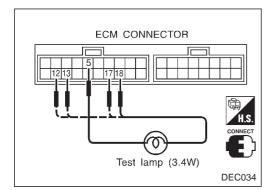
TD25 ENGINE (LHD)

NOTE: Refer to "EC-GLOW-03" for vehicle speed sensor, and "EC-EGRC/V-02" for potentiometer.


HEC577

EC-222

Wiring Diagram (Cont'd)

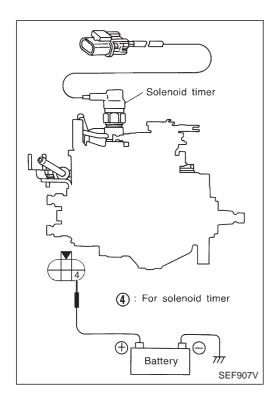

TD25 ENGINE (RHD)

EC-PLA-02

NOTE: Refer to "EC-GLOW-06" for vehicle speed sensor, and "EC-EGRC/V-04" for potentiometer.

TD

Inspection

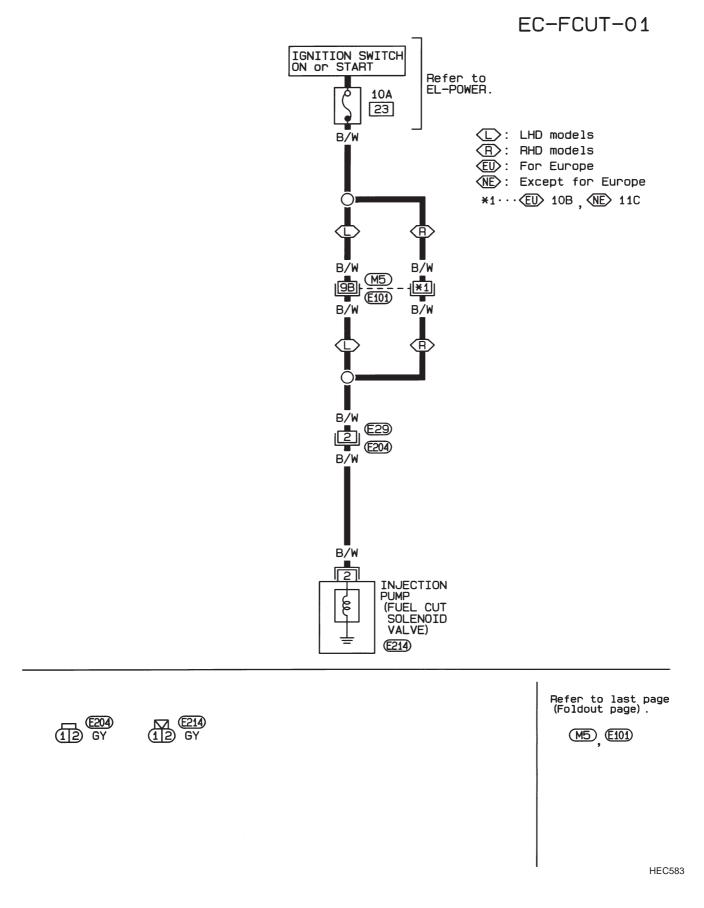

SOLENOID TIMER CONTROL CIRCUIT

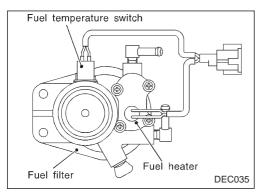
- 1. Connect test lamp to glow control unit as shown.
- 2. Disconnect the harness connector from starter motor "S" terminal.
- 3. Make sure that test lamp comes on when ignition switch is turned to START.
- 4. Measure the time the test lamp stays lit when ignition switch is turned to ON from START.

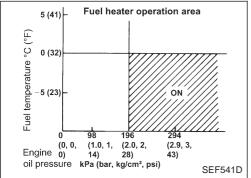
Time the test lamp should stay lit:

Approx. 30 seconds at coolant temperature below 65°C (149°F)

0 seconds at coolant temperature over 65°C (149°F)

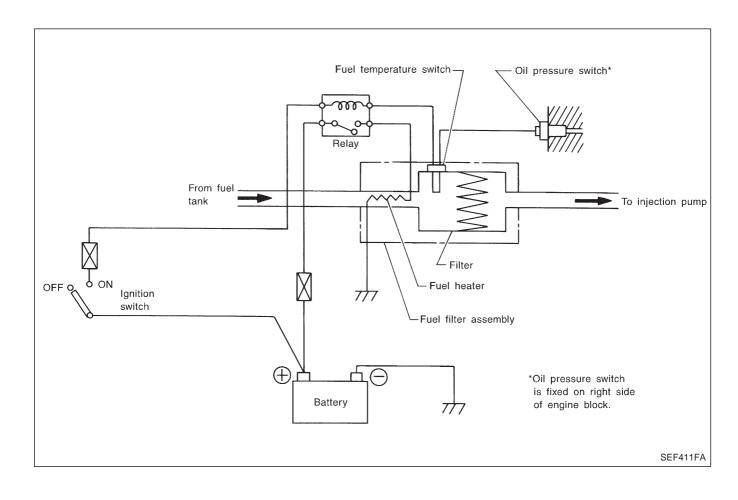

SOLENOID TIMER


1. Disconnect solenoid timer harness and check for "clicking" sound from solenoid when battery is connected and disconnected.


If solenoid has malfunction, replace it. After checking, reconnect the connector.

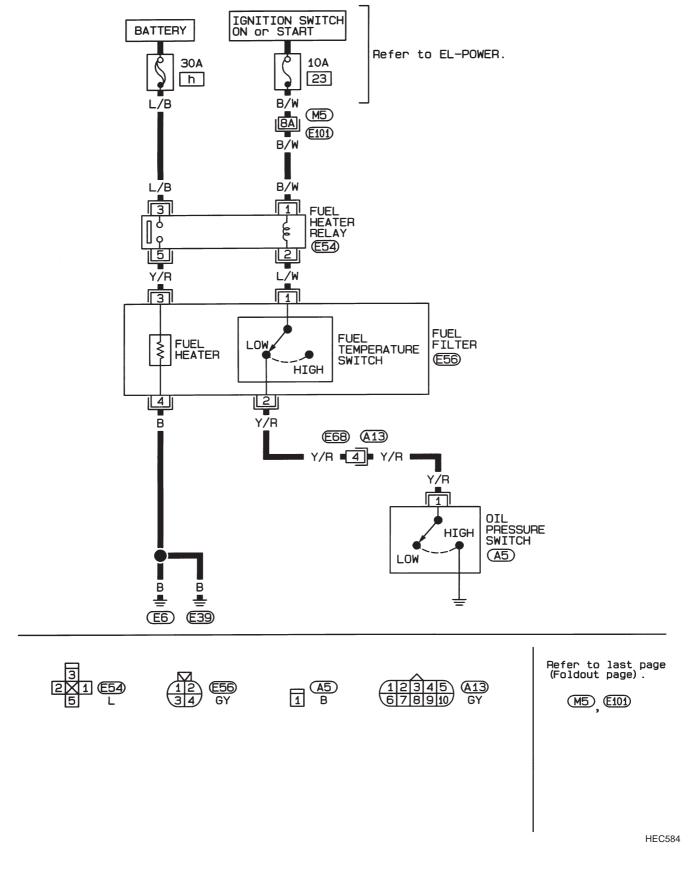
TIMER PISTON STROKE (Using pump tester)

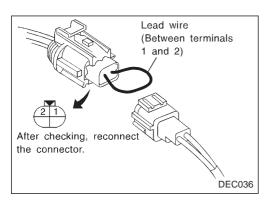
Measure timer piston strokes at specified fuel injection pump speed when solenoid timer is on and off. Refer to "Injection Pump Calibration Standard" in SDS.

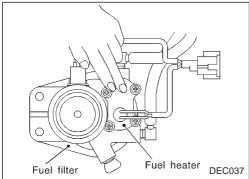


Description

This system prevents fuel filter from clogging with fuel wax. Fuel heater system operates when fuel temperature switch and oil pressure switch are on.

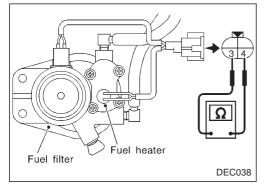

Fuel temperature switch turns on when fuel temperature decreases below $-15^{\circ}C$ (5°F). It remains on until fuel temperature increases to around 0°C (32°F).

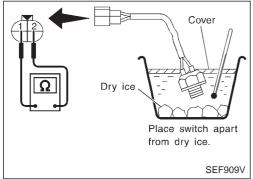

If fuel temperature does not decrease below $-15^{\circ}C$ (5°F), fuel temperature switch will not turn on even though fuel temperature is below 0°C (32°F).



Wiring Diagram

EC-F/HEAT-01





System Inspection

- 1. Turn ignition switch "OFF". Disconnect fuel temperature switch harness connector.
- 2. Connect a lead wire, as shown, between terminals of fuel temperature switch.
- Run engine at about 1,000 rpm. After several minutes, make sure that fuel heater is hot.
 Be careful not to burn yourself.

4. If fuel heater does not operate, check fuel heater system for wire harness and electrical components.

Component Inspection

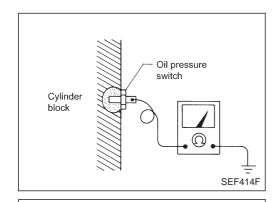
Fuel heater

- 1. Check continuity for fuel heater.
- 2. If fuel heater has malfunction, replace fuel filter heater.

Fuel temperature switch

Remove fuel temperature switch and check the operation by changing atmospheric temperature using dry ice.

Temperature °C (°F)	Operation	Continuity
Decreased to minus 11 - 19 (52 - 66)	$OFF\toON$	ON: Exists.
Increased to approx. 0 (32)	$ON\toOFF$	OFF: Does not exist.


If NG, replace fuel temperature switch.

EC-228

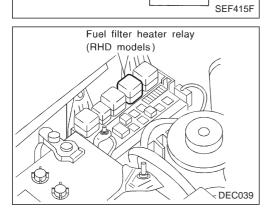
TD

Component Inspection (Cont'd)

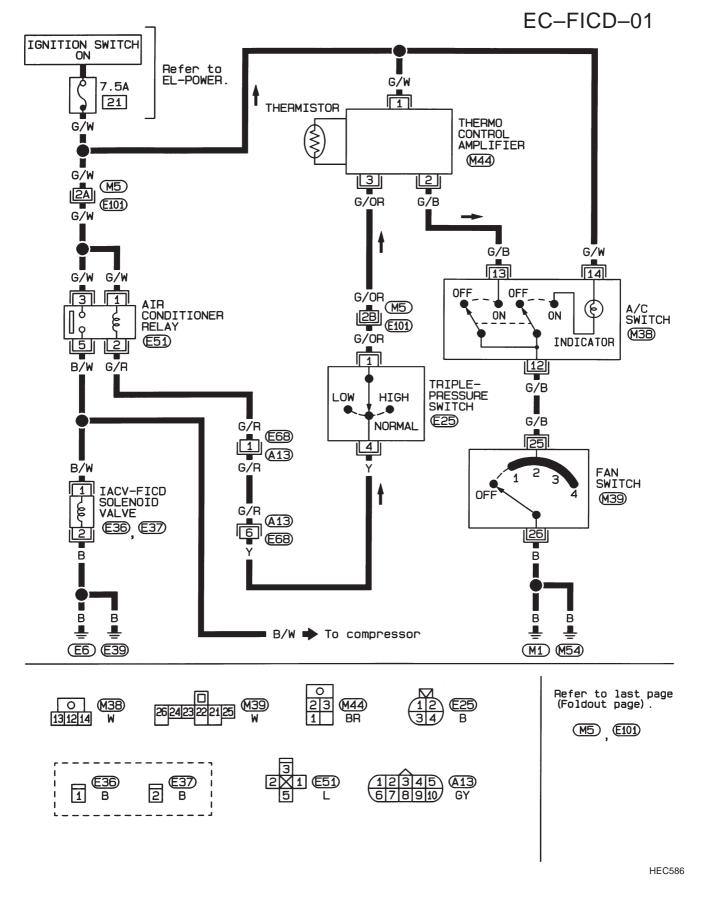
When installing, use a new O-ring. WARNING: Do not touch the cooled fuel temperature switch with your bare hand.

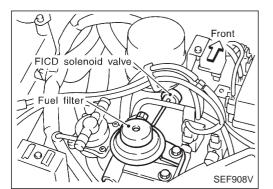
RELAY

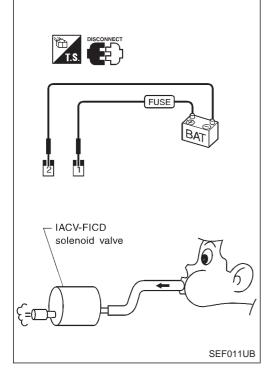
ம்____் BATTERY


 \bigcirc

Oil pressure switch


- 1. Run engine at about 1,000 rpm.
- 2. Check continuity for oil pressure switch.
- 3. If oil pressure switch has malfunction, replace it.


Fuel heater relay


- 1. Check fuel heater relay operation.
- 2. If fuel heater relay does not operate, replace it.

Wiring Diagram

Electrical Components Inspection

IACV-FICD solenoid valve

- 1. Disconnect IACV-FICD solenoid valve harness connectors and vacuum hoses.
- 2. Connect solenoid valve connector to battery and adequate vacuum hoses to the solenoid valve as shown in the figure.
- 3. Blow air into hoses. If air flows: OK
 - If air does not flow: NG

If NG, replace IACV-FICD solenoid valve.

AIR CONDITIONER RELATED COMPONENTS

Refer to "Electrical Components Inspection", "TROUBLE DIAG-NOSES" in HA section.

General Specifications

PRESSURE REGULATOR

Fuel pressure kPa (bar, kg/cm², psi)	
At idle	Approximately 235 (2.35, 2.4, 34)
A few seconds after ignition switch is turned OFF to ON	Approximately 294 (2.94, 3.0, 43)

Inspection and Adjustment

_				
Idle speed*1 rpm		Base idle speed*3	750±25	
	No-load*2 (in "N" po	osition)	Target idle speed	800±50
Air conditioner: ON (in "N" position)		900 or more		
Ignition timing		10°±2° BTDC		
Throttle position touch speed rpm		1,000±150		

*1: Feedback controlled and needs no adjustments

- *2: Under the following conditions:
 Air conditioner switch: OFF
 Steering wheel: Kept in straight-ahead position
 Electrical load: OFF (Lights, heater fan & rear window defog-

ger) *3: Throttle position sensor connector is disconnected.

IGNITION COIL

Primary voltage	V	Battery voltage (11 - 14)
Primary resistance [at 25°C (77°F)]	Ω	Less than 1.0
Secondary resistance [at 25°C (77°F)]	kΩ	7 - 13

MASS AIR FLOW SENSOR

Supply voltage	V	Battery voltage (11 - 14)
Output voltage at idle	V	1.3 - 1.7 at idle* 1.7 - 2.1 at 2,500 rpm*

*: Engine is warmed up sufficiently and running under no-load.

ENGINE COOLANT TEMPERATURE SENSOR

Temperature °C (°F)	Resistance
20 (68)	2.1 - 2.9 kΩ
50 (122)	0.68 - 1.00 kΩ
90 (194)	0.236 - 0.260 kΩ

Resistance [at 25°C (77°F)] Ω 0.2 - 5.0	Resistance [at 25°C (77°F)]	Ω	0.2 - 5.0	
--	-----------------------------	---	-----------	--

Ω

IACV-AAC VALVE

Resistance [at 25°C (77°F)]

Approximately 10.0

INJECTOR

Resistance [at 25°C (77°F)]	Ω	10 - 14

RESISTOR

Resistance [at 25°C (77°F)]	kΩ	Approximately 2.2

THROTTLE POSITION SENSOR

Throttle valve conditions	Resistance [at 25°C (77°F)]
Completely closed	Approximately 0.6 k Ω
Partially open	0.6 - 4.0 kΩ
Completely open	Approximately 4.0 k Ω

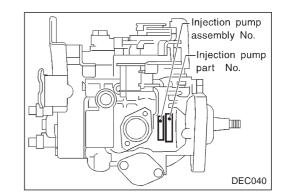
HEATED OXYGEN SENSOR HEATER

Resistance [at 25°C (77°F)]	Ω	2.3 - 4.3
-----------------------------	---	-----------

INTAKE AIR TEMPERATURE SENSOR

Temperature °C (°F)	Resistance		
20 (68)	2.1 - 2.9 kΩ		
80 (176)	0.27 - 0.38 kΩ		

VE-type Injection Pump


APPLICATION

Engine Destination		Part No.	Pump assembly No.	Remarks	
TD25	Europe	16700 3S300	104780-4951	With Nissan Anti-Theft System (NATS)	
		16700 3S301	104780-4961		

INSPECTION AND ADJUSTMENT

Plunger lift

Engine	0	ft at TDC (in)	Part No.	Pump assem- bly No.	
	Inspection	Adjustment			
TD25	0.71±0.05 (0.0280	0.71±0.02 (0.0280	16700 3S300	104780-4951	
TD25	(0.0280 ±0.0020)	(0.0280 ±0.0008)	16700 3S301	104780-4961	

Maximum engine speed

Engine		Maximum engine speed (Under no load)	rpm
	TD25	5,000 +100 -200	

Injection Nozzle

INSPECTION AND ADJUSTMENT

Adjusting shims

Injection nozzle assembly

Unit:	kPa	(bar,	kg/cm ² , psi)	

Ini	tial injection pressure	
	New	10,297 - 11,278 (103.0 - 112.8, 105 - 115, 1,493 - 1,635)
	Used	9,807 - 10,297 (98.1 - 103.0, 100 - 105, 1,422 - 1,493)

Part No.
16613-65N00
16613-65N01
16613-65N02
16613-65N03
16613-65N04
16613-65N05
16613-65N06
16613-65N07
16613-65N08
16613-65N09

Injection Pump Calibration Standard

 Injection pump assembly No.
 104780-4951/ 104780-4961

 Part No.
 16700 3S300/ 106700 3S301
 Pump rotation: Clockwise-viewed from drive side

1. Test conditions

1 - 1 Nozzle: 105780-0060 (NP-DN0SD1510)

1 - 4 Injection pipe: 2 dia. x 6 dia. x 450 mm (0.08 dia. x 0.24 dia. x 17.72 in) 1 - 5 Fuel oil temperature: 45^{+5}_{0} °C (113^{+9}_{0} °F)

1 - 2 Nozzle holder: 105780-2150

1 - 3 Nozzle opening pressure: $13,000^{+300}_{-0}$ kPa (130.0^{+3.0} bar, 133⁺³_{-0} kg/cm², 1,891⁺⁴³ psi)

1 - 6 Supply pump pressure: 20 kPa (0.20 bar, 0.2 kg/cm², 2.8 psi)

2. Setting		Pump speed rpm	Settings	Charge air press kPa (mbar, mmHg, inHg)	Difference in delivery mℓ (Imp fl oz)
2 - 1	Timing device travel	1,100	ON 3.4 - 4.2 mm (0.134 - 0.165 in) OFF 1.8 - 2.2 mm (0.071 - 0.087 in)		_
2 - 2	Supply pump pressure	1,100	ON 471 - 549 kPa (4.71 - 5.49 bar, 4.8 - 5.6 kg/cm ² , 68 - 80 psi) OFF 402 - 461 kPa (4.02 - 4.61 bar, 4.1 - 4.7 kg/cm ² , 58 - 67 psi)		_
2 - 3	Full-load delivery	1,100	46.9 - 47.9 mℓ (1.65 - 1.69 lmp fl oz)/1,000 st	_	3.5 (0.12)
2 - 4	Idle speed regulation	375	5.1 - 9.1 mℓ (0.18 - 0.32 Imp fl oz)/1,000 st		2.0 (0.07)
2 - 5	Start	100	45.0 - 80.0 mℓ (1.58 - 2.82 lmp fl oz)/1,000 st		—
2 - 6	Full-load speed regulation	2,500	12.9 - 16.9 mℓ (0.45 - 0.59 lmp fl oz)/1,000 st		—
2 - 7	Load timer adjustment	1,100	0.1 - 0.5 mm (0.004 - 0.020 in)		

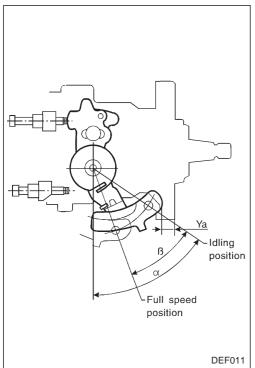
3. Test specifications	Solenoid timer	ON		OFF			
3 - 1 Timing device	N = rpm mm (in)	1,100 3.3 - 4.3 (0.130 - 0.169)	2,150 7.3 - 8.2 (0.287 - 0.323)	700 Below 0.8 (0.031)	1,100 1.7 - 2.3 (0.067 - 0.091)	2,150 6.3 - 7.5 (0.248 - 0.295)	
3 - 2 Supply pump	N = rpm kPa (bar, kg/cm², psi)				1,100 392 - 471 (3.92 - 4.71, 4.0 - 4.8, 57 - 68)	2,150 618 - 696 (6.18 - 6.96, 6.3 - 7.1, 90 - 101)	
3 - 3 Overflow deliv- ery	N = rpm mℓ (Imp fl oz)/ min.	1,100 310 - 570 (10.9 - 20.1)			-	_	

3 - 4 Fuel injection quantities

	•				
Speed control lever position	Pump speed rpm	Fuel delivery mℓ (Imp fl oz)/ 1,000 st	Charge air press kPa (mbar, mmHg, inHg)		
Max. speed	1,100	46.4 - 48.4 (1.63 - 1.70)			
	500	41.3 - 47.3 (1.45 - 1.66)*			
	2,150	41.2 - 48.2 (1.45 - 1.70)*	—		
	2,500	11.9 - 17.9 (0.42 - 0.63)			
	2,700	Below 5.0 (0.18)			
Switch OFF Magnet valve	375	0 (0)	_		
Idling	375	4.6 - 9.6 (0.16 - 0.34)	—		
3 - 5 Solenoid	Max. cut-in voltage: 8V Test voltage: 12 - 14V				

4. Dimensions				
К	3.2 - 3.4 mm (0.126 - 0.134 in)			
KF	5.7 - 5.9 mm (0.224 - 0.232 in)			
MS	0.9 - 1.1 mm (0.035 - 0.043 in)			
BCS	_			
Pre-stroke	0.08 - 0.12 mm (0.0031 - 0.0047 in)			
Control lever angle				
α	51.5 - 59.5 degree			
β	31.0 - 41.0 degree			
γ	_			

ON: Solenoid timer is ON. *: Reference value


OFF: Solenoid timer is OFF.

If there is no designation in the specifications for the Solenoid Timer's ON-OFF position, then the position should be regarded as OFF.

Injection Pump Calibration Standard (Cont'd)

Control lever angle measurement position

Measure the control lever angles (α , β).

Load timer adjustment

- Fix the control lever in the position satisfying the following conditions.
 Pump speed: 1,100 rpm
 - Fuel injection quantity: 33.0±0.5 mℓ (1.16±0.02 Imp fl oz)/1,000 st
- 2. With the control lever positioned as described in 1. above, adjust the governor sleeve so that the timer stroke conforms to the specified values (item 2 7).

Control lever position			Specified values	
Pump speed rpm	Fuel injection quantity mℓ (Imp fl oz)/1,000 st	Boost pressure kPa (mbar, mmHg, inHg)	Timer stroke mm (in)	Timer stroke reduction value mm (in)
1,100	33.0±1.0 (1.16±0.04)	_	1.7 (0.067)	0.3±0.3 (0.012±0.012)
1,100	20.0±2.5 (0.70±0.09)*	_	1.1 (0.043)*	0.9±0.4 (0.035±0.016)*

*: Reference value

Potentiometer adjustment

- 1. Hold the control lever in the idling position.
- 2. Adjust the potentiometer so that the output voltage is 5.64±0.03V. Then fix the potentiometer.
- 3. After adjusting the potentiometer, remove the dummy bolt and then confirm the potentiometer's output voltage specifications below.

Pump speed rpm	Fuel injection q'ty mℓ (Imp fl oz)/1,000 st	Output voltage V	Control lever angle	Remarks
1,075	23.3±1.0 (0.82±0.04)	5.64±0.03	—	Adjusting point
_	1.34 (0.05)*	_	Idle	Check point
_	Above 9.7	_	Full	Check point

*: Reference value

(Input voltage: 10V)

TD